Learning in Games and the Intepretation of Natural Experiments

by Drew Fudenberg and David K. Levine

Online Appendix

Independent Priors

Suppose that $x_{i t}=\chi+\gamma e_{i t}+\omega_{i t}$ where $\chi \in\{\underline{\chi}, \bar{\chi}\}$ and $\gamma \in\{\underline{\gamma}, \bar{\gamma}\}$. Suppose that the support of $F(\omega)$ includes $[-1-\bar{\chi},-\chi]$ and in this range $F(\omega)=F_{0}+f \omega$, where $F_{0}>f>0$. Finally suppose prior independence so that $p_{i 1}(\gamma, \chi)=$ $\tilde{p}_{i 1}(\gamma) \tilde{p}_{i 1}(\chi)$. Normalize so that the prior expected value of χ is zero, that is $\tilde{p}_{i 1}(\bar{\chi}) \bar{\chi}+\tilde{p}_{i 1}(\underline{\chi}) \underline{\chi}=0$. Then the posterior for γ does not depend on the distribution of χ, specifically:

$$
\tilde{p}_{i 2}\left(D_{i 1}\right)=\operatorname{Pr}\left(\bar{\gamma} \mid D_{i 1}\right)=\left(\frac{1}{p_{i 1}+\left(1-p_{i 1}\right) / L\left(D_{i 1}\right)}\right) \tilde{p}_{i 1}
$$

where

$$
L(0)=\frac{F_{0}-\bar{\gamma} e_{i 1}}{F_{0}-\underline{\gamma} e_{i 1}}, L(1)=\frac{1-F_{0}+\bar{\gamma} e_{i 1}}{1-F_{0}+\underline{\gamma} e_{i 1}} .
$$

From Bayes law for the marginal of γ we have

$$
\operatorname{Pr}\left(\gamma \mid D_{i 1}\right)=\frac{\operatorname{Pr}\left(D_{i 1} \mid \gamma\right)}{\sum_{\gamma} \operatorname{Pr}\left(D_{i 1} \mid \gamma\right) p_{i 1}(\gamma)} \tilde{p}_{i 1}(\gamma),
$$

which depends only on $\operatorname{Pr}\left(D_{i 1} \mid \gamma\right)$ and $p_{i 1}(\gamma)$. For the former we have

$$
\operatorname{Pr}\left(D_{i 1} \mid \gamma\right)=\sum_{\chi} \operatorname{Pr}\left(D_{i 1}, \chi \mid \gamma\right)=\sum_{\chi} \operatorname{Pr}\left(D_{i 1} \mid \gamma, \chi\right) \operatorname{Pr}(\chi \mid \gamma)
$$

and applying independence

$$
=\sum_{\chi} \operatorname{Pr}\left(D_{i 1} \mid \gamma, \chi\right) \tilde{p}_{i 1}(\chi)
$$

As $\operatorname{Pr}\left(D_{i 1} \mid \gamma, \chi\right)$ is linear in χ and $\sum_{\chi} \chi \tilde{p}_{i 1}(\chi)=0$ the result follows.

