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Abstract

This paper studies the optimal timing of unemployment insurance subsidies in a McCall

search model. Risk-averse workers sequentially sample random job opportunities. Our

model distinguishes unemployment subsidies from consumption during unemployment

by allowing workers to save and borrow freely. When the insurance agency faces a group

of homogeneous workers solving stationary search problems, the optimal subsidies are

independent of unemployment duration. In contrast, when workers are heterogeneous

or when human capital depreciates during the spell, the optimal subsidy is no longer

constant. We explore the main determinants of the shape of the optimal subsidy

schedule, isolating forces for subsidies to optimally rise or fall with duration.
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1 Introduction

When a homogeneous worker faces a stationary search problem, the optimal unemployment

insurance subsidy is independent of the worker’s unemployment duration (Shimer and Wern-

ing, 2005). In this paper we examine how relaxing these assumptions affects the optimal

timing of unemployment subsidies. In particular, we model an unemployment insurance

agency which sets a schedule of unemployment subsidies as a function of unemployment du-

ration and faces either: (i) a group of homogeneous workers whose human capital depreciates

during unemployment; or (ii) a group of heterogeneous workers.

Both scenarios are empirically relevant and represent a significant departure from pre-

vious work on optimal unemployment insurance, which focuses on the optimal contract for

homogeneous workers with stationary search problems (e.g. Shavell and Weiss, 1979; Hopen-

hayn and Nicolini, 1997). Our work also differs from most research on optimal unemployment

insurance by distinguishing unemployment consumption from unemployment subsidies. We

allow workers to borrow and save using risk free bonds. In Shimer and Werning (2005)

we argued that this is crucial for understanding the design of unemployment insurance pol-

icy: a constant subsidy is optimal, but unemployed workers choose a declining path for their

consumption. Intuitively, with homogeneous workers facing stationary search problems, con-

stant subsidies are optimal because the tradeoff between insurance and incentives does not

change over time.

This paper shows that the optimal subsidy schedule is not flat when we move away from

the benchmark with identical workers facing stationary search problems. When workers’ job

opportunities deteriorate during the spell, or when the pool of unemployed workers shifts

from one type to another, the tradeoff between insurance and incentives changes during

the spell—and subsidies change with it. We provide a simple and tractable framework for

exploring the main determinants of the optimal timing of subsidies. In particular, our model

is well suited for isolating the impact of human capital depreciation and heterogeneity on

the timing of subsidies, precisely because subsidies are constant in the version of our model

without these features.

Throughout this paper, we focus on workers with constant absolute risk aversion (CARA)

preferences, since the absence of wealth effects and bounds on borrowing leads to particu-

larly clean results. The results in Shimer and Werning (2005) suggest that policy towards

the unemployed distinguish efforts to increase liquidity (Feldstein, 2005; Feldstein and Alt-

man, 1998) from unemployment subsidies that provide insurance. Our paper focuses on the
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latter, on the optimal unemployment subsidy schedule once the worker has already been

ensured adequate liquidity. In the benchmark model with neither human capital deprecia-

tion nor heterogeneity, optimal unemployment insurance subsidies are constant with CARA

preferences and increase slowly with unemployment duration when workers have constant

relative risk aversion (CRRA) preferences. Again, the fact that subsides are constant in the

benchmark model is an important benefit of our CARA specification.

We show that the optimal time-varying path of subsidies depends on the form of human

capital depreciation or heterogeneity, and that there are forces for increasing or decreasing

subsidy schedules. The main lesson we derive is that optimal subsidies tend to shift over

the spell in the direction suggested by simple comparative statics. For instance, if a worker

with constant but lower human capital merits a lower constant subsidy in a stationary en-

vironment, then when human capital depreciates over the spell, subsidies should fall with

unemployment duration. Similarly, if workers are heterogeneous, subsidies fall if the com-

position of the unemployment pool shifts towards those workers who would merit a lower

constant subsidy if we could have, fictitiously, costlessly separated them.

In addition to this general finding, some interesting particular conclusions emerge from

our numerical explorations. We consider two forms of human capital depreciation. In the

first, job opportunities arrive at a constant rate but the wage distribution they are drawn

from deteriorates in a steady and parallel fashion. This case captures skill depreciation and is

close to that in Ljungqvist and Sargent (1998). The second form of depreciation has workers

sampling from the same distribution of wages, but the arrival rate of opportunities falls over

time. That is, search frictions rise during the unemployment spell. One interpretation is

that workers become increasingly detached from the labor market as they initially exhaust

their nearest sources for jobs and turn to remoter options. For concreteness, we call the first

form of depreciation skill depreciation and the second form search depreciation.

In our skill depreciation exercises we find decreasing optimal unemployment insurance

subsidies. Constant subsidies would give the long-term unemployed a higher replacement

ratio relative to their potential wages and induce these workers to become overly picky, or

even drop out, as stressed by Ljungqvist and Sargent (1998). In our exercises, the declin-

ing wage opportunities lead the reservation wage to decline steadily during unemployment.

However, subsidies decline even faster: the ratio of the unemployment insurance subsidy to

the reservation wage is also decreasing. Interestingly, we also find that skill depreciation

creates a force for larger initial unemployment subsidy levels. Intuitively, the shocks to

workers’ permanent income from remaining unemployed for an additional week, which we
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seek to insure, is larger because they are no longer simply the missed current earnings, but

also include the lower future earnings.

In contrast, we find that search depreciation creates a force for rising subsidies. Intu-

itively, unfortunate workers who remain unemployed for a long time have lower arrival rates

of offers and, therefore, demand more insurance to deal with their heightened duration risk.

Long-term unemployed workers have lower exit rates from unemployment, but not because

they become choosier. Indeed, in our exercises we find declining reservation wages during

the spell. The reason for the lower employment rate is that they receive fewer job offers.

Since the moral hazard problem becomes less severe, but risks loom greater, this leads to

rising insurance subsidies.

In our exercises with heterogeneity we also find forces for increasing or decreasing sub-

sidies. Roughly speaking, subsidies fall if the pool of unemployed shifts over time towards

workers that would have required lower constant subsidies had the agency faced them in

isolation. For example, suppose workers differ in their value of leisure. Workers who value

leisure more have a higher reservation wage and longer unemployment duration but less need

for unemployment insurance. In this case, subsidies tend to decline during an unemployment

spell. Conversely, if workers differ in the variance of their wage draws, those who face more

idiosyncratic uncertainty have a higher option value of search, a higher reservation wage,

longer unemployment duration, and a greater need for unemployment insurance. Benefits

tend to rise during an unemployment spell.

In both cases, we find that optimal subsidies tend to overshoot their long-run target. To

be concrete, suppose individuals differ in their value of leisure. If types could be separated,

optimal subsidies would be constant for each type and higher for workers who value leisure

less. A common decreasing subsidy schedule partially imitates this desirable but unattainable

property. The reason is that with any common subsidy schedule, unemployment duration is

longer for workers who have a higher value of leisure and so the expected present value of

per-period subsidies is lower for such workers when the subsidy schedule is decreasing with

unemployment duration.

Put differently, the model predicts that optimal unemployment subsidies for the long-

term unemployed should be low both because the long-term unemployed mostly have a high

value of leisure and because this provides better a tradeoff between insurance and incentives

for workers in the early stages of an unemployment spell. The second piece of the argument

points to a time consistency problem: if it were possible to reset the subsidy, the insurance

agency would like to raise unemployment subsidies. By constraining itself from doing that,
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it is possible to provide better incentives early in the unemployment spell.

Throughout this paper, we focus on the optimal timing of unemployment subsidies rather

than unemployment benefits and taxes. This is because of Ricardian equivalence. When

workers can borrow and lend, many unemployment benefit and tax schedules are equivalent

in the sense that they do not affect workers’ budget sets and hence do not affect their

behavior. However, the model uniquely determines the optimal timing of unemployment

subsidies, the present value of transfers from the unemployment insurance agency if the

worker remains unemployed for one additional period.

Our model incorporates elements present in various positive models of unemployment

and the effects of unemployment insurance. Ljungqvist and Sargent (1998) emphasize hu-

man capital depreciation of unemployed workers to explain higher European unemployment.

They model skill loss as stochastic, so their story actually also combines elements of het-

erogeneity. In particular, during ‘tranquil’ times human capital depreciates steadily during

unemployment generating unimportant amounts of heterogeneity among the unemployed. In

contrast, during ‘turbulent’ times a fraction of workers lose skills immediately at the moment

they are laid off, generating significant amounts of heterogeneity.1

Our paper departs in important ways from existing normative analyses that focuses

on homogenous workers facing stationary search problems. In these contexts, Shavell and

Weiss (1979) and Hopenhayn and Nicolini (1997) showed that consumption should decline

during unemployment. Although these results are often interpreted as a prescription for

declining unemployment subsidies, Werning (2002) and Shimer and Werning (2005) highlight

the importance of distinguishing consumption from unemployment subsidies and suggest a

different interpretation: workers collect constant, or near constant, unemployment benefits

but choose to have consumption declining as they draw down their assets or borrow, by

the usual permanent-income reasoning, to smooth their consumption. Pavoni (2003) and

Violante and Pavoni (2005) are two papers that study optimal insurance in environments

with human capital depreciation. However, these papers do not focus on the optimal timing

of subsidies because they do not attempt to distinguish consumption from subsidies, and

they focus on the latter by assuming that the unemployment insurance agency can control

consumption.

1 Ljungqvist and Sargent (1998, pg. 548) conclude that “during tranquil times, the depreciation of skills
during spells of unemployment [. . . ] is simply too slow to have much effect on the amount of long-term
unemployed. The primary cause of long-term unemployment in our turbulent times is the instantaneous
loss of skills at layoffs. Our probabilistic specification of this instantaneous loss creates heterogeneity among
laid-off workers having the same past earnings.”
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The rest of the paper is organized into four sections. Section 2 describes the model.

Section 3 characterizes the worker’s search problem for any given unemployment insurance

schedule. Section 4 describes optimal unemployment insurance policy. Section 5 studies

homogeneous workers who face skill and search depreciation during unemployment. Section 6

turns to the case of heterogeneity. Section 7 contains our conclusions.

2 The Model

We adapt the model from Shimer and Werning (2005, 2006). These papers provide a tractable

version of a McCall (1970) search problem enhanced to incorporate risk-averse workers that

can save and borrow freely. Time is continuous and infinite t ∈ [0,∞). Workers seek to

maximize expected discounted utility

E0

∫ ∞

0

e−ρtu(c(t))dt (1)

where c(t) is consumption. We work with Constant Absolute Risk Aversion (CARA) utility

functions: u(c) = −e−γc with c ∈ R. This assumption allows us to solve the model in closed

form.2

Unemployed workers sample job opportunities at Poisson arrival rates λ(t). Jobs are dis-

tinguished by their wage w drawn from a distribution F (w, t). This introduces two potential

forms of human capital depreciation. We assume jobs last forever.

Budget Constraints. Workers can save and borrow at the market interest r. Their budget

constraints are

ȧ(t) = ra(t) + y(t) − c(t), (2)

where a(t) are assets and y(t) represents current non-interest income: it equals the un-

employment subsidy, B(t), during unemployment and the wage, w(t), during employment.

Initial assets a(0) = a0 are given, although there may be initial lump-sum taxes and trans-

fers, as we discuss further below. In addition workers must satisfy the No-Ponzi condition

limt→∞ e−rta(t) ≥ 0.

Heterogeneity. To capture worker heterogeneity we assume that there are N types indexed

by n = 1, 2, . . . , N and index the primitives of the worker’s search problem by the type, λn(t),

2Shimer and Werning (2005) verify that CARA preferences provide a good benchmark: the numerical
solution with CRRA preferences is very close to the CARA closed form solution.
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Fn(w, t), un(c), γn, and ρn.

Unemployment Insurance Policy. In this paper we are interested in the optimal timing

of unemployment insurance subsidies, and not in larger, more comprehensive, social welfare

reforms. This motivates the policy problem we consider, which is to select a schedule of

unemployment subsidies {B(t)}t≥0 that stipulates the subsidy B(t) received by a worker that

remains unemployed at t. Subsidies can be conditioned only on unemployment duration.3

The optimal unemployment insurance policy problem we study is to find the best such

schedule of subsidies. For the case with heterogeneous workers one must, in general, specify

a welfare criterion. However, to avoid redistributional concerns we allow initial lump-sum

transfers between workers types. These transfers are equivalent to redistributions in terms of

initial assets a0. It turns out that, with CARA preferences, the optimal schedule {B(t)}t≥0

is then uniquely pinned down: all Pareto efficient allocations can be achieved with the same

schedule by varying the initial lump-sum transfers (initial assets) between workers. Thus,

we do not need to specify any particular welfare criterion and our analysis characterizes all

Pareto efficient schedules.

3 Worker Behavior

In this section we characterize the behavior of a single unemployed type n worker confronted

with any subsidy schedule {B(t)}t≥0.

For any job-acceptance policy, workers solve a standard consumption-savings subproblem,

maximizing utility in equation (1) subject to the budget constraint equation (2) and the No-

Ponzi condition. As is well known, the solution to any consumption-savings problem must

satisfy the usual intertemporal Euler equation

un
′(c̃t) = e−(ρn−r)s

Et[un
′(c̃t+s)],

where {c̃t} is the optimal stochastic process for consumption. With CARA preferences

un
′(c) = γnun(c), so this implies

un(c̃t) = e−(ρn−r)s
Et[un(c̃t+s)].

3We do not consider, for instance, menus of schedules that may self-select and separate worker types;
likewise we do not consider constraining workers access to savings.
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It follows that
∫ ∞

0

e−ρns
Et[u(c̃t+s)]ds =

u(c̃t)

r

which conveniently relates lifetime utility to current consumption.

Let Vn(t) and c(t) represent the lifetime utility and consumption of an unemployed worker,

respectively, after duration t; note that both are deterministic functions of t. Then applying

the argument above implies that

Vn(t) =
un(c(t))

r
. (3)

Unemployed workers wait around for job offers. An unemployed worker accepts a job

offer if the wage is higher than the wage w̄n(t) which makes her indifferent. Since a worker

with current assets a(t) and a job paying w̄n(t) forever consumes ra(t)+w̄n(t)+(ρn−r)/γnr,

Vn(t) =
un(ra(t) + w̄n(t) + (ρn − r)/γnr)

r
(4)

Time differentiate and use un
′(c) = −γnun(c) to get

V̇n(t) = −γnV (t)(rȧ(t) + ˙̄wn(t)). (5)

During unemployment, ȧ(t) = ra(t) +B(t) − c(t). Equations (3) and (4) imply:

c(t) = ra(t) + w̄n(t) + (ρn − r)/γnr, (6)

ȧ(t) = B(t) − w̄n(t) − (ρn − r)/γnr. (7)

Substituting equation (7) into equation (5) yields

V̇n(t) = Vn(t)
(

− γn

(

r(B(t) − w̄n(t)) + ˙̄wn(t)
)

+ ρn − r
)

. (8)

With a reservation wage rule, lifetime utility during unemployment is a function of time

and evolves according to

ρnVn(t) = un(c(t)) + V̇n(t)

+ λn(t)

∫ ∞

w̄n(t)

(

un(ra(t) + w + (ρn − r)/γnr)

r
− Vn(t)

)

dFn(w, t)

Use equation (3) to eliminate un(c(t)), equation (8) to eliminate V̇n(t), and divide through
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by Vn(t) as given in equation (4):

˙̄wn(t) = r(w̄n(t) −B(t))

−
λn(t)

γn

∫ ∞

w̄n(t)

(

1 −
un(ra(t) + w + (ρn − r)/γnr)

un(ra(t) + w̄n(t) + (ρn − r)/γnr)

)

dFn(w, t)

Since un(a)/un(b) = −un(a− b), this is equivalent to

˙̄wn(t) = Gn(w̄n(t), t) − rB(t), (9)

where

Gn(w̄, t) ≡ rw̄ −
λn(t)

γn

∫ ∞

w̄

(1 + un(w − w̄)) dFn(w, t). (10)

This is a crucial equation for our analysis. In a stationary environment, with constant

subsidies B, a constant arrival rate λ, and a constant wage distribution F (w), the stationary

solution in equation (9) boils down to the reservation wage equations in Shimer and Werning

(2005, 2006).

The relations in equations (3)–(9) are necessary conditions for worker optimality. Indeed,

they completely characterize behavior over any finite horizon. Together with appropriate

“transversality” conditions, which pin down the relevant solution to the ordinary differential

equation (9), they are also sufficient for worker optimality. In particular, given a path

for benefits {B(t)}, one solves the ODE (9) for the reservation wage path w̄(t). Then

equation (6)–(7) can be solved for the path of assets a(t) and consumption c(t) during

unemployment. This then characterizes the entire allocation.

The appropriate solution to equation (9) when primitives F (w, t) and λ(t) and benefits

B(t) are constant is the constant reservation wage with ˙̄w(t) = 0. For the purposes of this

paper, we do not need to characterize “transversality” conditions in more general cases for

two reasons: (i) since our relations completely characterize behavior over any finite horizon

they will suffice for our theoretical results, derived using dynamic programming arguments

(for example, Proposition 1 below); (ii) our numerical work truncates, by necessity, the

economy by assuming that primitives and benefit policy are constant for t ≥ T , after some

long duration T .

Relation between w̄n(t) and B(t). We shall use the characterization of the relationship

in equation (9) between the reservation wage path {w̄n(t)} and subsidy schedule {B(t)}

extensively. It is useful to understand what this relation does and does not imply.
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Suppose we are in a stationary environment so that Gn(w̄, t) = Gn(w̄) is independent of

time t. Then, at a steady state, where ˙̄wn = 0, we have B = Gn(w̄n)/r. Since Gn is increasing

in w̄n it follows that there is a positive relation between subsidies and the reservation wage.

This is intuitive since a higher subsidy makes the option of waiting for higher wage draws

more attractive without making employment any more desirable. As a result, the worker

becomes more picky about what jobs to accept.

However, the steady-state relationship does not imply that along any dynamic path

w̄n(t) and B(t) will rise and fall in tandem. In equation (9) subsidies B(t) are determine

both w̄n(t) and ˙̄wn(t). Informally, if the reservation wage is rising sharply, it indicates that

the unemployed worker’s lifetime utility is doing the same; things are better in the near

future, so current subsidies must be temporarily low.

This implies that there is no simple relation between the paths of w̄n(t) and B(t). For

instance, suppose w̄n(t) is monotonically increasing; then, it may seem reasonable to expect

subsidies B(t) to also be increasing. This will be the case as long as w̄n(t) does not accelerate

too much, so that ˙̄wn(t) does not rise too abruptly; otherwise, equation (19) implies that

subsidies will decrease over a range where ˙̄wn rises quickly. Thus, a monotonic w̄n(t) does

not imply monotonic subsidies B(t). The converse, however, is true: if the subsidy schedule

B(t) is monotonic then w̄n(t) is monotonic.

This discussion emphasizes the dynamic nature of worker’s search problem. The reser-

vation wage is not only affected by the current subsidy, but also by future subsidies. As

a result, current subsidies may generally provide a poor measure of the current subsidy to

unemployment implicit in the entire schedule.4 Perhaps a better measure is simply to ob-

serve the effect on the actual reservation wage, which is forward looking and incorporates

the dynamics of future subsidies.

4 Optimal Policy

We imagine an unemployment insurance agency that wishes to maximize a weighted average

of unemployed workers’ lifetime utility subject to the constraint that it must break even

on average. If workers are heterogeneous, unemployment insurance redistributes income

across individuals. To focus attention on insurance, we allow for the possibility of lump-

4 To take an extreme example, suppose that subsidies are negative during the first week of unemployment
but they then jump up to a positive level, much higher than any potential wage. Few would describe the
situation faced by the worker in the first period as providing a tax on unemployment that encourages finding
a job.
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sum transfers between groups of workers at time zero. Given the structure of preferences

in equation (4), this implies the unemployment insurance agency selects a single subsidy

schedule B(t) to maximize the sum of the reservation wages net of the discounted cost the

program.
N

∑

n=1

w̄n(0)µn(0) − rC,

where w̄n(0) is the time-zero reservation wage of type n workers, µn(0) is the measure of

type n workers in the unemployed population at time 0, and C is the expected cost of the

unemployment subsidy system:

C ≡

∫ ∞

0

e−rtB(t)
N

∑

n=1

µn(t)dt.

where

µn(t) ≡ exp

(

−

∫ t

0

Hn(w̄n(s), s)ds

)

(11)

is the probability of being unemployed at time t and

Hn(w̄n, s) ≡ λn(s)(1 − F n(w̄n, s)) (12)

is the hazard rate of accepting a job.

The agency recognizes that for any benefit schedule B(t), the reservation wage of type

n workers solves equation (9) and the transversality condition, while the measure of unem-

ployed type n workers decreases as these workers find jobs according to equation (11). The

solution to this problem maximizes total surplus, which can then be split, using lump-sum

transfers, in any way.

Use equation (9) to eliminate B(t) from the objective function

N
∑

n=1

w̄n(0)µn(0) − rC =
N

∑

n=1

w̄n(0)µn(0)

−

∫ ∞

0

e−rt

N
∑

n=1

(

˙̄wn(t) −Gn(w̄n(t), t)
)

µn(t)dt (13)
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Use integration-by-parts to eliminate the term of the integral involving ˙̄w(t):

∫ ∞

0

e−rt ˙̄wn(t)µn(t)dt = −w̄n(0)µn(0) −

∫ ∞

0

e−rtw̄n(t)(µ̇n(t) − rµn(t))dt

= −w̄n(0)µn(0) +

∫ ∞

0

e−rtw̄n(t)
(

r +Hn(w̄n(t), t)
)

µn(t)dt,

where the second line differentiates equation (11) to get

µ̇n(t) = −µn(t)Hn(w̄n(t), t). (14)

Substitute this back equation (13) to simplify the objective function w̄(0)−rC. The planner

must choose a sequence of reservation wages for each type to maximize

∫ ∞

0

e−rt

N
∑

n=1

Jn(w̄n(t), t)µn(t)dt, (15)

where

Jn(w̄n(t), t) ≡ w̄n(t)
(

r +Hn(w̄n(t), t)
)

−Gn(w̄n(t), t). (16)

Since there is a single unemployment subsidy schedule, the evolution of the reservation wages

are linked by equation (9):

∆̇n(t) = Gn(w̄1(t) + ∆n(t), t) −G1(w̄1(t), t), (17)

where ∆n(t) ≡ w̄n(t) − w̄1(t) is the difference between the reservation wage of type n and

type 1 workers. Finally, the share of each type evolves according to equation (14).5

We can view this as an optimal control problem where the planner chooses a sequence

for the reservation wage of type 1 workers and an initial value for other types’ reservation

wages. This then determines the evolution of the differences ∆n(t), n = 2, . . . , N and

the unemployment rates µn(t), n = 1, 2, . . . , N . Of course, the planner also faces a set

transversality conditions.

Appendix A discusses our solution method for the case of N = 2, when this reduces to

an optimal control problem with three state variables and one control variable. We show

how to eliminate one of the state variables and apply Pontryagin’s Maximum Principle to

5 Formally, we also require that the the implied worker behavior be optimal. As discussed in Section 3
this requires some “transversality” conditions to be met, which we fortunately do not need to specify for our
purposes.
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find the solution.6

5 Human Capital Depreciation

In this section we consider the case of a single worker type that faces a non-stationary search

problem, with λ or F are changing over time. The optimal unemployment insurance problem

simplifies considerably:

max
{w̄}

∫ ∞

0

e−rtJ(w̄(t), t)µ(t)dt (18)

subject to µ̇(t) = −µ(t)H(w̄(t), t),

where J is defined in equation (16) and µ(0) = 1 is given.7

5.1 Constant and Non-Constant Benefits

An interesting property of optimal subsidies that follows from our reformulation is that the

schedule is entirely forward looking: only future values of λ and F are relevant.8 The next

result then follows immediately from this observation.9

Proposition 1 (Shimer-Werning, 2005) With a single worker type facing a stationary

problem λ(t) = λ and F (w, t) = F (w) for all t ≥ 0 the optimal subsidy schedule is flat:

B(t) = B̄ for some B̄ > 0.

To tackle the general problem we write it recursively. Let Φ(µ, t) be the value function

for the problem in equation (18). This value function solves the Bellman equation

rΦ(µ, t) = max
w̄

(

J(w̄, t)µ− Φµ(µ, t)H(w̄, t)µ+ Φt(µ, t)
)

.

6 An alternative is to formulate the dynamic programming Hamilton-Jacobi-Bellman partial-differential
equation of the problem.

7 Formally, we also require that the implied worker behavior be optimal—which requires “transversality”
conditions, as discussed in Section 3.

8 Note that this is true even when we consider explicitly any “transversality” condition required to ensure
worker optimality.

9 This result is proven in Shimer and Werning (2005) in a discrete time version of the model using a
different argument. That paper shows that the planner does not want to distort savings. In contrast, here
we have simply assumed that the policy problem does not consider introducing such distortions.
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Note that the value function is homogeneous of degree one in µ and so we can define φ(t) ≡

Φ(µ, t)/µ solving

rφ(t) = max
w̄

(

J(w̄, t) − φ(t)H(w̄, t) + φ̇(t)
)

Equivalently, we have an ordinary differential equation for φ(t):

φ̇(t) = M(φ(t), t) (19)

where the law of motion function M is given by

M(φ, t) ≡ min
w̄

(

(r +H(w̄, t))φ− J(w̄, t)
)

. (20)

Note that the envelope condition implies that the law of motion functionM(φ, t) is increasing

in φ. Moreover, since the cross-partial derivative of w̄ and φ is negative in the objective

function, it follows that the optimal w̄ is increasing in φ.

To characterize optimal unemployment insurance, we simply need to solve this ordinary

differential equation (19), ensuring that the transversality condition holds. When primitives

settle down in the long-run one can solve backwards from the long-run steady-state. The

optimal reservation wage solves the right hand side of equation (20) at each date. And the

subsidies that implement this reservation wage are found by inverting equation (9) for B(t).

It is instructive to verify how the stationary solution in Proposition 1 solves the ODE

system in equation (19). Since primitives are constant the law of motion is independent of

time: M(ψ, t) = M(ψ). Since M(ψ) is increasing there exists a unique steady-state value

ψ∗ satisfying 0 = M(ψ∗). Then note that the stationary solution ψ(t) = ψ∗ solves the

ODE system and satisfies the transversality conditions. The reservation wage and subsidies

implicit in this solution are constant, as in Proposition 1.

A simple non-stationary case, illustrated in Figure 1, is when primitives are constant up

to some time T , at which point they switch forever after. That is, we have λ(t) = λ0 and

F (w, t) = F0(w) for all t < T and λ(t) = λ1 and F (w, t) = F1(w) for all t ≥ T . This implies

that φ evolves according to φ̇ = M0(ψ) for t < T , and then φ̇ = M1(ψ) for t ≥ T .

We know that the optimal solution must reach the steady-state point φ∗
1 of M1 at t = T .

Thus, the initial value φ(0) must start somewhere to the right of point φ∗
0 and increase—

accelerating with the explosive dynamics of M0—until it reaches φ∗
1 exactly at time t = T ,

at which point it remains constant there. The larger is T the closer φ(0) must be to φ∗
0;

indeed, as T → ∞ then φ(0) limits to φ∗
0.

13
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Figure 1: Law of Motion for φ.

The implications for subsidies B(t) are immediate translations of those derived for φ(t).

Let B∗
i denote the optimal constant subsidies for the stationary problem with λi and Fi(w).

Then subsidies B(t) converge to the optimal constant subsidy B∗
1 in the long run as t→ ∞

and they start somewhere near B∗
0 . This result is generalized in the next proposition, where

we imagine time extending indefinitely on both sides.

Proposition 2 Suppose that we have λ(t) and F (w, t) defined for all t ∈ R with well de-

fined limits limt→−∞ λ(t) = λ0 and limt→−∞ F (w, t) = F0(w) and limt→∞ λ(t) = λ1 and

limt→∞ F (w, t) = F1(w). Then B(t) is such that limt→−∞B(t) = B∗
0 and limt→∞B(t) = B∗

1 ,

where B∗
i is defined as the optimal constant subsidy levels for the economies with constant

primitives at λi and Fi(w).

An Aside: Q-Theory Analogy. Our model can be mapped into the adjustment cost

model of investment with constant returns to scale which Hayashi (1982) used to related

investment to “Tobin’s Q”.

In the case of certainty the investment model can be formulated as maximizing discounted

profits
∫ ∞

0

π(i(t), t)K(t)dt

14



subject to K̇(t) = i(t)K(t), where i(t) = I(t)/K(t) is the investment rate. There are constant

returns to scale in the net profit function, which equals revenues net of investment costs,

and constant returns in investment. No assumption of concavity is required. One can show

that the value function is homogeneous of degree one, V (K) = qK, so that the marginal and

average value of capital, q, often referred to as “Tobin’s Q”, solves

rq = max
i

{π(i, t) + iq} + q̇.

The important result for this theory is that the investment rate is a function of q; the entire

future is captured by this forward looking variable.

This model maps directly into our framework, with µ playing the role of K, φ playing

the role of q, w̄ playing the role of investment i, and π given by w̄(r +H(w̄, t)) −G(w̄, t).

5.2 Numerical Explorations

This section describes the outcome of two numerical experiments. We first consider skill

depreciation, then search depreciation. The purpose of these explorations is not to obtain

definite quantitative conclusions. Our goal is to understand the qualitative workings of the

model and perhaps get a tentative feel for their quantitative importance.

Our baseline parameterization is close to that in Shimer and Werning (2005). We set

γ = 1, r = ρ = .001 and λ = 1 and interpret a period to be a week, with an implied annual

interest rate of 5.3%. The distribution is assumed to be Fréchet: F (w) = exp(−w−θ). We

set θ = 103.5.

This baseline calibration has wages concentrated near 1 and delivers an expected duration

of around 10 weeks, which is in line with unemployment durations in the United States. The

optimal constant subsidy in this economy turns out to be very low, around 0.01. The desire

to insure is small enough, while the moral-hazard problem severe enough, that low subsidies

result at the optimum. As discussed by Shimer and Werning (2005), liquidity, in contrast,

is important: workers are able to smooth their shocks, spreading their impact over time, by

dissaving or borrowing.

5.2.1 Skill Depreciation

In this first exercise we keep λ(t) = 1 constant and instead assume that the distribution of

wages shifts downwards in a parallel fashion. Our specification is inspired by the depreciation

15
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Figure 2: Optimal Benefits with Skill De-
preciation.
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Figure 3: Ratio of subsidies to the reserva-
tion wage: B(t)/w̄(t).

process used in Ljungqvist and Sargent (1998). Specifically we let

F (w, t) = F (w − exp(−δF · t)) t < T

F (w, t) = F (w − exp(−δF · T )) t ≥ T

where F (w) is the baseline Fréchet distribution defined above. Thus, at t = 0 the wage

distribution is simply a rightward shift of the baseline distribution. Over time the distribution

shifts continuously to the left, converging back to the baseline distribution. We set the speed

of convergence to δF = 0.01.

Our approach is to solve the ODE system in equation (19). We first solve the system’s

steady state for t ≥ T . We then solve the ODE backwards up to t = 0. This gives us φ(t).

We then compute w̄(t) and solve equation (9) for B(t) = 1
r
(G(w̄(t), t) − ˙̄w(t)).10

Figure 2 shows the outcome of this exercise for the optimal schedule of subsidies. The

schedule is decreasing with unemployment duration, starting at subsidies just above 0.30

and falling to the steady-state value of 0.01—equal to the value of subsidies at the baseline.

Figure 4 shows that these subsidies induce the reservation wage to fall during the unemploy-

ment spell. The rate at which the reservation wage drops, however, does not keep up with

the rate of decline in the distribution of wages. This is shown in Figure 5 where we plot

10 The numerical details are as followed. We employed Matlab’s ode45 routine to solve the ODE, along
with the fminbnd routine for the required optimization. We computed φ(t) and then backed out the implied
reservation wage w̄(t). We then fit a piecewise cubic shape-preserving spline through w̄(t) (using Matlab’s
interp1 routine with the pchip option) to obtain the derivative ˙̄w(t) from it.
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Figure 5: Acceptance Probability.

the acceptance probability of job opportunities, 1 − F (w̄(t)). The optimal schedule induces

workers to become pickier: the probability of accepting a job offer falls from around 80% to

10%. Note that in this case, since λ(t) = 1 the acceptance probability equals the hazard rate

of out unemployment, λ(t)(1 − F (w̄(t))). Benefits, however, all even faster: Figure 3 plots

the ratio B(t)/w̄(t), it is decreasing.

As Figure 5 illustrates the hazard rate out of unemployment is high, especially at the

beginning of the spell where depreciation is greatest. Workers become more willing to accept

bad matches to prevent their skills from depreciating. We computed the solution for θ = 15

which increases the dispersion of wages making search more attractive. Figure 6 plots optimal

subsidies for this case. Once again we see that subsidies are decreasing. Figure 7 shows that

the hazard rate out of unemployment is much lower now, and close to the hazard at the

benchmark without depreciation.

5.2.2 Search Depreciation

In this second exercise we assume that the wage distribution is fixed at the baseline’s Fréchet

specification, but that the arrival rate falls continuously over time. Specifically, we let

λ(t) = λ̄0 exp(−δλ · t) + λ̄1 for t ≤ T and constant thereafter; we set δλ = 0.01, λ̄0 = .9

and λ̄1 = .1, so that the arrival rate starts at our benchmark of one offer a week and falls

continuously towards one offer every 10 weeks.

Figure 8 shows the results of this exercise for optimal subsidies. We find an increasing

schedule, which is in line with Proposition 2, since a lower arrival rate increases the duration

risk of unemployment prompting higher subsidies. The level of subsidies is quite low in this
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Figure 6: Optimal Benefits with θ = 15.
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case throughout, so the increase in subsidies is not very spectacular. Figure 9 shows that

even though subsidies rise the acceptance probability (blue line) rises with duration as job

opportunities become rarer. Workers become less picky and lower their reservation wages.

However, the resulting hazard rate out of unemployment λ(t)(1−F (w̄(t))), also shown (green

line), comes out to be slightly declining.

We have found that the limiting long-run subsidy is quite sensitive to the long-run value

λ1 for low enough values, and become quite large for λ1 near zero. To illustrate this Figure 10

shows optimal subsidies when λ1 = .01. Note that subsidies rise only moderately for about

6 years—similar to what we found in Figure 8 for higher λ1. However, when λ(t) gets very

close to zero, subsidies rise sharply and asymptote to a high level, around 0.73. Of course,

with these parameters only an insignificant fraction of workers make it this far into long-term

unemployment. Nevertheless, this illustrates that the magnitude of the increase in subsidies

depends on parameters of the problem.

As explained in Section 3, when the reservation wage accelerates there may be regions

where subsidies are decreasing. We found that this occurs over an intermediate region of time

for the extreme parameter value of λ1 = 0. Figure 12 shows that subsidies are decreasing

over an intermediate region. Indeed, they become slightly negative there because they were

low and close to zero initially. The nonmonotonicity occurs after around 6 years, a duration

that an insignificant fraction of workers will reach. However, this illustrates the point we

made earlier: that subsidies may be a poor measure of the subsidy to unemployment since

workers are forward looking and incorporates the dynamics of future subsidies.
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6 Heterogeneity

When workers are heterogeneous, for any given common subsidy schedule, the pool of un-

employed worker types typically varies over time. That is, worker types that tend to have

lower hazard rates become more prevalent as time passes. This section focuses on how this

affects the optimal subsidy schedule. We study the case with two types of workers indexed

by n = 1, 2. To bring out the role of heterogeneity we suppose that for each worker type the

arrival rate of offers λn and the distribution of wages Fn does not vary with time t.

6.1 Numerical Explorations

As with the depreciation case, the purpose of our explorations is not to obtain definite

quantitative conclusions but to understand the qualitative workings of the model.

In all our exercises we start with equal population fractions for both worker types µ1 =

µ2 = 1/2. We begin with heterogeneity in the distribution functions of potential wages. All

the other parameters are set at our baseline, as described in Section 5. If we could costlessly

separate workers, then it would be optimal to give worker n some constant subsidies equal

to B̄n. The values of B̄n will be useful references in the exercises below.

Heterogeneity in θ. In this experiment we set θ1 = 50 and θ2 = 100, in our Fréchet

specification: Fn(w) = exp(−w−θn). Workers of type 1 tend to have a lower hazard rate

out of unemployment because they sample from a distribution with thicker tails and have

a higher option value of waiting for offers. As a consequence, their fractions rises in the
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Figure 10: Optimal Benefits with Search
Depreciation when λ1 = .01.
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Hazard Rates when λ1 = .01.

unemployment pool over time. The implied constant optimal subsidies are small for both

workers, but slightly higher for type-1 workers: B̄1 = 0.024 and B̄2 = 0.012.

Figure 14 shows the optimal subsidy schedule for this case. Overall subsidies start

around B̄2 rise with duration and limit to B̄1, as type-1 workers prevail in the unemployment

pool. Indeed, subsidies rise and initially overshoot B̄1 and then come down back towards it.

Figure 15 shows the evolution of the fraction of type 1 workers µ1(t)/(µ1(t) + µ2(t)) along-

side the relative hazard rate H1(t)/H2(t). In this example the relative hazard rate is quite

constant, hoovering around 1/2, and the fraction of type-1 workers rises steadily towards 1;

the hazard rates are also quite constant and around H1 ≈ .48 and H2 ≈ .95.

In this example, given the chosen parameters, the overall subsidy levels are quite low.

As a consequence, so is the rise in subsidies. This need not be the case: Figure 16 and 17

are comparable to Figure 14 and 15 but using θ = 10 and θ = 20. The associated constant

subsidy levels are now B̄1 = 0.267 and B̄2 = 0.073. Figure 16 shows that the rise in subsidies

is more significant now as subsidies rise from a value near B̄1 and asymptote to B̄2.

In the previous two examples workers with lower hazard rates were also those workers

that merited a higher constant unemployment subsidy, in the sense that B̄1 > B̄2. As a

consequence, when policy cannot separate workers subsidies tend to rise over time. Our next

example inverts this logic.

Parallel Shifts. We now assume that workers of type 1 sample from a distribution that is

shifted to the left in a parallel fashion, so that F1(w) = F2(w + ω).

One interpretation for the source of heterogeneity is that the wage workers sampled is to
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Depreciation when λ1 = .01.
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Hazard Rates when λ1 = .01.

be interpreted broadly as a wage net of work effort cost on the job. Then workers of type 1

can be interpreted as “lazy” relative to type 2, in that they have a higher cost of working.

Another interpretation is that type 1 workers have suffered a discrete loss in human

capital, lowering their productivity on the job by a constant amount. This is similar to the

model in Ljungqvist and Sargent (1998), where a fraction of workers suffer an immediate loss

in skills upon being laid off, the rest are spared. This introduces a form of heterogeneity that

is very similar to that explored here. Their model also includes a steady rate of depreciation

during the unemployment spell, that can be roughly captured by our previous analysis.11

Thus, we can captures both elements, heterogeneity and depreciation, in Ljungqvist and

Sargent’s (1998) specification.

We solve the model with F2 set to the Fréchet specification with θ = 10 and ω = 1/2.

These choices imply B̄1 = 0.185 and B̄2 = 0.242. The results are shown in Figure 18 and

Figure 19. Benefits fall from around 0.225, not too far from B̄2, and asymptote to the lower

value of B̄1.

In all these examples subsidies start somewhere between B̄2 and B̄1 and eventually con-

verge to B̄1. This is intuitive since workers of type 1 prevail in the unemployment pool in

the long-run. Note, however, that in all these examples subsidies actually overshoot the B2.

Note that such overshooting never occurred in our explorations with homogeneous workers

suffering from human capital depreciation.

Our intuition for this finding is as follows. The planner would wish to separate workers

11 One difference is that they model the steady depreciation during the spell as stochastic instead of
deterministic, partly for numerical reasons.
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Figure 15: Fraction of type-1 workers and
relative hazard rates.

by types and offer them different unemployment subsidy levels, i.e. B̄1 and B̄2. Although he

cannot do so there is something that imperfectly mimics separation. To see this, note that

when a worker rejects a wage to continue searching and collecting subsidies, the relevant

per-period subsidy in her calculation is an average of the unemployment subsidies over the

span of time until the next suitable job is found. Since workers of type 1 have lower hazard

rates out of unemployment, this subsidy reflects a longer average of subsidies.

It follows that, all things the same, a downward sloping subsidy schedule implies a lower

effective subsidy for type 1 workers than for type 2 workers; the reverse is true of an increasing

schedule. Thus, titling the schedule helps imitate desired discriminatory policy. It is this

titling that is responsible for the overshooting: subsidies rise or fall past the desired ex-post

long-run level in order to provide better incentives ex ante.

Note that, by the same logic, this phenomena is symptomatic of a time-consistency issue:

ex post the overshot subsidies are not optimal, they were provided to affect incentives ex

ante. Formally, as we discussed briefly above (and in detail in Appendix A) the planning

problem can be formulated with a two-dimensional state vector using the fraction of type 1

workers µ1(t)/(µ1(t)+µ2(t)) and the promised difference in reservation wages w̄2(t)− w̄1(t).

However, only the first is a physically unalterable state variable, the second is, what is

sometimes termed, a ‘pseudo’ state variable, that is is introduced to render the commitment

planning problem recursive (i.e. to keep track of all “promise-keeping” constraints). In

general, the promised differences in reservation wages will be inefficient ex post: the planner

would wish to reoptimize over w̄2(t) − w̄1(t), ignoring the inherited promised value.
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Figure 17: Fraction of type-1 workers and
relative hazard rates.

Recall that, in contrast, when workers are homogeneous the planning problem can be

reduced so that at any point in time it is entirely forward-looking. There are no state

variables except for calendar time (and none whatsoever when the problem is stationary).

It does not, therefore, feature a time inconsistency issue.

7 Conclusions

This paper provided a tractable framework for studying the optimal timing of unemployment

subsidies over the unemployment spell. Subsidies should be constant when workers are

homogeneous and face a stationary search problem. In contrast, human capital depreciation

and worker heterogeneity can lead to increasing or decreasing schedules, depending on the

precise nature of the depreciation or heterogeneity; we provided some useful dichotomies.

A simple heuristic is suggested by our finding that optimal subsidies generally shift in the

direction suggested by a comparative-static analysis.
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Figure 19: Fraction of type-1 workers and
relative hazard rates.

Appendix

A Optimal Control with Heterogeneous Agents

In this appendix we describe in detail the optimal control problem with two worker types,

its associated Hamiltonian, the resulting optimality conditions, and our numerical strategy

for solving it. We being with some definitions.

Definitions. Let the difference in reservation wages be ∆(t) ≡ w̄2(t)− w̄1(t). Then the law

of motion for this difference is

∆̇(t) = G2(w̄1 + ∆) −G1(w̄1), (21)

Define the fraction of type 1 workers as

α(t) ≡
µ1(t)

µ1(t) + µ2(t)
,

with the law of motion

α̇(t) = α(t)
(

1 − α(t)
)

(

H2

(

w̄1(t) + ∆(t)
)

−H1

(

w̄1(t)
)

)

. (22)
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The objective function is then

∫ ∞

0

e−rt
(

α(t)J1

(

w̄1(t)
)

+
(

1 − α(t)
)

J2

(

w̄1(t) + ∆(t)
)

)

µ(t)dt, (23)

where Jn(w̄) ≡ w̄n

(

r + Hn(w̄n)
)

− Gn(w̄n). Thus, the planning problem is to maximizing

equation (23) over w̄1(t), ∆(t), α(t) and µ(t) subject to equation (21), equation (22) and

µ̇(t) = −µ(t)(α(t)H1(w̄1(t)) + (1 − α(t))H2(w̄1(t) + ∆(t))).

It is useful to think of w̄1(t) as the control and ∆(t), α(t) and µ(t) as state variables.

Truncated Control Version. In practice, we solve a version of the problem where policy

is restricted to offering constant subsidies for t ≥ T , for T large. Let Ψ(α,∆) be the

continuation value at T with a constant subsidy that implements a difference in reservation

wages of ∆ and with the fraction of type 1 workers equal to α. The problem can be written

as
∫ T

0

e−rtJ̄(α(t), w̄1(t),∆(t), t)µ(t)dt+ e−rT Ψ(α(T ),∆(T ), T )µ(T ). (24)

with α(0) = α0 and µ(0) = µ0 are given, where

J̄(α, w̄1,∆, t) ≡ αJ1

(

w̄1, t
)

+
(

1 − α
)

J2

(

w̄1 + ∆, t
)

Hamiltonian. The Hamiltonian for this problem is (omitting the arguments in functions

to save on notation)

H ≡ J̄µ+ νµM
µµ+ ναM

α + ν∆M
∆

where

Mµ(α, w̄1,∆, t) ≡ −(αH1(w̄1) + (1 − α)H2(w̄1 + ∆))

Mα(α, w̄1,∆, t) ≡ α(1 − α)
(

H2(w̄1 + ∆) −H1(w̄1

))

M∆(w̄1,∆, t) ≡ G2(w̄1 + ∆, t) −G1(w̄1, t)

The functions Mα and M∆ are the laws of motion for α and ∆ derived above. Note that

µ ·Mµ is the law of motion for µ and that Mµ itself can be thought as a “normalized” law

of motion.
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Maximum Principle. The reservation wage solves

max
w̄1

H (25)

And the co-states evolve according to

ν̇µ = rνµ − (J̄ + νµM
µ) (26)

ν̇∆ = rν∆µ−H∆ (27)

ν̇α = rναµ−Hα (28)

Equations (25)–(28), together with the law of motion equations for µ, α and ∆, comprise an

ODE system for the 6-dimensional vector (µ, α,∆, νµ, να, ν∆).

Normalized System. It proves convenient to work with the normalized Hamiltonian and

co-states:

H̃ ≡ J̄ + kµM
µ + kαM

α + k∆M
∆

kµ ≡ νµ kα ≡
να

µ
k∆ ≡

ν∆

µ

The benefit of this transformation is that we can reduce the 6-dimensional problem to a

5-dimensional one by dropping µ.

Since µ can be factored out, the optimality condition (25) is equivalent to

max H̃ (29)

and that using (26)–(28) we can obtain the laws of motion for the transformed co-states

becomes

k̇µ = rkµ − (J̄ + kµM
µ) (30)

k̇∆ = k∆(r −Mµ) − H̃∆ (31)

k̇α = kα(r −Mµ) − H̃α (32)

Equations (29)–(32), together with the law of motion equations for α and ∆, comprise an

ODE system for the 5-dimensional vector (α,∆, νµ, να, ν∆).
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Terminal Conditions. Since ∆(0) is a free variable its costate should be initially zero

k∆(0) = 0 (33)

A t = T we must meet the terminal conditions that

kµ(T ) = Ψ(α(T ),∆(T ), T ) (34)

k∆(T ) = Ψ∆(α(T ),∆(T ), T ) (35)

kα(T ) = Ψα(α(T ),∆(T ), T ) (36)

Algorithm. The idea is to start at T and work backwards. The control variable is w̄1 and

the states are µ, ∆ and α; along with their co-states kµ, k∆ and kα. As before, µ plays no

role in the dynamics and it can be ignored.

One way to solve this is to guess the values of α(T ) and ∆(T ). One can then obtain

the values of the co-states at T using equations (34)–(36). This is then sufficient to solve

the system backwards for w̄1, α, ∆, kµ, k∆, kα. One can then compute the implied value of

k∆(0) and α(0). One can then search for the initial guess α(T ) and ∆(T ) that has k∆(0) = 0

and α(0) = α0, that is to satisfy the optimality condition equation (33) and the given initial

condition for α.

Useful Expressions. We now collect some expressions that are needed. First, some deriv-

atives of the Hamiltonian function:

Hα = J1 − J2 − (H1 −H2) ((1 − 2α) kα + kµ)

H∆ = (1 − α) (J ′
2 − kµH

′
2) + k∆G

′
2 + kαα(1 − α)H ′

2

We also need the derivatives:

J ′(w̄) = r +H(w̄) + w̄H ′(w̄) −G′(w̄)

G′(w̄) = r − λ(t)

∫ ∞

w̄

un(w − w̄)dF (w, t) = r + γ(G(w̄) − rw̄) + λ(1 − F (w̄))

We define the value from a steady state policy as

Ψ(α,∆) ≡ max
w̄1

(αS1(w̄1) + (1 − α)S2(w̄1 + ∆))
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subject to, 0 = M∆(w̄1,∆), where we define for convenience the steady state surplus function:

Sn(w̄) ≡ w̄ −
Gn(w̄)

r +Hn(w̄)
.

It follows immediately that Ψ(·,∆) is always differentiable and

Ψα(α,∆) = S1(w̄1) − S2(w̄1 + ∆)

As for the other partial derivative, note that the constraint 0 = M∆(w̄1,∆) can be solved

for ∆ as a function of w̄1, which we write as ∆∗(w̄1). If this function is invertible then the

maximization is trivial. In general this function may be non-monotone, so that the above

maximization is nontrivial. This may also introduce kinks in the value function Ψ(α, ·).

However, at points of differentiability we must have

Ψ∆(α,∆) = (αS ′
1(w̄1) + (1 − α)S ′

2(w̄1 + ∆))
1

∆′(w̄1)
+ (1 − α)S ′

2(w̄1 + ∆)

= (αS ′
1(w̄1) + (1 − α)S ′

2(w̄1 + ∆))
−M∆

∆

M∆
w̄1

+ (1 − α)S ′
2(w̄1 + ∆).
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