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We study the optimal inflation tax in an economy with heterogeneous agents subject to
nonlinear taxation of labor income. We find that the Friedman rule is Pareto efficient
when combined with a nondecreasing labor income tax. In addition, the optimum for a
Utilitarian social welfare function lies on this region of the Pareto frontier. The welfare
costs from inflation are bounded below by the area under the demand curve.

1 Introduction

Friedman (1969) argued that positive nominal interest rates represent a distortive tax on real

money balances. To reach the first-best these distortions should be removed, the nominal

interest rate should be set to zero. This prescription, known as the Friedman rule, is a

cornerstone in monetary economics. Phelps (1973) countered that the second-best world we

live in requires tolerating distortions due to government taxation, and that positive taxes

are set on most goods. Why should money be treated any differently? What is so special

about money? He concluded that money should generally be taxed, that nominal interest

rates should be positive.

More recently, many studies have explored the optimal inflationary tax on money in a

Ramsey tax setting, assuming proportional taxation and a representative-agent economy.1

This paper reexamines the optimal inflation tax in a model that explicitly incorporates the

distributional concerns that lead to distortionary taxation. Our model builds on a standard

dynamic equilibrium framework with money, of the same kind used to examine the optimality

of the Friedman rule in Ramsey settings. However, we incorporate agent heterogeneity in

productivity and allow nonlinear labor-income taxation. As in Mirrlees (1971), distortionary

taxation emerges by assuming that individual productivities are private information.

∗ We are indebted to the editor and three anonymous referees for their helpful suggestions. We thank
the comments received from Stefania Albanesi, Fernando Alvarez, Luis Braido, Francisco Buera, Emmanuel
Farhi, Hugo Hopenhayn, Paulo Monteiro, Casey Mulligan, Pedro Teles and various seminar and conference
participants at the University of Chicago, Columbia, MIT, Northwestern, Universidad Torcuato di Tella, the
Federal Reserve Bank of Minneapolis, the Bank of Portugal and the AER meetings. We are grateful to Dan
Cao for his invaluable research assistance and comments.

1 For example, Chari, Christiano, and Kehoe (1996), Correia and Teles (1996, 1999), Lucas and Stokey
(1983), Kimbrough (1976), Guidotti and Vegh (1993) and Mulligan and Sala-I-Martin (1997).
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We work with a general money-in-the-utility-function framework. As is well known, this

framework nests several specific models of money. An important assumption of our analysis

is that money and work effort are complements, so that the demand for money, conditional on

the expenditure of goods, weakly increases with the amount of work effort. This assumption

is motivated by the notion, stressed by various theories, that money’s liquidity services

facilitate transactions and save on the time required for purchases. It is satisfied, under

standard assumptions, for two common specifications: the shopping-time model (McCallum

and Goodfriend, 1987; Lucas, 2000) and the cash-credit model (Lucas and Stokey, 1983;

Prescott, 1987; Aiyagari, Braun, and Eckstein, 1998; Erosa and Ventura, 2002).

An important aspect of our analysis is that, instead of adopting a particular social welfare

function, such as a Utilitarian criterion, we study Pareto efficient arrangements. Our main

result is that the Friedman rule is optimal whenever labor income is positively taxed. That is,

an increasing income-tax schedule coupled with a zero inflation tax yields a Pareto efficient

allocation. Positive taxation of income identifies the relevant region of the Pareto frontier

where redistribution takes place from high- to low-productivity individuals. As we also show,

this is the region where the optimum for a Utilitarian planner lies.

To interpret our result, it is important to understand the auxiliary role played by the tax-

ation of money, when nonlinear income taxation is present. When redistribution takes place

from high- to low-productivity individuals, a tax on money is useful only if it aids in this re-

distribution. From a mechanism-design perspective, it must relax the incentive-compatibility

constraints which ensure that individuals do not underreport their productivity. For this to

be the case, an agent who deviates from truth-telling, by underreporting productivity, must

demand more money than the lower productivity agent he claims to be. But when money

and work effort are complements, exactly the reverse is true: both individuals share the

same before- and after-tax income, but the one underreporting productivity requires less

work effort and demands the same or less money.

We also examine the welfare costs of deviating from the Friedman rule when it is optimal.

In the absence of labor income taxation, the area under the demand curve measures the

welfare costs from inflation (Lucas, 2000). We show that when labor income is positively

taxed, the area under the demand curve calculation provides a lower bound on the welfare

costs.

There are two important differences of our approach with that of previous contributions

within the representative-agent Ramsey literature. First, we consider a richer set of tax

instruments. Namely, the tax on labor income is allowed to be nonlinear. Moreover, the set

of instruments we consider can be justified by private information regarding productivity.

Second, our model incorporates heterogeneity, allowing us to capture potentially important
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distributional effects from inflation. In particular, the evidence described in Mulligan and

Sala-i-Martin (2000), Erosa and Ventura (2002), Albanesi (2007) and others, paints a rich

picture of the cross-sectional holdings of money, suggesting that poorer households hold more

money as a fraction of their expenditure.

Two important papers on the inflation tax are Chari, Christiano, and Kehoe (1996)

and Correia and Teles (1996). Both derive conditions on preferences or technology for the

Friedman rule to be optimal within a Ramsey setting. For a a cash-credit model, Chari,

Christiano, and Kehoe show that the Friedman rule is optimal if preferences over goods are

separable from work effort, so that utility can be written as Ũ(h(c1, c2), n), and provided that

the subutility function over goods, h(c1, c2), is homogeneous. Correia and Teles work within

a shopping-time framework and show that the Friedman rule is optimal if the transactions

technology s(c,m) is homogeneous. In our model, with nonlinear taxation, the optimality

of the Friedman rule does not require these homogeneity assumptions.

Our results are related to the public-finance literature on optimal mixed taxation. In

particular, Atkinson and Stiglitz’s (1976) uniform-tax result shows that, when preferences

are weakly separable between work effort and consumption goods, only labor-income taxation

is needed to achieve the optimum. Indeed, this is true for all Pareto efficient allocations.

However, as we argued above, in our context, separability between money and work effort

seems like a poor assumption. When work effort and money are strict complements, we show

that, because negative nominal interest rates are not possible, a zero inflation tax is Pareto

efficient as a corner solution. This holds on the subset of the frontier where redistribution

runs from high- to low-productivity individuals. Our analysis relates this region to tax

schedules that are increasing in labor income. In this way, we provide joint restrictions, on

the taxation of labor and money, for Pareto efficiency. To the best of our knowledge, this

aspect of our approach is novel.

The next section introduces the model and the planner’s problem. Section 3 derives our

main results on the optimality of the Friedman rule. Section 4 examines the welfare costs of

inflation. Section 5 contains our conclusions. Proofs are collected in the appendix.

2 Model Setup

Our model economy is similar to those used in representative-agent Ramsey model such as

Lucas and Stokey (1983), Chari, Christiano, and Kehoe (1996) and Alvarez, Kehoe, and

Neumeyer (2004). The main difference is that our economy is populated by a continuum

of infinitely-lived individuals with fixed differences in productivity. The purpose of this

assumptions is to incorporate heterogeneity, in the spirit of Mirrlees’s (1971) private infor-

mation framework, in a simple and tractable way. Distortionary taxation then arises as a
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consequence of redistribution. Note that our model can nest the representative-agent case if

we consider a degenerate distribution of productivities. However, in this case, the first-best

allocation can be achieved by a labor-income tax schedule with zero slope. Since we do

not rule out these lump-sum tax schedules, heterogeneity is essential for the emergence of

distortionary taxation.

2.1 Preferences and Technology

The economy is populated by a continuum (measure one) of individuals with identical pref-

erences represented by the discounted sum of utility

∞∑
t=0

βtu(ct, nt,mt), (1)

where β < 1. Here ct, nt and mt represent consumption, work effort and real money balances,

respectively. Real money balances are mt ≡ Mt/Pt where Mt is nominal money balances, and

Pt is the price level. We assume that the utility function u(c, n, m) is continuous, strictly

increasing in c, decreasing in n, increasing in m, strictly concave and twice continuously

differentiable.

Individuals are indexed by their labor productivity w which is distributed in the pop-

ulation according to the cumulative distribution function F (w) for w ∈ W = [w, w̄]. The

resource constraints are

∫ (
Yt(w)− ct(w)

)
dF (w) ≥ G t = 0, 1, . . . (2)

where Yt(w) = wnt(w) is the output produced by individuals with productivity w; G is

government consumption. Real money mt(w) is a free good: it does not appear in the

resource constraints.

It will be useful to define the indirect utility function

V (y, Y,R,w) ≡ max
c,m

u
(
c, Y

w
,m

)
s.t. c + Rm ≤ y, (3)

where Y , y and R represent before-tax income, after-tax income and the nominal interest

rate, respectively; let γ(y, Y, R, w) and µ(y, Y,R,w) denote the solutions for c and m, re-

spectively. The indirect utility function V (y, Y, R, w) is concave and strictly quasi-concave in

(y, Y ) for given (R, w) it is increasing in (y, w), and decreasing in (Y,R). Let the expenditure

function e(v, Y,R, w) denote the inverse of V (·, Y, R, w).

The most important assumption we make is that money and work effort are complements,
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so that the demand for money rises with Y/w, implying that µ(y, Y, R, w) is increasing in Y

and decreasing in w. Finally, we also make the standard assumption that both consumption

and money are normal goods, given work effort. These assumptions can be expressed in

terms of the marginal rate of substitution between consumption and money.

Assumption 1. The marginal rate of substitution function um(c, n, m)/uc(c, n, m) is de-

creasing in m, and is increasing in n and c; in addition, um(c, n,m)/uc(c, n, m) → ∞ as

m → 0 for fixed c and n.

The first, and crucial, part of Assumption 1 captures the idea that money provides

liquidity services that economize on the time needed for consumption purchases. This idea

is at the center of many theories of money. In particular, it holds in the following two special

cases of our money-in-the-utility-function setup:

(A) In the shopping-time model (McCallum and Goodfriend, 1987; Lucas, 2000), a utility

function U is defined over consumption and non-leisure time. Consumption requires

shopping time, and money serves to economize on this time. Let s(c,m) denote the

shopping time required to obtain consumption c with money balances m. This maps

into the money-in-the-utility function as follows:

u(c, n,m) = U
(
c, n + s(c,m)

)
.

Assumption 1 then follows from standard normality assumptions. Intuitively, a reduc-

tion in work time decreases the need for time-saving money balances.

(B) In the cash-credit model, introduced by Lucas and Stokey (1983), a utility function Ũ

is defined over two consumption goods, c1 and c2, and work effort n. The credit-good,

c1, can be purchased with credit while the cash-good, c2, requires money up-front:

c2 ≤ m. At an optimum, this latter constraint binds so that defining c ≡ c1 + c2 and

can write

u(c, n, m) = Ũ(c−m,m, n).

If consumption goods (c1, c2) are weakly separable from work effort n in the utility

function Ũ , then then (c,m) are weakly separable from n in u(c, n, m). In this case,

the demand for money balances µ(y, Y,R,w) is independent of Y and w. For the

cash-credit model, the separable case is a benchmark in the Ramsey literature (Chari,

Christiano, and Kehoe, 1996).

We also make the following standard assumptions. Work effort Y is an inferior good (i.e.

that leisure is a normal good) and that expenditures y are a normal good. These assumptions

can be expressed in terms of the marginal rate of substitution between income and output.
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Assumption 2. The marginal rate of substitution function −VY (y, Y,R,w)/Vy(y, Y,R,w)

is increasing in y and Y . In addition, for any v, R, w, the slope on the indifference curve

satisfies −VY (e(v, Y,R,w), Y, R,w)/Vy(e(v, Y,R,w), Y, R,w) > 1 for large enough Y .

The assumed normality of expenditures ensures that abler individuals choose to produce

more. It implies the single-crossing condition that −VY (y, Y,R,w)/Vy(y, Y,R,w) is decreas-

ing in w, so that the indifference curves over (y, Y ) become flatter as productivity w rises.

The second condition in Assumption 2 ensures that output choices are bounded when agents

are confronted with a nondecreasing tax schedule.

Following Mirrlees (1971), we assume that individual productivities and work effort are

private information. This rules out type-specific lump-sum taxation and leads, instead, to

nonlinear taxation of labor income. In addition, we assume that individual money balances

are not observed by the government. This constrains the taxation of money to be linear

and leads us to study a mixed taxation problem, where the taxation of labor income is

unrestricted but the taxation of money is linear.2

2.2 Competitive Equilibria with Taxes

Individuals face the sequence of budget constraints

Ptct + Mt + Bt ≤ Pt(Yt − Tt) + Mt−1 + (1 + rt−1)Bt−1 t = 0, 1, . . . ,

where Bt represents nominal bond holdings, rt is the nominal interest rate and Tt = Tt(Y
t)

are income taxes that may depend on the history of earned income Y t = (Y0, Y1, . . . , Yt). We

set initial nominal wealth to zero M−1 + (1 + r−1)B−1 = 0, to make the initial price level

irrelevant and focus, instead, on the determination of inflation and nominal interest rates. We

also impose a standard No-Ponzi constraint so that the budget constraints become equivalent

to the present-value constraint

∞∑
t=0

ψt(ct + Rtmt − yt) ≤ 0, (4)

with after-tax income yt ≡ Yt − Tt, where Rt ≡ rt

1+rt
and (using that 1−Rt = 1

1+rt
)

ψt ≡ Pt

P0

t−1∏
s=0

1

1 + rs

=
Pt

P0

t−1∏
s=0

(1−Rs)

2 The formal equivalence between the mechanism-design problem when agents can trade in side markets
and the mixed taxation problem is proved in Hammond (1987). The constraint imposed on the mechanism
by the presence of side markets finds its counterpart in the tax system by restricting the taxation of goods
traded in these markets to be linear.
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denotes the price of consumption in period t. The budget constraint (4) shows that the

opportunity cost of holding real money balances is equal to a simple transformation of the

nominal interest rate Rt = rt/(1 + rt). From now, we abuse terminology and call Rt the

nominal interest rate. The government also faces a budget constraint, which by a version of

Walras law is implied by the individuals’ budget constraints (holding with equality) and the

resource constraints.

Definition. A competitive equilibrium with taxes {Tt(Y
t), Rt} is a sequences of real prices

{ψt}, real quantities {ct(w), Yt(w), mt(w)} and nominal money and price levels {Mt, Pt}
with ψt ≡ (Pt/P0)

∏t−1
s=0(1−Rs) such that:

(i) individuals optimize: {ct(w), Yt(w)/w, mt(w)} maximizes utility (1), for each w, sub-

ject to the budget constraint (4) taking taxes {Tt(Y
t)} and prices {ψt, Rt} as given;

(ii) markets clear: the resource constraint (2) holds and mt = Mt/Pt.

The stationary economic environment leads us to focus on stationary equilibria, with

constant values (y(w), Y (w), R), with consumption and real money balances given by the

policy functions γ(y(w), Y (w), R) and µ(y(w), Y (w), R) from (3), and with nominal balances

and nominal prices that grow at the constant rate β(1 + R).3 Since everyone faces the same

budget constraint it follows that individuals with productivity w cannot prefer their own

bundle to that chosen by individuals with productivity w′ ∈ W , so that

V (y(w), Y (w), R, w) ≥ V (y(w′), Y (w′), R, w) ∀w,w′ ∈ W (5)

and we say that the triplet (y(w), Y (w), R) is incentive compatible. The resource constraint

∫

W

(
Y (w)− γ(y(w), Y (w), R, w)

)
dF (w) ≥ G (6)

must also be satisfied. The converse is also true, inequalities (5) and (6) characterize all

stationary equilibria that are attainable for some tax policy {Tt(Y
t)}. Consequently, we say

that a triplet (y(w), Y (w), R) is feasible if it is incentive compatible and satisfies the resource

constraint. Note that, from the consumer’s budget constraint, Y (w)−γ(y(w), Y (w), R, w) =

Y (w)− y(w) + Rµ(y(w), Y (w), R, w) represents the tax revenue for the government. So the

resource constraint (6), can be interpreted as the government’s budget constraint.

3 Stationary allocations are without loss in generality when the government is allowed to publicly ran-
domize.

7



2.3 Pareto Efficiency

We say that (y(w), Y (w), R) is Pareto dominated by (ŷ(w), Ŷ (w), R̂) if the latter delivers

higher utility for all individuals:

V (ŷ(w), Ŷ (w), R̂, w) ≥ V (y(w), Y (w), R, w)

and strictly so for a subset of W with positive measure. A Pareto efficient (y∗(w), Y ∗(w),

R∗) must maximize the tax revenues collected

∫

W

(
Y (w)− γ(y(w), Y (w), R, w)

)
dF (w) (7)

subject to V (y(w), Y (w), R, w) ≥ V (y∗(w), Y ∗(w), R∗, w) and incentive compatibility (5);

otherwise, a Pareto improvement is possible by lowering taxes.

2.4 Implementation

There are several tax systems {Tt(Y
t)} that can implement any feasible (y(w), Y (w), R).

Here we describe a few possibilities. For all of them it is useful to define the static nonlinear

income tax schedule by

T (Y ) ≡ inf {z : V (Y − z, Y, R, w) ≤ V (y(w), Y (w), R, w) ∀w ∈ W} , (8)

so that T (Y (w)) = Y (w)− y(w) for all w ∈ W . This tax function corresponds to the lowest

schedule that implements (y(w), Y (w), R) in a static setting where individuals have prefer-

ences given by V (y(w), Y (w), R). As we now discuss, it also plays a key role in implementing

stationary equilibria for our dynamic setting.

The most natural candidate tax system {Tt(Y
t)} is a history-independent one, where

the tax schedule in each period coincides with the static schedule defined above, so that

Tt(Y
t) = T (Yt). Due to its simplicity, this type of policy is of special interest. Suppose

the government tax policy is history independent, so that individuals face some interest rate

R and some fixed increasing tax schedule T (Y ) in all periods t = 0, 1, 2 . . . Suppose this

induces a stationary allocation (y(w), Y (w), R). The question is then whether the resulting

allocation is Pareto efficient. Our results in the next section provide the answer, stating

conditions for the allocation to be efficient if R = 0, and inefficient otherwise.

To see how a history-independent policy may implement a stationary (y(w), Y (w), R) as

an equilibrium with prices ψt = βt and Rt = R, note that individuals will find (yt(w), Yt(w)) =

(y(w), Y (w)) optimal, conditional on choosing a path for output {Yt(w)} that is constant
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over time. All that remains to ensure that this history-independent tax scheme imple-

ments the stationary equilibrium (y(w), Y (w), R), is to make sure that individuals choose

a constant path for output. Indeed, the first-order necessary conditions for the individual’s

optimization problem are satisfied with the constant path (y(w), Y (w), R). If the tax func-

tion T (Y ) is convex, the individual’s problem is convex and the first-order conditions are

then sufficient for optimality. Thus, convexity of T (Y ) guarantees implementation of the

stationary (y(w), Y (w), R). Of course, this is a sufficient, not necessary, condition: since

utility u(c, n, m) is concave over work effort n, a constant output path may be optimal for

individuals if the tax schedule is not too concave.4

If the tax schedule T (Y ) is concave enough that a history-independent tax policy fails to

implement the allocation (y(w), Y (w), R), then there are several tax systems {Tt(Y
t)} that

introduce limited forms of history dependence to ensure that individuals choose constant

output paths and implement any feasible (y(w), Y (w), R). For example, the government can

set taxes so that Tt(Y
t) = T (Yt) whenever Yt = Yt−1, while setting Tt(Y

t) high enough if

Yt 6= Yt−1. This imposes the static tax schedule along the equilibrium path, with constant

output, but penalizes individuals that deviate, off the equilibrium, to non-constant output

paths. Note that even in this example the static-tax function T (·) plays a critical role. Thus,

from now on we summarize the allocation and tax system in terms of T (·) and R.

3 Optimality of the Friedman Rule

We now study monetary policy. We first show that if a policy involves R > 0, the government

can reduce the interest rate and increase the tax schedule in a way that increases work effort

and leaves utility unchanged for each type of individual. This simple result then underlies

our main result on the Pareto optimality of the Friedman rule.

3.1 Pareto Efficiency and Positive Income Taxation

We say that an allocation is downward incentive compatibility if

V (y(w), Y (w), R, w) ≥ V (y(w′), Y (w′), R, w) ∀w′ ≤ w and w,w′ ∈ W.

Starting from any incentive-compatible allocation (y(w), Y (w), R), with R > 0 we now con-

struct another allocation, with a lower interest rate, that is downward incentive compatible,

maintains individuals’ utility and saves resources.

4 If the net-income schedule Ỹ − T (Ỹ ) has regions that are too convex then some individuals may prefer
working harder in some periods than others. A similar issue can arise in a Mirrlees (1971) static settings if
consumption itself is not controlled by the planner and individuals can engage in lotteries: randomizing on
the output they produce and pooling their net income allows them to reduce their total tax liability.
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For R̂ ≤ R, the new allocation is as follows. Output Y (w) is unchanged. After tax

income is set to ŷ(w; R̂) so that individuals’ utility is maintained at the original level

V
(
ŷ(w; R̂), Y (w), R̂, w

)
= V

(
y(w), Y (w), R, w

)
. (9)

As a result, after-tax income ŷ(w; R̂) and consumption γ
(
ŷ(w; R̂), Y (w), R̂, w

)
are both

increasing in R̂.

We now argue that this allocation is downward incentive compatible. For fixed Y , con-

sider how the preferences over (y,R) pairs vary with w. For any w′ < w

µ(y, Y, R, w′) =
−VR(y, Y, R, w′)
Vy(y, Y,R,w′)

≥ −VR(y, Y, R, w)

Vy(y, Y,R,w)
= µ(y, Y, R, w).

Thus, the indifference curve over (y,R) for type w′ crosses that of type w at most once, from

below. Since ŷ(w′; R̂) is set to compensate w′ (i.e. equation (9) holds at w′) it follows that

V (ŷ(w′; R̂), Y (w′), R̂, w) ≤ V (y(w′), Y (w′), R, w) (10)

for w′ < w. Since the original allocation is downward incentive compatible, equation (9) and

inequality (10) imply that the new allocation is as well. Note that reducing R̂ increases total

taxes
∫

(Y (w)− γ(ŷ(w; R̂), Y (w), R̂, w)) dF (w). We have proved the following result.

Lemma 1. Let Assumptions 1 and 2 hold, and let (y(w), Y (w), R) be any incentive compat-

ible allocation with R > 0. Then for any R̂ ≤ R there exists an allocation (ŷ(w; R̂), Y (w)

R̂) that is downward incentive compatible and gives each individual the same utility, so that

equation (9) holds. Both ŷ(w; R̂) and γ(ŷ(w; R̂), Y (w), R̂, w) are increasing in R̂.

We say that income taxation is positive if the income tax schedule T (Y ) is nondecreasing.

Intuitively, at an efficient allocation, if income taxation is positive, then redistribution takes

place from higher- to lower-type individuals and it is the downward incentive constraints

that are relevant; the upward incentive constraints are slack. The lemma then implies that

the Friedman rule, setting R = 0, is optimal. Proposition 1, the main result of the paper,

makes this precise.

Proposition 1. Let Assumptions 1 and 2 hold, and let (y∗(w), Y ∗(w), R∗) be a feasible alloca-

tion induced by a nondecreasing tax function T ∗(Y ) and interest rate R∗. If R∗ = 0 and the al-

location (y∗(w), Y ∗(w), R∗) is not Pareto dominated by any feasible allocation (ŷ(w), Ŷ (w), R̂)

with R̂ = 0, then (y∗(w), Y ∗(w), R∗) is Pareto efficient. Indeed, (y∗(w), Y ∗(w), R∗) Pareto

dominates any feasible allocation (y(w), Y (w), R) with R > 0.
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Proposition 1 establishes that the Friedman rule is optimal in the sense that it produces

a Pareto efficient outcome when combined with positive taxation of income. The result

requires the income-tax schedule to be efficient conditional on R = 0. What the proposition

establishes is that there are no possible Pareto improvements from shifting to R > 0 and

rearranging the tax schedule. Although we have assumed a bounded set of types, as their

proofs reveal, both lemma 1 and proposition 1 hold even when W is unbounded.

Characterizing the set of increasing income-tax schedules that are Pareto efficient is

beyond the scope of this paper. However, it is worth remarking that, for example, a linear

schedule (i.e. a flat tax) is Pareto efficient for a large set of distributions that are continuous

on an unbounded support (Werning, 2007). By implication, the result in proposition 1,

that the Friedman rule is optimal whenever income is positively taxed, does not require the

optimal tax schedule T (Y ) to be nonlinear.

We now provide a converse result, giving conditions that ensure that taxing money R > 0

is inefficient. Define the total tax, income taxes plus seignorage, collected from an agent of

type w producing Y as

T (Y ; w) ≡ T (Y ) + Rµ(Y − T (Y ), Y, R, w). (11)

Our next result concerns situations in which at the original allocation the total marginal tax

on income is positive:
∂

∂Y
T (Y (w); w) ≥ 0. (12)

Note that Assumption 1 implies that µ(y, Y, R, w) is increasing in y and Y , so this condition

is weaker than T ′(Y ) ≥ 0.

Proposition 2. Let Assumptions 1 and 2 hold, and let (y(w), Y (w), R) be a feasible allo-

cation induced by a continuously differentiable tax function T (Y ) satisfying (11)–(12) at all

points of differentiability and interest rate R > 0. Suppose Y (w) is piecewise continuously

differentiable with Y ′(w) bounded away from zero. Then there exists a tax function T̂ (Y ) and

interest rate R̂ ≤ R that induces a feasible allocation (ŷ(w), Ŷ (w), R̂) that Pareto dominates

(y(w), Y (w), R).

The reason proposition 2, unlike proposition 1, requires ruling out bunching is that if

two different types were to produce the same output, then the lower types would demand

more money and pay more total taxes than the high types; that is, T (Y (w), w) would be

strictly decreasing in w over any region where Y ′(w) = 0. Thus, redistribution would be

taking place in the nonstandard direction: from lower- to higher-type individuals.

This result guarantees that, if income is positively taxed, all individuals prefer to move
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towards the Friedman rule. Unlike proposition 1, the availability of a nonlinear income

tax is crucial for proposition 2. In particular, even if the original tax schedule T (Y ) is

linear, the alternative tax schedule T̂ (Y ) that, along with R̂ < R, guarantees a Pareto

improvement, may be nonlinear. Consequently, if one imposes restrictions on the set of

available tax schedules T̂ (Y ) then Pareto improvements over (T (Y ), R) may not be available.

For example, Albanesi (2007) studies a cash-credit model with heterogeneity, but imposes

proportional labor income taxation. With such a constraint, deviating from the Friedman

rule may not be Pareto inefficient.

More generally, what is crucial for proposition 2 is that income-taxation be sufficiently

rich relative to the sources of heterogeneity. In our model, as in the canonical Mirrlees (1971),

the source for heterogeneity is differences is productivity. Since this leads to differences in

output, a nonlinear income-tax schedule is a rich enough instrument to separate individuals.

With additional sources of heterogeneity this may no longer be the case (Saez, 2002).

3.2 Discussion

Proposition 1 and 2 are illustrated in Figure 1, which plots the Pareto frontier for the case

with two productivity types. The dotted line is the unconstrained Pareto frontier, i.e. the

first-best that obtains with type-specific lump-sum taxation. The solid and dashed line

represent constrained Pareto frontiers (without type-specific lump-sum taxation). The solid

line imposes the Friedman rule, R = 0, and optimizes over the income tax schedule; the

dashed line imposes some R > 0 and optimizes over the income tax schedule. Point A on the

figure represents the “autarky” point with no taxation. At this point the solid and dotted

lines meet.

Proposition 1 applies whenever income taxation is positive, representing the region to

the left of the autarky point A, with redistribution from high- to low-type individuals. The

inflation tax interacts unfavorably with positive income taxation because it increases the cost

of separating the high- and low-type individuals since, ceteris paribus, higher types demand

less money. For the same reason, to the right of point A, a positive tax on money may be

optimal when redistribution runs the other way.

To gain intuition for these results, and the role played by the complementarity of money

and work effort, it is useful to consider a simple example where

u(c, n, m) = U(c, min 〈l(n), m〉)

for some strictly increasing function l(n). Money demand is then a given function of work

effort µ(y, Y,R,w) = l(Y/w). The important point is that, from the point of view of an

individual with productivity w, facing T (Y ) and R > 0 is equivalent to facing the fictitious,
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type-contingent, tax schedule T (Y ; w) = T (Y ) + Rl(Y/w) and R̂ = 0. Thus, when R > 0,

the tax schedule T depends negatively on productivity w. If income is positively taxed,

this is inefficient since it confronts individuals with a tax that increases with output Y , in

an attempt to redistribute from high- towards low-productivity individuals, only to make

it decrease with productivity w, redistributing in the opposite direction. Removing the

dependence on w, by setting R = 0, allows for a reduction in the dependence on Y , which

reduces distortive marginal taxes without affecting redistribution.

Finally, we studied the realistic case where money can only be taxed proportionally but

labor-income can be taxed nonlinearly. However, the results extend to the case where money

can be taxed nonlinearly, so that the government can confront individuals with a tax function

that depends on both Y and m.

3.3 Utilitarian Optimum

Finally, we relate the Pareto efficient allocations identified in proposition 1 to the optimum

for a Utilitarian social welfare function. The Utilitarian planning problem is to maximize

∫
V (y(w), Y (w), R, w) dF (w)

subject to incentive compatibility (5) and the resource constraint (6). The next result relies

on showing that only the downward incentive constraints bind, that the solution to a relaxed

problem that ignores the upward incentive constraints does not violate them. The result

then follows from Lemma 1.

Proposition 3. Let Assumptions 1 and 2 hold and suppose there exists some feasible allo-

cation satisfying (5) and (6). Then a solution to the Utilitarian planning problem exists and

can be implemented by an increasing income tax schedule T ∗(Y ) with R∗ = 0.

A Utilitarian chooses positive taxes on income and a zero tax on money balances. Re-

distribution runs from high- to low-productivity individuals. That is, the relevant region of

the Pareto efficient frontier is precisely that identified by proposition 1, to the left of point

A on the figure.

4 Welfare Costs of Inflation

The previous section established the optimality of the Friedman rule. In this section, we

examine the welfare losses of deviating from this optimum.

Suppose the hypothesis of proposition 1 hold. Let (y∗(w), Y ∗(w), R∗) with R∗ = 0 denote

a Pareto efficient allocation and let E(R) stand for the maximized value of total tax receipts
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in problem (7) for given R. Let the aggregate money balances obtained from the solution to

this problem be denoted by

M(R) ≡
∫

µ(y(w; R), Y (w; R), R, w) dF (w),

where y(w; R) and Y (w; R) solve the problem (7) for given R. Note that this demand schedule

incorporates the changes in the income tax T (Y ; R) required to compensate individuals so

that their welfare does not fall below the baseline given by V (y∗(w), Y ∗(w), R∗).

Our measure of welfare losses is E(0)− E(R), which represents the additional resources

needed so that no one is made worse off when R > 0. For low enough R the constraints that

V (y(w), Y (w), R, w) ≥ V (y∗(w), Y ∗(w), R∗, w) will generally bind. One can then show that

E(0)−E(R) =

(∫ R

0

M(R̃) dR̃−RM(R)

)
−

∫ R

0

∫
τ(w; R̃) · ∂

∂R
Y (w; R̃) dF (w) dR̃, (13)

and that ∂Y/∂R ≤ 0, with strict inequality if and only if money and work effort are strict

complements, µw(y, Y, R, w) < 0.5 The term within parenthesis in (13) represents the

deadweight-loss triangle computed from the area under the money demand M(R). The

other term captures the effect that inflation has on the income tax revenue. When money

and work effort are strict complements, higher inflation reduces work effort which lowers the

amount collected from the income tax.

When income taxation is positive, so that τ(w; R) ≥ 0, equation (13) reveals that welfare

losses are bounded below by an area-under-the-demand-curve calculation. The two coincide

only when money and work effort are not complements, so that µw = 0, as is the case in the

cash-credit model when preferences for goods are separable from work effort.

To illustrate, we compute the welfare losses in a shopping-time model, for a specification

that closely follows Lucas (2000), which considers the welfare costs for a representative-agent

economy without income taxation. The utility and shopping-time functions are set at

U(c, n,m) = log(c) + α log(1− n− s(c,m)) with s(c,m) =
c

km

for constants α, k > 0. We assume the initial tax schedule is proportional T (Y ) = τ̄Y for

some τ̄ ≥ 0. We set α = 2 so that n = 1/(α + 1) = 1/3, and set k = 1200 which implies the

same level of money demand calibrated by Lucas.6 For this example, welfare calculations

5This expression for E(R) follows by rearranging and integrating the last expression in the proof of
proposition 2.

6The ratio of money balances to consumption m/c is approximately
√

α+1
kR . Lucas (2000) argues that

this provides a good fit for the relation between interest rates and the ratio of monetary aggregate M1 to
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turn out to be independent of the skill distribution, so we do not need to specify F (w).7

We compute E(R)−E(0) as a fraction of aggregate consumption, evaluated at the original

Pareto efficient allocation. In the appendix we show that this measure is given by

(1− S(R))−α +
S(R)

1− τ̄
− 1.

where S(R) is the equilibrium shopping time expressed as a function of R (it turns out to

be independent of w). When τ = 0 and α → 0 the welfare cost is simply the shopping time

S(R), just as obtained by Lucas (2000) in a version without work effort or income taxation.

Figure 2 displays this cost measure against the nominal interest rate R for three initial

tax rates: τ̄ = 0 (lower dashed line), τ̄ = 35% (middle dashed-dotted line) and τ̄ = 50% (top

dotted line). Also plotted is the contribution from the area under the demand scheduleM(R)

(solid line), which, normalized by aggregate consumption, turns out to be independent of the

initial τ . Behind these calculations, for R > 0 the income tax schedule T (Y ; R) is adjusted

to keep individuals’ utility at their original levels. As it turns out, for our simple example,

this schedule remains proportional, and the marginal income tax rate that all individuals

face decreases with R.

When τ̄ = 0 the figure essentially replicates Lucas’s findings. The welfare cost of setting

R = 4% is worth 1% of aggregate consumption. Moving from R = 4%, representing a

situation with near zero inflation, to R = 16% entails an additional 1% of consumption cost.

The welfare cost is almost indistinguishable from the area-under-demand-curve, the term

enclosed in parenthesis in (13).8 As a result, as in Lucas (2000), the area under the demand

curve provides an excellent approximation to the welfare costs in this case.

However, relative to τ̄ = 0, when τ̄ = 35% welfare costs are approximately 20% higher,

and with τ̄ = 50% this difference becomes 33%. In both cases, welfare costs are strictly

larger than the area-under-the-demand-curve term because τ(w; R) > 0. The example illus-

trates that the last term in the welfare decomposition (13) has the potential to contribute

nontrivially.

5 Concluding Remarks

In this paper we explored the optimal taxation of income and money. Distortionary taxation

emerges due to agent heterogeneity and the fact that taxation is anonymous. Under the

nominal output in the United States from 1900-1994.
7 We only require the original allocation generated by a proportional tax to be Pareto efficient, which

holds for a large class of continuous and unbounded distributions (see Werning, 2007).
8Actually, the contribution from the last term in (13) is negative because τ(w, R) < 0 for R > 0, but it

turns out to be minuscule for the range of R plotted here.
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assumption that money and work effort are complements, we found that the Friedman rule

is optimal whenever labor income is positively taxed, in the sense that such a tax system

produces a Pareto efficient outcome. We made several assumptions for our analysis, we now

speculate on their role in our main result.

First, our model abstracted from tax evasion. One argument for a tax on money is that

an inflation tax can be easily collected. Whether or not this is a relevant consideration for

advanced economies is unclear, but it may be more important for less developed ones, which

tend to rely more on inflation as a source of revenue. There are many ways of extending

our model to incorporate tax evasion. We conjecture that while tax evasion may provide

a rationale for an inflation tax, the exact conclusion may depend on the way evasion is

introduced, the incidence of inflation and the redistributive goals.

Second, our dynamic environment abstracted from aggregate and idiosyncratic uncer-

tainty. This allowed us to reduce the policy problem to a simple static subproblem, which,

in turn, provided a tight connection between the direction of binding incentive constraints

and the sign of income taxation. It also made the tax implementation of efficient allocations

relatively simple. Incorporating uncertainty complicates the analysis on both dimensions,

but the mechanism isolated in our simple stationary model is likely to remain central.

Appendix

Proof of Proposition 1

We proceed by contradiction. Suppose there exists an alternative allocation (y(w), Y (w), R)

with R > 0 that is incentive compatible, has

V (y(w), Y (w), R, w) ≥ V (y∗(w), Y ∗(w), 0, w) for all w ∈ W ,

and satisfies the resource constraint (6), implying that tax revenues satisfy

∫
(Y ∗(w)− y∗(w))dF (w) ≤

∫
(Y (w)− γ(y(w), Y (w), R, w))dF (w).

Note that incentive compatibility implies that Y (w) is nondecreasing.

Lemma 1 then implies that there exists another allocation (ŷ(w), Ŷ (w), R̂) with R̂ = 0

and Ŷ (w) nondecreasing, that is downward incentive compatible, has

V (ŷ(w), Ŷ (w), 0, w) ≥ V (y∗(w), Y ∗(w), 0, w) for all w ∈ W ,
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and collects higher revenue:

∫
(Y (w)− γ(y(w), Y (w), R, w))dF (w) <

∫
(Ŷ (w)− ŷ(w))dF (w).

We now show that this is not possible by showing that if this were the case there would

exist a tax schedule T̃ strictly below T ∗ that induces an incentive-compatible allocation

(ỹ(w), Ỹ (w), R̃), with R̃ = 0, that collects still higher revenue.

Define the tax schedule associated with the alternative allocation as

T̂ (θ) ≡ inf
{
z : V (θ − z, θ, 0, w) ≤ V (ŷ(w), Ŷ (w), 0, w) ∀w s.t. Ŷ (w) ≥ θ

}
. (14)

Although, the tax schedule T̂ may not be a continuous function of θ, it can only have

downward jumps at points of discontinuity.

A Pareto improvement requires taxes to be lower at the alternative allocation:

T̂ (θ) ≤ T ∗(θ). (15)

Otherwise, if T̂ (θ0) > T ∗(θ0) for some θ0, there is a type w0 ∈ W such that V (θ0 −
T ∗(θ0), θ0, 0, w) > V (y∗(w0), Y

∗(w0), 0, w).

Now define the tax schedule

T̃ (θ) ≡ sup
θ̂≤θ

T̂ (θ),

which irons out decreasing regions of T̂ . The function T̃ is nondecreasing and continuous

(since it removes any downward jumps in T̂ ). Moreover, inequality (15) and the fact that

T ∗(θ) = supθ̂≤θ T ∗(θ̂) (since T ∗(θ) is nondecreasing) imply that:

T̃ (θ) ≤ T ∗(θ) (16)

We now consider the allocation generated by this tax function. That is, let the associated

incentive-compatible allocation (breaking potential indifference in favor of higher output) be

Ỹ (w) ≡ max{arg max
θ

V (θ − T̃ (θ), θ, 0, w)}, (17)

and ỹ(w) ≡ Ỹ (w) − T̃ (Y (w)). This allocation is well defined because: (i) T̃ is continuous;

and (ii) we can restrict the maximization in (17), for each w, to the set of θ such that

V (θ − T̃ (θ), θ, 0, w) ≥ V (Ŷ (w) − T̃ (Ŷ (w)), Ŷ (w), 0, w), which is nonempty (Ŷ (w) belongs

to this set) and compact (using Assumption 2 with the fact that T̃ is nondecreasing and
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continuous).

First, it follows immediately from (16) that all agents are better off facing T̃ (w) than

facing T ∗(w). That is, utility is higher at the resulting allocation (ỹ(w), Ỹ (w)) than at

(y∗(w), Y ∗(w)):

V (ỹ(w), Ỹ (w), R, w) ≥ V (y∗(w), Y ∗(w), 0, w) for all w ∈ W .

Second, we argue that all agents decide to pay more taxes at T̃ than they did at the

Ŷ (w) allocation with the tax schedule T̂ :

T̂ (Ŷ (w)) ≤ T̃ (Ŷ (w)) ≤ T̃ (Ỹ (w)).

The first inequality follows immediately by construction, i.e. T̃ (θ) ≥ T̂ (θ) for all θ. For the

second inequality, there are two cases to consider. In the first case, T̃ (Ŷ (w)) = T̂ (Ŷ (w)), so

that taxes were not raised at Ŷ (w). Since taxes were not lowered for θ ≤ Y (w) it follows

that Ŷ (w) ≤ Ỹ (w). The inequality then follows since T̃ is nondecreasing. In the second

case, T̂ (Ŷ (w)) < T̃ (Ŷ (w)), so that taxes were raised at Ŷ (w), we argue by contradiction.

Suppose T̃ (Ỹ (w)) < T̃ (Ŷ (w)). Then there must exist a w′ < w such that: T̃ (Ỹ (w)) <

T̃ (Ŷ (w′)) < T̃ (Ŷ (w)) and T̃ (Ŷ (w′)) = T̂ (Ŷ (w′)); as we just showed, the latter condition

implies that Ŷ (w′) ≤ Ỹ (w′). Incentive compatibility implies that Ỹ (w) is nondecreasing, so

that Ŷ (w′) ≤ Ỹ (w′) ≤ Ỹ (w). Since T̃ is nondecreasing it follows that T̃ (Ỹ (w′)) ≤ T̃ (Ỹ (w)),

a contradiction. Hence, Ŷ (w)− ŷ(w) ≤ Ỹ (w)− ỹ(w), so that

G ≤
∫ (

Y ∗(w)− y∗(w)
)
dF (w) <

∫ (
Ŷ (w)− ŷ(w)

)
dF (w) ≤

∫ (
Ỹ (w)− ỹ(w)

)
dF (w). (18)

This contradicts the Pareto efficiency of (y∗(w), Y ∗(w)) subject to R∗ = 0, since Pareto

efficient allocations must minimize net resources, as in (7).

Proof of Proposition 2

We use the following standard characterization of the incentive compatibility constraints

(e.g. see Fudenberg and Tirole (1991) and Milgrom and Segal (2002)). For any allocation

(y(w), Y (w), R) let v(w) ≡ V (y(w), Y (w), R, w) denote the associated utility assignment.

An incentive-compatible allocation that is piecewise continuously differentiable must have

Y (w) nondecreasing and satisfy the local incentive constraints:

v′(w) = Vw(y(w), Y (w), R, w), (19)

18



almost everywhere. Conversely, if an allocation (y(w), Y (w), R) is piecewise continuously dif-

ferentiable and has Y (w) nondecreasing and satisfies (19) with v(w) ≡ V (y(w), Y (w), R, w),

then it is incentive compatible.

The original allocation (y(w), Y (w), R) is incentive compatible and thus satisfies (19)

with v(w) ≡ V (y(w), Y (w), R, w). For any R̂ ≤ R, we now construct a new allocation

(ŷ(w; R̂), Ŷ (w; R̂), R̂) with v̂(w; R̂) = V (ŷ(w; R̂), Ŷ (w; R̂), R̂, w) that maintains the same

utility profile v̂(w; R̂) = v(w), requiring

ŷ(w; R̂) = e(v(w), Ŷ (w; R̂), R̂, w)

where the expenditure function e(v, Y,R,w) represents the inverse of the indirect utility func-

tion V (·, Y, R, w). We set Ŷ (w; R̂) to maintain the local incentive compatibility constraints

(19) yielding

Vw(y(w), Y (w), R, w) = Vw(ŷ(w; R̂), Ŷ (w; R̂), R̂, w).

Substituting gives

Vw(y(w), Y (w), R, w) = Vw(e(v(w), Ŷ (w; R̂), R̂, w), Ŷ (w; R̂), R̂, w), (20)

a single equation in the unknown Ŷ (w; R̂). By construction, if the resulting allocation has
∂Ŷ
∂w

(w; R̂) > 0 for all w ∈ W , then it is incentive compatible. Since ∂Y
∂w

(w; R) ≥ ε for all

w ∈ W for some ε > 0 and W is compact, the implicit function theorem guarantees that
∂Ŷ
∂w

(w; R̂) > 0 for all w ∈ W for all R− R̂ < δ for some δ > 0.

We now show that the constructed allocation lowers net resources (7), leading to a con-

tradiction. Differentiating (20) with respect to R̂ gives

0 = VwY (ŷ(w; R̂), Ŷ (w; R̂), R̂, w)
∂Ŷ (w; R̂)

∂R
+ VwR(ŷ(w; R̂), Ŷ (w; R̂), R̂, w)

+ Vwy(ŷ(w; R̂), Ŷ (w; R̂), R̂, w)

×
(

eR(v(w), Ŷ (w; R̂), R̂, w) + eY (v(w), Ŷ (w; R̂), R̂, w)
∂Ŷ (w; R̂)

∂R

)
(21)

To simplify this expression, note that eR (v, Y, w, R) = µ (e(v, Y,R,w), Y, w, R) and that

(Roy’s identity)

Vy(y, Y,R, w)µ(y, Y,R, w) + VR(y, Y, R, w) = 0,
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so that differentiating with respect to w gives

VwR(y, Y, R, w) + Vwy(y, Y, R, w)µ(y, Y, R, w) + µw(y, Y, R, w) = 0.

Also note that eY (v, Y,R,w) = −VY (y, Y, R, w)/Vy(y, Y,R, w) (evaluated at y = e(v, Y,R,w))

so the single-crossing condition in Assumption 2 implies

∂

∂w

(−VY (y, Y, R, w)

Vy(y, Y,R,w)

)
=
−VwY (y, Y,R,w)− Vwy(y, Y, R, w)eY (v, Y, R, w)

Vy(y, Y,R,w)
< 0.

So that solving equation (21):

∂Ŷ (w; R̂)

∂R
= −µw(ŷ(w; R̂), Ŷ (w; R̂), R̂, w)

∂
∂w

(
−VY (ŷ(w;R̂),Ŷ (w;R̂),R̂,w)

Vy(ŷ(w;R̂),Ŷ (w;R̂),R̂,w)

) ≤ 0.

with strict inequality if µw(ŷ(w; R̂), Ŷ (w; R̂), R̂, w) < 0. Now define

E(R̂) ≡
∫ (

Ŷ (w; R̂)− e(v(w), Ŷ (w; R̂), w, R̂) + R̂eR(v(w), Ŷ (w; R̂), w, R̂)
)

dF (w)

Differentiating

E ′(R̂) =

∫ (
(1− eY (v(w), Ŷ (w; R̂), R̂, w)

+ R̂eRY (v(w), Ŷ (w; R̂), R̂, w))
∂Ŷ (w; R̂)

∂R
+ R̂eRR(v(w), Ŷ (w; R̂), R̂, w)

)
dF (w)

and evaluating this at R̂ = R gives E ′(R) < 0, using Assumptions 1 and 2 together with the

twice continuous differentiability of U(c, n, m) (to conclude that eRR(v, Y,R,w) < 0). Thus,

a small reduction in R allows for a strict increase in E(R) which contradicts the Pareto

optimality of the original allocation.

Proof of Proposition 3

We first prove a version of the result for a finite types economy and then make a passage-

to-the-limit argument to cover the general case. To help the reader see the structure of the

argument, we organize the proof into subsections.

Finite Types

A finite type problem. Consider an economy with N types, w1 ≤ w2 ≤ · · · ≤ wN ,

with population fractions πi. Define the (Utilitarian) planning problem for this economy as
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maximizing
N∑

i=1

V (y(wi), Y (wi), R, wi)πi (22)

subject to

V (y(wi), Y (wi), R, wi) ≥ V (y(wj), Y (wj), R, wi) ∀i, j = 1, 2, . . . , N, (23)

the resource constraint

N∑
i=1

(Y (wi)− γ(y(wi), Y (wi), R, wi))πi ≥ G,

and 0 ≤ y(wi), 0 ≤ Y (wi). We show that the optimum for this problem exists, has

R = 0 and Y (wi) − y(wi) increasing in wi and nonnegative marginal tax rates: 1 +

VY (y(wi), Y (wi), 0, wi)/Vy(y(wi), Y (wi), 0, wi) ≥ 0. This implies that the allocation can

be implemented with a nondecreasing tax schedule using (8).

A finite type relaxed problem We proceed by showing that the optimum solves the

following relaxed Utilitarian problem: defined exactly as the Utilitarian problem except re-

placing the incentive compatibility condition (5) with local downward incentive constraints

V (y(wi+1), Y (wi+1), R, wi+1) ≥ V (y(wi), Y (wi), R, wi+1) i = 1, 2, . . . , N − 1, (24)

and the monotonicity condition that Y (wi) ≤ Y (wi+1) (note that y(wi) ≤ y(wi+1) is implied

by these constraints). We show that a solution to this relaxed problem exists, has R =

0 and all the downward incentive compatibility constraints (24) hold with equality. The

latter implies that the allocation is incentive compatible, so that it also solves the unrelaxed

planning problem.

That any solution to this relaxed problem must have R = 0 follows directly from

Lemma 1. Since R = 0, we now write c(wi) ≡ γ(y(wi), Y (wi), 0, wi) = y(wi). The fol-

lowing property will be used to establish that the downward incentive constraints (24) hold

with equality.

Lemma 2. Suppose c′ > c and V (c′, Y ′, 0, w′) > V (c, Y, 0, w′) for w′ > w. Then (i) if

Y ′/w′ ≥ Y/w:

Vy(c
′, Y ′, 0, w′) < Vy(c, Y, 0, w); (25)
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otherwise (ii) if Y ′/w′ < Y/w either (25) holds or:

VY (c′, Y ′, 0, w′) > VY (c, Y, 0, w). (26)

Proof. Define U∗(c, n) ≡ maxm U(c, n, m) ≡ V (c, nw, 0, w). By the envelope condition,

Vy(c
′, Y ′, 0, w′) < Vy(c, Y, 0, w) is equivalent to

U∗
c (c′, n′) < U∗

c (c, n) (27)

And

U∗
n(c′, n′) > U∗

n(c, n) (28)

implies VY (c′, Y ′, 0, w′)w′ > VY (c, Y, 0, w)w, which in turn implies that VY (c′, Y ′, 0, w′) >

VY (c, Y, 0, w).

The hypothesis imply that

U∗(c′, n′) > U∗(c, n w
w′ ) ≥ U∗(c, n).

For case (i) we have n′ = Y ′/w′ ≥ Y/w = n. Define the consumption compensation function

f(x) by U∗(f(x), x) = U∗(c′, n′). Then f(n) > c, so that U∗
c (c, n) > U∗

c (f(n), n) by concavity

of U∗(·, n). Next note that

∂

∂x

(
U∗

c (f(x), x)
)

= f ′(x)U∗
cc(f(x), x) + U∗

cn(f(x), x)

= −U∗
n(f(x), x)

U∗
c (f(x), x)

U∗
cc(f(x), x) + U∗

cn(f(x), x) ≤ 0,

by Assumption 2. Thus, U∗
c (f(x), x) is decreasing and

U∗
c (c, n) > U∗

c (f(n), n) > U∗
c (f(n′), n′) = U∗

c (c′, n′),

which establishes (27).

For case (ii) we have n′ = Y ′/w′ < Y/w = n. Define the function M(z) ≡ U∗(c + z(c′ −
c), n + z(n′ − n)). This function is strictly concave and differentiable so it follows that:

M ′(1)−M ′(0) =
(
U∗

c (c′, n′)− U∗
c (c, n)

)
(c′ − c) +

(
U∗

n(c′, n′)− U∗
n(c, n)

)
(n′ − n) < 0,

which implies (27) or (28).

22



Binding Downward Incentive Constraints. Next, suppose that the inequality (24) is

strict for some i, so that

V (c(wi+1), Y (wi+1), 0, wi+1) > V (c(wi), Y (wi), 0, wi+1). (29)

Then the Lemma applies with w = wi and w′ = wi+1. It is then possible to construct a

feasible improvement as follows.

If inequality (25) holds then one can redistribute consumption from wj+1 to wj and

increase average welfare. That is, reducing c(wj+1) and increasing c(wj) so that the resource

constraint holds is feasible since the incentive constraint is slack: the strict inequality (29)

will continue to hold for a small enough variation.

If, instead, inequality (26) holds then one can redistribute output from j to j + 1 and

increase average welfare. That is, reducing Y (wj) (together with Y (wi) of any other individ-

ual type i with Y (wi) = Y (wj)) and increasing Y (wj+1) (together with Y (wk) of any other

individual type wk with Y (wk) = Y (wj+1)) so that the resource constraint holds is feasible

since the incentive constraint is slack: the strict inequality (29) will continue to hold for a

small enough variation.

Existence of a Maximum. This proves that if a maximum exists to the relaxed problem,

at an optimum the downward incentive constraints hold with equality. Hence, the allocation

is incentive compatible and it is also a solution to the unrelaxed planning problem. We

now argue that, as long as the constraint set is nonempty so that there exists some feasible

allocation, then a maximum does exist for the relaxed problem.

We have already argued that we can restrict ourselves to R = 0. We now argue that we

can restrict ourselves to a compact set for (y(wi), Y (wi)). Both are nonnegative, so we seek

upper bounds. We first derive an upper bound for Y (wi), then use this to derive an upper

bound for y(wi).

Let Ū denote the value for the planner’s objective obtained for some feasible allocation.

Then, in search of a maximum, we can restrict attention, without loss of generality, to allo-

cations that provide at least this value for the objective. Downward incentive compatibility

implies that utility is increasing in w. Thus, agents of type wN must do better than the aver-

age, so that V (y(wN), Y (wN), 0, wN) ≥ Ū . In addition, without loss of generality, we restrict

attention to allocations with no distortion at the top (otherwise, by standard arguments, an

improvement is possible): −VY (y(wN), Y (wN), 0, wN)/Vy(y(wN), Y (wN), 0, wN) = 1. Given

Assumption 2, it then follows that there exists a Ymax < ∞ such that Y (wN) ≤ Ymax. By

monotonicity, Y (wi) ≤ Ymax.

Turning to the bound for y(wi). Note that y(wi) ≥ 0, so that from the resource constraint
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y(wN) ≤ (Ymax −G)/πN . Since y(wi) ≤ y(wN), this proves y(wi) ≤ (Ymax −G)/πN ≡ ymax.

It follows that we can restrict y(wi) and Y (wi) to a compact set, implying that a maximum

exists.

Increasing Taxes. At the optimum marginal tax rates are nonnegative. Otherwise an

improvement is possible by decreasing output. Because the downward incentive constraints

are binding, this implies that T (Y ) defined by (8) is nondecreasing.

Passage to the limit

We now return to the original problem with a continuum of types w ∈ W distributed

according to F (w) and make a passage-to-the-limit argument to the continuum case. Since

F (w) is nondecreasing, it has at most countable jumps: w̃1, w̃2, . . .

Approximating with finite types. Take any feasible allocation (y(w), Y (w), R). With-

out loss in generality, we assume this feasible plan yields some finite value for the utilitarian

objective
∫

V (y(w), Y (w), R, w)dF (w) (otherwise, it is trivial to find an improvement with

R∗ = 0).

Consider a partition of the interval based w = wN,0 ≤ wN,1 ≤ wN,2 ≤ · · · ≤ wN,2N+K(N) =

w̄ composed of: 2N+1 points w+j w̄−w
2N for j = 0, 1, . . . , 2N and K(N) points w̃1, w̃2, . . . , w̃K(N),

where K(N) = K if F (w) has K jumps and K(N) = N if F (w) has a countably infinite

number of jumps.

For any w ∈ W we define yN(w) ≡ y(wN,i) and YN(w) ≡ Y (wN,i) if w ∈ (wN,i−1, wN,i]

for i ∈ IN ≡ {1, . . . , 2N + K(N)}. Equivalently, defining the step function ωN(w) = wN,i if

w ∈ (wN,i−1, wN,i] we can write yN(w) = y(ωN(w)) and YN(w) = Y (ωN(w)).

This construction guarantees that as N → ∞ we have yN(w) → y(w), YN(w) → Y (w)

and ωN(w) → w almost everywhere with respect to the measure implied by F (w). In addition

0 ≤ yN(w) ≤ yN(w̄) = y(w̄), 0 ≤ YN(w) ≤ YN(w̄) = Y (w̄). Thus, by Lebesgue’s Dominated

Convergence Theorem applied to the sequence {YN(w) − γ(yN(w), YN(w), R, ωN(w))}∞N=1

(for any N , these functions are step functions, so the integrals can be represented as finite

sums)

w̄∫

w

(Y (w)− γ(y(w), Y (w), R, w)) dF (w)

= lim
N→∞

∑
i∈IN

(YN(wN,i)− γ(yN(wN,i), YN(wN,i), R, wN,i))ΠN(wN,i), (30)

where ΠN(wN,i) ≡ F (wN,i)−F (wN,i−1), i.e., the measure of the half-open interval (wN,i−1, wN,i]

(the set {w : ωN(w) = wN,i}). Also, since V (y, Y, R, ·) is an increasing function and due to in-
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centive compatibility of the original allocation V (y(w), Y (w), R, w) ≤ V (y(w′), Y (w′), R, w′)

for any w ≤ w′,

V (y(w), Y (w), R, w) ≤ V (yN(w), YN(w), R, ωN(w)) ≤ V (y(w̄), Y (w̄), R, w̄) < ∞,

and V (yN+1(w), YN+1(w), R, ωN+1(w)) ≤ V (yN(w), YN(w), R, ωN(w)). Thus, by the Mono-

tone Convergence Theorem applied to the sequence {−V (yN(w), YN(w), R, ωN(w))}∞N=1 (for

any N , these functions are step functions, so the integrals can be represented as finite sums)

w̄∫

w

V (y(w), Y (w), R, w) dF (w) = lim
N→∞

∑
i∈IN

V (yN(wN,i), YN(wN,i), R, wN,i)ΠN(wN,i). (31)

Improving with Finite Types. Now, for each N , interpret {YN(wN,i), YN(wN,i)}i∈IN
and

R > 0 as an allocation for a finite type economy with types {wN,i}i∈IN
, population fractions

{ΠN(wN,i)}i∈IN
and government expenditures GN . We can then apply the results for the

finite type case to define a new allocation {ŷN(wN,i), ŶN(wN,i)}i∈IN
with R̂ = 0 satisfying

GN ≡
∑
i∈IN

(YN(wN,i)− γ(yN(wN,i), YN(wN,i), R, wN,i))ΠN(wN,i)

≤
∑
i∈IN

(ŶN(wN,i)− ŷN(wN,i))ΠN(wN,i) (32)

ŪN ≡
∑
i∈IN

V (yN(wN,i), YN(wN,i), R, wN,i)ΠN(wN,i)

≤
∑
i∈IN

V (ŷN(wN,i), ŶN(wN,i), 0, wN,i)ΠN(wN,i) (33)

and

V (ŷN(wN,i), ŶN(wN,i), 0, wN,i) = V (ŷN(wN,i−1), ŶN(wN,i−1), 0, wN,i).

Thus, this new allocation improves welfare, total taxes receipts, and has binding downward

incentive constraints. Furthermore, taxes ŶN(wN,i)− ŷN(wN,i) are nondecreasing.

Converging to a Candidate. Next, we take the limit of this (fictitious) finite type econ-

omy to find a new candidate allocation for the (actual) continuum economy.

To ensure a limit exists, we first seek a uniform bound for ŷN(w) and ŶN(w). For each N ,

define the average utility ŪN and tax collection GN obtained by our finite approximation to

the original allocation, as in (32) and (33). Then (30) and (31) imply that infN GN > −∞
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and infN ŪN > −∞. Now, for the upper bound on Ŷ (w) we note that Ŷ (w) ≤ Ŷ (w̄) and

that there is no distortion at the top: −VY (ŷN(w̄), ŶN(w̄), 0, w̄)/Vy(ŷN(w̄), ŶN(w̄), 0, w̄) = 1.

Combined with V (ŷN(w̄), ŶN(w̄), 0, w̄) ≥ infN ŪN and Assumption 2 this implies that there

exists a Ymax such that ŶN(w) ≤ Ymax < ∞ for all N . Since taxes are nondecreasing, the

resource constraint requires that ŶN(w̄)−ŷN(w̄) ≥ GN , so that ŷN(w̄) ≤ Ymax−infN GN < ∞.

For any N , define an allocation for any w ∈ W as: ŷN(w) = ŷN(wN,i) and ŶN(w) =

ŶN(wN,i) if w ∈ (wN,i−1, wN,i], i.e. ŷN(w) = ŷN(ωN(w)) and ŶN(w) = ŶN(ωN(w)). This gives

a sequence of nondecreasing functions {ŷN(w), ŶN(w)}∞N=1 that is uniformly bounded. Helly’s

Selection Theorem implies that we can extract a subsequence {ŷM(N)(w), ŶM(N)(w))}∞N=1 that

converges (everywhere) pointwise to some nondecreasing limit functions y∗(w) and Y ∗(w).

Recall that, for any N , the allocation (ŷM(N)(w), ŶM(N)(w)), R̂) is incentive compatible

for the finite economy, that is, restricted to the partition points {wN,i}i∈IN
. Then, in the limit

as N →∞, since the partition points {wN,i}i∈IN
form a dense set for W , the limit allocation

(y∗(w), Y ∗(w), R∗) with R∗ = 0 is incentive compatible. Furthermore, the property that

taxes are increasing and that marginal tax rates are nonnegative is also preserved in the limit:

Y ∗(w) − y∗(w) is increasing in w and −VY (y∗(w), Y ∗(w), 0, w)/Vy(y
∗(w), Y ∗(w), 0, w) ≤ 1.

Hence, this allocation can be implemented by an increasing tax schedule T ∗(Y ) with R∗ = 0.

All that remains is to show that this allocation is an improvement over (y(w), Y (w), R).

Because the functions involved are step functions, for any N the integral of ŶN(w) −
ŷN(w) can be represented by the finite sum

∑
i∈IN

(ŶN(wN,i)− ŷN(wN,i))ΠN(wN,i). Applying

Lebesgue’s Dominated Convergence Theorem to the sequence {ŶM(N)(w)− ŷM(N)(w)}∞N=1:

lim
N→∞

∑
i∈IM(N)

(ŶM(N)(wM(N),i)− ŷM(N)(wM(N),i))ΠM(N)(wM(N),i)

=

w̄∫

w

(Y ∗(w)− y∗(w)) dF (w) (34)

Similarly, because V (ŷN(w), ŶN(w)), 0, ωN(w)) is a step function its integral can be repre-

sented by the finite sum
∑

i∈IN
V (ŷN(wN,i), ŶN(wN,i), 0, wN,i)ΠN(wN,i). The function is also

bounded above since

V (ŷN(w), ŶN(w), 0, ωN(w) ≤ V (ŷN(w̄), ŶN(w̄)), 0, w̄) ≤ V (ymax, 0, 0, w̄) < ∞.

Thus, by Fatou’s Lemma applied, to the sequence {−V (ŷM(N)(w), ŶM(N)(w), 0, ωM(N)(w)}∞N=1,
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we obtain

lim sup
N→∞

∑
i∈IN

V (ŷM(N)(wM(N),i), ŶM(N)(wM(N),i), 0, wM(N),i)ΠN(wM(N),i)

≤
w̄∫

w

V (y∗(w), Y ∗(w), R, w) dF (w). (35)

Combining (30)–(35), gives

w̄∫

w

(Y (w)− γ(y(w), Y (w), R, w)) dF (w) ≤
w̄∫

w

(Y ∗(w)− y∗(w)) dF (w)

w̄∫

w

V (y(w), Y (w), R, w) dF (w) ≤
w̄∫

w

V (y∗(w), Y ∗(w), 0, w) dF (w).

Thus, we have constructed a feasible allocation (y∗(w), Y ∗(w), R∗) with R∗ = 0 that is at

least as good as the original allocation (y(w), Y (w), R). Since the latter was arbitrary, it

follows that (y∗(w), Y ∗(w), R∗) is optimal. This concludes the proof.

Welfare Costs for Shopping-Time Example

Facing R = 0 and a proportional tax T (Y ) = τ̄Y agents obtain utility

v∗(w) = log

(
w(1− τ̄)

αα

(1 + α)1+α

)

with n∗(w) = Y ∗(w)/w = 1/(α + 1), c∗(w) = (1 − τ̄)w/(α + 1) and s∗(w) = 0 (with

m∗(w) = ∞). We now derive V (y, Y, R, w) and e(v, Y,R, w) for this specification. To

preserve welfare we set y(w; R) = e(v∗(w), Y (w; R), R, w), and solve

v∗′(w) = Vw(e(v∗(w), Y (w), R, w), Y (w), R, w) (36)

for Y (w; R) in order to preserve incentive compatibility. We later verify that Y (w; R) is

increasing in w for all R.

For this specification we obtain

V (y, Y,R,w) = log y + log

(
σ(Y, R, w)k

σ(Y, R, w)k + R

)
+ α log

(
1− Y

w
− σ(Y, R, w)

)
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with

m = µ(y, Y, R, w) =
1

σ(Y, R, w)k + R
y and c = γ(y, Y, R, w) =

σ(Y, R, w)k

σ(Y, R, w)k + R
y

where

s = σ(Y, R, w) ≡
−R (1 + α) +

√
R2 (1 + α)2 + 4Rαk

(
1− Y

w

)

2kα
(37)

The expenditure function (the inverse of V ) is then

e (v, Y, R, w) ≡ exp(v)
σ(Y,R,w)k + R

σ(Y,R,w)k

(
1− Y

w
− σ(Y, R,w)

)−α

Using (36) gives
Y (w; R)

w
=

1− σ(Y (w; R), R, w)

α + 1

Using this in (37), it follows that σ(Y (w; R), R, w) ≡ S(R) is independent of w and is the

largest root of the quadratic equation

αkS(R)2 + R (1 + α) S(R) = R

(
1− 1− S(R)

α + 1

)
.

Note that Y (w; R) = w(1− S(R))/(α + 1) is strictly increasing in w.

Finally, using these expressions to compute net resources by

E (R) =

∫ (
γ
(
e
(
v∗(w), Y (w; R), w, R

)
, Y (w; R), w, R

)− Y (w; R)
)
dF (w)

leads to
E(R)− E(0)∫
c∗(w) dF (w)

= (1− S(R))−α +
S(R)

1− τ̄
− 1.
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Figure 1: A region of the Pareto frontier for a case with two productivity types (only the
region where vH > vL is illustrated).



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 2: Welfare costs for Lucas (2000) shopping-time specification with τ = 0, 35%, 50%
and area under demand curve.
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