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Econometrica, Vol. 52, No. 1 (January, 1984) 

PARETO OPTIMA AND COMPETITIVE EQUILIBRIA WITH 
ADVERSE SELECTION AND MORAL HAZARD' 

BY EDWARD C. PRESCOTT AND ROBERT M. TOWNSEND 

This paper explores the extent to which standard, general equilibrium analysis of Pareto 
optima and of competitive equilibria can be applied to environments with moral hazard 
and adverse selection problems. Allowing for lotteries, contracts with random components, 
we first establish that an adverse-selection insurance economy, a moral-hazard insurance 
economy, a signaling economy, and a private-information labor market economy are all 
special cases of a simple, general structure. We then show that techniques for characteriz- 
ing Pareto optimal contracts as solutions to concave programming problems are useful and 
nice and appear to be broadly applicable; allowing for lotteries, we show how to 
characterize the optimal allocations for the adverse-selection insurance and labor market 
economies. We then show that standard existence and optimality theorems for competitive 
equilibria apply in the linear space containing lotteries if agents with characteristics which 
are distinct and privately observed at the time of initial trading enter the economy-wide 
resource constraints in a homogeneous way (other kinds of diversity are not critical). For 
economies with moral hazard which satisfy the homogeneity condition, competitive con- 
tract markets single out a subset of the optima and thus can be consistent with apparent 
unemployment and with a random allocation of labor supplied though all households are 
averse to risk. The adverse-selection insurance and signaling economies, however, do not 
satisfy the homogeneity condition and are difficult to decentralize efficiently with a price 
system. 

1. INTRODUCTION 

THE PURPOSE OF THIS PAPER is to explore the extent to which standard, general 
equilibrium analysis of Pareto optima and of competitive equilibria can be 
applied to economies with moral hazard and adverse selection problems. In these 
economies the information structure is explicit but private. Of particular interest 
are the Rothschild-Stiglitz [21], Wilson [23] insurance economy, in which each 
agent observes a parameter indicating the probability of suffering a loss, that is, 
whether he is a high risk or low risk agent; a Spence [22] signaling economy, in 
which each agent observes a parameter indicating his inherent productivity as 
well as the direct or indirect disutility of some unproductive activity; a moral 
hazard insurance economy in which agents can take an unobserved action 
determining the probability of suffering a loss; and a private-information labor 
market economy in which households suffer unobserved shocks to preferences 
(or to an underlying household production function). 

We proceed by showing in Section 2 that despite the apparent diversity among 
the above-mentioned economies, each can be viewed as a special case of a simple 
general structure with convex constraints and preferences. This is accomplished 

'Earlier drafts of this paper have been presented at the NBER Conference on Theoretical 
Industrial Organization, Montreal, October, 1979, the 4th World Congress Meetings of the Econo- 
metric Society, Aix-en-Provence, August, 1980, and the Summer Meetings of the Econometric 
Society, San Diego, June, 1981. Helpful comments from Ted Groves, Roy Radner, John Roberts, 
Charles Wilson, our colleagues, the participants of these seminars, and a referee are all gratefully 
acknowledged. We also thank the National Science Foundation and the Alfred P. Sloan Foundation 
for financial support. 
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by considering consumption lotteries indexed by time and by privately-observed 
shocks and agent types. The constraint set then naturally includes certain 
incentive compatibility conditions, following the seminal work of Hurwicz [16]; 
these ensure that it is not in the interest of agents to misrepresent their private 
information. 

Section 3 establishes that Pareto optimal allocations can be determined as 
solutions to the problem of maximizing weighted averages of the agent-type 
utilities subject to the incentive-compatibility conditions and resource con- 
straints, a concave programming problem. This result is then used to characterize 
the optima for both the adverse-selection insurance and the private-information 
labor market economy. It is established as a by-product that the Rothschild- 
Stiglitz separating equilibrium is optimal in the space of lotteries under exactly 
the same conditions which make it optimal in the space of (apparently) determin- 
istic allocations. For the private-information labor market economy it is estab- 
lished, generally, that optima are inefficient in the ex post full-information sense, 
being consistent with unemployment or overemployment of labor and even with 
a random allocation of labor though all households are averse to risk. The latter 
results complement the findings of Green and Kahn [12] and Grossman and 
Hart [13] on ex post inefficiencies in labor contracts and especially Chari [7] in 
the use of lotteries. 

Section 4 begins an attack on the question of the applicability of classical 
competitive analysis to economies which can be mapped into our general 
structure. Previously, Prescott and Townsend [19] established that standard 
competitive analysis could be applied to a Fisherian dynamic securities economy 
with private information. For that economy competitive equilibria were shown to 
exist and to be optimal, in contrast to the problems that have been encountered 
for other private information economies that also fall within our general struc- 
ture. With the approach employed by Spence [22] in his studies of signaling 
economies, for example, there is a multiplicity of equilibria and they generally 
are not optimal. And with the approach employed by Rothschild-Stiglitz [21], an 
equilibrium may fail to exist, and again, if one does exist, it may be nonoptimal. 
We find that the key property upon which standard existence and optimality 
theorems depend has to do with only one aspect of the information structure of 
the economy, whether or not agents with characteristics which are distinct and 
privately observed at the time of initial trading enter the resource constraints in a 
homogeneous way: preferences, technology, other kinds of ex ante diversity, and 
ex post diversity are not critical. An implication of this result for economies with 
signaling opportunities is that nonoptimality, multiplicity, or nonexistence prob- 
lems do not arise if there is a market for contracts prior to agents knowing their 
(still privately observed) types. Neither are there problems for the moral hazard 
insurance economy, nor for the private-information labor market economy. 

In Section 4 we illustrate how the private-information labor market economy 
optimum can be supported in a competitive equilibrium. Each household chooses 
a contract which maximizes its expected utility subject to its budget constraint. 
The contract entails options which can be exercised at the discretion of the 
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household and involves commitments to supply labor in return for the consump- 
tion good. Firms in our labor market economy are viewed as producer- 
intermediaries which make commitments to hire labor and produce the consump- 
tion good. Again, the commitments are priced in a competitive market and firms 
.maximize profits. The implication of this section is that unemployment, over- 
employment, and random assignments, being consistent with optimal contracts, 
are also consistent with competitive equilibrium allocations. We have, in effect, 
taken a step toward a synthesis of the implicit labor contract paradigm of 
Azariadas [4], Bailey [5], and Gordon [11] with standard competitive analysis. 

The final section of the paper briefly reports on our efforts to secure standard 
existence and optimality theorems for all economies consistent with the general 
structure and offers an instructive contrast to our results for the private- 
information labor market economy (among others). Apparently, there can be a 
fundamental (unavoidable) adverse selection problem if agents with characteris- 
tics which are distinct and privately observed at the time of initial trading enter 
the economy-wide resource constraints in a heterogenous way, as is the case for 
the adverse selection insurance and the signaling economies. 

2. THE ECONOMIES 

Basic Mathematical Structure 

There are a finite number of agent types i = 1, . .. , I and a continuum of each 
type. The fraction of agents of type i is denoted by Ai. The commodity space is a 
linear space L and the common consumption possibility set for each agent type, 
X c L, is closed and convex. The utility function of each agent of type i, 
Ui: X - R, is concave (and frequently linear). The endowment of each agent is 
( E L, the same for all agent types. Each agent's type is private information. The 
commodity space, consumption set, utility functions, and endowment will all be 
given more precise interpretations in the example-economies which follow. 

Let xi E L be a consumption allocation to each agent of type i. Let rik be a 
real-valued linear function on L (k = 1, 2, . .. , K; i = 1, 2, . .. , I). Then society 
is subject to resource constraints of the form 

2X irik (xi- ) ?0 (k = 1, ..., K). 

Note that we allow there to be more than one constraint; the private-information 
securities economy of Prescott and Townsend [19] provides an example. 

An I-tuple x = (xi) of elements belonging to L is implementable if 

(2.1) xiEX, alli, 

(2.2) uP(x,)?ui(x1), all i,j, 
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The first requirement is that the consumption vector belong to the individuals' 
consumption possibility set. The second is that each individual of type i weakly 
prefer xi to all the other xj. Thus it is not in the interest of any agent to claim to 
be of some other type. These are the ex ante incentive-compatibility constraints. 
Certain ex post incentive-compatibility constraints arise naturally in consider- 
ation of the set of all allowable contracts (see below) and thus help to determine 
the common consumption possibility set X. Justification for restricting attention 
to the class of allocations satisfying the incentive-compatibility constraints can be 
found in Harris and Townsend [14, 15] and Myerson [18], building on the 
seminal work of Hurwicz [16]. The third condition is again the set of resource 
constraints. 

In much of this paper L is assumed to have finite dimension. The assumption 
that L has finite dimension simplifies the presentation without the loss of 
anything essential. Then, if both the ui(-) and rik( ) are linear, we use the dot 
product to represent them; that is 

Ul xi. Xu1 (xi) = uilxd 

and similarly 

rik Xi rik(Xi) = riklXil 

where / indexes components of xi E L. (Limiting arguments such as those used in 
Prescott and Townsend [19] might well be used to establish the results of this 
paper if L is not finite dimensional.) 

We now demonstrate how the well-known adverse-selection insurance, moral- 
hazard insurance, and signaling economies as well as a private-information labor 
market economy can all be represented in this framework. 

Adverse Selection Insurance Economy: E, 

Consider the following insurance environment that was considered by Roths- 
child-Stiglitz [21] and Wilson [23]. There is a continuum of agents; say the set of 
agents is the unit interval. Each agent of type i receives a random endowment z: 

t zo with probability 90, 
Z z with probability (1 -0 ). zII 

Here 0 < zo < z1, so when z = zo an agent is said to suffer a loss. This is public 
information. There are two types of agents by risk class, i = 1,2, where 0 < 9l 
< 02 < 1. Thus the 01-type agents are the low risk people and 82-type agents are 
the high risk people. Each agent's type is private information. Of people of type i, 
Oi is also the fraction that will suffer a loss. Thus there is no aggregate uncertainty 
with the fractions of the various types, X., being known.2 

2As noted in Prescott and Townsend [19], both here and below, we proceed from an aggregate 
distribution to individual uncertainty rather than the other way in order to avoid certain well-known 
mathematics problems associated with measurability. See Bewley and Radner [6]. 
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Each agent has preferences on C c R + as defined by the utility function 
U: R + -* R where U is strictly concave, strictly increasing, and continuously 
differentiable with U'(0) = oo. The points zo and z, belong to C. Suppose a 
consumer is assigned co if a loss is suffered and cl if one is not. The expected 
utility for an agent of type i is then 

9i U(CO) + (1 -i ) U(c1) 

where c0, cl E C. 
This environment can be cast in terms of the basic mathematical structure. 

One approach is to let L be R 2. Then let xi be a consumption allocation to agents 
of type i with the first component being ci0 and the second cil. The common 
endowment is ( = (z0, z ). Then X corresponds to C x C and is closed and 
convex provided C is closed and convex. The single linear resource constraint is 

EXi[ i(cio - zo) + ( - 91)(cil - 1)] 0 .- 

The incentive compatibility constraints are 

i U(cio) + (1 - 9)U(ci1) 2 9iU(c1o) + (1 - 0 all i,]. 

But the space of consumption allocations (xi) restricted by such constraints is not 
convex given the strict concavity of U. 

An alternative approach which results in the utility function being linear, and 
therefore avoids the nonconvexities associated with the incentive compatibility 
constraints, is to consider lotteries on C. In order that the space L be finite 
dimensional, the set C is assumed finite with n elements. The lotteries are 
n-dimensional vectors specifying the probability of each point in C, say yt 

= ( t(c))cEc where c,u(c) = l and t (c) > 0 all c E C. Let [t be the lottery if a 
loss is suffered and y1 if one is not. The expected utility of ([t, [L1) for a type i 
individual is then 

WiJ([to , it 1) = -i U(c) AO(c) + (1 - 9i) U(c) itI(c). 
C C 

It is also assumed here that fraction [t0(c) of agents of type i who suffer a loss 
receive the allocation c and similarly for yt1(c), so that lotteries introduce no 
aggregate randomness. The endowment ( is a pair of probability distributions on 
C, the first one of which assigns probability one to z0 E C and the second 
probability one to z1 E C. 

This latter economy can be put into the general mathematical structure as 
follows. Let L = R 2n. Let the first n elements of a consumption vector x, denoted 
x0, be the xoc = AO(c) defined above for c E C, and let the second n elements of 
x, denoted xl, be the xIC = At1(c) for c E C. The consumption possibility set then 
requires that x0 and xl be probability distributions; that is, 

X = {tx E L: ,xoc = 1, xic = 1, x ?O} 
C C 
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Let the first n elements of the utility function ui be the 9i U(c) for c E C and 
the second n elements (1 - 9) U(c) for c E C. With these definitions 

Ui(X) = Ui * X = Wi(/0, 5') 

which is just the expected utility to an i-type of lottery t,o if a loss is suffered and 
lottery /i if one is not. 

The common endowment t is an element of L. The resource constraint is that 
average consumption be less than or equal to the average endowment: 

xRi oizxiocc + (1 - 9i),xXi1cc < xi oiL Occ + (1 - Oi)E lcc 

As there is a single resource constraint, the k subscript can be dropped on the 
resource constraint function rik. The first n components of ri are the Sic for c E C 
and the next n components are (1 - 9)c. Thus the resource constraint can be put 
in the form 

E irs - (Xi -) 0 

as required by the general formulation. 

Signaling Economy: E2 

A particularly interesting class of economic environments are those with 
signaling opportunities. We consider the following simple signaling economy. 
The set C is a subset of R 3 . The first component cl is consumption of goods, the 
second c2 is the signal, and the third c3 is consumption of leisure. The utility 
function for individuals of type i is linear in c, and of the form 

Ui(c) = 9icl - C2, 

where the 9i have been ordered so that 9, < 02 < . . . < O,. The fraction of type i 
is Xi > 0. Again, agent types are private information. 

The output of an individual is not observed. A finite fraction, albeit small, of 
the continuum of individuals is required to produce any output and the resulting 
productivity of a group is the average of the productivities of the group's 
members. These assumptions imply it is impossible to deduce anything about an 
individual's productivity by observing the output of his group. Let 7Ti denote the 
output of the consumption good per unit of labor of individuals of type i. 
Individuals with larger 9i are more productive so vz > v, - I > ... > 77 0. The 
assumption that the signal does not affect output is not crucial and was made for 
the sake of simplicity. The endowment of leisure time is unity. 
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Because agents are risk neutral, we need not consider lotteries; that is, the 
utility functions are already linear. If they were not risk neutral, following the 
previous example, it would be necessary to consider lotteries on C. 

To represent this economy within our basic structure, the commodity space L 
is R 3 with component xl as consumption, x2 as signal, and X3 as leisure 
consumed. The consumption possibility set is 

X= {xCEL:X>0Ox3< 1} 

and the utility function for an i-type is 

Ui(X) = 9iX1 - X2. 

The endowment ( E L is the vector (0, 0, 1). 
The resource constraint is 

2X [Xi I + iT(Xi3 - 3)] <0. 

This states that the average consumption Ei ixil must be less than average 
production ZA'WA3 

- xi3). As for the previous example, there is a single 
resource constraint, characterized by the vectors ri E R3 where ri = (1,0, wi). 
With this definition the resource constraint can be put in the form 

E Xiri (Xi -) < 
i 

as required by the general formulation. 

A Moral-Hazard Insurance Economy: E3 

The adverse-selection insurance economy E1 is modified as follows. There is 
only one type of agent, so we can ignore the Xi in what follows, but the 
probability of loss depends upon a costly, private action of the agent. More 
precisely, each agent receives a random endowment z E Z = { zo, z1 } with 0 < zo 
< zI and the probability of z given the agent's action a E A = {a1,a2, ... , am} 

is z Ia. The realization of z is public, the action taken is not. Also, the larger is 
action a, the smaller is the probability of loss 

Oz. I a. The interpretation here is that 
a larger action corresponds to an agent being more careful. This is a standard 
set-up. 

Each agent has preferences on the finite set C x A, where C is a finite subset 
of R + and has n elements. Preferences are defined by a utility function U(c, a) 
where U is increasing in c, decreasing in a, and concave. For (c, a) E C X A, let 
Uca = U(c, a). 

In terms of our basic mathematical structure, let the linear space L be the 
Euclidean space of dimension n2m. A consumption vector x is a triply indexed 
element (xcza) for c E C, z E Z, and a E A. The interpretation is as follows. A 
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lottery with probabilities xa first determines an action a for each agent. Number 
xa is also the fraction of agents in the population who are to take action a. 
Conditional on this action a, a second lottery with probabilities xcz I a determines 
consumption c and endowment z of the agent. Of course, nature plays a role in 
this second lottery since the conditional probabilities ozla are technologically 
determined constraints. In fact it is required that 

C 

for consistency. Finally, the marginal and conditional distributions xa and xczI a 
determine the joint distribution Xcza specified above. 

Agents have preferences on X where 

X=f(x E L+: E Xcza = 1; 9zla3xcza = xczaalla,z; 
c, z, a c, z c 

2 UcaXcza ? E Uca'Xcza 9 all a, a' 
C, z C, z z I a 

The first constraint is that the probabilities sum to one. The second is that the 
probability distribution of z given a (if defined for that probability distribution) 
equals the technologically determined probability 9z I a. The third constraint is to 
ensure incentive compatibility. This is not obvious and is derived as follows. The 
commodity point x must be structured such that if a occurs, it is not in the 
interest of the agent to choose some other action a'; that is, 

XaE Uca xczIa? XaE Uca'Prtc,zIa'}. 
C, z C, z 

Here Pr{ c, z a'} is the probability of the pair (c, z) given that the agent is subject 
to lottery Xcza but chooses action a'. Thus, under Xcza 

Prr c,z Ia ) = Xc I zaoz I a'= Oz I a' 

By substitution, the above expression holds if and only if 

Z Uca Xcz I a Xa ? 2 Uca xcz I aXa 
a' 

C, z C, z z a 

As xcza = x ,Iaxa, the third constraint indeed ensures incentive compatibility. 
This particular representation makes clear that set X is convex. 

Of course, there is also a resource constraint, that average consumption be no 
greater than average endowment, or 

E Xcza(C Z) O< 
c, z, a 
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This constraint corresponds to constraint (2.3) in the basic structure, with 
endowment t being the zero vector in L. Here the single resource constraint takes 
on a special form, 

r * (x - ) < O 

with rcza = c - z. The vector r is not indexed by i. 

Private-Information Labor Market Economy: E4 

Imagine an economy in which households have preferences over some market 
produced consumption good c and over labor supply / as represented by a utility 
function U0,(c, 1) which is continuous, concave, increasing in c, and decreasing in 
1. Here c and / are nonnegative real numbers, with a maximal labor supply of 1. 
Here also 9 E e = { 1,2) is interpreted as one of two possible shocks to the 
household's preferences at the time of consumption and labor supply.3 Each 
household's shock is private information to the household in the consumption 
period. It is known that fraction As of households in the population will suffer 
shock 9 in the consumption period. Thus, from the standpoint of a prior 
planning period, each household regards \, as the probability of suffering shock 
9 in the consumption period. 

There are a finite number of firms in the economy, each with a technology for 
transforming labor / into output q of the consumption good in a linear way, 
namely q = al, a > 0; think of a fixed number of industrial projects, or a fixed 
number of plots of land in an agrarian economy. Firms are owned by households 
with predetermined profit shares in the population. With the constant returns to 
scale assumption, however, profits are necessarily zero in a competitive equilib- 
rium and thus will be disregarded in what follows. By the same token, we may 
act as if there were only one firm. 

The natural commodity bundle for households in this model is a consumption, 
labor-supply pair (c, 1). The space of such bundles would be used if trade were 
restricted to take place subsequent to the realization of household shocks 9. But 
trade can take place in the prior planning period. So, following Arrow [2] and 
Debreu [10], it is natural to index the (c, 1) bundle by the household-specific 
shocks. Shocks are private to the household, however, so to circumvent incentive 
problems, we suppose each individual household is assigned a contract which 
specifies consumption, labor supply pairs (c, 1) under a variety of individually- 

3The introduction of shocks to preferences may seem somewhat artificial. But the economy is 
readily given a deeper, more satisfactory interpretation. Suppose in particular that labor can be 
supplied also to a household production function, that is, there is a technology for transforming labor 
input into output of an idiosyncratic, home-produced good, a good which cannot be transferred 
among households. Suppose also that the household production function is subject to privately- 
observed technology shocks, 0. Finally, suppose households have preferences over consumption of the 
market-produced good, the home-produced good, and total labor supply. Then this specification 
delivers an indirect utility function (as in the text) over consumption of the market-produced good 
and over market labor supply. 
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effected contingencies or options. For example, the contract might allow "sick" 
leaves, voluntary overtime, and so on, in addition to the "work-as-usual" option. 
(There is no monitoring of underlying circumstances.) The point is that the 
household itself chooses which option to effect subsequent to its underlying 
circumstance, its shock 9. Now under any contract an individual household will 
act in its own best interest, inducing a natural ordering on outcomes, (c, 1) pairs, 
relative to its 9-contingent utility function. Thus, we may adopt a more abstract, 
canonical representation for any contract, following Harris and Townsend [14, 
15], and Myerson [18], and suppose, without loss of generality, that households 
make direct announcements of their shocks 9 and that contracts are such that 
these announcements are made truthfully. Finally, we suppose the further 
possibility that a contract specifies a random (c, 1) bundle, conditional on an 
announcement 9. For example, laborers may report to work under some circum- 
stances, but there need be no guarantee of employment. 

More formally then the labor market economy with planning period contracts 
is cast in terms of the basic mathematical structure as follows. First, to ensure 
that the commodity space is finite-dimensional, restrict attention to a finite 
number n of consumption-labor supply pairs (c, 1). Then let the commodity space 
L be R2n. The first n components of a consumption vector x E L, with typical 
elements, x1(c,l), assign probability to consumption-labor supply pairs condi- 
tional upon the announcement 9 = 1, with a similar interpretation for the second 
n components and 9 = 2. Households are alike ex ante in the planning period 
(but not ex post), so the X, and i may be dropped from the notation. The 
expected utility of the representative household is then 

U (X) =2, AS E xo (C, I) UO (C, I)* 
0 (C, l) 

Thus, the consumption possibilities set is 

X ={tx e L : x > O, 2, x0(c,l) = I for 9 = 1,2 and 
(c,l) 

x, x(c, 1) U,(c,1)2 > x,>(c, 1) U,9(c, ) for 0, 0 E-= 
(c,l) (c,l) 

This ensures both that the x9 are probability measures for each 9 and that in the 
consumption period each household will truthfully reveal its shock 9. 

The endowment t E L is the element for which $0(c, 1) = 0 unless (c, 1) = (0, 0), 
i.e., 4 puts all probability on the zero point in the underlying commodity space. 
The resource constraint is that average consumption not exceed average produc- 
tion, that is 

E Xo 2, x0 (c, l )c < 2 ,A E x0 (c, l )al. 
0 (C, l) 0 (C, I) 

Here x0(c, 1) is interpreted as the fraction of agents of type 9 who are assigned 
the consumption-labor supply pair (c, 1). Thus the resource constraint has the 
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form 

r * (x -() <0O 

where component r,9 (c, l) = X9 (c - al). 

3. PARETO OPTIMA 

Pareto optimal allocations for the general structure can be obtained by 
maximizing weighted averages of the agent types' utilities. Let the set of possible 
weights be 

r= {y E= R': Yi > O and -Yi = 1}I 

For y E r, let 0(y) denote the set of consumption allocations which are solutions 
to the program 

Max - yiui * xi 
x=(xi) 

subject to xi E X all i, ui * xi > ui * Xj all i and j, and EiAirik * (xi -) < O all k. 
Thus 4(y) is a subset of the I-cross product space of L. Finally, let 

(= U +(Y) 
yEF 

LEMMA 3.1: The set D contains all the Pareto optima. If y > 0 (i.e., yi > 0 all i), 
then all allocations belonging to 0(y) are optima. Finally, if an I-tuple x = (xi) 
belongs to 4(y) and if x is not Pareto dominated by another element belonging to 
?(y), then x is an optimum. 

PROOF: The constraints are convex and the objective function linear. Conse- 
quently, the utility possibility set is convex. Let y define a supporting hyperplane 
at the point on the utility possibilities frontier associated with Pareto optimal 
allocation x*. Such a hyperplane exists by the separation theorem. For this 
y* E I, x* is a solution to the program. This proves the first statement of the 
lemma. 

To prove the second statement consider some y > 0 and some allocation 
x E 4(y). Suppose x can be Pareto dominated. Then x cannot be a solution to 
the -y-program. This contradiction establishes that solutions to such programs are 
Pareto optima. 

To prove the last statement of the lemma, let x be a solution to some 
y-program with the specified nondominance property, but suppose x is not an 
optimum. Then there exists an allocation x' which Pareto dominates x. By 
assumption, x' does not belong to 4(y). But the value of x' for the -y-program is 
at least as great as the value for x, and thus x' must be a solution to the 
-y-program, the desired contradiction. 



32 E. C. PRESCOTT AND R. M. TOWNSEND 

THEOREM 3.1: If the set X is compact and contains {, the set of Pareto optimal 
allocations is nonempty. 

PROOF: A feasible solution exists namely xi = for all i so the constraint set is 
nonempty. The objective function is linear and therefore continuous. As the 
resource and incentive constraints are closed, a continuous function is being 
maximized on a compact set. Consequently for any y E r, a solution to the 
program exists. By the lemma, a solution to a y-program is necessarily an 
optimum if y > 0. 

Our examples with lotteries all assume that the underlying consumption 
possibilities set C has a finite number of points. This is sufficient to ensure that 
set X is compact, a result that is used in the existence argument. There is a 
straightforward extension of the result to the case of C being a compact 
separable metric space, for example, a closed and bounded subset of R n with the 
Euclidean metric; with the weak topology, the set of probability measures on the 
Borel subsets of C is compact (under these weaker conditions) and the functions 
defining the objective and constraints are continuous. When the constraint set is 
defined by the finite set of linear inequalities (other than the nonnegativity 
constraints), a stronger version of Lemma 3.1 holds; then every Pareto optimal 
allocation is the solution to a program with all components of y positive.4 

Pareto Optima for the Adverse-Selection Insurance Economy 

Rothschild and Stiglitz [21] demonstrate, under certain conditions, that their 
separating equilibrium both exists and is an optimum within a more limited class 
of allocations than the one we consider. One question that will be answered is 
whether that allocation is an optimum within our larger class of allocations. The 
principal result, however, is the complete specification of the set of Pareto optima 
for this insurance economy. 

Let z be the ex post per capita endowment, so 

z i= iizo + (1 - Oi)Zl]. 

Per capita consumption is constrained by this quantity. With this definition, the 
program for determining the Pareto optima for -y E r is the linear program 

Max 2yi U(c)[Xi0oci + xilc( - i)] 
i C 

xI ,x2 0, 

where xi0, is the probability of a type i consuming c E C conditional on a loss 
and xi,, is the probability of a type i consuming c conditional on no loss, i = 1, 2. 

4We would like to thank an anonymous referee for pointing out this result. 
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The constraints are 

(3.1) E U(c)[(x - x20c)02 + ( Xlc-X21c)(1 - 92)] < 0 
c 

(agents of type two weakly prefer x2 to xI); 

(3.2) 2 U(c)[(x20c - x10c)91 + (X21c - x 10)(l - 91)] < 0 
c 

(agents of type one weakly prefer x, to x2); 

(3.3) x ic[Xiocoi + xilc(l - 9,)] < 1 
i,c 

(this is the single resource constraint); 

(3.4) E x1o= 1, 
c 

(3.5) E XI IC l, 
c 

(3.6) E X20c=-" 19 
c 

(3.7) EX21c= I (probabilities sum to one). 

Letting uk denote the Lagrange multiplier associated with constraint (3.k), 
differentiating with respect to the x1oc yields the first-order conditions, 

(3.8) Y1 U(C)OI-tl- U(C)02 + 12U(0)1,- 3C91X, + N <_ 0 

for all c E C. Analogous first-order conditions hold for the X20c I the xl IC and the 
X21c . 

Constraint (3.8) must hold with equality for some c E C. Otherwise all the xIoc 
would be zero and that would violate constraint (3.4). The left-hand side of (3.8) 
can be viewed as a function of c. Thus, the Lagrange multipliers must be such 
that this function has a maximum (of zero) at points at which condition (3.8) 
holds as an equality. Now suppose the set C has an arbitrarily large number of 
elements, so that the maximal distance between any point and its nearest 
neighbor is arbitrarily small. Also recall that u( ) is strictly concave. Then if 

(3-9a) 7101 -A102 + A201 < ? 

the left-hand side of (3.8) is a strictly decreasing convex function of c and so 
attains a maximum at c = 0. If 

(3.9b) 7101 -A102 + A201 > ? 

the left-hand side of (3.8) is strictly concave function of c and so attains a 
maximum at a single point (on the assumption that the set C can be made 
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arbitrarily large). In summary the result is that xlOc equals one for some c E C 
and zero otherwise. By precisely the same argument, probability measures x, 
x20, and x21 place all their mass on single points denoted by cll, c20, and c21, 
respectively. These points depend upon the weights y chosen. 

One implementable allocation is for everyone to consume z independent of 
their realized endowment. The utility for this allocation is U(z) for everyone. If 
one agent type realizes expected utility exceeding U(z), that type's expected 
consumption, by Jensen's inequality, must exceed z. This implies via the resource 
constraint that the expected consumption of the other type agents is less than z 
and, by Jensen's inequality, their expected utility less than U(z). 

We divide the Pareto optima into three sets. The first is for everyone to 
consume z with certainty. The second set contains those optima for which the 
expected utility of type one agents exceeds U(z) and the third are those for which 
the expected utility of type one agents is less than U(z). 

It can be established that for set two there is no uncertainty in consumption 
for type two agents (i.e., c20= C21 = c2). Suppose the contrary. By eliminating 
uncertainty in the consumption of type two agents (if there is any) while 
preserving their expected consumption, the utility of type two agents is increased, 
the resource constraint continues to be satisfied, and slack is introduced into 
constraint (3.1). Note that constraint (3.2) continues to be satisfied: expected 
consumption of type two agents is less than I in set two so the type one agents 
strictly prefer their allocation xl which yields expected utility greater than U(z) 
to the no uncertainty x2 allocation. This also establishes that A2 = 0 in set two. 
And c10 I CII as well, for otherwise (3.1) would be violated. 

Actually constraint (3.1) is binding in set two for otherwise c 0 and cII could be 
made more nearly equal while preserving the expected consumption of type one. 
This increases expected utility of type one. Resource constraint (3.3) is also 
binding for if it were not, by increasing c2 a little, expected utility of type two 
agents could be increased without violating any constraint. Since (3.1) and (3.3) 
are binding, c10 and c,, must satisfy 

(3.10) 92 U(C10) + ( 1 - 2) U(cI 1) = U(c2) 

and 

(3.11) X1[9 I1c0 + (1 - 91)c1 ] + X2c2 = 2 

for elements of Pareto optima set two. To find the solution to (3.10) and (3.11), 
consider the space of (c 0, cl I) pairs. The point c2 lies in this space on the 450 line 
below the negatively sloped line (3.11). (Recall c2 < z.) Thus the negatively 
sloped line (3.11) intersects the indifference curve for which (3.10) is satisfied at 
two points. The better of the solutions for agents of type one is the one for which 
cI0 < c2 < cII. Subsequently, cI0 and cII are functions of c2 as the better solution 
to (3.10) and (3.11). 

This nearly completes the specification of the allocations in Pareto optima set 
two. There, however, is the condition that the Lagrange multipliers y1 and I3 be 
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positive. We exploit this condition with the additional assumption that all the 
optimal allocations are interior points of the set C and that the set C is 
sufficiently large to insure that such allocations satisfy the appropriate conditions 
for maxima as if C were a continuum. Thus, given that 02 = 0 and that 
C20= C2= c2, from (3.8) and the analogous first-order conditions 

-71 -112/91 ] U'(CIo) = 3/\I 

-71 -(1 - 2)/(1 - 9k)] U'(C1) = 3XI 
(31) 

72 + AI ]U (C2) = A3X2 = A30- X), 

71 + 72= " 

Given c2, these are four linear equations in the unknowns ,, y3, y I and 72. 
(Remember c1o and cII are functions of c2 being the better solution to (3.10) and 
(3.11).) An additional requirement is that the solution to (3.12) (which exists) be 
nonnegative. It is tedious to establish, but this requirement is that 

X2 02 - l U'(C2)[ U'(CI0) -U'(CII) (3.13) X1 91(1 - 91) 
- 

U'(CIO) (Cll) 

As c2 approaches z, the distance between c1O and c11 goes to zero. Therefore, 
given that U is continuously differentiable, for c2 sufficiently near z, this 
inequality is satisfied. Thus, Pareto optima set two is nonempty. Finally, let e2 be 
the minimal level for which inequality (3.13) is satisfied. Then it holds for all 
c2 < c2 < z. If this were not the case, the utility possibility set would not be 
convex. 

The argument for characterizing optima set three is symmetric with respect to 
the agents' types with some obvious exceptions necessitated by the fact that 
92> >. To characterize optima for set three interchange subscripts for the two 
agent types with the exception that one uses the solution to (3.10) and (3.1 1) for 
which c20 > c2, and the direction of inequality (3.13) is reversed. 

As condition (3.10), (3.11), and (3.13) along with the additional requirement 
that the contracts be actuarially fair are just those for the optimality of the 
Rothschild-Stiglitz separating equilibrium allocation, that allocation is Pareto 
optimal in our larger class of allocations as well. 

Randomness in consumption is used to separate the agents. The agent type 
realizing the higher expected utility incurs the uncertainty. The cost of this 
uncertainty is less to agents of that type and they are more than compensated for 
it by higher expected consumption. 

Pareto Optima for the Private-Information Labor Market Economy 

This subsection makes the point that the introduction of private information 
alone into an otherwise standard environment can produce not only apparent 
inefficiencies such as unemployment of labor but also a random assignment of 
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labor supplied in a world where all households are averse to risk. The key to this 
conclusion is that ex post full-information inefficiencies and randomness are both 
consistent with ex ante private-information optimal allocations. 

The program for determining the optima for the private-information labor 
market economy is the linear program 

Max EX9x9(C,l)U9(c,l) 
X9 (C, l) @ 

subject to 

(3.21) xI(c, 1) Ul(c, 1) 2 x2(c, 1) Ul(C, 1), 
(c,) (c,l) 

(3.22) E XA(C, 1) UA(C, 1) 2 XI x(C, 1) UA(C, 1), 
(c,) (c,l) 

(3.23) E xo x,9(c, 1) al>EXO X' x(C, I) c, 
9 (C,i) 9 (c,l) 

(3.24) E x(c,1) = 1, 
(cil) 

(3.25) E x2(c,l) = 1. 
(c, i) 

Here (3.21) and (3.22) are the relevant incentive compatibility constraints, those 
which will cause household of type 9 to truthfully announce it is of type 9. 
Constraint (3.23) is the resource constraint while (3.24) and (3.25) require that the 
probabilities sum to one. 

In this subsection, attention is restricted to economies in which the utility 
functions are separable having the form 

Us (C, l) = V(C)- W9(l). 

The function V(.) is strictly increasing and strictly concave with V'(O) = xo. The 
functions W9 are strictly increasing and convex. Agents of type two are assumed 
uniformly more risk averse with respect to labor supply; that is, W1"(l) < W2"(l) 
for all 0 < 1 < 1. It is also supposed for simplicity that X1 = X2 = 1/2. 

An upper bound for the value of the program is obtained when the program 
without the incentive constraints is solved. This latter program is easily solved for 
an optimum exists in the space of deterministic allocations (degenerate lotteries). 
An interior solution for this less constrained program satisfies 

V'(cI) =V(C2), 

W (l)=aV'(cg) for 9=1,2. 
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Here c9 and 19 are the deterministic consumption and labor supply for type 9. 
Thus at an interior solution to the less constrained program the marginal utility 
of consumption and the marginal rate of substitution of consumption for labor 
supply are equal across agent types, with the latter equal to the marginal product 
of labor, a. Of course, the resource constraint will be satisfied at equality: 
cl + C2= all + at2. 

An interior solution to the unconstrained program generally will not satisfy the 
incentive constraints. To see this, note that in such a solution consumptions are 
necessarily equal across agent types, say, equal to c. So, to satisfy the incentive 
constraints labor supplied must be equal as well, say, equal to 1. Then from the 
resource constraint, c = al. But the points at which W4(l) = aV'(al) generally 
will differ for the two 9 types. Thus, with incentive constraints imposed, the best 
deterministic allocation yields value strictly less than the optima when they are 
not imposed. We now introduce lotteries into labor supply and make the point 
that with differences in risk aversion such lotteries can lessen the impact of 
incentive constraints. 

This is well illustrated by the following parametric specification. Suppose 
V(c) = ln(c), W1(l) = 1, and W2(l) = 12/3. Thus, households of type one ex post 
are risk neutral in labor supply. Without the incentive constraints, the solution to 
the program would be c1 = C2= a, 1 = 1/2, and 12= 3/2. This allocation vio- 
lates the incentive constraints, for type two would claim to be of type one. But, 
randomness can be introduced into the labor supply of type one. This does not 
affect the utility of type ones as they are risk neutral in labor supply. This 
randomness does make the allocation to type one less attractive to type two. 
Consider the following allocations. With certainty set cl = C2= a and 12 = 3/2. 
Set 1 = 0 with probability (1 - a) and set 1 = I with probability a where a 
satisfies (1 - a) - 0 + al = 1/2. This allocation satisfies all the constraints and 
yields the same value as the program absent the incentive constraints for 
sufficiently large 1. 

The example just described illustrates in a dramatic way the gain to lotteries; 
here the utility of a full-information optimum can be achieved, though, in 
general, we think full-information optimality an inappropriate welfare criterion. 
But the example is unsatisfactory for this subsection in that labor supply is not ex 
post inefficient; despite the randomness, the marginal rate of substitution of 
consumption for labor supply for all households equals the marginal product of 
labor. 

We now establish that there must be randomness in labor supply for econo- 
mies sufficiently close to this special economy with all types strictly risk averse in 
labor supply. We also establish that there can be no randomness in consumption 
for either type. With randomness in a type's labor supply, otherwise identical 
agents supply different quantities of labor. Thus, with constant consumption, the 
ex post marginal rate of substitution between consumption and labor supply 
cannot equal the corresponding marginal rate of transformation for all agents of 
that type. 
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We first establish that for an optimum the lottery on consumption is degener- 
ate. Among the first-order conditions for the above-given program are 

(3.26) (X1 + ,? - A2)V(c) - 3XIc- (X1 + pl)WI(l) + A2W2(l) + A3X1al + A4 

<0 

for all (c, 1) where the Lagrange multipliers are numbered in accord with 
equation (3.2j) of the constraints. This condition must hold with equality for 
some (c, 1) pair. To discover where equality is achieved, it is convenient to view 
the left-hand side of (3.26) as a function of c and 1. If (X1 + y1 - A2) < 0, the 
left-hand side of (3.26) would be a convex, strictly decreasing function of c, and 
so would achieve a maximum with respect to c, holding 1 fixed, at c = 0. Thus, 
consumption would be deterministic at c = 0, but this cannot be a solution with 
V'(O) = -o. Thus (X1 + /I - A2) > 0 and the left-hand side of (3.26) achieves a 
unique maximum with respect to c at some cl > 0 independent of 1 (on the 
assumption that the distance between adjacent c's can be made arbitrarily small). 
By a similar argument, consumption of type two households is deterministic at 
some c2 > O. 

We now establish that for some economies there must be randomness in labor 
supply for some agent type. We assume V(c) = ln(c), W2(l) = 12/3, and WI(l) 
= 1A, 1 K< ,. The limit as ,8 approaches one is the parametric example considered 
previously. For the limit 8 = 1, we have shown that the best deterministic 
allocation yields an expected utility that is strictly less than the value of the 
optimum in the space of lotteries. It can be established by a careful continuity 
argument that this must also be true for all ,B in some open right-neighborhood 
of one. This establishes the need for lotteries on labor supply for some economies 
with all types strictly risk averse. 

The randomness in labor supply requires that at the deterministic optimum, 
the agent supplying less labor be sufficiently less risk averse in labor supply. 
Then, by introducing randomness in that type's labor supply and reducing 
differences in consumption between types, the incentive problems can be less- 
ened and expected ex ante utility increased. 

4. COMPETITIVE CONTRACT MARKETS IN ECONOMIES WITH 
MORAL-HAZARD 

In this section we define a standard competitive equilibrium in our commodity 
space. That is, we define the price system on the linear space L, and optimal 
actions are defined relative to that price system. In equilibrium, consumption 
choices are maximal in the budget set, a production choice maximizes profits in 
the production possibilities set, and markets clear. Thus the economy is decen- 
tralized in the usual way. As it turns out, such a competitive equilibrium 
construct is successful in the moral hazard insurance economy, the private- 
information labor market economy, and virtually any other economy in which 
the coefficients rik of the resource constraint (2.3) do not depend on i, that is, 
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rik= rk for all i. That is, in such environments competitive equilibria exist, are 
optimal, have a natural market interpretation, and yet are capable of explaining 
apparent nonmarket clearing phenomena. We illustrate this success in the 
context of the private-information labor market economy. 

We should perhaps reiterate here that we are following the Arrow and Debreu 
treatment of time and uncertainty. Our competitive contract markets operate at 
some initial date, and the contracts or commodities which are traded are 
commitments to take specified, possibly random, actions under various possible 
contingencies. As time evolves and observed and unobserved states of nature are 
realized, these commitments (contracts) are honored. Thus there are no ex post 
spot markets, though here these might be mutually beneficial ex post. We do not 
pretend to offer here a theory of the determination of market structure or legally 
enforceable agreements. 

We begin by following Prescott and Townsend [19], defining a production- 
intermediation set Y in such a way that y E Y and a standard market clearing 
condition iXiX(xi - {) = y imply the resource constraint (2.3). Namely let 

(4.1) Y = {y E L: rk(y) < 0 all k}. 

This production-intermediation set can be interpreted as an exchange technology 
where negative (positive) components correspond to a commitment to take in 
(distribute) resources. These commitments can be indexed by agent types; in 
effect, commitments can vary across agents with observable characteristics or 
with unobservable but declared characteristics. But the weights that agent types 
receive, the rk, are fixed by the exchange technology Y, beyond the control of the 
firm-intermediary. (We shall give a more detailed interpretation of the pro- 
duction-intermediation set for the private-information labor market economy in 
what follows.) In summary, then, we use the following definition. 

DEFINITION 4.1: A competitive equilibrium is an (I + I)-tuple ((x,*), y*) of 
elements of L and a price vector p* E L for which (i) for each i element xi* 
maximizes ui(x) over the set {x E X: p* - x < p* * t}; (ii) element y * maximizes 
p* y over the set Y; and (iii) 2 iXx? =y* + (. 

Existence and optimality of competitive equilibria can be established quite gener- 
ally. In Prescott and Townsend [19] we established in some detail the existence of 
a competitive equilibrium for a private-information securities economy. More- 
over, the proof given there, which relies heavily on the now standard existence 
arguments as in Arrow-Hahn [3], Debreu [9], McKenzie [17], and others, is 
applicable to other economies. We shall give, in what follows, a more direct proof 
of the existence of a competitive equilibrium for the private-information labor 
market economy, emphasizing the economic interpretation and taking advantage 
of the representative agent construct. (We might well have chosen the moral- 
hazard insurance economy.) But we reiterate that ex ante diversity of the kind 
illustrated in the securities economy is not a problem for existence of competitive 
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equilibria. As for optimality, we note that in the space of lotteries, consistent with 
our general environment, preferences and the consumption set are convex. Thus 
by Debreu [8], competitive equilibrium allocations are Pareto optimal. Again, 
this will be established directly in what follows for the private-information labor 
market economy. Again, more general arguments are contained in Prescott and 
Townsend [19]. 

To begin the discussion-for the private-information labor market economy, let 
a generic point in the (underlying) commodity space be an output, labor pair 
denoted (c, 1) and assume as before that there are a finite number of such pairs. 
Now suppose that prior to the resolution of uncertainty, that is, in the planning 
period market, each of the finite number of firms is allowed to make commit- 
ments to the market (say, to brokers or marketeers) to supply any number of 
units of any such (c, 1) pair. More formally, let y9(c, 1), if positive, denote the 
number of commitments to produce c units of output for and to hire 1 units of 
labor from households who announce they are of type 9 (such announcements 
are public information). Each of the firm-intermediaries, then, is constrained by 
a production-intermediation possibilities set Y defined by 

(4.2) Y = {y9(c,l)}: 2 X9 2 y9(c,l)(al- c)? 01 
9 (C,i) 

In effect (4.2) states that each firm-intermediary cannot plan to distribute on 
average more of the consumption good than it produces on average. (Note that 
each firm-intermediary takes the coefficients or weights in Y as given, beyond its 
control.) The actions of the firm-intermediary are priced in competitive markets 
and these prices are taken as given. That is, let p9(c, 1) be the per unit price of the 
y,9(c, 1) commitment in terms of some abstract unit of account. Then the 
firm-intermediary acts to maximize profits, 

(4.3) E E y (C, ')P (C, 1), 
9 (C,i) 

subject toy E Y. Recall that we are supposing firm-intermediaries are owned by 
households, but again, with the constant returns to scale assumption, profits will 
be zero and profit shares are disregarded. And again we may act as if there were 
only one firm-intermediary. 

Households also make commitments to the market over output, labor pairs but 
with a different interpretation. Households are imagined to choose ex ante, in the 
planning period market, a contract with options, indexed by 9 E e. Each option 
is a (possibly degenerate) lottery over consumption, labor supply pairs, and the 
household can choose the terms of the lottery as well. But the options are such 
that a household of type 9 ex post will choose ex post the option indexed by 9 if 
indeed it suffers shock 9. Again, see the motivating remarks in Section 2. Finally, 
of course, all the contracts are priced in a competitive market. More formally, let 
the consumption set X and endowment {69(c,l)} be as defined in Section 2. 
Then the objective of the representative household is to maximize ex ante 
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expected utility 

,4)~~~~~C 1 )(c 
/)U c 

8 (c,l) 

by choice of x E X subject to the budget constraint 

(4.5) PO p(C, 1)x,,(C,1)< E PO (C, 1)6q(C, ). 
9 (c,l1) 9 (C, 1) 

To reiterate, each household purchases a contract as a package, and does not 
really purchase the individual components separately. But the valuation of a 
contract is determined by the sum of the valuations of its individual components. 

To be noted again is that the economy here is decentralized by the price 
system in the usual way. Thus to ensure consistency of the actions taken by 
households and the firm-intermediary, a market clearing condition is needed: 

(4.6) y9 (C,l) = x9(c,l) - 4 (c,l) all 9 E 8, all (c,l) pairs. 

Note that condition (4.6) when substituted into the production-intermediation set 
(4.2) yields the resource constraint. 

It is now easily established that a competitive equilibrium exists and is optimal. 
First note from the profit maximization hypothesis and constant returns to scale 
condition that 

P* (c, 1) = X (c-al) all G E e, all (c, I) pairs, 

is the only possible candidate for the equilibrium price system up to some 
arbitrary normalization. (We have, in effect, let the consumption good be the 
numeraire.) This price system on bundles (c, 1) has a natural interpretation. From 
the standpoint of the firm-intermediary, prices of bundles increase with higher 
output c at rate X. (that is, revenue increases) and prices decrease with higher 
labor input 1 at rate X9a (that is, cost increases). Moreover, the tradeoff under this 
price system between labor and output is the parameter a, so in effect we have 
marginal productivity pricing. We note of course that bundles for use by 
different household types can be priced differently. From the standpoint of 
households' budget constraints, increases in consumption c raise expenditures 
while increases in labor supplied I raise income. The price of a (c, 1) bundle for 
use under the 0-option is A.(c - al) while the price of a (c, 1) bundle with 
probability a is aAe (c - al); that is, the price system is linear in lotteries.5 

Substitution of the p*(c, 1) into the budget constraint for the household yields 
the linear program which determines Pareto optima. Thus, a solution exists and 
is Pareto optimal, and competitive equilibrium condition (i) is satisfied. Then 
setting y*(c, 1) = x7(c, 1) - 69(c, 1), market clearing condition (iii) is satisfied. 
Finally, substitution of pq(c, 1) into profits (4.3) makes clear that profits are 
nonpositive. But the budget constraint (4.5) is satisfied as an equality, so in fact 
profits are zero under yg*(c, 1). Thus condition (ii) is satisfied. 

5Evidently the price system is linear in underlying commodities c and / for fixed 9, but may vary 
with N and in that sense is nonlinear. 
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How will the competitive equilibrium allocation be effected? As is standard in 
general equilibrium competitive analysis, the market assignment process and the 
price-determination process are unspecified. To be more specific though, we 
might suppose that there are a finite number of marketeers or labor-brokers 
which make up the planning period market. Each broker has called out the 
competitive equilibrium price vector and has attracted a representative pool of 
workers and one firm-intermediary (the brokers are really households them- 
selves). Each household in the pool of the broker has entered into the contract 
{xg,(c, 1)). The firm has committed itself to input-output vector {yg*(c, l)}. Next, 
in the consumption period, each household truthfully announces its shock 9. If 
{ xf,(c, 1)) is not degenerate in labor supply, then the broker uses some random 
sorting device to select workers from its pool in the proper proportions. These are 
directed to the firm consistent with planning period demand. The consumption 
good is then produced and distributed by the broker to all workers in the pool in 
accordance with { x(c, 1)}, as if under a wage-benefit or insurance package. We 
are assuming, of course, that planning period contracts are honored (or costlessly 
enforced by a legal system); that is, there can be no collusion in labor supply 
among households (say to eliminate risk) and no ex post spot markets. 

Now suppose an outside observer were to see the realized outcome of a 
competitive equilibrium allocation. We have just established that such an alloca- 
tion is optimal, so we know its properties from Section 3. But these properties 
might lead the outside observer to conclude that the realized outcome is inconsis- 
tent with the competitive market paradigm: if labor and output are fully observed, 
then the constant marginal product of labor might be inferred. That then might 
naturally be taken as the wage rate. If households were asked to indicate whether 
they would like to work more at that wage rate, some would so indicate. Thus 
there would be measured unemployment (nonmarket clearing). Moreover, the 
outside observer might see disparities in employment among households who 
indicate they are otherwise identical, as if employment were capricious or 
random. Conceivably, some households might be completely unemployed, while 
others work up to maximum capacity. But, again, such outcomes are not 
inconsistent with the competitive market paradigm if the objects which are 
traded are carefully defined. As we have indicated, such outcomes can be 
optimal from the ex ante point of view of the representative household, and can 
be achieved in competitive markets for labor contracts with appropriately speci- 
fied options. We have, in effect, taken a step toward a synthesis implicit labor 
contract theory with standard competitive analysis. 

5. STANDARD COMPETITIVE EQUILIBRIA IN ECONOMIES WITH ADVERSE 
SELECTION: THE DIFFICULTIES OF PRICE DECENTRALIZATION 

Unlike the moral-hazard insurance and private-information labor market 
economies, the resource constraints in the adverse-selection insurance and signal- 
ing economies are of the form 

(5.1 iri 
X 

( Xi f- _k = 1X .. r K 
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rather than of the less general form 

(5.2) XArk' (Xi-( < 0 (k = 11, . . .,I K). 

This turns out to be a very important difference, for production and consump- 
tion activities cannot be separated as before.6 To see this, let 

(5.3) Y= yEL:ZXjirik *y?!O , k = 1, ... . K 

be the candidate for the production-intermediation possibilities set. If rik= rk 
for all i, then the production-intermediation set (5.3) is the production- 
intermediation set (4.1) used previously. In that case market clearing, i.e., 

(5.4) y = zxi(Xi -) 
i 

andy belonging to Y imply the resource constraint. But, in general, (5.1), (5.3) 
and (5.4) are inconsistent. 

As it turns out, three natural ways to circumvent this adverse-selection prob- 
lem all fail to decentralize the economy in the usual way. In this section we 
summarize what we have learned in these attempts. For a more detailed discus- 
sion, the reader is referred to the working paper, Prescott and Townsend [20]. 

One attack on the inconsistency (adverse-selection) problem is to ignore it, 
with the hope that it fails to occur in equilibrium, in a standard competitive 
equilibrium, that is, in which decisions are completely decentralized by a price 
system. Thus, one might make use of the production-intermediation set (5.3) in 
the obvious commodity spaces. For the adverse-selection insurance economy, the 
obvious commodity space is the space of loss, no-loss consumption bundles. But 
that with (5.3) implies the same budget line for all household types, the (average) 
market-odds line of Rothschild-Stiglitz, and that with diversity across house- 
hold-types implies the nonexistence of a standard competitive equilibrium. For 
the Spence signaling economy, the obvious commodity space is the space of 
commodity triplets specifying consumption, signal, and labor supply. But that 
with (5.3) implies a zero price for the signal, with labor priced in terms of the 
consumption good at the average productivity. Thus, a standard competitive 
exists for the Spence signaling economy, but it involves no signaling, the 
phenomenon which the model was intended to explain. 

Motivated by these considerations one might hope to allow different agent 
types to choose different commodity bundles in equilibrium. Hence, we ex- 
panded the commodity space in an obvious way. Namely, for the Spence 
signaling economy we supposed different signals could be treated as different 

6There would be separation in the signaling economy if markets opened prior to individuals 
knowing their types. Thus, signaling opportunities per se are not the cause of failure. Similarly, this 
failure would have arisen in the environment of Prescott-Townsend [19] if there were some statistical 
dependence in the 9-shocks and the initial specification of i types. And there would be a problem in 
the moral-hazard insurance economy if it were combined with the adverse-selection insurance 
economy. 
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commodities, each with a potentially distinct price in terms of the consumption 
good. We also introduced a production-intermediation set, with coefficients in 
the technology which firms treat parametrically, but which in fact are functions 
of the households' equilibrium consumption choices. We then defined a standard 
competitive equilibrium with production externalities and established that all the 
Spence signaling equilibria are examples of equilibria of that kind, including the 
no-signaling equilibria, the minimal-signaling equilibria, and the over-signaling 
equilibria. Of course, many of these are Pareto nonoptimal; indeed, many can be 
Pareto ranked. We also established that an analogous procedure could be applied 
to the adverse-selection insurance economy to support a bewildering variety of 
standard competitive equilibria (with production externalities). Thus equilibria of 
this kind fail to provide much predictive content and have undesirable normative 
properties as well. 

We also expanded the commodity space in a different way, following the spirit 
of Arrow [1], with the intent of removing externalities. More specifically, we 
indexed the original commodity point in the general structure by i, thereby 
increasing the dimensionality by factor I. Again, the new commodity point has 
the interpretation of a contract with options which are effected by the individual 
households. In this expanded space there is a specification of the production- 
intermediation set (without externalities) which is always consistent with market 
clearing and the resource constraints. Thus one can consider an extension of the 
standard support theorem for Pareto optimal allocations. In fact, we established 
that there is a price system such that every Pareto optimum can be supported in 
a kind of competitive equilibrium. But the competitive equilibrium is restricted in 
that the assignment in the optimum to other agent types must be taken into 
account in each household's maximization problem. In effect, then, there are 
externalities in consumption. Moreover, the same support theorem can be used to 
establish that unrestricted competitive equilibria in the indexed commodity space 
generally do not exist for the signaling and adverse-selection insurance econo- 
mies. 

We conclude that there do seem to be fundamental problems for the operation 
of competitive markets for economies or situations which suffer from adverse 
selection. We have not discovered a standard competitive equilibrium construct 
which would predict well in such situations. 
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