
Pathwise Concentration Bounds for Bayesian Beliefs∗

Drew Fudenberg† Giacomo Lanzani‡ Philipp Strack§

First posted version: March 10, 2021

This version: December 8, 2022

Abstract

We show that Bayesian posteriors concentrate on the outcome distributions

that approximately minimize the Kullback-Leibler divergence from the empir-

ical distribution, uniformly over sample paths, even when the prior does not

have full support. This generalizes Diaconis and Freedman (1990)’s uniform

convergence result to e.g., priors that have finite support, are constrained by

independence assumptions, or have a parametric form that cannot match some

probability distributions. The concentration result lets us provide a rate of con-

vergence for Berk (1996)’s result on the limiting behavior of posterior beliefs

when the prior is misspecified. We provide a bound on approximation errors

in “anticipated-utility” models, and extend our analysis to outcomes that are

perceived to follow a Markov process.
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1 Introduction

Learning from repeated observations is a key feature of many economic settings, and

almost all economic studies of learning model it as Bayesian inference. To understand

the medium and long-run implications of Bayesian learning, it is useful to know how

quickly beliefs concentrate around the data generating processes that best explain the

observations. Our main result, Theorem 1, shows that the probability the posterior

assigns to distributions that do not approximately maximize the likelihood assigned to

the data vanishes exponentially quickly. Importantly, we identify conditions for this

to hold not only with high probability, but for every possible realization of the data.

More specifically, Theorem 1 establishes that for every ε ą 0 the posterior probability

of the distributions that do not ε-minimize the Kullback-Leibler (KL) divergence

vanishes at an exponential rate. In contrast to earlier pathwise concentration bounds,

our result holds even if the agent’s prior does not have full support, or satisfies

parametric restrictions, and regardless of the true data generating process.

Our results generalize Diaconis and Freedman (1990), which showed that a φ-

positivity condition implies that Bayesian posteriors converge to the empirical dis-

tribution at a uniform exponential rate. This condition requires that the support of

the agent’s prior includes every distribution over outcomes, and thus rules out many

settings of economic interest in which the set of outcome distributions is naturally

restricted. For example, it does not apply to agents whose prior has finite support

(which is natural in settings such as urn problems with a finite number of balls),

agents who each period observe a set of Bernoulli trials that they think are i.i.d., or

agents who believe (mistakenly or not) that some variables are positively correlated.

In addition, φ-positivity rules out all cases where the support of the agent’s prior does

not contain the true data generating process, so that the agent is misspecified.

Theorem 1 guarantees that beliefs concentrate on the approximate KL minimizers

for the empirical frequency. We show that this is equivalent to concentration on a ball

around the exact KL minimizers when priors have full support, but not in general.

Moreover, since the KL minimizer is not unique, the theorem does not imply that

beliefs converge.

We use Theorem 1 to prove Theorem 2, which provides a rate of convergence for

Berk (1966)’s result that posterior beliefs concentrate around the Kullback-Leibler

minimizers with respect to the true data generating process. Berk’s result, like our
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paper, is stated for an exogenous data generating process. It was extended to learning

from endogenous data by Esponda and Pouzo (2016), which led to a renewed interest

in misspecified learning in the economics literature.1 A key step in the analysis of

such models is often to establish that Bayesian beliefs concentrate quickly around the

KL minimizers, and as our Theorem 1 holds pathwise it immediately implies such a

result.2 In Fudenberg, Lanzani, and Strack (2021b) we use the concentration result

to characterize the long-run beliefs of a correctly specified agent who has an imperfect

and selective memory.

Theorem 3 extends Theorem 1 to beliefs that result from observing a Markov

process whose transition probabilities are unknown. This complements recent work

by Molavi (2019) and Esponda and Pouzo (2021) which studied analogs of Berk (1966)

and Esponda and Pouzo (2016) for Markovian environments.

Most of the paper assumes that the set of outcomes is finite, as it is in Diaconis

and Freedman (1990). Section 6 discusses the extent to which the results extend

to settings with infinitely many outcomes. It also uses our results to show that the

play of a Bayesian agent converges to that predicted by the anticipated utility model

(e.g. Kreps, 1998; Preston, 2005; Eusepi and Preston, 2018), and quantifies its rate of

convergence. This clarifies when the anticipated utility model is a good approximation

of rational play, and complements numerical studies by Cogley, Colacito, and Sargent

(2007), Cogley and Sargent (2008), and Cogley, Colacito, Hansen, and Sargent (2008).

1.1 The Importance of Pathwise Concentration

The statistical literature has many concentration results for beliefs, see, e.g., Shen

and Wasserman (2001). Our results differ in two important ways. First, ours hold

for every sample realization, and thus even when the true data generating process is

time-varying and endogenous, while the existing statistics results show that beliefs

1Subsequent papers include Fudenberg, Romanyuk, and Strack (2017), Molavi (2019), Bohren
and Hauser (2021), Frick, Iijima, and Ishii (2022a), He and Libgober (2021), Esponda, Pouzo, and
Yamamoto (2021), Heidhues, Kőszegi, and Strack (2021), Levy, Barreda, and Razin (2021), and He
(2022). Before this, Arrow and Green (1973) gave the first general framework for this problem, and
Nyarko (1991) pointed out that the combination of misspecification and endogenous observations
can lead to cycles. In a setting with finitely many states Frick, Iijima, and Ishii (2022b) provides
a convergence-in-probability result on the relative speed at which beliefs converge to the truth for
agents with different likelihood functions; Frick, Iijima, and Ishii (2021) extends this to endogenous
data.

2For example, Theorem 1 provides a shorter way to prove Proposition 1 of Fudenberg, Lanzani,
and Strack (2021a).
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concentrate with probability converging to 1 with respect to a fixed data generating

process. Second, the statistics results are for concentration around the parameters or

distributions that minimize the KL divergence from the true data generating process,

while our result are for concentration around the KL-minimizers with respect to an

arbitrary empirical distribution.3

Pathwise concentration has played an important role in a number of economic

applications, starting with the analysis of non-equilibrium learning in games in Fu-

denberg and Levine (1993).4 The result has also been used to analyze selective atten-

tion (Schwartzstein, 2014), the merging of opinions (Acemoglu, Chernozhukov, and

Yildiz, 2016), recursive utility functions (Al-Najjar and Shmaya, 2019), and persua-

sion (Schwartzstein and Sunderam, 2021).

To help motivate our analysis, we describe why pathwise concentration (rather

than concentration in probability) is needed in four papers on very different problems.

Fudenberg and Levine (1993) studies the steady states of a model of non-equilibrium

learning. The uniform concentration result implies that agents play myopically at

any information set h that has been reached many times. Because which information

sets are reached is endogenous, the proof of the main theorem uses the pathwise

concentration to rule out the possibility that posteriors only concentrate conditional

to histories that induce the player to make choices that prevent reaching h many

times. This is not ruled out by concentration in probability, because the sets of

histories under which the information set is reached less than N times could have

probability approaching 1 as N grows.

Al-Najjar and Shmaya (2019) provides a representation result for Epstein-Zin

preferences over stochastic consumption streams for patient agents. To do so, they

bound the distance between the certain equivalents of period-t consumption with

period t ´ 1 and period 0 information. The (relative) impact of small-probability

events on utility increases in the high-patience limit, so the representation result

needs the posterior consumption variance to vanish uniformly over all sample paths,

which follows from the uniform concentration of the posterior.

3Most of these papers also assume that the prior is correctly specified, so that the unique KL
minimizer is the true distribution, but see Kleijn and Van der Vaart (2012) and the references therein
for generalizations to misspecified priors.

4Subsequent applications to learning in games are Fudenberg and Levine (2006), Fudenberg and
He (2018), Gonçalves (2020), and Clark and Fudenberg (2021). Clark, Fudenberg, and He (2022)
applies our generalization of the result.
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Gonçalves (2020) introduces an equilibrium concept for games that allows the

agents to sample from the opponents’ strategies at a cost before playing. To show

existence of the equilibrium, the maximization problem of the agent is transformed

into an optimal stopping problem. There the uniform concentration result guarantees

that the stopping time is uniformly bounded by a deterministic horizon, thus trans-

forming an infinite-horizon problem into a finite-horizon one that is then solved by

backward induction.

Finally, Theorem 1 can be used to study the limit points of misspecified learning

when the distribution of outcomes depends on the action played by an agent, and that

action depends on the agent’s beliefs. For example, the agent might be a customer

who wants to learn which of two products she prefers, decides every period which

one to buy, and receives a signal about the product they bought. To understand

if the action a can be played in the long run we need to understand whether the

resulting process of beliefs makes it optimal to play a. Fudenberg, Lanzani, and

Strack (2021a) showed that a limit action must be a best reply to all of the associated

KL minimizers when the prior has subexponential decay. An earlier version of this

paper, Fudenberg, Lanzani, and Strack (2022), uses the results here to give a simpler

and more transparent proof of this result.

1.2 The Importance of Relaxing Full Support

The following are examples of commonly studied situations where uniform concen-

tration results that require a full support prior are not applicable, but our results

apply.

Finite Support Priors In some problems the reasonable priors have finite support,

as for example if outcomes correspond to the color of balls drawn with replacement

from an urn with known size but with unknown composition.

Correlation Restrictions When the outcome space Y has a product structure,

and the agent’s prior imposes a qualitative restriction on how the components are

correlated (e.g., that they are positively correlated) the Diaconis and Freedman (1990)

result does not apply, while ours does. This naturally arises in economic problems,

as for example in Spiegler (2020), where the agent neglects the mediating role of

expectations in the Phillips curve and is mistakenly convinced that money supply
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and output are positively correlated. Similarly, our model can be used to study

situations where the agent mistakenly believes outcomes are independent, as in e.g.

Enke and Zimmermann (2019).

Moreover, whenever the agent observes the outcome of a game and believes (cor-

rectly or not) that the players have coordinated on a correlated equilibrium, the

correlation structure is naturally restricted, as the possible joint distributions must

satisfy the obedience constraint.5

Markov Models Another context where support restrictions arise naturally is in

the study of Markov models. For example, if an analyst assumes that beliefs follow

Bayes rule or that a stock price process is a martingale (Bachelier, 1900; Fama, 1965),

the techniques of Diaconis and Freedman (1990) cannot be applied, as they would

require full support over the set of transition matrices. However it is easy to extend

our analysis to analyze belief concentration in Markov models, as we do in Section

5. And our Markov model can also be used to study mistaken beliefs about the

correlation between signals and outcomes, as in Esponda (2008).

Extending the Applications of Section 1.1 Our results can be used to extend

some past applications of the pathwise concentration results. They permit an exten-

sion of Al-Najjar and Shmaya (2019)’s representation theorem to beliefs about the

consumption process that do not have full support, such as its illustrative example

(which is not covered by the paper’s result), and also to Markovian consumption

processes. For the experimentation in games considered by Gonçalves (2020) our

extension allows, for example, beliefs concentrated on the pure strategies for the op-

ponents, or certainty that the opponent does not play a dominated strategy.

2 Setup

We study Bayesian beliefs induced by a sequence of subjectively i.i.d. data. Let

Y be a finite set of possible outcomes, and let P “ ∆pY q be the set of probability

5Formally, fix a strategic form game, let Yi be he set of actions available to player i, let the
outcome space be Y “ ˆni“1Yi, and let puiq

n
i“1 be the payoff functions. If the agent is cer-

tain that the outcome corresponds to a correlated equilibrium, then every p P Θ must satisfy
ř

y´iPY´i
uipyi, y´iqppy´i|yiq ě

ř

y´iPY´i
uipy

1
i, y´iqppy´i|yiq for all i P I, yi, y

1
i P Yi with ppyiq ą 0.
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measures over Y endowed with ||¨||, the total variation distance on the space of signed

measures.

Let µ0 P ∆pP q “ ∆p∆pY qq denote a prior belief over distributions of outcomes,

and Θ “ suppµ0 denote its support.6 A data set yt “ py1, y2, . . . , ytq P Y
t is a vector

of outcomes. For every data set yt we let µt be the posterior belief, which is required

to satisfy Bayes rule whenever the denominator is different from 0:

µtpCq “

ş

pPC

śt
τ“1 ppyτ qdµ0ppq

ş

pPP

śt
τ“1 ppyτ qdµ0ppq

. (Bayes Rule)

The empirical distribution ft P P is

ftpzq “
1

t

t
ÿ

τ“1

Itzupyτ q .

Our main result is that along any path of realized outcomes, the probability the

posterior belief assigns to the outcome distributions that do not best approximate

the empirical distribution converges to zero at a uniform and exponential rate. To

state this conclusion formally, we adopt the convention that 0{0 “ 0 and 0 log 0 “ 0,

and define H : P ˆ P Ñ R̄ to be the (possibly infinite) Kullback–Leibler divergence

of q with respect to p:

Hpq, pq “
ÿ

zPY

qpzq log

ˆ

qpzq

ppzq

˙

.

Let M : P Ñ P be the correspondence that maps a distribution q to the set of

minimizers of the Kullback–Leibler divergence over the support of the prior:

Mpqq “ argmin
pPΘ

Hpq, pq .

The log-likelihood assigned to the data set yt under outcome distribution p is

log

˜

t
ź

τ“1

ppyτ q

¸

“
ÿ

zPY

t ftpzq log ppzq “ ´tHpft, pq ` t
ÿ

zPY

ftpzq log ftpzq . (1)

Minimizing the Kullback–Leibler divergence relative to the empirical distribution is

hence the same as maximizing the log-likelihood assigned to the data set, so the KL

6For every X Ď Rk, we let ∆pXq denote the set of Borel probability distributions on X.
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minimizers Mpftq at time t correspond to the outcome distributions that maximize

the likelihood of yt. Throughout, BεpDq denotes the ball of radius ε around a set

D Ď P in total variation distance, and denote by Mε : P Ñ P the correspondence

that maps a distribution q to the distributions that come within ε of the minimum

KL divergence:

Mεpqq “

"

p1 P Θ : Hpq, p1q ď min
pPΘ

Hpq, pq ` ε

*

.

3 The Rate of Convergence of Bayesian Beliefs

To show that Bayesian beliefs concentrate around the empirical distribution at a

uniform rate, Diaconis and Freedman (1990) used the following condition:

Definition 1 (φ positivity). The prior µ0 is φ positive if for φ : R`` Ñ R``,

µ0pBεppqq ě φpεq for every p P P and ε ą 0.

Since φ positivity requires the prior to assign strictly positive probability to every

ε ball, it requires the prior to have full support.

Theorem A (Diaconis and Freedman 1990). For every φ : R`` Ñ R`` and every

ε P p0, 1q there are Ãpεq P R`` and gpεq P R`` such that

µtpBεpftqq

1´ µtpBεpftqq
ě Ãpεq exppgpεqtq,

for all φ positive µ0, t P N, and ft P ∆pY q.

Theorem A shows that for φ positive priors, the probability that Bayesian beliefs

assign to distributions that are more that ε away from the empirical distribution

vanishes exponentially quickly, so it quantifies the speed at which a Bayesian with

full support prior becomes more certain when observing i.i.d. data. The strength

of this theorem is that it holds not only in probability, but for every realization of

outcomes.

Clearly φ positivity plays a crucial role in Theorem A, as if the prior is not

φ positive the empirical distribution need not be in its support, so beliefs cannot

concentrate around it. However, requiring the prior to satisfy φ positivity rules out

several practically relevant cases. For example, φ positivity cannot be satisfied if the
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prior has finite support, reduces the dimensionality of the problem, or is supported

only on unimodal distributions.

Moreover, models of misspecified learning suppose that the true data generating

process is not in the support of the prior, which rules out φ positivity. We extend

Theorem A to cases where φ positivity fails. Loosely, we require that either the prior

gives all neighborhoods of a distribution sufficient weight or the prior gives zero weight

to a small neighborhood of the distribution.

Definition 2 (φ positivity on Θ). The prior µ0 is φ positive on Θ if for φ : R`` Ñ
R``, µ0pBεppqq ě φpεq for every p P Θ and ε ą 0.

Note that φ positivity on Θ reduces to φ positivity when Θ “ P , i.e., the prior has

full support. In Diaconis and Freedman (1990), Bayes rule is well defined everywhere,

but this is not true when the prior does not have full support. We define ∆ΘpY q to be

the (compact) set of empirical frequencies for which Bayesian updating is well defined

for a prior with support Θ.7 Theorem 1 below establishes that if beliefs are φ positive

on Θ, for every ε P p0, 1q, the posterior concentrates on Mεpftq.

Theorem 1. For every φ : R`` Ñ R``, α P p0, 1q, and ε P p0, 1q there is Apεq ą 0

such that
µtpMεpftqq

1´ µtpMεpftqq
ě Apεq exppαεtq

for all t P N, ft P ∆ΘpY q, and µ0 that are φ positive on Θ.

Moreover, if q :“ infqPΘ minzPsupp q qpzq ą 0, then we can set

Apεq “ φpmintq{2, p1´ αqεuq{2q .

Theorem 1 only requires φ positivity on Θ, in contrast to Theorem A, which

assumes φ positivity on the whole space of distributions. When the prior is not φ

positive on all of ∆pY q, beliefs need not concentrate around the empirical frequency,

because this frequency might not be in the prior’s support. This is why Theorem 1

bounds the probability assigned to the distributions in Mεpftq, which are the ε min-

imizers of the KL divergence, while Theorem A bounds the probability assigned to

Bεpftq, the ε ball around the empirical distribution. Moreover, as Example 1 below

7That is, ∆ΘpY q “ tq P ∆pY q : Dp P Θ, supp q Ď supp pu.
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shows, the theorem does not apply to the ε ball BεpMpftqq around the exact minimiz-

ers Mpftq, because when Θ is not convex points far from the minimizers can attain

almost the same divergence.

The theorem implies that the probability assigned to all distributions that do not

ε best explain the empirical frequency ft vanishes at the exponential rate αε:

µtpΘzMεpftqq ď
1

Apεq
expp´αεtq.

Notice that the multiplicative constant Apεq depends on the prior µ0 only through Θ

and the function φ. The second part of the statement guarantees that in the widely-

studied case of finite support priors, there is an explicit formula to compute the rate

of convergence as a function of Θ and φ, with the intuitive comparative statics that

the rate of convergence improves when φ is higher and when the support is smaller.

The next example shows why Theorem 1 does not apply to the ε ball BεpMpftqq

around the exact minimizers Mpftq.

Example 1. Let Y “ t0, 1u, identify each p P ∆pY q with the probability of y “ 1,

and let µ0pt1{4uq “ µ0pt3{4uq “ 1{2. Consider the sequence of outcomes pytq
8
t“1

where yt “ 1 if t is odd and yt “ 0 if t is even. In the even periods 2t, the data is

uninformative about the state, and both 1{4 and 3{4 are minimizers. At every odd

period 2t` 1, for every p P Θ

Hpf2t`1, pq “ Kt ´
t

2t` 1
logp1´ pq ´

t` 1

2t` 1
logppq

where the term Kt does not depend on p. Thus in the odd periods Mpf2t`1q “ t3{4u,

so for ε ă 1{2, BεpMpf2t`1qq “ t3{4u. However,

µ2t`1pBεpMpf2t`1qqq

1´ µ2t`1pBεpMpf2t`1qqq
“
µ2t`1pt3{4uq

µ2t`1pt1{4uq
“
µ0pt3{4uqp1{4q

tp3{4qt`1

µ0pt1{4uqp1{4qt`1p3{4qt
“ 3

so beliefs do not concentrate on the neighborhood of the KL minimizer.8 The concen-

tration result fails because the difference between the KL-divergences is plogp3{4q ´

logp1{4qq{p2t ` 1q, which converges to 0. Thus even a very large data set provides

only weak evidence in favor of p “ 3{4.
8In this example, Θ is not connected. Example 4 in the Appendix shows that the same problem

can arise when it is. The example there adds a third outcome to this one, and specifies a Θ that
connects 1{4 and 3{4 via distributions that are not relevant under the specified outcome sequence.
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3.1 Proof Sketch of Theorem 1

The proofs of all our results are in the appendix. The proof of Theorem 1 has three

steps. Step 1 proves a local Lipschitz property of the KL divergence, step 2 gives

an explicit rate of concentration for each realized empirical frequency, while step 3

concludes by turning this explicit local rate of convergence into an exponential (but

with possibly implicit constant) global rate of convergence.

Specifically, Lemma 3 shows that Kullback-Leibler divergence Hpq, ¨q is locally

Lipschitz continuous in its second argument:

|Hpq, pq ´Hpq, p̃q| ď 2||p´ p̃||max
zPY

max

"

qpzq

ppzq
,
qpzq

p̃pzq

*

. (2)

With this we are able to prove the next lemma, which is at the heart of our results. The

lemma uses the following bound on the odds ratio between the empirical distribution

and the elements of the agent’s prior: For every ft P ∆ΘpY q, q̄ P Θ, and κ P R`, let

Rpft, κ, q̄q :“ max
qPΘXBκpq̄q

max
zPY

ftpzq

qpzq
.

Lemma 1. If µ0 is φ positive on Θ, then for every ε, ε1, κ P R`, t P N, ft P ∆ΘpY q,

and q̄ PMε1pftq with ε1 ` κ ď ε and Rpft, κ, q̄q ă 8, we have

µtpMεpftqq

1´ µtpMεpftqq
ě φ

`

κ{2Rpft, κ, q̄q
˘

expppε´ κ´ ε1qtq. (3)

To prove the lemma, we use the Lipschitz condition (2) to establish that the

Kullback-Leibler divergence from ft is at most minpPΘHpft, pq ` ε1 ` κ in a ball of

radius κ{2Rpft, κ, q̄q around the ε1-minimizer q̄.9 Therefore, Mε1`κpftq contains a

ball of radius κ{2Rpft, κ, q̄q around q̄ P Θ. As µ0 is φ positive on Θ, that ball has

prior probability at least φpκ{2Rpft, κ, q̄qq, so the odds ratio between Mε1`κpftq Ě

Bκ{2Rpft,κ,q̄qpq̄q and ΘzMεpftq under the prior is at least

µ0pMε1`κpftqq

1´ µ0pMεpftqq
ě
µ0pBκ{2Rpft,κ,q̄qpq̄qq

1
ě φpκ{2Rpft, κ, q̄qq,

9For some triplets pft, κ, q̄q, Rpft, κ, q̄q can be infinite. However ft P ∆ΘpY q implies there is
at least one p in Θ with finite KL divergence from ft. Thus the ε1-minimizer q̄ also has a finite
divergence from ft, and so has q̄pzq ą 0 for all z P supp ft. The same then holds for the elements of
Bκpq̄q for sufficiently small κ, so R is finite, which is enough to derive the theorem.
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which delivers the multiplicative constant in the right-hand side of the lemma. The

exponential term follows from the fact that the the posterior odds ratio of any D grows

exponentially in the difference between the KL divergence from ft of the distribution

inside and outside D:

µtpDq

1´ µtpDq
“

ş

pPD
expp´Hpft, pqtqdµ0ppq

ş

pRD
expp´Hpft, pqtqdµ0ppq

,

and that by definition distributions outside Mεpftq have a KL-divergence from ft of at

least minpPΘHpft, pq`ε. Thus at time t the odds ratio is larger than the lower bound

on the prior odds ratio φpκ{2Rpft, κ, q̄qq multiplied by the exponential of t times the

difference in divergence between the two sets ε´ κ´ ε1.

To derive Theorem 1 from Lemma 1, we bound the multiplicative constant away

from 0 on ∆ΘpY q. We do this by contradiction, using the compactness of ∆ΘpY q and

the lower semicontinuity ofH to show there are c, κ ą 0 such that for every ft P ∆ΘpY q

we can pick q̂ft P Mp1´αqε{2 such that Rpft, κ, q̂ftq ă c. This q̂ft may not be an exact

KL minimizer for ft, since a minimizer q1 that is close to the simplex boundary may

have a high value of the ratio ftpzq{q
1pzq, so that the KL-divergence changes quickly

around q1. Loosely speaking, moving away from the boundary decreases this ratio,

and since the minimizers assign very low probability only to outcomes with very low

probability under ft, this does not have much effect on the KL fit, i.e., there is a

p1 ´ αqε{2-minimizer sufficiently far from the boundary. Finally, to show that the

concentration speed scales linearly in ε (i.e., exppαεtq for some α), we use the fact

that q̂ft can be chosen in Mp1´αqε{2.10

3.2 Implications of Theorem 1

The most direct implication of Theorem 1 is Theorem A, which is the special case

where Θ “ ∆pY q. Here we use Pinsker’s inequality (which gives a lower bound on

the KL divergence of q from ft as a function of ||q ´ ft||) and the fact that for a full

support prior, Mpftq “ tftu, i.e., the unconstrained minimizer of the Kullback-Leibler

divergence is the distribution itself.

Proof of Theorem A. Consider ε P p0, 1q and a φ positive prior µ0. AsHpft, ftq “ 0,

10Although ε enters linearly in the exponential term of Lemma 1, different values of ε may need
different values of ε1 and κ, so the overall effect of ε on the concentration rate is not linear.
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all p P Mεpftq satisfy Hpp, ftq ď ε. Pinsker’s inequality (Lemma 5) implies that

Mεpftq Ď B?
ε{2
pftq. Defining ε̃ “

a

ε{2, by Theorem 1 there exists Apεq such that

µtpBε̃pftqq

1´ µtpBε̃pftqq
ě

µtpMεpftqq

1´ µtpMεpftqq
ě Apεq exp

´ε

2
t
¯

“ Ap2ε̃2
q exp

`

ε̃2t
˘

.

The result follows by letting Ãpεq “ Ap2ε2q and gpεq “ ε2.

Our result is also closely related to the seminal work by Berk (1966) on long-

run beliefs in a misspecified model. The paper showed that when the objective data

generating process is i.i.d., beliefs almost surely concentrate on every ε ball around

the set of KL minimizers relative to the true outcome distribution p˚ .

Theorem B (Berk 1966). Let P be the probability measure induced by i.i.d. draws

from p˚. For all ε P p0, 1q

lim
tÑ8

µtpBεpMpp
˚
qqq “ 1 P-a.s.

Theorem 1 lets us use the assumption of φ positivity to add a rate of convergence

to Theorem B when the number of outcomes is finite, as we have assumed so far

(Section 6 discusses the case of infinitely many outcomes). The rate of convergence

has important implications when the beliefs of an agent are used to solve a decision

problem, as it lets us bound the probability of choosing actions that are not optimal

with respect to the KL-minimizers as a function of how many outcomes have been

observed.

Theorem 2. Let P be the probability measure induced by i.i.d. draws from p˚. If µ0

is φ positive on Θ, then for every ε P p0, 1q there is a K P R`` such that

P
”

µt

´

BεpMpp
˚
qq

¯

ă 1´ expp´Ktq
ı

“ Opexpp´Ktqq.

The idea is that if µ0 is φ positive on Θ, then for all α P p0, 1q there is a function

A : R`` Ñ R`` such that for all ε P p0, 1q, t P N, and ft P ∆ΘpY q

µtpMεpftqq ě 1´
1

Apεq
expp´αεtq .

We then show that there is ε̂ P R`` such that if the empirical frequency is in an ε̂

12



ball around the objective distribution, i.e., ft P Bε̂pp
˚q, then Mε̂pftq Ď BεpMpp

˚qq, so

we can use Theorem 1 and Sanov’s theorem to obtain the stated conclusion.

4 General Parametric Models

In our setting with a finite number of outcomes, we can view the probability dis-

tributions themselves as the parameters. However, when the size of the outcome

space is large, so is the dimension of ∆pY q, and people tend to use lower-dimensional

parametric models to make the distribution of outcomes easier to think about and

analyze. Here the Diaconis and Freedman (1990) result does not apply, but the ex-

tension in this section guarantees that beliefs concentrate exponentially fast around

the KL-minimizing parameters themselves, rather than on the ε minimizers, when-

ever the realized frequency is such that KL divergence is “sufficiently convex” in the

parameters.

Consider a parametric model where Π “ tpθ : θ P Θu with pθ (Gateaux) differen-

tiable in θ, and Θ Ă Rk closed and convex, and define H̃pf, θq “ Hpf, pθq.

Definition 3. Let m ą 0. H̃ is uniformly strongly m-convex if for all f P ∆pY q,

p∇θH̃pf, θq ´∇θH̃pf, θ
1
qq
T
pθ ´ θ1q ě m||θ ´ θ1||22 @θ, θ1 P Θ.

Intuitively, strong m-convexity ensures that a change in the parameter θ has an

effect on the KL divergence that is at least proportional to the square of the change.

In the single dimensional case strong m-convexity requires that the second derivative

of H̃ in θ is bounded away from zero. In the multidimensional case strong m-convexity

is equivalent to the smallest eigenvalue of the Hessian being greater than m. Uniform

strong m-convexity extends this property to parametric models. Given a uniformly

strongly m-convex H̃, let θ˚pfq “ argminθPΘ H̃pf, θq be the (unique) parameter that

minimize the KL divergence between pθ and f .

Let Bεpθq “ tpη : ||η´θ||2 ď εu be the set of all distributions whose parameter are

at most ε away from θ. The following result establishes the concentration of beliefs

about the parameter.

Proposition 1. If H̃ is uniformly strongly m-convex then for every φ : R`` Ñ R``

13



and every α P p0, 1q

µt pBεpθ
˚pftqqq

1´ µt pBεpθ˚pftqqq
ě A

ˆ

mε2

2

˙

exp

ˆ

α
mε2

2
t

˙

for all µ0 that are φ positive on Θ, ε P p0, 1q, t P N, and ft P ∆pY q, where A is the

function whose existence is guaranteed by Theorem 1.

Intuitively, uniform strong m-convexity ensures that a parameter that is far from

the log-likelihood maximizer is assigned a low log-likelihood. Without this assump-

tion, parameters arbitrarily far away from the maximizer could be assigned a likeli-

hood that is arbitrarily close to that of the log-likelihood maximizer, which precludes

uniform concentration results.

To see why the proposition is true, note that because Θ is convex, when H̃ is

strongly m-convex the KL minimizer θ˚pfq is a singleton. In addition, the convexity

of Θ guarantees that small movements away from the minimizer to other parameters

in Θ increase the KL divergence. Uniform strong convexity provides a lower bound

on this increase, so we can conclude that parameters outside of Bεpθ
˚pftqq are not

mε2{2 minimizers. The proposition then follows from Theorem 1.

In the next example, the support restriction comes from the assumption that

successive trials are i.i.d., which is a way of simplifying a complex environment.

Example 2. (Bernoulli trials) Suppose the outcome y P Y “ t1, . . . , nu corresponds

to the number of Bernoulli trials needed to get one success, with y “ n´1 denoting the

maximum number of allowed trials.11 If the agent believes the trials are independent,

their subjective distribution for outcome y is a truncated geometric distribution

pθpyq “

$

&

%

θp1´ θqy´1 for y ă n

p1´ θqy´1 for y “ n

and the support of the agent’s prior only includes these distributions, i.e. Π Ď tpθ : θ P

r0, 1su. No prior with this support can satisfy the φ-positivity condition of Diaconis and

Freedman (1990), but our results apply if the prior µ0 has a density that is bounded

11So when y “ n, no success occurred in the allowed n´ 1 trials.
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away from zero on r0, 1s or is Beta.12 We have

H̃pf, θq “ ´ logp1´ θq

«

n
ÿ

z“1

pz ´ 1qfpzq

ff

´ p1´ fpnqq log pθq `
n
ÿ

z“1

fpzq logpfpzqq .

This function is uniformly strongly 1-convex on ∆pY q, and the first-order condition

shows that the unique KL minimizing parameter is given by

θ˚pfq “
1´ fpnq

ř

zPY zfpzq ´ fpnq
.

Thus from Proposition 1 beliefs about θ concentrate on any Bεpθ
˚pfqq exponentially

fast. Moreover, if the data has no realizations of n, the KL minimizer is the reciprocal

of the average outcome
ř

zPY zfpzq. This is intuitive, as the expectation of a geometric

distribution is the reciprocal of the parameter θ, i.e., limnÑ8

ř

zPY pθpzqz “ 1{θ.

5 Subjectively Markovian Environments

We now show how to generalize Theorem 1 to the case of beliefs that the signals y

are generated by a Markov process, which is a key environment in macroeconomics.

For example, this is the setting where the approximation properties of the anticipated

utility model have been analyzed.

In the Markov setting, the agent is learning about n different outcome distribu-

tions; let P “ ∆pY qY be the set of transition matrices over Y endowed with the total

variation distance.13 Let µ0 P ∆pPq “ ∆p∆pY qY q denote a prior distribution over

transition matrices and Θ “ suppµ0 its support.14

To initialize the process, we fix an observed period 0 outcome y0. For every data

set yt we let µt be the posterior belief, which is required to satisfy Bayes rule whenever

the data set has positive prior probability:

µtpCq “

ş

πPC

śt
τ“1 πpyτ |yτ´1qdµ0pπq

ş

πPP
śt

τ“1 πpyτ |yτ´1qdµ0pπq
. (Bayes Rule)

12Of course, the particular function φ will change. If the density is bounded, φ can be chosen
linear in ε, while for Beta priors φ can be chosen to be a power function of ε.

13That is, for all χ P
`

RY
˘Y

, ||χ|| “
ř

z,z1PY |χpz
1|zq|{2.

14Note that the µ0 need not be a product measure, and that this reduces to the subjectively i.i.d.
environment of the previous sections if for every π P Θ and every z, z1 P Y , πp¨|zq “ πp¨|z1q.

15



The empirical transition distribution ft P ∆pY ˆ Y q is

ftpz, z
1
q “

1

t

t
ÿ

τ“1

Itz1,zupyτ , yτ´1q .

We define H : ∆pY ˆ Y q ˆ P Ñ R̄ as

Hpf, πq “ ´
ÿ

pz,z1qPYˆY

fpz, z1q log pπpz1|zqq .

The function H generalizes H to the non-i.i.d. case, as Hpf, πq measures the log-

likelihood assigned to the empirical transitions distribution f given the transition

probability π:

log

˜

t
ź

τ“1

πpyτ |yτ´1q

¸

“ t
ÿ

pz,z1qPYˆY

ftpz, z
1
q log πpz1|zq “ ´tHpft, πq .

Let M : ∆pY ˆ Y q Ñ P be the correspondence that maps an empirical transi-

tion distribution f to the minimizers of H over the support of the prior: Mpfq “
argminπPΘHpf, πq. We let Mεpfq be the set of distributions that come within ε of

the minimum of H:

Mεpfq “
!

π1 P Θ : Hpf, π1q ď min
πPΘ
Hpf, πq ` ε

)

,

and let ∆ΘpY ˆY q denote the set of empirical transition distributions for which Bayes

rule is well defined.15

Theorem 3. Suppose that for all π, π1 P Θ, z, z1 P Y , πpz1|zq ą 0 if and only if

π1pz1|zq ą 0 and that µ0 is φ positive on Θ. Then for all α P p0, 1q and ε P p0, 1q there

is Apεq ą 0 such that

µtpMεpftqq

1´ µtpMεpftqq
ě Apεq exppαεtq ,

for all t P N and ft P ∆ΘpY ˆ Y q.

The proof of this result is similar in spirit to that of Theorem 1, because we can

15That is, f P ∆ΘpY ˆ Y q if there is a π P Θ such that for all pz, z1q P supp f , πpz1|zq ą 0.
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consider the data set to be a sequence of pairs pyt, yt`1q in place of a sequence of yt.

Example 3. In Markov settings, priors without full support arise very naturally. For

example, when Y Ď R, the agent may believe that the data generating process is a

martingale, so that the support of the beliefs consist of all distributions π P P for

which
ÿ

z1PY

π pz1|zq z1 “ z @z P Z.

Alternatively, they may believe that the outcome process is unlikely to make large

jumps between consequent periods: for some αz P p0, 1q

π pz1|zq “
α
|z1´z|
z

ř

z1PZ α
|z1´z|
z

@z P Z.

6 Infinite Outcome Spaces

This section discusses pathwise concentration in the case of an infinite outcome space.

Noncompact prior support The most common approach when dealing with in-

finitely many outcomes is to use a parametric description of the data generating

process, as was done in Section 4 for a finite outcome space. However, if the set of

parameters Θ indexing the data generating process is not compact, it will be typically

not be possible to satisfy φ-positivity. For example, if the prior is supported over the

normal distributions with some fixed variance σ2 and unknown mean θ P R, and all

values of the mean are considered possible, the prior cannot be φ-positive, as for any

ε ą 0, µpBεpθqq ě φpεq ą 0 for all θ P Θ would imply that µpRq “ 8.

Similarly, pathwise concentration fails: Pathwise concentration requires that a

finite number of observations can outweigh the prior, but no fixed finite number of

observations can outweigh the prior if the prior odds ratio of the ε-minimizing set

can be arbitrarily low. For this reason pathwise concentration can be obtained only

for priors with compact support.

Divergence vs. Likelihood The empirical distribution is always discrete, but the

KL divergence from a discrete distribution to a non-atomic one is infinite. To handle

this, we shift from concentration around the KL-minimizer to concentration around

the maximizer of the empirical log-likelihood. Since the likelihood is the negative
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of the divergence plus a constant, these coincide in the case of a finite Y , but only

the empirical log-likelihood maximizers are always well defined for a continuum of

outcomes. With this change, we now extend Lemma 1 to the case of infinitely many

outcomes.

Let Y be a metric space, and suppose that there exists a σ-finite measure ξ on

Y such that for every θ P Θ, the probability measure associated with θ is absolutely

continuous with respect to ξ with Radon-Nykodim derivative pθ P RY . Let Π “ tpθ :

θ P Θu and Ps be the set of simple (finite support) distributions over Y . Balls in Π

and Θ are taken with respect to the supnorm. For every θ P Θ and q P Ps let

L pq||pθq “
ÿ

yPY

q pyq log pθ pyq

be the empirical log-likelihood of the empirical distribution q under pθ P Π. Also let

Mεpqq “
!

pθ1 P Π : L pq||pθ1q ` ε ě max
θPΘ

L pq||pθq
)

be the set of ε maximizers of the empirical log-likelihood. Recall that

∆Θ
pY q : “ tf P Ps : Dθ P Θ, @y P supp f, pθpyq ą 0u

is the set of empirical frequencies for which Bayesian updating is well defined.

Lemma 2. For every ε, ε1, κ P R`, t P N, ft P ∆ΘpY q, q̄ PMε1pftq, with ε1 ` κ ď ε,

µtpMεpftqq

1´ µtpMεpftqq
ě µ0

`

Bκ{Rpft,κ,q̄qpq̄q
˘

expppε´ κ´ ε1qtq

where

Rpft, κ, q̄q “ min

$

&

%

max
qPΠXBκpq̄q
zPsupp ft

1

qpzq
, 1

,

.

-

.

As in the finite case, m-convexity is useful for guaranteeing belief concentration,

but it is harder to satisfy m-convexity when Y is infinite. For this reason we generalize

the m-convexity to only hold on a given set of empirical frequencies.

Definition 4. Let m ą 0. L is uniformly strongly m-concave on F Ď Ps if for all

f P F ,

p∇θLpf ||pθq ´∇θLpf ||pθ1qq
T
pθ ´ θ1q ď ´m||θ ´ θ1||22
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for all θ, θ1 P Θ.

Let θ˚pftq denote the empirical likelihood maximizer. In the case of a single-

dimensional parameter, uniform strong m-concavity on F is still enough to prove

that posteriors concentrate on a neighborhood of the unique maximizer at a rate that

is uniform over paths with empirical frequency in F . Example 5 in the Appendix

shows that convergence need not be uniform over frequencies that do not make the

likelihood function m-uniformly concave.

The main difficulty is that we have little information about which ε movements

from θ˚pftq least decrease the empirical likelihood. The proof uses the fact that when

the parameters are unidimensional there are at most two candidates for a best fitting

parameter outside Bεpθ
˚pftqq (either θ˚pftq´ε or θ˚pftq`ε) to overcome this difficulty.

Proposition 2. If L is uniformly strongly m-concave on F then for every φ : R`` Ñ
R``

µt pBεpθ
˚pftqqq

1´ µt pBεpθ˚pftqqq
ě φ

´ε

4

¯

exp

"

t
ε2m

2

*

for all µ0 that are φ positive on Θ Ď R, ε P p0, 1q, t P N, and ft P ∆ΘpY q X F .

As an immediate corollary, there is pathwise belief concentration for an agent who

believes the data are generated by a normal distribution with known variance and

unknown mean.

Corollary 1. Let σ2 P R`` and

pθpyq “
1

?
2πσ2

exp

ˆ

´
py ´ θq2

2σ2

˙

.

For every φ : R`` Ñ R``, and every α P p0, 1q,

µt pBεpθ
˚pftqqq

1´ µt pBεpθ˚pftqqq
ě φ

´ε

4

¯

exp

"

t
ε2

2σ

*

for all µ0 that are φ positive on Θ Ď R, ε P p0, 1q, t P N, and ft P Ps.

No Concentration on the ε Maximizers Without additional assumptions, Propo-

sition 2 cannot be strengthened to obtain pathwise concentration on the ε maximizers,
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as Example 6 in Appendix 8.11 shows. Intuitively, with infinitely many signals, the

informativeness of a single signal may be unbounded, so that the set of ε maximiz-

ers after a single signal can be arbitrarily small. If the prior probability assigned to

these sets vanishes at a sufficiently high exponential rate, their good match to the

data does not guarantee that the posterior concentrates on them. More precisely, for

some priors the conclusion of Theorem 1 does not even hold for t “ 1. That is, it

is not possible to have a concentration that holds uniformly over all the same-length

realizations, let alone concentration rate that is uniform over same-length realizations

and grows exponentially in the sample size.16 We leave for future work the challenge

of determining just what sorts of restrictions on the prior would allow a uniform

concentration result.

Anticipated Utility Much of the macroeconomics literature assumes that the data

agents observe can take infinitely many different values. This is true in particular for

the literature on “anticipated utility” (Kreps, 1998), which assumes that agents in

the economy choose actions that maximize their payoff under a point estimate that

maximizes the likelihood of their sample, ignoring uncertainty about the state. This

is a simpler problem than the maximization of expected utility, and the reduction

in complexity and dimension makes anticipated utility models more tractable and

easier to analyze. However, it has not been clear how much error the approximation

induces. For example, Cogley and Sargent (2008) wrote

Macroeconomists might justify anticipated-utility models as an approxi-

mation to a correctly formulated Bayesian decision problem... (the mod-

els) would be more compelling if one could also show that anticipated-

utility decisions well approximate Bayesian decisions. As far as we know,

no one has assessed the quality of the approximation...

There is also a small literature that addresses this question using numerical sim-

ulations (Cogley, Colacito, and Sargent, 2007; Cogley and Sargent, 2008; Cogley,

Colacito, Hansen, and Sargent, 2008). Our result on Bayesian updating can be used

to derive analytical results that complement these numerical studies. In particular,

they imply that the long-run behavior under anticipated utility models converges to

16Fudenberg, He, and Imhof (2017) and Fudenberg, Lanzani, and Strack (2021a) point out other
odd implications of priors that decay exponentially quickly.

20



that of an expected utility maximizer. This provides a formal justification for the use

of anticipated as an approximation of expected utility models in studies of long-run

behavior.

To develop this link, suppose that in each period t P t1, 2, 3, . . .u the agent chooses

an action from A. We assume that A is a convex set, endowed with a metric d that

makes it a compact set. The action does not affect the outcome distribution but

influences the agent’s utility function u : A ˆ Y Ñ R, which is strictly concave in a.

Let A˚ pνq denote the (unique) optimal action given belief ν, i.e.,

A˚ pνq “ argmax
aPA

ż

Θ

Epθ rupa, yqs dνpθq,

and suppose A˚ is uniformly continuous when ∆pΘq is endowed with the topology of

weak convergence of measures.17

Let A˚pMpftqq denote the action that is optimal for a point belief in the likelihood

maximizer Mpftq.

Proposition 3. Suppose that Θ Ď R is convex and that µ0 is φ positive on Θ. If L

is uniformly strongly m-concave on F then for all ε ą 0 there is a T P N such that

dpA˚pµtq, A
˚pMpftqqq ď ε for every t ą T and every ft P F .

7 Conclusion

We have shown that for every realization of the data, Bayesian beliefs concentrate

exponentially quickly on the models that best explain the empirical frequency of out-

comes. One implication of this concentration result is that optimal actions can be

determined directly from the empirical frequency without computing beliefs. More

precisely, once the sample is sufficiently large, neither the exact sample size nor calen-

dar time is needed to compute the optimal action; the empirical frequency is sufficient.

As the dynamics and distribution of the empirical frequency are well understood, this

insight can greatly simplify the analysis of the long-run behavior of Bayesian agents.

In addition to the applications developed in this paper, Theorem 1 may allow

generalizations of other results about misspecified Bayesian agents who learn from

17Sufficient conditions for this are that Θ is compact and A˚ is continuous, or that A Ď R is a
compact interval, Y can be ordered to make u supermodular, and for all y P Y up¨, yq is differentiable
with a bounded derivative, see, e.g. Frankel, Morris, and Pauzner (2003).
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endogenous data. One recurrent theme in this literature is the possibility that when

actions are endogenous, misspecified beliefs can lead to cycles in setting that would

not occur with correctly specified beliefs, because repeated play of an action generates

evidence in favor of another action.18 In such situations our concentration result may

be used to bound the number of periods spent in each phase of the cycles. This

would complement Esponda, Pouzo, and Yamamoto (2021), which characterized the

asymptotic frequencies of these cycles when the space of beliefs can be partitioned

into a finite number of attracting sets and the support of the prior is one dimensional.

Our uniform speed of convergence result might be useful in extending this to more

general settings. In addition, as we provide a concentration bound for every finite

time, our result can be used to characterize behavior in the “medium-run” before the

asymptotic results apply.

Mazumdar, Pacchiano, Ma, Bartlett, and Jordan (2020) proves that with high

probability, the posteriors of a correctly-specified Bayesian concentrate around the

true parameter at rate
?
n, and uses this result to study the long-run properties

of Thompson sampling. The paper allows for infinitely many outcomes, but imposes

additional strong conditions such as log-concavity of the true data generating process,

and a prior density that is bounded away from 0. Our results enable extensions to

Thompson sampling with less restricted priors in the finite outcome case.

In settings where multiple agents choose their actions based on the same observ-

ables, our concentration results can be used to quantify the minimal extent of the

differences in their prior beliefs needed to rationalize different choices. For example,

Montiel Olea, Ortoleva, Pai, and Prat (2021) showed that when observing signals of

an object’s value, misspecified agents with lower dimensional models have a higher

willingness to pay after the first few observations, while correctly specified agents have

a higher willingness to pay in the long-run; our result on the speed of convergence

may help to better identify the switching time.

The learning in games literature has assumed correctly specified beliefs in order

to appeal to Diaconis and Freedman (1990). Our generalization will facilitate the

extension of the results from this literature to cases where the agents in the learning

model have misspecified beliefs about the extensive form of the game. It will also

enable extensions to incorrect beliefs about a complex network structure in Bowen,

18See e.g. Nyarko (1991), Fudenberg, Romanyuk, and Strack (2017), Levy, Razin, and Young
(2020), and Lanzani (2022).
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Dmitriev, and Galperti (2022), and to overconfident agents as in Heidhues, Kőszegi,

and Strack (2018).

8 Appendix

8.1 Properties of the KL divergence

Lemma 3. For all p, p̃, q P P

|Hpq, pq ´Hpq, p̃q| ď 2 max
zPY

max

"

qpzq

ppzq
,
qpzq

p̃pzq

*

||p´ p̃||.

Proof. Let

R :“ max
zPY

max

"

qpzq

ppzq
,
qpzq

p̃pzq

*

,

Ŷ “ tz : ppzq ą p̃pzqu, and suppose without loss of generality that ppsupp qq ě

p̃psupp qq. Then

|Hpq, pq ´Hpq, p̃q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPsupp q

ˆ

log

ˆ

ppzq

qpzq

˙

´ log

ˆ

p̃pzq

qpzq

˙˙

qpzq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPsupp q

ż ppzq{qpzq

p̃pzq{qpzq

1

r
dr qpzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

zPsupp q

max

"

qpzq

p̃pzq
,
qpzq

ppzq

*
ˇ

ˇ

ˇ

ˇ

ppzq

qpzq
´
p̃pzq

qpzq

ˇ

ˇ

ˇ

ˇ

qpzq

ď R
ÿ

zPsupp q

ˇ

ˇ

ˇ

ˇ

ppzq

qpzq
´
p̃pzq

qpzq

ˇ

ˇ

ˇ

ˇ

qpzq “ R
ÿ

zPsupp q

p2IŶ pzq ´ 1q

ˆ

ppzq

qpzq
´
p̃pzq

qpzq

˙

qpzq

“ R
ÿ

zPsupp q

p2IŶ pzq ´ 1q ppzq ´R
ÿ

zPsupp q

p2IŶ pzq ´ 1q p̃pzq

“ 2R

«

ÿ

zPsupp q

IŶ pzqppzq ´
ÿ

zPsupp q

IŶ pzqp̃pzq

ff

`Rpp̃psupp qq ´ ppsupp qqq .

As ppsupp qq ě p̃psupp qq the above term is bounded by

ď 2R

«

ÿ

zPsupp q

IŶ pzqppzq ´
ÿ

zPsupp q

IŶ pzqp̃pzq

ff

ď 2R

«

ÿ

zPŶ

ppzq ´
ÿ

zPŶ

p̃pzq

ff

“ 2R||p´ p̃||,
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where the last inequality follows from the definition of Ŷ and the last equality by the

definition of the total variation distance.

Recall that a probability distribution p P ∆pY q is absolutely continuous with

respect to q P ∆pY q, denoted as p ! q, if supp p Ď supp q.

Lemma 4. Let ε P R`. Then Mεp¨q “ tq1 P Θ : Hp¨, q1q ď minqPΘHp¨, qq ` εu is

nonempty-valued and compact-valued. Moreover, for all p P P , Mεp¨q is upper hemi-

continuous on BinfzPsupp p ppzq{2ppq X tq : q ! pu.

Proof. If Hpp, qq “ 8 for all q P Θ, Mεppq “ Θ is nonempty and compact. If there

is q̂ such that Hpp, q̂q “ K ă 8, the set Θ1 “ tq P Θ : Hpp, qq ď K ` εu is compact

by the continuity of Hpp, ¨q, and Mεppq Ď Θ1. So the continuous and real-valued

restriction of Hpp, ¨q to Θ1 has compact lower contour sets, and it attains a minimum.

Thus Mεppq ĚMppq ‰ H is non-empty and compact.

For the second part of the statement, observe that if p R ∆ΘpY q, then Mεppq “

Θ, and therefore Mε ppq is trivially upperhemicontinuous at p since by definition

Mε pp
1q Ď Θ for all p1 P ∆ pY q. If instead p P ∆ΘpY q, there exist q̂ P Θ and K P R`

with Hpp, q̂q “ K. Moreover, the finiteness of Hpp, q̂q “ K implies that p ! q̂. So,

there exists K 1 ą 0 such that

H pp1, q̂q ď K 1
@p1 P BinfzPsupp p ppzq{2ppq X tq : q ! pu.

We use this equation to show that there exists C such that r P Mε pp
1q, p1 P

BinfzPsupp p ppzq{2ppq X tq : q ! pu implies r pyq ě C for all y P supp p. Suppose by

contradiction that this is not the case. Then, there exist a convergent sequence

prn, pnqnPN P
`

Θˆ
`

BinfzPsupp p ppzq{2ppq X tq : q ! pu
˘˘N

and an ŷ P supp p with rn P

Mε ppnq for all n P N and limnÑ8 rn pŷq “ 0. But we have

H ppn, rnq ě
ÿ

yPY

pnpyq log pnpyq ´ pn pŷq log rn pŷq ě
ÿ

yPY

pnpyq log pnpyq ´
p

2
log rn pŷq

and the RHS is diverging to 8. So eventually H ppn, rnq ě ε `K ě ε `H ppn, q̂q, a

contradiction with rn PMε ppnq.
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This shows that for all p1 P BinfzPsupp p ppzq{2ppq X tq : q ! pu

Mε pp
1
q “

!

r P Θ : Hpp1, rq ď min
r̄PΘ

Hpp1, r̄q ` ε
)

(4)

“

!

r P Θ : Hpp1, rq ď min
r̄PΘ

Hpp1, r̄q ` ε, r pyq ě C, @y P supp p
)

.

Also observe that the function H is continuous on the set

`

BinfzPsupp p ppzq{2ppq X tq : q ! pu
˘

ˆ tr P Θ : r pyq ě C, @y P supp pu .

Therefore, if we define G :
`

BinfzPsupp p ppzq{2ppq X tq : q ! pu
˘

Ñ R as

G pp1q “ min
trPΘ:rpyqěC,@yPsupp pu

Hpp1, rq

G is continuous by the Maximum Theorem. Moreover, by equation (4) G pp1q “

minrPΘHpp
1, rq for all BinfzPsupp p ppzq{2ppqXtq : q ! pu, showing that minrPΘ Hp¨, rq is a

continuous function when restricted on BinfzPsupp p ppzq{2ppq X tq : q ! pu. To conclude,

we show that Mε p¨q is upper hemicontinuous on BinfzPsupp p ppzq{2ppq X tq : q ! pu by

showing that it has a closed graph. Indeed, let ppn, rnq P BinfzPsupp p ppzq{2ppq X tq :

q ! pu ˆ Θ be such that rn P Mε ppnq for all n P N and limnÑ8 prn, pnq “ pr̂, p̂q.

By equation (4) for all n P N, we have rn P tr P Θ : r pyq ě C, @y P supp pu and

since this last set is close r̂ P tr P Θ : r pyq ě C, @y P supp pu. By the continuity of

H on
`

BinfzPsupp p ppzq{2ppq X tq : q ! pu
˘

ˆtr P Θ : r pyq ě C, @y P supp pu, and of G on

BinfzPsupp p ppzq{2ppq X tq : q ! pu, we have

min
rPΘ

Hpp̂, rq ´H pp̂, r̂q “ G pp̂q ´H pp̂, r̂q “ lim
nÑ8

pG ppnq ´H ppn, rnqq ď ε

proving that r̂ PMε pp̂q.

Lemma 5 (Pinsker’s inequality). For every p, q P ∆pY q,

||p´ q|| ď

c

Hpp, qq

2
.
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8.2 Proof of Lemma 1

Lemma 1. If µ0 is φ positive on Θ, then for every ε, ε1, κ P R`, t P N, ft P ∆ΘpY q,

and q̄ PMε1pftq with ε1 ` κ ď ε and Rpft, κ, q̄q ă 8, we have

µtpMεpftqq

1´ µtpMεpftqq
ě φ

`

κ{2Rpft, κ, q̄q
˘

expppε´ κ´ ε1qtq. (5)

Proof. The proof uses the following bound on how much the Kullback-Leibler diver-

gence can increase when moving from an ε1 minimizer to a nearby distribution:

Claim 1. For every p1 P Θ, f P ∆ΘpY q, ε1, κ P R`, and q̄ PMε1pfq,

p1 P Bκ{2Rpf,κ,q̄qpq̄q ùñ Hpf, p1q ď min
pPΘ

Hpf, pq ` ε1 ` κ.

Proof. For every two distributions f, q P ∆pY q, there is at least one outcome that is

weakly more likely under f than under q so

Rpf, κ, q̄q “ max
qPΘXBκpq̄q

max
zPZ

fpzq

qpzq

is bounded below by 1. Thus p1 P Bκ{2Rpf,κ,q̄qpq̄q implies p1 P Bκpq̄q. Therefore, both

p1, q̄ are in ΘXBκpq̄q, so from the definition of R,

max
zPY

max

"

fpzq

p1pzq
,
fpzq

q̄pzq

*

ď Rpf, κ, q̄q.

Moreover, p1 P Bκ{2Rpf,κ,q̄qpq̄q implies that q̄ P Bκ{2Rpf,κ,q̄qpp
1qXMε1pfq, so by Lemma 3

Hpf, p1q ´Hpf, q̄q ď
κ

Rpf, κ, q̄q
max
zPY

max

"

fpzq

p1pzq
,
fpzq

q̄pzq

*

ď
κ

Rpf, κ, q̄q
Rpf, κ, q̄q “ κ,

and hence Hpf, p1q ď Hpf, q̄q ` κ ď minpPΘ Hpf, pq ` ε
1 ` κ.

We use Claim 1 to provide a lower bound on the likelihood ratio of the ε minimizers
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given the empirical frequency ft. Observe that

µtpMεpftqq

1´ µtpMεpftqq
“

ş

Mεpftq
expp´Hpp, ftqtqdµ0pdpq

ş

ΘzMεpftq
expp´Hpp, ftqtqdµ0pdpq

ě

ş

Mκ`ε1 pftq
expp´Hpp, ftqtqdµ0pdpq

ş

ΘzMεpftq
expp´Hpp, ftqtqdµ0pdpq

ě
expp´ pminpPΘHpft, pq ` κ` ε

1q tq

expp´ pminpPΘHpft, pq ` εq tq

µ0pMκ`ε1pftqq

µ0pΘzMεpftqq

“ expppε´ κ´ ε1qtq
µ0pMκ`ε1pftqq

µ0pΘzMεpftqq

ě expppε´ κ´ ε1qtqµ0pBκ{2Rpft,κ,q̄qpq̄qq

ě expppε´ κ´ ε1qtqφ
`

κ{2Rpft, κ, q̄q
˘

.

The first equality follows from equation (1). The first inequality follows from

ε1 ` κ ď ε, the second inequality from pointwise bounding the integrands and the

definition of Mε, the third inequality from Claim 1, and the fourth because µ0 is φ

positive on Θ.

8.3 Proof of Theorem 1

Theorem 1. For every φ : R`` Ñ R``, α P p0, 1q, and ε P p0, 1q there is Apεq such

that
µtpMεpftqq

1´ µtpMεpftqq
ě Apεq exppαεtq

for all t P N, ft P ∆ΘpY q, and µ0 that are φ positive on Θ. Moreover, if q :“

infqPΘ minzPsupp q qpzq ą 0, then we can set

Apεq “ φ
`

mintq{2, p1´ αqεuq{2
˘

.

We first show that if q :“ infqPΘ minzPsupp q qpzq ą 0, Lemma 1 yields the desired

uniform rate of convergence. If p1´ αqε ă q, then for all ft P ∆ΘpY q and q̄ P Mpftq,

if p P ΘXBp1´αqεpq̄q, then supp p “ supp q̄ Ď supp ft, so

1

Rpft, p1´ αqε, q̄q
“

ˆ

max
pPΘXBp1´αqεpq̄q

max
zPY

ftpzq

ppzq

˙´1

ě
1

p1{qq
“ q.

If instead p1 ´ αqε ě q it is enough to observe that 1{Rpft, q{2, q̄q ě q for all ft P

∆ΘpY q, q̄ PMpftq.
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Now we move to the proof for the general case where some outcomes might have

an arbitrarily low probability under data-generating processes in the support of the

prior, i.e. q might equal 0. Recall that ∆ΘpY q “ tq P ∆pY q : Dp P Θ, supp q Ď

supp pu is the set of distributions for which Bayes rule is well defined, and that

Theorem 1 applies only to empirical distributions f P ∆ΘpY q. To provide an upper

bound on R, we show that the likelihood ratio f{q (which determines the value of

R) can be uniformly bounded for all probability distributions q that are sufficiently

close to an p1 ´ αqε{2 minimizer of the Kullback-Leibler divergence. Intuitively, as

f P ∆ΘpY q some distribution assigns non-vanishing probability to every outcome

which has positive probability under f and thus a distribution that assigns vanishing

probability to some of these outcomes leads to a low log-likelihood (and thus a high

Kullback-Leibler divergence).

Claim 2. For every ε P p0, 1q, there exist κ̄αpεq P p0, p1´ αqε{2s and c ě 1 such that

for all κ ď κ̄α and f P ∆ΘpY q, there is q̄ PMp1´αqε{2 pfq such that

max
yPY,qPBκpq̄q

fpyq

qpyq
ď c.

Proof. If not, then since ∆ΘpY q and Θ are compact, there is a sequence pf 1n, qnq P

∆ΘpY q ˆΘ with qn PM pf 1nq that converges to
´

f̂ , q̂
¯

, and such that

inf
q̄PM p1´αqε

2

pf 1nq

ˆ

max
yPY,qPB1{npq̄q

fnpyq

qpyq

˙

ě n. (6)

Since Y is finite, so is the set of possible supports, so there is a subsequence pfnqnPN

such that each element of the sequence has common support, with pfn pyqqn weakly

decreasing for all y P Y z supp f̂ . Moreover, since

ÿ

zPY

fn pzq log fn pzq P

„

log

ˆ

1

|Y |

˙

, 0



@n P N

the subsequence can also be taken such that
ř

zPY fn pzq log fn pzq converges.

Since all the fn are in ∆ΘpY q and have common support, qn P M pfnq , and
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logpfnpzqq ď 0 for all z P Y , we have

H pfn, qnq ď H pfn, q1q “
ÿ

zPsupp f1

fnpzq log fnpzq ´
ÿ

zPsupp f1

fnpzq log q1pzq

ď ´
ÿ

zPsupp f1

fnpzq log q1pzq ď ´ min
zPsupp f1

log q1 pzq ă 8,

so pH pfn, qnqqnPN is bounded. Moreover, if there exist z˚ P Y and l P R`` with

limnÑ8 qn pz
˚q “ 0 and limnÑ8 fn pz

˚q “ l, then

lim sup
nÑ8

H pfn, qnq “ lim sup
nÑ8

ÿ

yPY

fnpyqplog fnpyq ´ log qnpyqq

“
ÿ

yPY

f̂pyq log f̂pyq ` lim sup
nÑ8

´
ÿ

yPY

fnpyq log qnpyq

ě
ÿ

yPY

f̂pyq log f̂pyq ` lim sup
nÑ8

´fnpz
˚
q log qnpz

˚
q

“
ÿ

yPY

f̂pyq log f̂pyq ´ l logp lim
nÑ8

qnpz
˚
qq “ 8

which contradicts pH pfn, qnqqnPN being bounded. So, for all z P Y

lim
nÑ8

qn pzq “ 0 ùñ lim
nÑ8

fn pzq “ 0 ùñ z R supp f̂ .

Thus G : “ infnPN,yPsupp f̂ log qn pyq ą ´8.

Since pfnqnPN converges, there is N P N such that for all n and m larger than N

||fn ´ fm|| ď
1

|G| ¨ | supp f1|

p1´ αq ε

16
. (7)

Because Ĥ : “ lim inf H pfn, qnq ă 8, there exists N 1 ě N such that

H pfN 1 , qN 1q ď Ĥ `
p1´ αqε

8
(8)

and

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPY

fn pzq log fn pzq ´
ÿ

zPY

fm pzq log fm pzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
p1´ αq ε

8
@n,m ě N 1. (9)
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Moreover, there exists N2 ą N 1 such that for all n ě N2

H pfn, qnq ě Ĥ ´
p1´ αqε

8
. (10)

Thus for every n ě N2, we have

H pfn, qN 1q ´H pfn, qnq ď H pfn, qN 1q ´ Ĥ `
p1´ αqε

8

“ H pfn, qN 1q ´H pfN 1 , qN 1q `H pfN 1 , qN 1q ´ Ĥ `
p1´ αqε

8

“
ÿ

zPY

fn pzq log fn pzq ´
ÿ

zPY

fN 1 pzq log fN 1 pzq

`
ÿ

zPY

pfn pzq ´ fN 1 pzqq p´ log qN 1 pzqq `H pfN 1 , qN 1q ´ Ĥ `
p1´ αqε

8

ď
p1´ αq ε

8
`

ÿ

zPsupp f̂

pfn pzq ´ fN 1 pzqq p´ log qN 1 pzqq

`
ÿ

zPY z supp f̂

pfn pzq ´ fN 1 pzqq p´ log qN 1 pzqq `H pfN 1 , qN 1q ´ Ĥ `
p1´ αqε

8

ď
p1´ αq ε

4
`

ÿ

zPsupp f̂

pfn pzq ´ fN 1 pzqq p´ log qN 1 pzqq `H pfN 1 , qN 1q ´ Ĥ

ď
p1´ αq ε

4
`

1

|G|

p1´ αq ε

16
¨ 2|G| `H pfN 1 , qN 1q ´ Ĥ

ď
p1´ αqε

4
`
p1´ αq ε

8
` Ĥ `

p1´ αq ε

8
´ Ĥ “

p1´ αq ε

2

where the first inequality follows by equation (10), the second by equation (9), the

third because fmpzq is decreasing for the outcomes outside supp f̂ , the fourth by

equation (7) and the definition of G, and the fifth by equation (8). Therefore,

qN 1 PM p1´αqε
2
pfnq

for all n ě N2. But this is a contradiction with equation (6), as

lim
nÑ8

max
yPY,qPB1{npqN 1 q

fnpyq

qpyq
ď lim

nÑ8
max

yPsupp qN 1

1

qN 1pyq{2
ă 8.
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Now for every ft P ∆ΘpY q let c, κ̄αpεq, and q̄ P Mp1´αqε{2pftq be the values whose

existence is established by Claim 2. Then

µtpMεpftqq

1´ µtpMεpftqq
ě φ

`

κ̄αpεq{2Rpft, κ̄αpεq, q̄q
˘

exp

ˆˆ

ε´ κ̄αpεq ´
p1´ αqε

2

˙

t

˙

ě φ
`

κ̄αpεq{2c
˘

exp

ˆˆ

ε´
p1´ αqε

2
´
p1´ αqε

2

˙

t

˙

ě φ
`

κ̄αpεq{2c
˘

exppαεtq

where the first inequality follows from applying Lemma 1 with ε1 “ p1 ´ αqε{2 and

κ “ κ̄αpεq, the second inequality follows because Claim 2 shows that

c ě max
yPY,qPBκ̄αpεqpq̄q

ftpyq

qpyq
ě Rpft, κ̄αpεq, q̄q

and κ̄αpεq ď p1´ αqε{2, and the third inequality is algebra. Theorem 1 then follows

by letting

Apεq “ φ

ˆ

κ̄αpεq

2c

˙

.

8.4 Proof of Theorem 2

Theorem 4 (Sanov’s Theorem, Sanov, 1961). Let P be the probability measure in-

duced by i.i.d. draws from p˚. Then for all A Ď ∆pY q and for t P N

Prft P As ď pt` 1q|Y |2´tminpPAHpp,p
˚q.

Proof. See, e.g., Dupuis and Ellis (2011).

Theorem 2. Let P be the probability measure induced by i.i.d. draws from p˚. If µ0

is φ positive on Θ, then for every ε P p0, 1q there is a K P R`` such that

P
”

µt

´

BεpMpp
˚
qq

¯

ă 1´ expp´Ktq
ı

“ Opexpp´Ktqq.
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Claim 3. For every ε ą 0 and p˚ P P , there exists ε1 ą 0 such that

Mε1 pp
˚
q Ď Bε pM pp˚qq .

Proof. Assume the claim is false, so for every n P N, there exists qn P ΘzBε pM pp˚qq

such that

H pp˚, qnq ´min
pPΘ

H pp˚, pq ď
1

n
.

Since Θ is compact, pqnqnPN admits a convergent subsequence with limit q˚ P Θ. Since

H pp˚, ¨q is continuous in its second argument, q˚ PM pp˚q. But this would imply that

the subsequence is eventually in Bε pM pp˚qq, a contradiction.

By Claim 3, Mε1pp
˚q Ď BεpMpp

˚qq for some ε1 ą 0. Since Mε1p¨q is upper hemi-

continuous by Lemma 4, there exists ε̂ such that if q̂ P Bε̂pp
˚q X tq : q ! p˚u, then

Mε1{2pq̂q Ď Mε1pp
˚q. Because the actual data generating process is p˚ and Y is fi-

nite, P rft ! p˚s “ 1 for all t P N. By Sanov’s theorem (Theorem 4) and Pinsker’s

inequality (Lemma 5), for all t large enough to have pt` 1q|Y | ď 2ε̂
2t,

P rft R Bε̂pp
˚
q X tq : q ! p˚us ď P

“

Hpft, p
˚
q ě 2ε̂2

‰

ď pt` 1q|Y |2´2ε̂2t
ď 2´ε̂

2t.

So

P
”

µt

´

BεpMpp
˚
qq

¯

ă 1´ K̄ expp´K̂tq
ı

“ O
`

expp´K 1tq
˘

follows from Theorem 1 by letting K̂ “ αε1{2 for α P p0, 1q, K̄ “ 1{Apε1{2q, and

K 1 “ ε̂2 log 2. Since limtÑ8
K̄ expp´K̂tq

expp´Ctq
“ 0 for all C ă K̂, the result follows by

letting K “ mintK̂{2, K 1u.

8.5 Proof of Proposition 1

Proposition 1. If H̃ is uniformly strongly m-convex then for every φ : R`` Ñ R``
and every α P p0, 1q

µt pBεpθ
˚pftqqq

1´ µt pBεpθ˚pftqqq
ě A

ˆ

mε2

2

˙

exp

ˆ

α
mε2

2
t

˙
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for all µ0 that are φ positive on Θ, ε P p0, 1q, t P N, and ft P ∆pY q, where A is the

function whose existence is guaranteed by Theorem 1.

Proof. We claim first that for every θ P Θ and f P ∆ΘpY q, ∇θH̃pf, θ
˚pfqqT pθ ´

θ˚pfqq ě 0. If not,

0 ą ∇θH̃pf, θ
˚
pfqqT pθ ´ θ˚pfqq “ lim

kÑ0

H̃pf, θ˚pfq ` kpθ ´ θ˚pfqqq ´ H̃pf, θ˚pfqq

k
.

But this means that there is k̂ P p0, 1q such that H̃pf, θ˚pfq ` k̂pθ ´ θ˚pfqqq ´

H̃pf, θ˚pfqq ă 0 or H̃pf, p1 ´ k̂qθ˚pfq ` k̂θq ă H̃pf, θ˚pfqq. As Θ is convex, p1 ´

k̂qθ˚pfq ` k̂θ belongs to Θ, but then θ˚pfq would not be a KL-minimizer.

Next, for every θ P Θ

H̃pf, θq ´ H̃pf, θ˚pfqq “

ż 1

0

∇θH̃pf, λθ ` p1´ λqθ
˚
pfqqT pθ ´ θ˚pfqqdλ

ě ∇θH̃pf, θ
˚
pfqqT pθ ´ θ˚pfqq `

m

2
||θ ´ θ˚pfq||22 ě

m

2
||θ ´ θ˚pfq||22,

where the second inequality comes from the uniform strong m-convexity of H̃. As a

consequence,

Mmε2

2

pfq Ď Bεpθ
˚
pfqq

and the result follows from Theorem 1.

8.6 Proof of Theorem 3

Theorem 3. Suppose that for all π, π1 P Θ, z, z1 P Y , πpz1|zq ą 0 if and only if

π1pz1|zq ą 0 and that µ0 is φ positive on Θ. Then for all α P p0, 1q and ε P p0, 1q there

is an Apεq ą 0 such that

µtpMεpftqq

1´ µtpMεpftqq
ě Apεq exppαεtq ,

for all t P N and ft P ∆ΘpY ˆ Y q.

We begin with a continuity result that extends Lemma 3 to the Markov setting.
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Claim 4. Let R :“ maxπPΘ,zPY,z1Psuppπp¨|zqp1{πpz
1|zqq. For all π, π̃ P Θ and f P

∆ΘpY ˆ Y q

|Hpf, πq ´Hpf, π̃q| ď 2R||π ´ π̃||.

Proof.

|Hpf, πq ´Hpf, π̃q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pz,z1qPsupp f

plog pπpz1|zqq ´ log pπ̃pz1|zqqq fpz, z1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pz,z1qPsupp f

ż πpz1|zq

π̃pz1|zq

1

r
fpz, z1qdr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

pz,z1qPsupp f

max

"

1

π̃pz1|zq
,

1

πpz1|zq

*

|πpz1|zq ´ π̃pz1|zq| fpz, z1q

ď R
ÿ

pz,z1qPsupp f

|πpz1|zq ´ π̃pz1|zq| fpz, z1q ď 2R||π ´ π̃||.

Here the first inequality follows from pointwise bounding the integrand, and the

second inequality follows from the fact that for all π, π1 P Θ, z, z1 P Y , πpz1|zq ą 0

if and only π1pz1|zq ą 0 and f P ∆ΘpY ˆ Y q. The last inequality follows from the

definition of the total variation distance.

We now use Claim 4 to establish the theorem. Fix ε P R``. Rewrite the likelihood

ratio for distributions inside and outside of Mεpftq as follows:

µtpMεpftqq

1´ µtpMεpftqq
“

ş

πPMεpftq

śt
τ“1 πpyτ |yτ´1qdµ0pπq

ş

πRMεpftq

śt
τ“1 πpyτ |yτ´1qdµ0pπq

“

ş

πPMεpftq
expp

ř

z,z1PY ftpz, z
1q logpπpz|z1qqtqdµ0pπq

ş

πRMεpftq
expp

ř

z,z1PY ftpz, z
1q logpπpz|z1qqtqdµ0pπq

“

ş

πPMεpftq
expp´Hpft, πqtqdµ0pπq

ş

πRMεpftq
expp´Hpft, πqtqdµ0pπq

.
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Next we provide a lower bound on this likelihood ratio:

ş

πPMεpftq
expp´Hpft, πqtqdµ0pπq

ş

πRMεpftq
expp´Hpft, πqtqdµ0pπq

ě

ş

πPMpp1´αqεqpftq
expp´Hpft, πqtqdµ0pπq

expp´rminπPΘHpft, πq ` εstq

ě

ş

πPMpp1´αqεqpftq
expp´rminπPΘHpft, πq ` p1´ αqεstqdµ0pπq

expp´rminπPΘHpft, πq ` εstq

ě

ş

πPBpp1´αqε{2RqpMpftqq
expp´rminπPΘHpft, πq ` p1´ αqεstqdµ0pπq

expp´rminπPΘHpft, πq ` εstq

ěφ pp1´ αqε{2Rq
expp´pminπPΘHpft, πq ` p1´ αqεqtq

expp´rminπPΘHpft, πq ` εstq
“φ pp1´ αqε{2Rq exppαεtq .

Here the first and second inequalities follows from the definitions of Mε, the third

inequality from Claim 4, and the fourth inequality from φ positivity on Θ. The result

follows by setting Apεq “ φ pp1´ αqε{2Rq.

8.7 Counterexamples to Proposition 1

Example 4. (Connected Θ is not sufficient for Proposition 1.)

Let Y “ tA,B,Cu, Θ “ tp : ppAqppBqppCq “ 0uztp : ppAq, ppBq Ď p1{4, 3{4q, ppAq`

ppBq “ 1u, and µ̂0 be the uniform measure on Θ. Let µ10 “ δp1{4,3{4,0q{2` δp3{4,1{4,0q{2

and µ0 “ µ̂0{2 ` µ10{2. Suppose yt “ B if t is odd and yt “ A if t is even. At every

odd period t “ 2n` 1, Mpf2t`1q “ tp1{4, 3{4, 0qu, and for ε ă 1{12,

lim
tÑ8

µ2t`1pBεpMpf2t`1qqq

1´ µ2t`1pBεpMpf2t`1qqq
ď lim

tÑ8

µ2t`1pBεp1{4, 3{4, 0qq

µ2t`1pBεp3{4, 1{4, 0qq

ď lim
tÑ8

µ0pBεp1{4, 3{4, 0qq

µ0pt3{4, 1{4, 0uq

p1{4qtp3{4qt`1

p1{4qt`1p3{4qt

“ 3
µ0pBεp1{4, 3{4, 0qq

µ0pt3{4, 1{4, 0uq

so beliefs do not concentrate on the KL minimizer.

Example 5. (Convergence is not uniform over all paths)
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This example shows that even if Θ is convex, beliefs need not to converge to the KL

minimizers along paths where the empirical distribution converges to the boundary.

Let Y “ tA,B,Cu, Θ “ tp : ppAq “ 1{3u, and µ0 be the uniform measure on Θ.

When f2n “ p1´ 1{n, 1{2n, 1{2nq, Mpf2nq “ tp1{3, 1{3, 1{3qu for all n P N. However,

fix an ε P p0, 1{12q. Then

µ2npBεpMpf2nqqq

1´ µ2npBεpMpf2nqqq
ď

ş

pPBεpMpf2nqq
expp´Hpf2n, pq2nqdµ0ppq

ş

pRBεpMpf2nqq
expp´Hpf2n, pq2nqdµ0ppq

ď
µ0pBεpMpf2nqqq expp´Hpf2n, p1{3, 1{3, 1{3qq2nq

µ0pB2εpMpf2nqqzBεpMpf2nqqq expp´Hpf2n, p1{3, 1{3` 2ε, 1{3´ 2εqq2nq

“
µ0pBεpMpf2nqqq

µ0pB2εpMpf2nqqzBεpMpf2nqqq

p1{3qp1{3q

p1{3` 2εqp1{3´ 2εq

Ñn
µ0pBεptp1{3, 1{3, 1{3quqq

µ0pB2εptp1{3, 1{3, 1{3quqzBεptp1{3, 1{3, 1{3quqq

p1{3qp1{3q

p1{3` 2εqp1{3´ 2εq
,

so beliefs do not concentrate.

8.8 Proof of Lemma 2

Lemma 2. For every ε, ε1, κ P R`, t P N, ft P ∆ΘpY q, q̄ PMε1pftq, with ε1 ` κ ď ε,

µtpMεpftqq

1´ µtpMεpftqq
ě µ0

`

Bκ{Rpft,κ,q̄qpq̄q
˘

expppε´ κ´ ε1qtq

where

Rpft, κ, q̄q “ min

$

&

%

max
qPΠXBκpq̄q
zPsupp ft

1

qpzq
, 1

,

.

-

.

Proof. The proof follows from the following claims.

Claim 5. For all p, p̂ P Π, q P Ps

|L pq||pq ´ L pq||p̂q| ď max
zPsupp q

max

"

1

ppzq
,

1

p̂pzq

*

||p´ p̂||
8
.
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Proof.

|L pq||pq ´ L pq||p̂q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPsupp q

plog pppzqq ´ log pp̂pzqqq qpzq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPsupp q

ż ppzq

p̂pzq

1

r
dr qpzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

zPsupp q

max

"

1

p̂pzq
,

1

ppzq

*

|ppzq ´ p̂pzq| qpzq

ď max
zPsupp q

max

"

1

ppzq
,

1

p̂pzq

*

ÿ

zPsupp q

|ppzq ´ p̂pzq| qpzq ď max
zPsupp q

max

"

1

ppzq
,

1

p̂pzq

*

||p´ p̂||
8
,

where the last equality follows from the definition of the supremum distance.

Claim 6. For every p1 P Π, f P ∆ΘpY q, ε1, κ P R`, and q̄ PMε1pfq,

p1 P Bκ{Rpf,κ,q̄qpq̄q ùñ Lpf ||p1q ` ε` κ ě max
pPΘ

L pf ||pq .

Proof. Since R is bounded below by 1, p1 P Bκ{Rpf,κ,q̄qpq̄q implies p1 P Bκpq̄q. There-

fore, both p1, q̄ are in ΠXBκpq̄q, so from the definition ofR, maxzPsupp f max
!

1
p1pzq

, 1
q̄pzq

)

ď

Rpf, κ, q̄q. Moreover, p1 P Bκ{Rpf,κ,q̄qpq̄q implies that q̄ P Bκ{Rpf,κ,q̄qpp
1q XMε1pfq, so by

Claim 5

Lpf ||q̄q ´ Lpf ||p1q ď
κ

Rpf, κ, q̄q
max
zPsupp f

max

"

1

p1pzq
,

1

q̄pzq

*

ď
κ

Rpf, κ, q̄q
Rpf, κ, q̄q “ κ,

and hence

Lpf ||p1q ě Lpf ||q̄q ´ κ ě max
pPΠ

L pf ||pq ´ ε1 ´ κ.
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To prove the lemma, observe that

µtpMεpftqq

1´ µtpMεpftqq
ě

ş

Mκ`ε1 pftq
exppLpft||pqtqdµ0pdpq

ş

ΘzMεpftq
exppLpft||pqtqdµ0pdpq

ě
expppmaxpPΘ Lpft||pq ´ κ´ ε

1q tq

expppmaxpPΘ Lpft||pq ´ εq tq

µ0pMκ`ε1pftqq

µ0pΘzMεpftqq

“ expppε´ κ´ ε1qtq
µ0pMκ`ε1pftqq

µ0pΘzMεpftqq

ě expppε´ κ´ ε1qtqµ0pBκ{Rpft,κ,q̄qpq̄qq.

The first inequality follows from ε1 ` κ ď ε, the second from pointwise bounding

the integrands and the definition of Mε, and the third from Claim 6.

8.9 Proof of Proposition 2

Proposition 2. If L is uniformly strongly m-concave on F then for every φ : R`` Ñ
R``

µt pBεpθ
˚pftqqq

1´ µt pBεpθ˚pftqqq
ě φ

´ε

4

¯

exp

"

t
ε2m

2

*

for all µ0 that are φ positive on Θ Ď R, ε P p0, 1q, t P N, and ft P ∆ΘpY q X F .

Proof. We claim first that for every θ P Θ and f P ∆ΘpY q XF , ∇θLpf ||pθ˚pfqq
T pθ ´

θ˚pfqq ď 0. If not,

0 ă ∇θLpf ||pθ˚pfqq
T
pθ ´ θ˚pfqq “ lim

kÑ0

Lpf ||pθ˚pfq`kpθ´θ˚pfqqq ´ Lpf ||pθ˚pfqq

k
.

But this means that there is k̂ P p0, 1q such that Lpf ||pθ˚pfq`k̂pθ´θ˚pfqqq´Lpf ||pθ˚pfqq ą

0. As Θ is convex, p1 ´ k̂qθ˚pfq ` k̂θ belongs to Θ, but then θ˚pfq would not be a

likelihood maximizer.

Next, as L is uniformly strongly m-concave,

Lpf ||pθq ´ Lpf ||pθ˚pfqq ď ∇θLpf ||pθ˚pfqqpθ ´ θ
˚
pfqq ´

m

2
|θ ´ θ˚pfq| ď ´

m

2
|θ ´ θ˚pfq| .

The statement is trivially true if Θ Ď Bεpθ
˚pfqq. If not, since Lpf ||pp¨qq is concave
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and Θ is convex, at least one of

θ ` ε P argmax
θ:|θ´θ˚pfq|ěε

Lpf ||pθq,

and

θ ´ ε P argmax
θ:|θ´θ˚pfq|ěε

Lpf ||pθq

holds. We prove the result in the first case, the proof for the other case is symmetric.

Let θ̄, θ1 P Θ be such that

θ̄ ě θ˚pfq ` ε ě θ˚pfq `
ε

2
ě θ1 ě θ˚pfq.

We have

Lpf ||pθ̄q ´ Lpf ||pθ1q ď

„

Lθpf ||pθ1q `max
θ̂PΘ

Lθθpf ||pθ̂qpθ̄ ´ θ
1
q{2



pθ̄ ´ θ1q

ď Lθpf ||pθ1qpθ̄ ´ θ
1
q ´

m

2
pθ̄ ´ θ1q2

ď Lθpf ||pθ˚pfqqpθ̄ ´ θ
1
q ´

m

2
pθ̄ ´ θ1q2 ď ´

m

2
pθ̄ ´ θ1q2 ď ´

ε2m

2
,

where the first inequality follows from the intermediate value theorem, the second

from the strong m-concavity of L, and the third by the concavity of L in θ. Therefore

µt pBεpθ
˚pfqqq

1´ µt pBεpθ˚pfqqq
ě
µt
`“

θ˚pfq, θ˚pfq ` ε
2

‰˘

1´ µt pBεpθ˚pfqqq

ě
µ0

`“

θ˚pfq, θ˚pfq ` ε
2

‰˘

1´ µ0 pBεpθ˚pfqqq
exp

ˆ

t
ε2m

2

˙

ě µ0

´”

θ˚pfq, θ˚pfq `
ε

2

ı¯

exp

ˆ

t
ε2m

2

˙

“ φ
´ε

4

¯

exp

ˆ

t
ε2m

2

˙

.

8.10 Proof of Proposition 3

Proposition 3. Suppose that Θ Ď R is convex and that µ0 is φ positive on Θ. If L

is uniformly strongly m-concave on F then for all ε ą 0 there is a T P N such that
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dpA˚pµtq, A
˚pMpftqqq ď ε for every t ą T and every ft P F .

Proof. Since A˚ is uniformly continuous, there exists ε1 P R`` such that µt P Bε1pνq

implies dpA˚pµtq, A
˚pνqq ď ε. Since Θ Ď Rk, the topology of weak convergence on

∆pΘq is metrized by the Lévy–Prokhorov metric. By the definition of this metric,

||ν ´ δp||LP ď ε1 whenever

νpBε1{2ppqq

1´ νpBε1{2ppqq
ě

1´ ε1{2

ε1{2
.

The statement follows from applying Proposition 2 and choosing

T ě

2 log

ˆ

1´ ε1{2

φpε1{8qε1{2

˙

pε1q2m{8
.

8.11 Example 6

Example 6. (Unlimited Bernoulli trials) Suppose the outcome y corresponds to the

number of Bernoulli trials needed to get one success. If the agent believes the trials

are i.i.d with parameter pθ, their subjective distribution for outcome y is pθpyq “

θp1´ θqy´1. Suppose that all success probabilities are considered possible, so that Π “

tpθ : θ P r0, 1su. Then

Lpf ||pθq “
8
ÿ

z“1

fpzqrpz ´ 1q logp1´ θq ` logpθqs “ logp1´ θqz̄ ` log pθq ´ log p1´ θq .

That L is uniformly strongly 1-concave immediately follows from taking derivatives:

BLpf ||pθq

Bθ
“ ´

z̄

p1´ θq
`

1

θ
`

1

1´ θ
.

BLpf ||pθq
2

B2θ
“ ´

z̄

p1´ θq2
´

1

θ2
`

1

p1´ θq2
.
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The unique log-likelihood maximizing parameter is θ˚pfq “ 1{z̄. Suppose that the prior

belief µ is such that

lim
θÑ0

µ
´”

0, θ `
b

2θ
1´θ

ı¯

exp
“

Lpδ1{θ||p1{2q ´ Lpδ1{θ||pθq
‰ “ 0. (11)

An example that satisfies the restriction is given by the CDF

F pθq “

$

&

%

pexp
“

´ logp1´ θq1
θ
´ log

`

θ
1´θ

˘

` 1
θ

log 1
2

‰

q2 for θ ď 1{10

F p 1
10
q ` p10θ

9
´ 1

9
qp1´ F p 1

10
qq for θ ą 1{10.

The restriction implies there cannot be A and g such that

µ1pM1{2pδcqq

1´ µ1pM1{2pδcqq
ě A exp pgq @c P R``, (12)

so that the conclusion of Theorem 1 does not hold for t “ 1. To see why equation

(12) cannot be satisfied, observe that for every K ą 0, there are z “ 1{c, c ą 0 such

that

µ1pM1{2pδcqq

1´ µ1pM1{2pδcqq
ď

µ1

´”

0, 1
c
`

b

2c
1´c

ı¯

µ1

`“

1
4
, 1

2

‰˘ ď

µ
´”

0, 1
c
`

b

2c
1´c

ı¯

µ
`“

1
4
, 1

2

‰˘

exp
`

L
`

δc||p1{c

˘˘

exp
´

L
´

δc||p 1
2

¯¯

“

µ
´”

0, 1
c
`

b

2c
1´c

ı¯

µ
`“

1
4
, 1

2

‰˘

exp
`

logp1´ cq1
c
´ log

`

c
1´c

˘˘

exp
`

1
c

log 1
2

˘ ď K

where the last inequality follows because equation (11) implies the LHS is arbitrarily

close to 0 for sufficiently high c.
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