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Abstract

Player-Compatible Equilibrium (PCE) imposes cross-player restrictions on the mag-
nitudes of the players’ “trembles” onto different strategies. These restrictions capture
the idea that trembles correspond to deliberate experiments by agents who are unsure
of the prevailing distribution of play. PCE selects intuitive equilibria in a number of
examples where trembling-hand perfect equilibrium (Selten, 1975) and proper equi-
librium (Myerson, 1978) have no bite. We show that rational learning and weighted
fictitious play imply our compatibility restrictions in a steady-state setting.

Keywords: non-equilibrium learning, equilibrium refinements, trembling-hand perfect equi-
librium, weighted fictitious play.

∗We thank Alessandro Bonatti, Dan Clark, Glenn Ellison, Ben Golub, Shengwu Li, Dave Rand, Alex
Wolitzky, Muhamet Yildiz, two anonymous referees, and the editor for valuable conversations and comments.
We thank National Science Foundation grant SES 1643517 for financial support. Cuimin Ba and Giacomo
Lanzani provided excellent research assistance. Kevin He thanks the California Institute of Technology for
hospitality when some of the work on this paper was completed.
†Department of Economics, MIT. Email: drew.fudenberg@gmail.com
‡Department of Economics, University of Pennsylvania. Email: hesichao@gmail.com

mailto:drew.fudenberg%40gmail.com
mailto:hesichao%40gmail.com


1 Introduction

Starting with Selten (1975), a number of papers have used the device of vanishingly small
trembles to refine the set of Nash equilibria. This paper introduces player-compatible equi-
librium (PCE), which extends the tremble-based approach by imposing restrictions on how
one player’s trembles compare to those of another. We say player i is more player-compatible
with strategy s∗i than player j is with strategy s∗j if whenever s∗j is optimal for j against
some totally mixed correlated strategy distribution σ, s∗i is strictly optimal for i against any
other totally mixed correlated strategy distribution σ̂ matching σ in terms of the strategies
of players other than i and j. PCE requires that i is more likely to tremble onto s∗i than j
onto s∗j whenever i is more player-compatible with s∗i than j is with s∗j . This solution con-
cept is invariant to the utility representations of players’ preferences over game outcomes,
and provides a link between tremble-based refinements and learning-in-games. As we will
explain, PCE interprets trembles not as errors, but as players’ deliberate experiments to
learn how others play. Its cross-player tremble restrictions derive from an analysis of the
relative frequencies of experiments that different players choose to undertake over time under
a number of commonly used learning policies.

Section 2 defines player compatibility and PCE, studies their basic properties, and proves
that PCE exist in all finite games. The player compatibility relation is easiest to satisfy when
i and j are “non-interacting,” meaning that their payoffs do not depend on each other’s play.
But PCE can have bite even when all players interact with each other, provided that the
interactions are not too strong. Moreover, as shown by the examples in Section 3, PCE
can rule out seemingly implausible equilibria that other tremble-based refinements such as
trembling-hand perfect equilibrium (Selten, 1975) and proper equilibrium (Myerson, 1978)
cannot eliminate.

One of these examples is a “link-formation game,” where players are split into two sides,
and each player decides whether or not to pay a cost to be Active and form links with all
of the active players on the other side. Players with lower costs are more compatible with
Active and so experiment with it more. In the “anti-monotonic” version of the game, players
who incur a higher private cost of link formation give lower benefits to their linked partners;
in the “co-monotonic” version, higher cost players give others higher benefits. In the anti-
monotonic version the only PCE outcome is for all players to choose Active, because the
experimentation of the low-cost players induces all players on the other side to be Active
as well. On the other hand, both “all Active” and “all Inactive” are PCE outcomes in the
co-monotonic case. In contrast, other equilibrium refinements make the same predictions
whether payoffs are anti-monotonic or co-monotonic.
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We provide a motivation for player-compatible trembles in a learning framework where
agents are born into different player roles and repeatedly play a fixed game. They face some
time-invariant distribution of opponents’ play, as they would in a steady state of a model
where a continuum of anonymous agents are randomly matched each period. We compare
the experimentation behavior of agents in different player roles who have the same expected
lifespan and who follow “index learning policies.” These policies assign a numerical index to
each strategy that only depends on data from periods when that strategy was used, and play
the strategy with the highest index. We formulate an index compatibility condition for index
policies, and use a coupling argument to show that any index policies for i and j satisfying this
index-compatibility condition for strategies s∗i and s∗j will lead to i experimenting relatively
more with s∗i than j with s∗j over their lifetimes against any distribution of opponents’ play.
In particular, when agents use such policies, population i uses s∗i more often than population
j uses s∗j in every steady state of the learning framework.

Index compatibility provides a general condition for i to choose s∗i more often than j

chooses s∗j . This condition applies across a range of observation structures and (not neces-
sarily optimal) learning policies. We link player compatibility with index compatibility for
two canonical learning policies in a class of “factorable games.” In these games, playing a
strategy si reveals how opponents played at all the information sets that are relevant for i’s
payoff when they play si, but gives no information about the payoffs of i’s other strategies.
We show that player compatibility implies index compatibility for the rational learning pol-
icy given by the Gittins index, and for the weighted fictitious play heuristic (Cheung and
Friedman, 1997). Interpreting trembles as play frequencies during a learning process, our
analysis provides a learning foundation for the cross-player tremble restrictions that are this
paper’s main innovation. In the link-formation game, for example, it justifies the idea that
low-cost agents assign a higher tremble probability to Active than high-cost ones do.

1.1 Related Work

1.1.1 Tremble-Based Refinements

Tremble-based solution concepts date back to Selten (1975), who thanks Harsanyi for sug-
gesting them. These solution concepts consider totally mixed strategy profiles where players
do not play an exact best reply to their opponents’ strategies, but instead assign positive
probabilities to all strategies as the result of mistakes or “trembles”. Different solution con-
cepts in this class consider different kinds of trembles, but they all make predictions based
on the limits of these perturbed strategy profiles as the probability of trembling tends to
zero. Since we compare PCE to these refinements below, we summarize them here for the
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reader’s convenience.
An ε-perfect equilibrium is a totally mixed strategy profile where every non-best reply

has weight less than ε. A limit of εt-perfect equilibria where εt → 0 is called a trembling-hand
perfect equilibrium. An ε-proper equilibrium is a totally mixed strategy profile σ where for
every player i and strategies si and s′i, if i does strictly better with s′i than si when −i
play σ−i, then σi(si) < ε · σi(s′i). A limit of εt-proper equilibria where εt → 0 is called a
proper equilibrium; in this limit a more costly tremble is infinitely less likely than a less
costly one, regardless of the cost difference. Approachable equilibrium (Van Damme, 1987)
is also based on the idea that strategies with worse payoffs are played less often. It too
is the limit of εt-perfect equilibria, but where the players pay control costs to reduce their
tremble probabilities. When these costs are “regular,” all of the trembles are of the same
order. Because PCE does not require that the less likely trembles are infinitely less likely
than more likely ones, it is closer to approachable equilibrium than to proper equilibrium.
The strategic stability concept of Kohlberg and Mertens (1986) is also defined using trembles,
but applies to components of Nash equilibria as opposed to single strategy profiles, and asks
for robustness to all converging sequences of trembles instead of just to one of them

Unlike PCE, proper equilibrium and approachable equilibrium do not impose cross-player
restrictions on the relative probabilities of various trembles. For this reason, these equilib-
rium concepts reduce to perfect Bayesian equilibrium in signaling games with two possible
signals, such as the beer-quiche game of Cho and Kreps (1987), when each type of the
sender is viewed as a different player. They do impose restrictions when applied to the ex-
ante strategic form of the game, i.e., at the stage before the sender has learned their type.
However, as Cho and Kreps (1987) point out, evaluating the cost of mistakes at the ex-ante
stage of a signaling game means that the interim losses are weighted by the prior distribution
over sender types, so that less likely types are more likely to tremble. In addition, applying a
different positive linear rescaling to each type’s utility function preserves every type’s prefer-
ence over lotteries on outcomes, but changes the sets of proper and approachable equilibria,
while such utility rescalings have no effect on the set of PCE. In light of these issues, we
always apply tremble-based refinements at the interim stage in Bayesian games.

Like PCE, extended proper equilibrium (Milgrom and Mollner, 2019) places restrictions
on the relative probabilities of tremble by different players, but it does so in a different way:
An extended proper equilibrium is the limit of (β,εt)−proper equilibria, where β = (β1, ...βI)
is a strictly positive vector of utility re-scaling, and σi(si) < εt · σj(sj) if player i’s rescaled
loss from si (compared to the best response) is less than j’s loss from sj. In a signaling
game with only two possible signals, every Nash equilibrium where each sender type strictly
prefers not to deviate from their equilibrium signal is an extended proper equilibrium at
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the interim stage, because suitable utility rescalings for the types can lead to any ranking
of their utility costs of deviating to the off-path signal. By contrast, Proposition 4 shows
that every PCE must satisfy the compatibility criterion of Fudenberg and He (2018), which
has bite even in binary signaling games such as the beer-quiche example of Cho and Kreps
(1987). So an extended proper equilibrium need not be a PCE, a fact that Examples 1 and 2
further demonstrate. Conversely, because extended proper equilibrium makes some trembles
infinitely less likely than others, it can eliminate some PCE.1

1.1.2 The Learning Foundations of Equilibrium

This paper builds on the work of Fudenberg and Levine (1993) and Fudenberg and Kreps
(1995, 1994) on learning foundations for self-confirming and Nash equilibrium. It is also
related to recent work that provides explicit learning foundations for various equilibrium
concepts that reflect ambiguity aversion, misspecified priors, or model uncertainty, such as
Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2016), Battigalli, Francetich, Lan-
zani, and Marinacci (2019), Esponda and Pouzo (2016), Fudenberg, Lanzani, and Strack
(2020) and Lehrer (2012). Unlike those papers, we focus on characterizing the relative rates
with which different players experiment with strategies that are not myopically optimal. For
this reason our analysis of learning is closer to Fudenberg and Levine (2006), Fudenberg
and He (2018), and Clark and Fudenberg (2020). However, unlike in those papers, we do
not show that in the limiting strategy profile players respond to other players trembles or
experimentation probabilities as PCE predicts. We say more about this difference in Section
5.5.

Our investigation of learning dynamics significantly expands on that of Fudenberg and
He (2018), which focused on a particular learning policy (rational Bayesians) in a restricted
set of games (signaling games). In contrast, our analysis applies more broadly to any index
policies that satisfy an index compatibility condition. We show that two strategies of i and
j ranked by player compatibility lead to index-compatible learning policies in the class of
“factorable games” defined in Section 5, under both rational learning and weighted ficti-
tious play. We develop new tools to deal with new issues that arise in these more general
games. For instance, Fudenberg and He (2018) compare the Gittins indices of different
sender types in signaling games using the fact that any stopping time (for the auxiliary
optimal-stopping problem defining the index) of the less-compatible type is also feasible for
the more-compatible type. But our general setting allows player roles to interact, so it is
not always valid to exchange the stopping times of two different roles. A feasible stopping
time for i in the auxiliary problem only conditions on past observations of −i’s play, but the

1Example available on request.
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optimal stopping time for j 6= i may condition on past observations of i’s play in environ-
ments where i and j interact. We deal with this problem by showing how i can nevertheless
construct a feasible stopping time that mimics an infeasible one of j.Moreover, when a player
faces more than one opponent, the player’s optimal experimentation policy may lead them
to observe a correlated distribution of opponents’ play, even though the opponents do not
actually play correlated strategies. This issue of endogenous correlation requires us to define
PCE in terms of correlated play, which we discuss further in Section 8.2.

In methodology the paper is related to other work on active learning and experimentation.
In single-agent settings, these include Doval (2018), Francetich and Kreps (2020a,b), and
Fryer and Harms (2017). In multi-agent settings additional issues arise such as free-riding
and encouraging others to learn, see e.g., Bolton and Harris (1999), Keller et al. (2005), Klein
and Rady (2011), Heidhues, Rady, and Strack (2015), Frick and Ishii (2015), Halac, Kartik,
and Liu (2016), Strulovici (2010), and the survey by Hörner and Skrzypacz (2016). Unlike
most models of multi-agent bandit problems, our agents only learn from personal histories,
not from the actions or histories of others. Our focus is the comparison of experimentation
policies under different payoff parameters, which is central to PCE’s cross-player tremble
restrictions.

2 Player Compatible Equilibrium

In this section, we develop a concept of the relative “compatibility” between two player-
strategy pairs and discuss its properties. We then introduce PCE, which builds cross-player
tremble restrictions based on this compatibility relation into an equilibrium concept.

Like proper equilibrium, PCE is defined on the strategic form of a game. Of course many
extensive forms can have the same strategic form, and the learning motivation for PCE and
player-compatible trembles does depend on the underlying extensive form and the feedback
structure, but we postpone these issues until Section 4.

2.1 Player Compatibility

Consider a game in its strategic form with a finite set of players I, a finite strategy set Si
with |Si| ≥ 2 for each player i, and utility functions ui : S → R for each i where S := ×iSi.
Let ∆(Si) denote the set of mixed strategies for player i, and let ∆◦(S) represent the interior
of ∆(S), the set of full-support correlated strategy distributions. For each player i, strategy
si ∈ Si, and σ ∈ ∆◦(S), let Ui(si, σ) := ∑

(ŝi,ŝ−i)∈S ui(si, ŝ−i) · σ(ŝi, ŝ−i) be i’s expected payoff
from using si when −i’s actions are drawn from the −i marginal of σ. (Although Ui(si, σ)
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only depends on σ through its −i marginal, we make Ui a function of σ to simplify the next
definition.)

We now define an incomplete or partial order on strategy-player pairs.

Definition 1. For player i 6= j and strategies s∗i ∈ Si, s∗j ∈ Sj, i is more player compatible
with s∗i than j is with s∗j , written as s∗i % s∗j ,2 if for every totally mixed correlated strategy
distribution σ ∈ ∆◦(S) with

Uj(s∗j , σ) = max
s′j∈Sj

Uj(s′j, σ),

we get
Ui(s∗i , σ̃) > max

s′′i ∈Si\{s∗i }
Ui(s′′i , σ̃)

for every totally mixed correlated strategy distribution σ̃ ∈ ∆◦(S) satisfying marg−ij(σ) =
marg−ij(σ̃).

In words, if s∗j is weakly optimal for the less-compatible j against σ, then s∗i is strictly
optimal for the more-compatible i against any σ̃ whose marginal on −ij’s play agrees with
the marginal of σ. The compatibility condition does not depend on the particular expected
utility functions used to represent the players’ preferences over probability distributions on
S.

The definition of player compatibility simplifies in the following special case. A game
has a multipartite structure if the set of players I can be divided into C mutually exclusive
classes, I = I1 ∪ ... ∪ IC , in such a way that whenever i and j belong to the same class
i, j ∈ Ic, (1) they are non-interacting, meaning neither player’s payoff depends on the other’s
strategy; and (2) they have the same strategy set, Si = Sj, written also as Sc. Every Bayesian
game has a multipartite structure when each type is viewed as a different player. As another
example, we will later use a complete-information game with a multipartite structure, the
link-formation game (Example 2), to illustrate both PCE and the learning motivation for
player-compatible trembles.

In a game with multipartite structure with i, j ∈ Ic, suppose s∗c ∈ Sc and σ ∈ ∆◦(S),
and use s∗ic to refer to i’s copy of s∗c and s∗jc to refer to j’s copy. Then both Ui(s∗ic, σ) and
Uj(s∗jc, σ) only depend on the −ij marginal of σ. The definition of s∗ic % s∗jc reduces to: for
every totally mixed correlated σ with σ−ij ∈ ∆◦(S−ij),

Uj(s∗jc, σ) = max
s′j∈Sj

Uj(s′j, σ)

2This notation is unambiguous provided i and j have disjoint strategy sets. When i and j share some
strategies, we will attach player subscripts.

6



implies
Ui(s∗ic, σ) > max

s′′i ∈Si\{s∗ic}
Ui(s′′i , σ).

Definition 1 is a comparison between i and j’s best responses when they face the same
distribution over −ij’s play, regardless of each other’s plays. In general, this requires us to
consider i and j’s respective best responses to pairs of mixed strategy distributions σ, σ̃ ∈
∆◦(S) that match on the −ij marginal. But if i and j are non-interacting, then we only
need to compare how i and j best respond to the same σ.

We show in Theorem 2 that in “factorable” games, play in the learning model is con-
strained by the player compatibility relation. (The learning model also has additional impli-
cations not captured by player compatibility for specific learning policies or specific games.
But in this paper we focus on what we can rule out with a refinement concept based on
player compatibility.)

This conclusion is stronger when the compatibility relation is more complete, and since
∆◦(S) ⊆ ∆(S), the compatibility relation is more complete than an alternative definition
that replaces totally mixed strategy distributions with any correlated strategy distribution.
Thus Theorem 2 would continue to hold with this alternative definition; we restrict to totally
mixed strategies in the definition of PCE to get a sharper conclusion. The restriction fits with
our assumptions in the learning model that all agents have full-support prior beliefs about
opponents’ strategies (for rational Bayesians) or strictly positive initial counts (for weighted
fictitious play). Conversely, since any profile of totally mixed marginal distributions on (Si)i∈I
generates a totally mixed product distribution on S, our definition of compatibility ranks
fewer strategy-player pairs than an alternative definition that only considers mixed strategy
profiles with independent mixing between different opponents.3 We need to use the more
stringent definition to match the microfoundations of our compatibility-based cross-player
restrictions: the definition that only considers independent mixing imposes restrictions that
the learning model does not imply.4

The compatibility relation is transitive, as the next proposition shows.

Proposition 1. Suppose s∗i % s∗j % s∗k where s∗i , s∗j , s∗k are strategies of distinct players i, j, k.
Then s∗i % s∗k.

The compatibility relation is also asymmetric, except in some “corner cases.” Say that
3Formally, this alternative definition would replace “totally mixed correlated strategy distributions” with

“independently and totally mixed strategy profiles” in the definition of s∗i % s∗j .
4One form of our microfoundation for player-compatible trembles considers rational learners who choose

strategies based on their Gittins index. Even for learners who hold independent beliefs about opponents’ play
at different information sets, a strategy’s Gittins index need not be its expected payoff against independent
randomizations by the opponents, but we show that the index is always the expected payoff against some
correlated strategy distribution.
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a strategy is strictly interior dominant if it is strictly better than any other strategy versus
any totally mixed strategy distribution of the opponents, and similarly say that it is strictly
interior dominated5 if it is strictly dominated versus totally mixed opponent strategy distri-
butions.

Proposition 2. If s∗i % s∗j , then at least one of the following is true: (i) s∗j 6% s∗i ; (ii) s∗i is
strictly interior dominated for i and s∗j is strictly interior dominated for j; (iii) s∗i is strictly
interior dominant for i and s∗j is strictly interior dominant for j.6

The proofs of Propositions 1 and 2 are straightforward; they can be found in the Online
Appendix. It is also simple to show that in two-player games, s∗i % s∗j only when s∗j is strictly
interior dominated or s∗i is strictly interior dominant. So the player-compatibility relation is
mostly interesting in games with three or more players.7

2.2 Player-Compatible Trembles and PCE

PCE is a tremble-based solution concept. It builds on and modifies Selten (1975)’s definition
of trembling-hand perfect equilibrium (in the strategic form) as the limit of equilibria of
perturbed games in which agents are constrained to tremble, so we begin by defining our
notation for the trembles and the associated constrained equilibria.

Definition 2. A tremble profile ε assigns a positive number ε(si) > 0 to every player i and
every pure strategy si ∈ Si. Given a tremble profile ε, write Σε

i for the set of ε-strategies of
player i, namely:

Σε
i := {σi ∈ ∆(Si) : ∀si ∈ Si, σi(si) ≥ ε(si)} .

Following Selten (1975), we call the strategy profile (σ◦i )i∈I an ε-constrained equilibrium if
for each i,

σ◦i ∈ arg max
σi∈Σεi

ui(σi, σ◦−i).

5Recall that a strategy can be strictly dominated even though it is not strictly dominated by any pure
strategy.

6The converse of this statement is not true since the relation % is not in general complete: we could have
neither s∗i % s∗j nor s∗j % s∗i .

7Along the same lines, there is an equivalent definition of player compatibility based on strict dominance
in auxiliary two-player games. For two players i 6= j and every completely mixed σ−ij , let Γ(σ−ij) be the two-
player game where where i and j have the same payoff functions as in the original game, and simultaneously
choose strategies from Si and Sj after they observe a realization s−ij drawn from σ−ij . In this auxiliary
game, denote for every si ∈ Si by s̄i the constant strategy of i that plays si regardless of the realized s−ij ,
and define for every sj ∈ Sj the constant strategy s̄j analogously. Then s∗i % s∗j if and only if in every game
Γ(σ−ij), either s̄∗i strictly interior dominates every other constant strategy s̄i 6= s̄∗i , or s̄∗j is strictly interior
dominated by some constant strategy s̄j 6= s̄∗j .
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Note that Σε
i is compact and convex. It is also non-empty when ε is close enough to

0. By standard results, whenever ε is small enough so that Σε
i is non-empty for each i, an

ε-constrained equilibrium exists.
The key building block for PCE is ε-PCE, which is an ε-constrained equilibrium where

the tremble profile is “co-monotonic” with % in the following sense:

Definition 3. Tremble profile ε is player compatible if for all players i, j and strategies s∗i , s∗j
such that s∗i % s∗j , we have ε(s∗i ) ≥ ε(s∗j). An ε-constrained equilibrium where ε is player
compatible is called a player-compatible ε-constrained equilibrium (or ε-PCE).

The condition on ε says the minimum weight i could assign to s∗i is no smaller than the
minimum weight j could assign to s∗j in the constrained game,

min
σi∈Σεi

σi(s∗i ) ≥ min
σj∈Σεj

σj(s∗j).

This is a “cross-player tremble restriction,” that is, a restriction on the relative probabilities
of trembles by different players. Note that this restriction, like the player compatibility
relation, depends on the players’ preferences over distributions on S but not on the particular
utility representation. This invariance property distinguishes player-compatible trembles
from other models of stochastic behavior such as the stochastic terms in logit best responses.
Our learning foundation will interpret these trembles not as mistakes, but as deliberate
experiments by agents trying to learn how others play.

As is usual for tremble-based equilibrium refinements, we now define PCE as the limit of
a sequence of ε-PCE where ε→ 0.

Definition 4. A strategy profile (σ∗i )i∈I ∈ ×i∆(Si) is a player-compatible equilibrium (PCE)
if there exists a sequence of player-compatible tremble profiles ε(t) → 0 and an associated
sequence of strategy profiles (σ(t)

i )i∈I, where each σ(t) is an ε(t)-PCE, such that σ(t) → σ∗.

The cross-player restrictions embodied in player-compatible trembles translate into anal-
ogous restrictions on PCE, as shown in the next result.

Proposition 3. For any PCE σ∗, player k, and strategy s̄k such that σ∗k(s̄k) > 0, there exists
a sequence of totally mixed strategy distributions σ(t)

−k → σ∗−k such that
(i) for every pair i, j 6= k with s∗i % s∗j ,

lim inf
t→∞

σ
(t)
i (s∗i )
σ

(t)
j (s∗j)

≥ 1;

and (ii) s̄k is a best response for k against every σ(t)
−k .
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The proof is in the Appendix, as are the proofs of subsequent results except where
otherwise stated.

Treating each σ
(t)
−k as a totally mixed approximation of σ∗−k, in a PCE each player k

essentially best responds to a totally mixed strategy distribution that respects player com-
patibility.

It is easy to show that every ε-PCE respects player compatibility up to the “adding up
constraint” that probabilities on different strategies must sum up to 1 and i must place
probability no smaller than ε(s′i) on strategies s′i 6= s∗i . The “up to” qualification disappears
in the ε(t) → 0 limit because the required probabilities on s′i 6= s∗i tend to 0.

Since PCE is defined as the limit of ε-equilibria for a restricted class of trembles, the set
of PCE is a subset of trembling-hand perfect equilibria; the next result shows this subset
is not empty. It uses the fact that the tremble profiles with the same lower bound on the
probability of each action satisfy the compatibility condition in any game.

Theorem 1. A PCE exists in every finite game.

2.3 Learning and Player-Compatible Trembles

Sections 4 and 5 provide a microfoundation for the player-compatible trembles that form
the core innovation of PCE in a model with overlapping generations of agents in each player
role. To preview the results, Section 4 presents a general sufficient condition for agents in
the role of player i to experiment more with s∗i than player-j agents do with s∗j over their
lifetimes that is applicable across a range of learning environments and learning policies.
Section 5 completes the story by showing that in a class of games that includes our Section 3
examples, the player-compatibility condition s∗i % s∗j implies Section 4’s sufficient condition
for the rational learning policy and for weighted fictitious play. To analyze rational behavior,
we consider agents who start with the same prior over the play of their opponents. We believe
we could extend this conclusion to agents with slightly different priors using a stronger notion
of player compatibility, but we do not pursue this result here.8

Like any game-theoretic equilibrium concept, PCE provides a reduced form that allows
analysts to study comparative statics in various applications without needing to solve the
dynamic learning problem anew in each of them. PCE considers the limit as trembles tend
to zero for all players, which imposes some extra restrictions that we do not microfound. In
particular, the right analog to vanishingly small trembles in the learning framework depends

8To do this, we would measure the “strength” of the compatibility ranking by saying that i is λ more
player-compatible with s∗i than j is with s∗j if the inequality in the definition s∗i % s∗j holds for all σ̃ ∈ ∆◦(S)
satisfying ||marg−ij(σ)−marg−ij(σ̃)|| ≤ λ. We believe that our learning foundation would extend to cases
where the agents’ priors are sufficiently close compared to λ.
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on details of the agents’ learning policies such as whether i, j experiment enough to provide
data for −ij, as well as on fine structure of the priors near the boundary of the probability
simplex (Fudenberg, He, and Imhof, 2017). Our mirofoundation focuses on the novel cross-
player implications of learning that are implied by a broad class of learning policies in all
steady states.

In the Online Appendix, we expand the game to include duplicate copies of some of the
original strategies, where two strategies are duplicates if they provide exactly the same payoff
and exactly the same information.9 If s∗i % s∗j in the original game, then in the expanded
game we impose the cross-player tremble restriction that the probability of i trembling onto
the set of copies of s∗i is larger than the probability of j trembling onto the set of copies of s∗j .
The way we update our PCE definition in the presence of duplicates fits our interpretation of
trembles as experimentation frequencies: As we show, the sum of i’s lifetime experimentation
frequencies with all duplicates of s∗i is independent of the number of duplicates under both
rational behavior and weighted fictitious play. We show that the set of PCE in the expanded
game with these new tremble restrictions is the same as the set of PCE in the original game.

3 Examples of PCE

In this section, we study examples of games where PCE rules out unintuitive Nash equilibria.
We will also use these examples to distinguish PCE from existing refinements.

3.1 The Restaurant Game

We start with a complete-information game where PCE differs from other solution concepts.

Example 1. There are three players in the game: a restaurant (r), a food critic (c), a
regular diner (d). Simultaneously, the restaurant decides between ordering high-quality (H)
or low-quality (L) ingredients, while the critic and the diner decide whether to go eat at the
restaurant (R) or order pizza (Z) and eat at home. The utility from Z is normalized to 0.
If both customers choose Z, the restaurant also gets 0 payoff. Otherwise, the restaurant’s
payoff depends on the ingredient quality and clientele. Choosing L yields a profit of +2 per
customer while choosing H yields a profit of +1 per customer. In addition, if the food critic
is present she will write a review based on ingredient quality, which affects the restaurant’s
payoff by ±2.5. Each customer gets a payoff of x < −1 from consuming food made with
low-quality ingredients and a payoff of y > 0.5 from consuming food made with high-quality

9Two strategies with the same payoffs that give different information about opponents’ play are not
equivalent in our learning model.
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ingredients, while the critic gets an additional +1 payoff from going to the restaurant and
writing a review (regardless of food quality). Customers each incur a 0.5 congestion cost if
they both go to the restaurant. We depict this situation in the game tree below, with c and
d subscripts denoting strategies of the critic and the diner.

1.5
x+0.5
x-0.5

Critic

Diner

Restaurant

-0.5
x+1
0

4.5
y+0.5
y-0.5

1
0
y

0
0
0

Rc
Rc ZcZc

Rd Rd Rd RdZd Zd Zd

LH

Zd

2
0
x

0
0
0

3.5
y+1
0

The strategies of the two customers affect each other’s payoffs, so the critic and the diner
are not non-interacting players. In particular, they cannot be mapped into two types of the
same agent in a Bayesian game.

The strategy profile (L, Zc, Zd) is a proper equilibrium10, sustained by the restaurant’s
belief that when at least one customer plays R, it is far more likely that the diner deviated
to patronizing the restaurant than the critic, even though the critic has a greater incentive
to go to the restaurant since she gets paid for writing reviews. It is also an extended proper
equilibrium.11

We claim that Rc % Rd. Note that for any totally mixed correlated strategy distribution
σ that makes the diner indifferent between Zd and Rd, we must have uc(Rc, σ̃−c) ≥ 0.5 for
any distribution σ̃ that agrees with σ in terms of the restaurant’s play. The critic’s utility
from Rc is minimized when the diner chooses Rd with probability 1, but even then the critic
gets 0.5 higher utility from going to a crowded restaurant than the diner gets from going to
an empty restaurant, holding fixed food quality at the restaurant. This shows Rc % Rd.

Whenever σ(t)
c (Rc)/σ(t)

d (Rd) > 1
4 , the restaurant strictly prefers H over L. Thus by

Proposition 3, there is no PCE where the restaurant plays L with positive probability. �
10Recall that proper and perfect equilibrium coincide in games with only 2 strategies per player.
11(L, Zc, Zd) is an extended proper equilibrium, because scaling the critic’s payoff by a large positive

constant makes it more costly for the critic to deviate to Rc than for the diner to deviate to Rd.
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3.2 The Link-Formation Game

In the next example, PCE makes different predictions in two versions of a game with different
payoff parameters, while all other solution concepts we know of make the same predictions
in both versions.

Example 2. There are 4 players in the game, split into two sides: North and South. The
players are named North-1, North-2, South-1, and South-2, abbreviated as N1, N2, S1, and
S2.

These players engage in a strategic link-formation game. Each player simultaneously
takes an action: either Inactive or Active. An Inactive player forms no links. An Active
player forms a link with every Active player on the opposite side. (Two players on the same
side cannot form links.) For example, suppose N1 plays Active, N2 plays Active, S1 plays
Inactive, and S2 plays Active. Then N1 creates a link to S2, N2 creates a link to S2, S1
creates no links, and S2 creates links to both N1 and N2.

Each player i is characterized by two parameters: cost (ci) and quality (qi). Cost refers
to the private cost that a player pays for each link they create. Quality refers to the benefit
that a player provides to others who link to them. A player who forms no links gets a payoff
of 0. In the above example, the payoff to North-1 is qS2 − cN1 and the payoff to South-2 is
(qN1 − cS2) + (qN2 − cS2).

We consider two specifications of the payoff functions. In the anti-monotonic version on
the left, players with a higher cost have a lower quality. In the co-monotonic version on the
right, players with a higher cost have a higher quality. There are two pure-strategy Nash
outcomes for each version: all links form or no links form. “All links form” is the unique
PCE outcome in the anti-monotonic case, while both “all links” and “no links” are PCE
outcomes under co-monotonicity.
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Anti-Monotonic
Player Cost Quality

North-1 14 30
North-2 19 10
South-1 14 30
South-2 19 10

Co-Monotonic
Player Cost Quality

North-1 14 10
North-2 19 30
South-1 14 10
South-2 19 30

PCE makes different predictions in these two versions of the game because the com-
patibility structure with respect to own quality is reversed. In both versions, ActiveN1 %

ActiveN2, but N1 has high quality in the anti-monotonic version, and low quality in the
co-monotonic version. Thus, in the anti-monotonic version but not in the co-monotonic ver-
sion, player-compatible trembles lead to the high-quality counterparty choosing Active at
least as often as the low-quality counterparty, which means Active has a positive expected
payoff even when one’s own cost is high.

In contrast, the set of equilibria that satisfy extended proper equilibrium, proper equi-
librium, trembling-hand perfect equilibrium, p-dominance, Pareto efficiency, and strategic
stability do not depend on whether payoffs are anti-monotonic or co-monotonic, as shown in
Proposition 8 in the Online Appendix. �

3.3 Signaling Games

Recall that a signaling game is a two-player Bayesian game, where P1 is a sender who knows
their own type θ, and P2 only knows that P1’s type is drawn according to the distribution
λ ∈ ∆(Θ) on a finite type space Θ. After learning their type, the sender sends a signal s ∈ S

to the receiver. Then, the receiver responds with an action a ∈ A. Utilities u1(s, a; θ) and
u2(s, a; θ) depend on the sender’s type θ, the signal s, and the action a.

Fudenberg and He (2018)’s compatibility criterion is defined only for signaling games.
It does not use limits of games with trembles, but instead restricts the beliefs that the
receiver can have about the sender’s type. That sort of restriction does not seem easy to
generalize beyond games with observed actions, while using trembles allows us to define PCE
for general games in strategic form. As we will see, the more general PCE definition implies
the compatibility criterion in signaling games.

With each sender type viewed as a different player, this game has |Θ| + 1 players, I =
Θ∪ {2}, where the strategy set of each sender type θ is Sθ = S while the strategy set of the
receiver is S2 = AS, the set of signal-contingent plans. So a mixed strategy of θ is a possibly
mixed signal choice σ1(· | θ) ∈ ∆(S), while a mixed strategy σ2 ∈ ∆(AS) of the receiver
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is a mixed plan about how to respond to each signal. We let σ2(· | ·) denote the behavior
strategy corresponding to σ2; it is defined by σ2(a | s) := σ2({s2 ∈ S2 : s2(s) = a}).

Fudenberg and He (2018) define type compatibility for signaling games. A signal s∗ is
more type-compatible with θ than with θ′ if for every behavioral strategy σ2,

u1(s∗, σ2; θ′) ≥ max
s′ 6=s∗

u1(s′, σ2; θ′)

implies
u1(s∗, σ2; θ) > max

s′ 6=s∗
u1(s′, σ2; θ).

They also define the compatibility criterion, which imposes restrictions on off-path beliefs in
signaling games. Consider a Nash equilibrium (σ∗1, σ∗2).For any signal s∗ and receiver action
a with σ∗2(a | s∗) > 0, the compatibility criterion requires that a best responds to some belief
p ∈ ∆(Θ) about the sender’s type such that, whenever s∗ is more type-compatible with θ

than with θ′ and s∗ is not equilibrium dominated12 for θ, p satisfies p(θ′)
p(θ) ≤

λ(θ′)
λ(θ) .

Since every mixed strategy of the receiver is payoff-equivalent a behavioral strategy, it
is easy to see that type compatibility implies s∗θ % s∗θ′ .13 The next result shows that when
specialized to signaling games, all PCE pass the compatibility criterion.

Proposition 4. In a signaling game, every PCE is a Nash equilibrium satisfying the com-
patibility criterion of Fudenberg and He (2018).

This proposition in particular implies that in the beer-quiche game of Cho and Kreps
(1987), the quiche-pooling equilibrium is not a PCE, as it does not satisfy the compatibility
criterion.

4 Index Learning Policies and Index Compatibility

This section characterizes a general class of “index learning policies” that lead i to experiment
more with s∗i than j does with s∗j . The next section shows that optimal learning behavior and
weighted fictitious play belong to this class in “factorable” games, when s∗i % s∗j . Together,
these sections link the player-compatibility relation with agents’ learning behavior under

12Signal s∗ is not equilibrium dominated for θ if maxa∈A u1(s∗, a; θ) > u1(s, σ∗2 ; θ) for every s with σ∗1(s |
θ) > 0.

13The converse does not hold. We defined type compatibility to require testing against all receiver strategies
and not just the totally mixed ones, so it is possible that s∗θ % s∗θ′ but s∗ is not more type-compatible with
θ than with θ′, so type-compatibility is harder to satisfy than player compatibility. We now realize that we
could have restricted type compatibility to only consider totally mixed strategies, and all of the results of
Fudenberg and He (2018) would still hold.
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various learning policies, providing a learning foundation for the tremble restrictions central
to PCE.

The learning problem the players face depends on what they observe about the play of
others, which in turn depends on the extensive form of the game, denoted by Γ. This game
has a set of players i ∈ I and also a player 0 that we will use to model Nature’s moves.
The collection of information sets of player i ∈ I is written as Hi. At each h ∈ Hi, player i
chooses an action ah from the finite set of possible actions Ah. A pure strategy of i specifies
an action at each information set h ∈ Hi. We denote by Si the set of all such strategies.
Let Z be the set of terminal vertices of Γ. Also, let z(s) denote the terminal vertex reached
under the pure strategy profile (including Nature’s moves) s ∈ ×i∈I∪{0}Si.

Let Î ⊆ I be the subset of players who only have one information set in the game tree.
To simplify exposition and proofs, we only provide a foundation of the cross-player tremble
restrictions for the players in Î. Recall that for the examples discussed in Section 3, only
players who have one information set are ranked by player-compatibility. It is not required
that every player only has one information set: for example, the receiver in a signaling game
has multiple information sets, but the foundation we provide will only apply to the trembles
of different types of senders.

Consider an agent born into player role i who maintains this role throughout their life.
They have a geometrically distributed lifetime with probability 0 ≤ γ < 1 of survival between
periods. Each period, the agent plays the game Γ, choosing a strategy si ∈ Si. Then,
with probability γ, they continue into the next period and play the game again, and with
complementary probability they exit the system. We will compare the average behavior of
agents in different player roles who share the same survival chance.

Each player is equipped with a finite set of observations Oi and a feedback function
oi : Z → Oi that maps the terminal node reached to an observation. We assume each player
has perfect recall and remembers their chosen strategy. Not all observations in Oi may be
possible when i uses a strategy si. We denote by Oi[si] the possible observations when using
si, formally Oi[si] := {oi(z(si, s−i)) : s−i ∈ S−i}.

Definition 5. The set of all finite histories of all lengths for i is Yi := ∪t≥0(Si × Oi)t. For
a history yi ∈ Yi and si ∈ Si, the subhistory yi,si

is the (possibly empty) subsequence of yi
containing those periods where the agent played si.

In the learning framework, each agent chooses their strategy based on their history. To
compare players i and j’s relative experimentation probabilities, we need a notion of “equiv-
alence” to relate their histories to each other, for in general Oi 6= Oj. Another complication
is that i’s observations may include j’s actions, so comparing i and j’s behavior will be
difficult if i’s behavior depends sensitively on how j played in the past.
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We introduce a concept of pairing between i’s observations and j’s observations. At the
heart of this concept is a bijection ϕ between Si and Sj, together with a family of equivalence
relations between i’s possible observations after si and j’s possible observation after ϕ(si),
with one relation for each si ∈ Si.

Definition 6. For i, j ∈ Î, a pairing (ϕ, (≡si
)si∈Si

) consists of a bijection ϕ : Si → Sj and a
family of equivalence relations (≡si

)si∈Si
, where each ≡si

is an equivalence relation between
the elements of {si}×Oi[si] and {ϕ(si)}×Oj[ϕ(si)], such that for each pure strategy profile
s̃ and si ∈ Si, (si, oi(z(si, s̃−i))) ≡si

(ϕ(si), oj(z(ϕ(si), s̃−j))).

In the sequel, we will study learning policies such that whenever j’s policy plays s∗j fol-
lowing a history, i’s policy plays s∗i following any history that is period-by-period equivalent,
where equivalence is defined with respect to some pairing (ϕ, (≡si

)si∈Si
) satisfying ϕ(s∗i ) = s∗j .

By the definition of a pairing, holding fixed i’s strategy si and −ij’s play, all observations of
i that result from changing j’s play belong to the same equivalence class for ≡si

. If j’s policy
plays s∗j following a history yj and i’s policy plays s∗i following a period-by-period equivalent
history yi, then i must also play s∗i following any other history y′i that differ from yi only in
terms of j’s play. This rules out i’s behavior depending too sensitively on observations of j’s
play.

Consider Example 1 when the critic and the diner observe all other players’ actions if
they choose R, but observe nothing if they choose Z. That is,

Oc = Od = {(L,R), (L,Z), (H,R), (H,Z),∅}.

Consider the natural bijection ϕ(Rc) = Rd and ϕ(Zc) = Zd, and define the equivalence
relation ≡Rc based on the following two equivalence classes of possible observations after Rc

and Rd:

{(Rc, (L,R)), (Rd, (L,R)), (Rc, (L,Z)), (Rd, (L,Z))} ,

{(Rc, (H,R)), (Rd, (H,R)), (Rc, (H,Z)), (Rd, (H,Z))} .

The two equivalence classes of ≡Rc represent whether the restaurant is observed to play L
or H. Also, since Oc[Zc] = Od[Zd] = {∅}, let ≡Zc be the equivalence relation where all
elements in {(Zc,∅), (Zd,∅)} are equivalent to each other. They both represent having
no observations of the restaurant’s play. It is clear that given any pure strategy profile s,
(Rc, s−c) and (Rd, s−d) lead to the same histories, up to equivalence defined by this pairing.

We extend the notion of equivalence to histories with more than one period in the natural
way.
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Definition 7. Given a pairing (ϕ, (≡si
)si∈Si

), say i’s subhistory yi,si
is equivalent to j’s

subhistory yj,sj
, written as yi,si

≡ yj,sj
, if sj = ϕ(si) and the subhistories are equivalent

period by period according to ≡si
.

Equivalence of yi,si
and yj,sj

says i has played si as many times as j has played sj, and
that the sequence of observations that i encountered from experimenting with si are the
“same” as those that j encountered from experimenting with sj.

In the following histories for the critic and the diner, the critic’s subhistory for Rc is
equivalent to the diner’s subhistory for Rd (under the pairing previously given). This equiv-
alence arises because the subhistories yc,Rc and yd,Rd

contain the same sequences of the
restaurant’s play (even though the two agents have different observations in terms of how
often the other patron goes to the restaurant).

period 1 2 3 4 5

yc:
own strategy Rc Zc Zc Zc Rc

observation (L,Z) ∅ ∅ ∅ (H,Z)

yd:
own strategy Zd Rd Zd Rd

observation ∅ (L,R) ∅ (H,Z)

Table 1: The two histories yc (for the critic, with length 5) and yd (for the diner, with length
4) have equivalent subhistories for R.

We now turn to the agents’ learning policies. Each agent decides which strategy to
use in each period based on their history so far. We assume that this learning policy is a
deterministic map (which is without loss of generality for expected-utility maximizers), and
denote it ri : Yi → Si.

Definition 8. A learning policy ri for i is an index policy if there are index functions (ιsi
)si∈Si

with each ιsi
mapping si-subhistories to real numbers, such that ri(yi) ∈ arg max

si∈Si

{ιsi
(yi,si

)}

for all yi ∈ Yi.

If an agent uses an index policy, we can think of their behavior in the following way.
At each history, they compute an index for each strategy si ∈ Si based on the subhistory
of those periods where they chose si, and play a strategy with the highest index.14 The
best-known example of an index policy is the Gittins index (Gittins, 1979). Some heuristics
for learning problems, such as weighted fictitious play (Cheung and Friedman, 1997), are
also index policies. The key restriction in an index policy is that each strategy’s index

14To handle possible ties, we can introduce a strict order over each agent’s strategy set, and specify that
if two strategies have the same index the agent plays the one that is higher ranked.
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depends only on the observations when that strategy was played. Note that index policies
are deterministic, unlike some heuristics such as Thompson sampling (Thompson, 1933).

Finally, we define a notion of the relative compatibility of index policies ri and rj with
various strategies.

Definition 9. Let i, j ∈ Î be distinct players and fix a pairing (ϕ, (≡si
)si∈Si

). For two index
policies ri and rj and strategy s∗i , we say that ri is more index-compatible with s∗i than rj is
with s∗j = ϕ(s∗i ) if for any histories yi, yj and any strategy s′i ∈ Si, s′i 6= s∗i satisfying

• yi,s∗i ≡ yj,s∗j and yi,s′i ≡ yj,ϕ(s′i)

• s∗j has weakly the highest index for j,

then s′i does not have the weakly highest index for i.

Suppose that an agent in the role of i starts with the empty history. Every period, the
agent chooses a strategy by applying a learning policy ri to their current history, then plays
the game with opponents’ strategy drawn from the −i marginal of the product distribution
σ. At the end of the period, the agent updates their history by concatenating their play
and their observation to their current history, then enters the next period with probability
1− γ. If the agent continues, in the next period they apply ri to their updated history and
their opponents’ strategy is given by another draw from σ, and so forth. We call σ the social
distribution. It, together with the agent’s learning policy, generates a stochastic process X t

i

describing i’s strategy in period t; denote its distribution by Pri,σ.

Definition 10. Let X t
i be the Si-valued random variable representing i’s play in period

t given ri and σ. Player i’s discounted lifetime play under the social distribution σ and
learning policy ri is φi(·; ri, σ) : Si → [0, 1], where for each si ∈ Si

φi(si; ri, σ−i) := (1− γ)
∞∑
t=1

γt−1 · Pri,σ{X t
i = si}.

Each newcomer agent in the role of i expects to play each si a share φi(si; ri, σ) of their
lifetime.

The key result of this section, Proposition 5, shows that index compatibility is a sufficient
condition for agents in the i-role to play s∗i more frequently than those in the j-role play s∗j .
This result is not immediate, because the index-compatibility relation only applies when two
agents have equivalent histories, which typically does not hold during the dynamic process
of experimentation.

19



Proposition 5. Suppose i, j ∈ Î are distinct players and s∗i ∈ Si, s∗j ∈ Sj, ri, rj are index
policies for i, j. Suppose there is some pairing (ϕ, (≡si

)si∈Si
)) such that ϕ(s∗i ) = s∗j and

ri is more index-compatible with s∗i than rj is with s∗j with respect to the pairing. Then
φi(s∗i ; ri, σ−i) ≥ φj(s∗j ; rj, σ−j) for any 0 ≤ γ < 1 and any social distribution σ.

The proof extends the coupling argument in the proof of Fudenberg and He (2018)’s
Lemma 2, which only applies to the Gittins index in signaling games, and also fills in a
missing step (Lemma 4) that the earlier proof implicitly assumed. To deal with the issue
that i and j learn from endogenous data that diverge as they undertake different experiments,
we couple the learning problems of i and j using what we call response paths S ∈ ((S)N)∞

where N = maxi |Si|. We can think of S as a two-dimensional array of strategy profiles,
S = ((S1,1,S1,2, ...,S1,N), (S2,1,S2,2, ...,S2,N), ...), where St,ni

∈ S for every t ≥ 1, 1 ≤
ni ≤ N. We may enumerate each player’s strategy set Si and interchangeably refer to each
strategy si ∈ Si with its assigned number nsi

∈ {1, ..., N}. For a given path and learning
policy ri for player i, imagine running the policy against the data-generating process where
the t-th time i plays the ni-th strategy in Si, i is matched up with opponents who play the
strategies St,ni

. Given a learning policy ri, each S induces a deterministic infinite history
of i’s strategies yi(S, ri) ∈ (Si)∞. (For ni > |Si|, the values of (St,ni

)t≥1 do not matter for
the induced history.) We show that under the hypothesis that ri is more index-compatible
with s∗i than rj is with s∗j , the weighted lifetime frequency of s∗i in yi(S, ri) is larger than
the frequency of s∗j in yj(S, rj) for every S, where play in different periods of the infinite
histories yi(S, ri), yj(S, rj) are weighted by the probabilities of surviving into these periods,
just as in the definition of discounted lifetime play.

Lemma 4 in the Appendix shows that when i and j face i.i.d. draws of opponents’ plays
from a fixed social distribution σ, the discounted lifetime plays are the same as if they each
faced a random response path S drawn at birth according to the (infinite) product measure
over ((S)N)∞ whose marginals (on each copy of (S)N) are the product distribution on (S)N

with marginal σ ∈ ∆(S).

5 Index Compatibility and Player Compatibility in Fac-
torable Games

Section 4 proves that whenever index-strategy pairs (ri, s∗i ) and (rj, s∗j) satisfy index com-
patibility, index policy ri uses s∗i more often than rj uses s∗j against any social distribution
σ. Index compatibility is a joint restriction on the agents’ learning policy and the game’s
feedback structure (O, o), which gives the domain that the learning policies are defined on.
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This section shows that player compatibility implies index compatibility for rational behav-
ior and weighted fictitious play in a class of factorable games. Factorability applies to the
examples discussed in Section 3 for the players ranked by compatibility.

5.1 Factorability and Isomorphic Factoring

In factorable games, agent i’s observation is just their utility: oi(si, s−i) = ui(si, s−i), where
ui(si, s−i) is the utility of i at the terminal node z(si, s−i) reached by the strategy profile
(si, s−i). In general, i’s payoff ui(si, s−i) does not need to reveal the actions that others’
strategies s−i pick at all −i information sets in the game tree. The definition of factorability
puts restrictions on the extensive-form game tree Γ to discipline what i can learn from own
payoffs.

Suppose i ∈ Î. Since i has one information set, we can identify different strategies in Si as
different actions at this information set. Factorability says that the different moves si that
i could take represent “orthogonal” learning opportunities. Choosing action si ∈ Si against
any strategy profile of −i identifies all of the opponents’ actions that can be payoff-relevant
for that action via i’s ex-post observation of their own payoff. At the same time, i’s payoff
does not reveal any information about the payoff consequences of choosing any other action
s′i 6= si. From i’s perspective, it is as if the game tree can be “factored” into disjoint parts
based on i’s move, and playing each si ∈ Si lets i learn how s−i play at all payoff-relevant
−i information sets in the si-part of the game tree, but provides no information about s−i
in any other part of the tree. We now make this idea formal.

For an information set h of j with j 6= i, write Ph for the partition on S−i where two
strategy profiles s−i, s′−i are in the same element of the partition if they prescribe the same
play on h. That is, the partition elements in Ph are {s−i ∈ S−i : s−i(h) = ah} for ah ∈ Ah.
Thus partition Ph is perfectly informative about play on h, but gives no other information.

Definition 11. For each player i ∈ Î and strategy si ∈ Si, let Πi[si] be the coarsest partition
of S−i that makes s−i 7→ ui(si, s−i) measurable. The game Γ is factorable for i if:

1. For each si ∈ Si there exists a (possibly empty) collection of −i’s information sets
Fi[si] ⊆ H−i so that Πi[si] = ∨

h∈Fi[si] Ph. (The notation ∨ means coarsest common
refinement. When it is applied to an empty collection, it yields the coarsest possible
partition.)

2. For two strategies si 6= s′i, Fi[si] ∩ Fi[s′i] = ∅.

When Γ is factorable for i, we refer to Fi[si] as the si-relevant information sets, a terminology
we now justify. In general, i’s payoff from playing si can depend on the profile of −i’s actions
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at all opponent information sets. Condition (1) implies that only opponents’ actions on Fi[si]
matter for i’s payoff after choosing si, and furthermore this dependence is one-to-one. That
is,

ui (si, s−i) = ui
(
si, s

′
−i

)
⇔
(
∀h ∈ Fi [si] , s−i (h) = s′−i (h)

)
.

Thus when i uses the strategy si, different strategy profiles s−i for i’s opponents lead to
different payoffs for player i, which implies that i’s learning cannot be blocked by another
player: By choosing si, i can always use their own payoff to identify actions on Fi[si] regard-
less of what happens elsewhere in the game tree.15 It also shows that if Γ is factorable for
i, then Fi[si] is uniquely defined for all si. Suppose there were two collections (Fi[si])si∈Si

and (F̃i[si])si∈Si
with Fi[si]\F̃i[si] 6= ∅ for some si ∈ Si that both satisfy Condition (1) of

Definition 11. Then there are two −i profiles s−i, s′−i that match on F̃i[si] but not on Fi[si].
But then we get both ui(si, s−i) = ui(si, s′−i) and ui(si, s−i) 6= ui(si, s′−i), a contradiction.
Finally, this requirement implies an algorithm for finding Fi[si], provided the game is fac-
torable for i: start with Fi[si] as the empty set. For each h ∈ H−i such that |Ah| ≥ 2,
consider any pair of −i strategies s−i, s′−i ∈ S−i such that s−i, s′−i agree everywhere except
on h. Add h to Fi[si] if and only if ui(si, s−i) 6= ui(si, s′−i).

Condition (2) implies that i cannot extrapolate the payoff consequence of a different
action s′i 6= si through playing si (provided i’s prior is independent about opponents’ play on
different information sets). This is because there is no intersection between the si-relevant
information sets and the s′i-relevant ones — the “learning opportunities” associated with
different moves do not overlap in the kinds of data that they provide. Implicit here is the
requirement that i does not learn about the payoff consequence of s′i from playing si no matter
what the other players −i are doing. In particular, this means that player i cannot “free
ride” on others’ experiments and learn about the consequences of various risky strategies
while playing a safe one that is myopically optimal.

In short, Condition (1) ensures i gets information about play in the same part of the
game tree every time they play si (instead of learning about play in two different parts of
the tree depending on someone else’s strategy), while Condition (2) guarantees that there is
no interaction between learning about different actions.

If Fi[si] is empty, then si is a kind of “opt out” action for i. After choosing si, i receives
the same utility from every reachable terminal node and gets no information about the payoff
consequences of any of their other actions.

15It is easy but expositionally costly to extend this to the case where several actions on Ah lead to the
same payoff for i.
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5.1.1 Examples of Factorable Games

We now illustrate factorability using the examples from Section 3 and some other general
classes of games.

The Restaurant Game Consider the restaurant game from Example 1. Since x < −1
and y > 0.5, we have x 6= y and x 6= y+ 0.5. By choosing R, the customer’s payoff perfectly
reveals others’ play. By choosing Z, the customer always gets 0 payoff (these nodes are
colored in the diagram below) and so cannot infer anyone else’s play.

-0.5
x+1
0

3.5
y+1
0

1.5
x+0.5
x-0.5

Critic

Diner

Restaurant

4.5
y+0.5
y-0.5

Rc
Rc ZcZc

Rd Rd Rd RdZd Zd Zd

LH

Zd

2
0
x

1
0
y

0
0
0

0
0
0

The restaurant game is factorable for the critic and the diner. Let Fi[Ri] consist of the
two information sets of −i and let Fi[Zi] be the empty set for each i ∈ {c, d}. It is easy to
verify that the two conditions of factorability are satisfied.

It is important for factorability that a customer who takes the “outside option” of ordering
pizza gets the same payoff regardless of the restaurant’s play, and does not observe the
restaurant’s quality choice even if the other customer patronizes the restaurant. Factorability
rules out this sort of “free information,” so that when we analyze the non-equilibrium learning
problem we know that each agent can only learn an action’s payoff consequences by playing
it themselves. An agent who does not choose the learning opportunity related to an action
si cannot incidentally learn about its payoffs.

The Link-Formation Game Consider the link-formation game from Example 2. The
payoff for a player choosing Inactive is always 0, whereas the payoff for a player choosing
Active exactly identifies the play of the two players on the opposite side. We can let
Fi[Activei] consist of the information sets of the other two agents on the other side of i and
let Fi[Inactivei] be empty. This specification of the si-relevant information sets shows the
game is factorable for every player.
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Binary Participation Games More generally, Γ is factorable for i whenever it is a binary
participation game for i.

Definition 12. Γ is a binary participation game for i if the following conditions are satisfied.

1. i has a unique information set with two actions, labeled In and Out.

2. All paths of play in Γ pass through i’s information set.

3. All paths of play where i plays In pass through the same information sets.

4. Terminal vertices associated with i playing Out all have the same payoff for i.

5. Terminal vertices associated with i playing In all have different payoffs for i.

Action Out is an outside option for i that leads to a constant payoff regardless of others’
play. We are implicitly assuming in part (5) of the definition that the game has generic
payoffs for i after choosing In, in the sense that changing the action at any one information
set on the path of play will change i’s payoff.

If Γ is a binary participation game for i, let Fi[In] be the collection of −i information
sets encountered in paths of play where i chooses In. Let Fi[Out] be the empty set. We see
that Γ is factorable for i. Clearly Fi[In] ∩ Fi[Out] = ∅, so Condition (2) of factorability is
satisfied. When i chooses the strategy In, the tree structure of Γ implies different profiles of
play on Fi[In] must lead to different terminal nodes, and the generic payoff condition means
Condition (1) of factorability is satisfied for strategy In. When i plays Out, i gets the same
payoff regardless of the others’ play, so Condition (1) of factorability is satisfied for strategy
Out.

The restaurant game is a binary participation game for the critic and the diner, where
ordering pizza is the outside option. The link-formation game is a binary participation game
for every player, where Inactive is the outside option.

Signaling to Multiple Audiences To give a different class of examples of factorable
games, consider a game of signaling to one or more audiences. To be precise, Nature moves
first and chooses a type for the sender, drawn according to some known distribution over
a finite set of types, Θ. The sender then chooses a signal s ∈ S, observed by all receivers
r1, ..., rnr . Each receiver then simultaneously chooses an action. The profile of receiver
actions, together with the sender’s type and signal, determine payoffs for all players. Viewing
different types of senders as different players, this game is factorable for all sender types,
provided payoffs are generic. This factorability arises because for each type i, Fi[s] is the set
of nr information sets for the receivers after seeing signal s.
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5.1.2 Examples of Non-Factorable Games

The next result gives a necessary condition for factorability, which we then use to provide
examples of non-factorable games. Suppose h is an information set of player j 6= i. Player
i’s payoff is independent of h if ui(ah, a−h) = ui(a′h, a−h) for all ah, a′h, a−h, where ah, a′h are
actions on information set h, and a−h is a profile of actions on all other information sets in
the game tree. If i’s payoff is not independent of the action taken at some information set
h, then i can always put h onto the path of play via a unilateral deviation at one of their
information sets.

Proposition 6. Suppose the game is factorable for i ∈ Î, and let h∗ be any information
set of some other player j such that i’s payoff is not independent of h∗. For every strategy
profile, either h∗ is on the path of play, or we can change i’s action in the strategy profile
such that h∗ is on the path of play.

This result follows from two lemmas.

Lemma 1. For any game that is factorable for i and any information set h∗ for player j 6= i

where j has at least two different actions, if h∗ ∈ Fi[si] for some strategy si ∈ Si, then h∗ is
always on the path of play when i chooses si.

Lemma 2. For any game that is factorable for i and any information set h∗ of player j 6= i,
suppose i’s payoff is not independent of h∗. Then 1) j has at least two different actions at
h∗; and (2) there exists some strategy si ∈ Si so that h∗ ∈ Fi[si].

Consider the centipede game for three players below.

Each player only has one information set, and 1 and 2’s payoffs are not independent of
the (unique) information set of player 3. But, if both 1 and 2 choose “drop”, then no one step
deviation by either 1 or 2 can put the information set of 3 onto the path of play. Proposition
6 thus implies the centipede game is not factorable for either 1 or 2. Moreover, Fudenberg
and Levine (2006) showed that in this game even very patient player 2’s may not learn to
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play a best response to player 3, so that the strategy profile (drop, drop, pass) can persist
even though it is not trembling-hand perfect. Intuitively, if agents in the role of player 1
only play “pass” as experiments early on in their lives, then agents in the role of player 2
realize that they rarely get to play, which makes the value of experimenting with “pass” too
small to be worth their while.

As another example, the Selten’s horse game displayed above is not factorable for 1 or
2 if the payoffs are generic, even though the conclusion of Proposition 6 is satisfied. On
one hand, the information set of 3 must belong to both F1[Down] and F1[Across] because
3’s play can affect 1’s payoff even if 1 chooses Across, since 2 could choose Down. On the
other hand, this violates the factorability requirement that F1[Down] ∩ F1[Across] = ∅. The
same argument shows the information set of 3 must belong to both F2[Down] and F2[Across],
since when 1 chooses Down the play of 3 affects 2’s payoff regardless of 2’s play. So, again,
F2[Down] ∩ F2[Across] = ∅ is violated.

Condition (2) of factorability also rules out games where i has two strategies that give the
same information, but one strategy always has a worse payoff under all profiles of opponents’
play. In this case, we can think of the worse strategy as an informationally equivalent but
more costly experiment than the better strategy. Reasonable learning policies (including
rational learning) will not use such strategies, but we do not capture this feature in the
general definition of PCE because our setup there only considers abstract strategy spaces Si
and not an extensive-form game tree.16

5.1.3 Isomorphic Factoring

In order to compare the learning behavior of agents i and j, it is not enough that the game
is factorable for each of them. We define the notion of isomorphic factoring, which requires
that the different learning opportunities for i and j can be matched up into pairs that give
the same information about −ij’s play.

16It would be interesting to try to refine the definition of PCE to directly incorporate players’ information
at the end of the game, using either our notion of a feedback function defined on the terminal nodes of
an extensive-form game tree, or using the “signal function” approach of Battigalli and Guaitoli (1997) and
Rubinstein and Wolinsky (1994).
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Definition 13. Let i, j ∈ Î.When Γ is factorable for both i and j, the factoring is isomorphic
for i and j if there exists a bijection ϕ : Si → Sj such that Fi[si] ∩H−ij = Fj[ϕ(si)] ∩H−ij

for every si ∈ Si.

This says the si-relevant information sets (for i) are the same as the ϕ(si)-relevant
information sets (for j), insofar as the actions of −ij are concerned. For example, the
restaurant game is isomorphically factorable for the critic and the diner (under the bijection
ϕ(Rc) = Rd, ϕ(Zc) = Zd) because Fc[Rc]∩Hr = Fd[Rd]∩Hr = the singleton set containing
the unique information set of the restaurant. As another example, all signaling games (with
possibly many receivers as in Section 5.1.1) are isomorphically factorable for the different
types of the sender. Similarly, the link-formation game is isomorphically factorable for pairs
(N1, N2), and (S1, S2), but note that it is not isomorphically factorable for (N1, S1).

Factorability and isomorphic factoring let us construct a pairing (ϕ, (≡si
)). For each si,

the equivalence relation ≡si
is such that (si, ui(si, s̃−i)) ≡si

(ϕ(si), uj(ϕ(si), ŝ−j) if and only
if s̃−i|Fi[si]∩H−ij

= ŝ−j|Fj [ϕ(si)]∩H−ij
.

5.2 Rational Learning in Factorable Games

We first consider rational agents who maximize expected discounted payoffs. This learning
rule requires two additional elements: a Bayesian prior belief over others’ play and a discount
factor. We assume that each agent i starts with a regular independent prior:

Definition 14. Agent i has a regular independent prior if their belief gi on ×h∈H−i
∆(Ah) can

be written as the product of full-support marginal densities ghi : ∆(Ah)→ R+ across different
h ∈ H−i, so that gi((αh)h∈H−i

) = ∏
h∈H−i

ghi (αh) with ghi (αh) > 0 for all αh ∈ ∆◦(Ah).

Agent i believes that they face a social distribution σ where some unknown mixed action
is played at every −i’s information set.17 We will require that their prior belief gi about these
mixed actions satisfies two kinds of independence assumptions. First, i thinks actions at dif-
ferent −i information sets are generated independently from these underlying mixed actions,
whether the information sets belong to the same player or to different players. Furthermore,
the agent holds independent beliefs about the mixed actions at different information sets.18

17We assume that agents do not know Nature’s mixed actions, which must be learned just as the play
of other players. If agents know Nature’s move, then a regular independent prior would be a density gi on
×h∈HI\{i}∆(Ah) (noting that I\{i} is the set of non-Nature players other than i), so that gi((αh)HI\{i}) =∏
h∈HI\{i}

ghi (αh) with ghi (αh) > 0 for all αh ∈ ∆◦(Ah).
18As Fudenberg and Kreps (1993) point out, an agent who believes two opponents are randomizing indepen-

dently may nevertheless have subjective correlation in their uncertainty about the randomizing probabilities
of these opponents. Here we study the natural special case where the agents’ prior beliefs about the oppo-
nents are independent, i.e., a product measure. Something weaker suffices: we only need independent beliefs
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The agent updates gi by applying Bayes rule to their history yi. If the game is a signaling
game, for example, this independence assumption means that the senders only update their
beliefs about the receiver’s response to a given signal based on the responses received to that
signal, and that the senders’ beliefs about this response do not depend on the responses they
have observed to other signals.

In addition to the survival chance 0 ≤ γ < 1 between periods, the agent further discounts
future payoffs according to their patience 0 ≤ δ < 1, so their overall effective discount factor
is 0 ≤ δγ < 1.

Given a belief about the distribution of play at each information set of the opponents,
we can calculate the Gittins index of each strategy si ∈ Si. Let νsi

∈ ×h∈Fi[si]∆(∆(Ah)) be
a belief over opponents’ mixed actions at the information sets in Fi[si]. The Gittins index
of si under belief νsi

is given by the maximum value of the following auxiliary optimization
problem:

sup
τ≥1

Eνsi

{∑τ
t=1(δγ)t−1 · ui(si, (ah(t))h∈Fi[si])

}
Eνsi
{∑τ

t=1(δγ)t−1}
, (1)

where the supremum is taken over all positive-valued stopping times τ ≥ 1. Here (ah(t))h∈Fi[si]

means the profile of actions that −i plays on Fi[si] the t-th time that i uses si — by as-
sumption about factorable games, only these actions and not actions elsewhere in the game
tree determine i’s payoff from playing si, and i can always infer these actions from their own
payoffs. The distribution over the infinite sequence of profiles (ah(t))∞t=1 is given by i’s belief
νsi

, that is, there is some fixed mixed action in ×h∈Fi[si]∆(Ah) that generates profiles (ah(t))
i.i.d. across periods t. The event {τ = T} for T ≥ 1 corresponds to using si for T periods,
observing the first T elements (ah(t))Tt=1, then stopping.

A learning policy that chooses a strategy si with the highest Gittins index after each
history yi solves the rational agent’s dynamic optimization problem. We denote any such
policy as OPTi, suppressing its dependence on δ and gi.

5.3 Weighted Fictitious Play in Factorable Games

Next we consider the weighted fictitious play heuristic, a generalization of Brown (1951)’s
fictitious play.19 Agent i keeps track of counts for actions at the opponent information sets

about the randomization probabilities on h, h′ if h ∈ Fi[si] and h
′ ∈ Fi[s′i] for si 6= s′i. We conjecture that

whenever beliefs about randomization probabilities are correlated by some amount no larger than ξ > 0,
resulting behavior violates the player-compatibility order by at most an amount B(ξ), where B(ξ) decreases
to 0 as ξ → 0.

19This heuristic was first estimated on lab data by Cheung and Friedman (1997). It was generalized by
Camerer and Ho (1999) and later analyzed by Benaïm, Hofbauer, and Hopkins (2009).
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in the game tree,
{Nah

h ∈ R++ : h ∈ H−i, ah ∈ Ah}.

The Nah
h values of a newcomer agent start at some initial counts, Nah

h (∅) > 0, and the counts
update as i learns. The counting function Nah

h : Yi → R++ takes a history of i as input and
returns the number of times that action ah ∈ Ah has been played at −i’s information set
h in this history, where past counts decay at a rate of ρ. We define the counting function
formally below.

After history yi of i where si has been used T ≥ 0 times, i’s subhistory for si can be
viewed as yi,si

= (si, s(t)
−i(h)h∈Fi[si])Tt=1 where s(t)

−i(h)h∈Fi[si] is the observed −i’s play on Fi[si]
the t-th time that si was used. (This is because there is a one-to-one relationship between
s−i’s play on Fi[si] and ui(si, s−i).) The updated count on (h, ah) for h ∈ Fi[si] and ah ∈ Ah
is

Nah
h (yi) =

T∑
t=1

1(s(t)
−i(h) = ah) · ρ(T−t) + ρTNah

h (∅)

for some ρ ∈ (0, 1]. Here, 1(·) is the indicator function. The strategy si is implied by the
−i information set h ∈ H−i in this expression: by factorability, there can only be up to one
strategy si of i for which the information set h is si-relevant.

That is, i calculates a weighted sum for the total number of times that −i have played
ah in the history yi, where past observations on Fi[si] are discounted at a rate ρ between
successive uses of the strategy si. All agents share the same weight factor ρ.

Following history yi, i assigns an index to si equal to its expected payoff when opponents
play the mixed action αh(ah; yi) = N

ah
h

(yi)∑
a′

h
∈Ah

N
a′

h
h

(yi)
on information sets h ∈ Fi[si].Write WFPi

for a learning policy that chooses a strategy with the highest weighted fictitious play index
after every history (suppressing its dependence on ρ and the initial counts {Nah

h (∅) : h ∈
H−i, ah ∈ Ah}).

When ρ = 1, the counts are updated according to the unweighted fictitious play, and
the limit of ρ → 0 corresponds to myopically best replying to the observed play when each
strategy was most recently used. The special case of the Gittins index where the prior gi
marginalized to each ∆(Ah) is a Dirichlet distribution and δ = 0 is equivalent to the special
case of unweighted fictitious play (i.e., ρ = 1) with some initial counts that depend on the
Dirichlet priors’ parameters. In general OPTi differs from WFPi outside of these special
cases.
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5.4 Player-Compatibility Implies Index-Compatibility of OPT and
WFP under Isomorphic Factoring

The main result of this paper, Theorem 2, shows that if s∗i % s∗j in a game isomorphically
factorable for i and j with ϕ(s∗i ) = s∗j , then i uses s∗i more frequently than j uses s∗j both under
rational experimentation and under weighted fictitious play. This comparison holds under
the hypothesis that i and j start their learning processes with the same “initial conditions.”
For OPT, this means i, j have the same δ, and that i’s prior gi marginalized to the si-relevant
−ij information sets equals to j’s prior gj marginalized to the ϕ(si)-relevant −ij information
sets for every si ∈ Si. For WFP, this means i and j start with the same initial counts about
−ij’s actions.

Theorem 2. Suppose i, j ∈ Î are distinct players, s∗i ∈ Si, s∗j ∈ Sj, s∗i % s∗j , and the game
is isomorphically factorable for i and j with ϕ(s∗i ) = s∗j . For any common survival chance
0 ≤ γ < 1 and any social distribution σ, we have φi(s∗i ; ri, σ−i) ≥ φj(s∗j ; rj, σ−j) under either
of the following conditions:

• ri = OPTi and rj = OPTj for the same δ and some priors gi, gj that are regular and
equivalent:20 that is, they satisfy gi|∆(Ah):h∈Fi[si]∩H−ij

= gj|∆(Ah):h∈Fj [ϕ(si)]∩H−ij
for every

si ∈ Si.

• ri = WFPi, rj = WFPj, and i and j have the same initial counts Nah
h (∅) for every

si ∈ Si, h ∈ Fi[si] ∩H−ij, and ah ∈ Ah.

The proof works by showing that if s∗i % s∗j and the hypotheses on the initial conditions
hold, then OPTi is more index-compatible with s∗i than OPTj is with s∗j , and similarly
WFPi is more index-compatible with s∗i than WFPj is with s∗j , with respect to the pairing
(ϕ, (≡si

)) constructed using isomorphic factoring. This then lets us apply Proposition 5’s
general conclusion about index-compatible learning policies.

5.5 Player-Compatibility and Steady-State Behavior

We briefly discuss how steady-state behavior in our learning framework relates to Theorem 2
and to PCE. Suppose there is a unit mass of agents in each player role i ∈ I, who are randomly
matched to play the game every period. Each agent leaves the society with probability 1−γ
at the end of every period, and a γ mass of newcomers is added to each population i.

20The theorem easily generalizes to the case where i starts with one of L ≥ 2 possible priors g(1)
i , ..., g

(L)
i

with probabilities p1, ..., pL and j starts with priors g(1)
j , ..., g

(L)
j with the same probabilities, and each g(l)

i , g
(l)
j

is a pair of equivalent regular priors for 1 ≤ l ≤ L.
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Denote the distribution over histories in each population i as ψi ∈ ∆(Yi). We can compute
from the profile (ψi)i∈I an updated profile of distributions over histories that will emerge
next period, taking into account changes in histories from agents playing the game against
random opponents and from agents’ exits / entries. A steady state is a fixed point of this
updating procedure. Each steady state is associated with a steady-state strategy profile
(σ∗i )i∈I, where σ∗i ∈ ∆(Si) is the distribution over strategies we would get if we ask an agent
sampled uniformly at random from population i which strategy they intend to use in their
next game.

An implication of Theorem 2 is that if s∗i % s∗j , the game is isomorphically factorable for
i, j ∈ Î with ϕ(s∗i ) = s∗j , and i, j are either rational Bayesians or use weighted fictitious play
with the same “initial conditions” as in Theorem 2, then σ∗i (s∗i ) ≥ σ∗j (s∗j) in every steady-
state strategy profile σ∗. This is because we may take σ∗ to be the social distribution in the
hypothesis of the theorem, and note that i’s discounted lifetime play φi(·; ri, σ∗) against σ∗

is σ∗i by the fixed-point property of the steady state, and similarly for j. The same result
would also hold for any other class of games and learning policies where player compatibility
implies index compatibility.

This provides a broad motivation for player-compatible trembles based on the steady
state of a learning framework. But PCE still differs from the learning framework’s steady
states. PCE is the limit of any sequence of ε−PCE as trembles tend to 0. There is no
analogous limit of the steady states in the learning framework that naturally applies to all
general index policies, and the kind of limit we take affects the conclusions. Intuitively, we are
interested in limits where player lifetimes become long, so that they have many observations
of play, and also players become patient, so that they have an incentive to experiment with
off-path actions. However, there are many versions of this iterated limit.

For example, with rational agents in the link-formation game, the iterative limit of steady
states when the expected lifetime of North players grows more slowly than the expected
lifespan of South players and the common patience parameter of all players is always a PCE,
but we do not know whether the limit is a PCE if all players grow long-lived and patient
at the same rate.21 Conversely, like most of the refinements literature, we have focused on
necessary conditions; we have not explored any additional implications our learning model
might have for specific policies. Ruling out these two potential differences between PCE
and limits of steady-state profiles likely depends on the details of the learning policies that
agents use, unlike the general foundation we provide for the cross-player tremble restriction.

21Clark and Fudenberg (2020) develop an equilibrium refinement for signaling games with cheap talk that
corresponds to the limits of steady states in signaling games where the senders play more frequently than
the receivers.
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6 Concluding Discussion

PCE makes two key contributions. First, it generates new and sensible restrictions on equi-
librium play by imposing cross-player restrictions on the relative probabilities that different
players assign to certain strategies — namely, those strategy pairs si, sj ranked by the player
compatibility relation si % sj. As we have shown through examples, these cross-player re-
strictions distinguish PCE from other refinement concepts and allow us to make comparative
statics predictions in some games where other equilibrium refinements do not.

Second, PCE shows how restricted trembles can capture some of the implications of non-
equilibrium learning. PCE’s cross-player restrictions arise endogenously for a general class of
index learning policies, which under isomorphic factoring includes both the standard model of
Bayesian agents maximizing their expected discounted lifetime utility, and computationally
tractable heuristics like weighted fictitious play. We conjecture that the result that i is
more likely to experiment with si than j is with sj when si % sj applies in other natural
models of learning or dynamic adjustment, such as those considered by Francetich and Kreps
(2020a,b), and that it may be possible to provide foundations for PCE in other and perhaps
larger classes of games.

The strength of the PCE refinement depends on the completeness of the compatibility
order %, since ε-PCE imposes restrictions on i and j’s play only when the relation si % sj

holds. Our player compatibility definition supposes that player i thinks all mixed strategies
of other players are possible, as it considers the set of all totally mixed correlated strategies
σ−i ∈ ∆◦(S−i). If the players have some prior knowledge about their opponents’ utility
functions, player i might deduce a priori that the other players will only play strategies
in some subset of ∆◦(S−i). As we show in Fudenberg and He (2020), in signaling games
imposing this kind of prior knowledge leads to a more complete version of the compatibility
order. It may similarly lead to a more refined version of PCE.

PCE is defined for every finite game in its strategic form. We have only provided learning
foundations for player-compatible trembles in factorable games. Moreover, even in factorable
games, PCE imposes some extra restrictions that we do not microfound, but we view this
as a first step in connecting together tremble-based refinement concepts with learning-in-
games. As we have shown through the link-formation game and other examples, PCE is
a convenient reduced form that generates novel comparative statics predictions in various
applications without needing the analyst to solve the dynamic learning problem anew in
each of them.

In the Online Appendix, we show that PCE is invariant to adding duplicate copies of
strategies, where the duplicates have the same payoff consequences. Mapping back to the
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learning framework, we think of different strategies of i in the extended game as different
learning opportunities about −i’s play. Copies of different strategies are learning opportuni-
ties that provide orthogonal information, while copies of the same strategy provide the same
information. As an example, suppose that in the Restaurant Game the critic can arrive at
the restaurant by taking the red bus or the blue bus, and the color of the bus is not observed
by other players, does not change anyone’s payoffs, and does not change what the critic
observes. We can then replace Rc with two actions Rred

c ,Rblue
c at the critic’s information set

and expand the game tree, letting Rred
c and Rblue

c both have the same payoff consequences
as Rc in the original game. This modified game is an extended game with duplicates for the
original game. We extend the compatibility relation to games with duplicates, and require
that the sum of tremble probabilities assigned to all copies of s∗i exceeds the sum assigned
to all copies of s∗j whenever s∗i % s∗j in the original game. We show that the set of PCE in
the original game coincides with the set of PCE in the extended game with duplicates, and
explain how the learning foundation for player compatibility extends to duplicate strategies
in binary participation games.
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7 Proofs of Results Stated in the Main Text

7.1 Proof of Proposition 3

We first state an auxiliary lemma.

Lemma 3. If σ◦ is an ε-PCE and s∗i % s∗j , then

σ◦i (s∗i ) ≥ min
σ◦j (s∗j), 1− ∑

s′i 6=s
∗
i

ε(s′i)
 .

Proof. Suppose ε is player compatible and let ε-constrained equilibrium σ◦ be given. For
s∗i % s∗j , suppose σ◦j (s∗j) = ε(s∗j). Then σ◦i (s∗i ) ≥ ε(s∗i ) ≥ ε(s∗j) = σ◦j (s∗j), where the second
inequality comes from ε being player compatible. On the other hand, suppose σ◦j (s∗j) > ε(s∗j).
Since σ◦ is an ε-constrained equilibrium, the fact that j puts more than the minimum required
weight on s∗j implies s∗j is at least a weak best response for j against σ◦, with σ◦ totally mixed
due to the trembles. The definition of s∗i % s∗j then implies that s∗i must be a strict best
response for i against σ◦ as well. In the ε-constrained equilibrium, i must assign as much
weight to s∗i as possible, so that σ◦i (s∗i ) = 1 − ∑

s′i 6=s
∗
i
ε(s′i). Combining these two cases

establishes the desired result.

We now turn to the proof of Proposition 3.

Proof. By Lemma 3, for every ε(t)-PCE we get

σ
(t)
i (s∗i )
σ

(t)
j (s∗j)

≥ min
σ(t)

j (s∗j)
σ

(t)
j (s∗j)

,
1−∑s′i 6=s

∗
i
ε(t)(s′i)

σ
(t)
j (s∗j)


= min

1,
1−∑s′i 6=s

∗
i
ε(t)(s′i)

σ
(t)
j (s∗j)

 ≥ 1−
∑
s′i 6=s

∗
i

ε(t)(s′i).

This says

inf
t≥T

σ
(t)
i (s∗i )
σ

(t)
j (s∗j)

≥ 1− sup
t≥T

∑
s′i 6=s

∗
i

ε(t)(s′i).

For any sequence of trembles such that ε(t) → 0, limT→∞ supt≥T
∑
s′i 6=s

∗
i
ε(t)(s′i) = 0, so

lim inf
t→∞

σ
(t)
i (s∗i )
σ

(t)
j (s∗j)

= lim
T→∞

inf
t≥T

σ
(t)
i (s∗i )
σ

(t)
j (s∗j)

 ≥ 1.

This shows that if we fix a PCE σ∗ and consider a sequence of player-compatible trembles
ε(t) and ε(t)-PCE σ(t) → σ∗, then each σ(t)

−k satisfies lim inft→∞σ(t)
i (s∗i )/σ

(t)
j (s∗j) ≥ 1 whenever
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i, j 6= k and s∗i % s∗j . Furthermore, from σ∗k(s̄k) > 0 and σ
(t)
k → σ∗k, we know there is

some T1 ∈ N so that σ(t)
k (s̄k) > σ∗k(s̄k)/2 for all t ≥ T1. We may also find T2 ∈ N so that

ε(t)(s̄k) < σ∗k(s̄k)/2 for all t ≥ T2, since ε(t) → 0. So when t ≥ max(T1, T2), σ(t)
k places strictly

more than the required weight on s̄k, so s̄k is at least a weak best response for k against
σ

(t)
−k. Now the subsequence of opponent play (σ(t)

−k)t≥max(T1,T2) satisfies the requirement of this
proposition.

7.2 Proof of Theorem 1

Proof. Consider a sequence of tremble profiles with the same lower bound on the probability
of each strategy, that is ε(t)(si) = ε(t) for all i and si, and with ε(t) decreasing monotonically
to 0 in t. Each of these tremble profiles is player compatible (regardless of the compatibility
structure %) and there is some finite T large enough that t ≥ T implies an ε(t)-constrained
equilibrium exists, and some subsequence of these ε(t)-constrained equilibria converges since
the space of mixed strategy profiles is compact. By definition these ε(t)-constrained equilibria
are also ε(t)-PCE, which establishes existence of PCE.

7.3 Proof of Proposition 4

Proof. Since every PCE is a trembling-hand perfect equilibrium and since this latter solution
concept refines Nash, σ∗ is a Nash equilibrium. To show that it satisfies the compatibility
criterion, we need to show that σ∗2 assigns probability 0 to plans in AS that, for some s ∈ S,
do not best respond to an “admissible” belief P (s, σ∗) at signal s under profile σ∗ in the
sense of Fudenberg and He (2018). For any plan assigned positive probability under σ∗2,
by Proposition 3 we may find a sequence of totally mixed signal distributions σ(t)

1 of the
sender, so that whenever sθ % sθ′ we have lim inft→∞ σ(t)

1 (s | θ)/σ(t)
1 (s | θ′) ≥ 1. Write

q(t)(· | s) as the Bayesian posterior belief about the sender’s type after signal s under σ(t)
1 ,

which is well defined because each σ(t)
1 is totally mixed. Whenever sθ % sθ′ , this sequence of

posterior beliefs satisfies lim inft→∞ q(t)(θ | s)/q(t)(θ′ | s) ≥ λ(θ)/λ(θ′), so if the receiver’s plan
best responds to every element in the sequence, it also best responds to an accumulation
point (q∞(· | s))s∈S with q∞(θ | s)/q∞(θ′ | s) ≥ λ(θ)/λ(θ′) whenever sθ % sθ′ . Since the
player compatibility definition used in this paper is slightly easier to satisfy than the type
compatibility definition that the set P (s′, σ∗) is based on, the plan best responds to P (s′, σ∗)
after every signal s′.
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7.4 Proof of Proposition 5

Let N = maxi |Si|.We first show that i’s discounted lifetime play is the same whether i plays
against pure strategy profiles drawn i.i.d. in different periods from the social distribution
σ−i, or against a response path drawn from a certain distribution η at the start of i’s life.
The next lemma constructs this η from σ, which is the same for all agents, and does not
depend on their (possibly stochastic) learning policies.

Lemma 4. For each social distribution σ, there is a distribution η over response paths, so
that for any player i, any possibly random policy ri : Yi → ∆(Si), and any strategy si ∈ Si,
we have

φi(si; ri, σ) = (1− γ)ES∼η

[ ∞∑
t=1

γt−1 · 1(yti(S, ri) = si)
]
,

where 1(·) is the indicator function and the expectation is over the random response path
S whose realization determines yti(S, ri), the strategy that i will play in period t under the
learning policy r.

Proof. In fact, we will prove a stronger statement: we will show there is such a distribution
that induces the same distribution over period-t histories for every i, every learning policy
ri, and every t.

Think of each response pathS as a two-dimensional array, S = (St,n)t∈N,1≤n≤N . For non-
negative integers (mn)Nn=1, each finite two-dimensional array of strategy profiles ((st,n)mn

t=1)Nn=1

with each st,n ∈ S defines a “cylinder set” of response paths with the form:

{S : St,n = st,n for each 1 ≤ n ≤ N, 1 ≤ t ≤ mn}.

That is, the cylinder set consists of those response paths whose first mn elements for the
n-th strategy match a given sequence of strategy profiles, (st,n)mn

t=1. (If mn = 0, then there is
no restriction on St,n for any t.) We specify the distribution η by specifying the probability
it assigns to these cylinder sets:

η
{

((st,n)mn
t=1)Nn=1

}
=

N∏
n=1

mn∏
t=1

σ(st,n),

where we have abused notation to write ((st,n)mn
t=1)Nn=1 for the cylinder set satisfying this

profile of sequences, and we have used the convention that the empty product is defined to
be 1.

We establish the claim by induction on t for period-t histories. For t ≥ 0, let Yi[t] ⊆ Yi be
the set of possible period-t histories of i, that is Yi[t] := (Si×Oi)t. In the base case of t = 1,
we show playing against a response path drawn according to η and playing against a pure
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strategy22 drawn from σ−i ∈ ×k 6=i∆(Sk) generate the same period-1 history. Fixing a learning
policy ri : Yi → Si of i, the probability of i having the period-1 history (s(1)

i , o(1)) ∈ Yi[1] in
the random-matching model is 1(ri(∅) = s

(1)
i ) ·σ(s : oi(z(s(1)

i , s−i)) = o(1)). That is, i’s policy
must play s(1)

i in the first period of i’s life. Then, i must encounter such a pure strategy that
generates the required observation o(1), and this has probability σ(s : oi(z(s(1)

i , s−i)) = o(1)).
The probability of this happening against a response path drawn from η is

1(ri(∅) = s
(1)
i ) · η(S:oi(z(s(1)

i , s1,s(1)
i ,−i)) = o(1))

=1(ri(∅) = s
(1)
i ) · σ(s : oi(z(s(1)

i , s−i)) = o(1)),

where the second line comes from the probability η assigns to cylinder sets.
We now proceed with the inductive step. By induction, suppose random matching and the

η-distributed response path induce the same distribution over the set of period-T histories,
Yi[T ], where T ≥ 1. Write this common distribution as φRMi,T = φηi,T = φi,T ∈ ∆(Yi[T ]). We
prove that they also generate the same distribution over length T + 1 histories.

Suppose random matching generates distribution φRMi,T+1 ∈ ∆(Yi[T + 1]) and the η-
distributed response path generates distribution φηi,T+1 ∈ ∆(Yi[T + 1]). Each length T + 1
history yi[T + 1] ∈ Yi[T + 1] may be written as (yi[T ], (s(T+1)

i , o(T+1))), where yi[T ] is a
length-T history and (s(T+1)

i , o(T+1)) is a one-period history corresponding to what happens
in period T + 1. Therefore, we may write for each yi[T + 1],

φRMi,T+1(yi[T + 1]) = φRMi,T (yi[T ]) · φRMi,T+1|T ((s(T+1)
i , o(T+1))|yi[T ]),

and
φηi,T+1(yi[T + 1]) = φηi,T (yi[T ]) · φηi,T+1|T (((s(T+1)

i , o(T+1))|yi[T ]),

where φRMi,T+1|T and φηi,T+1|T are the conditional probabilities of the form “having history
(s(T+1)
i , o(T+1)) in period T + 1, conditional on having history yi[T ] ∈ Yi[T ] in the first T

periods.” If such conditional probabilities are always the same for the random-matching
model and the η-distributed response path model, then from the hypothesis φRMi,T = φηi,T , we
can conclude φRMi,T+1 = φηi,T+1.

By argument exactly analogous to the base case, we have for the random-matching model

φRMi,T+1|T ((s(T+1)
i , o(T+1))|yi[T ]) = 1(ri(yi(T )) = s

(T+1)
i ) · σ(s : oi(z(s(T+1)

i , s−i)) = o(T+1)),
22In the random matching model agents are facing a randomly drawn pure strategy profile each period

(and not a fixed behavior strategy): they are matched with random opponents, who each play a pure strategy
in the game as a function of their personal history. From Kuhn’s theorem, this is equivalent to facing a fixed
profile of behavior strategies.
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since the matching is independent across periods. In the η-distributed response path model,
since a single response path is drawn once and fixed, one must compute the conditional
probability that the drawn S is such that the observation o(T+1) will be seen in period T +1,
given the history yi[T ] (which is informative about which response path i is facing).

For each 1 ≤ n ≤ N, let the non-negative integer mn represent the number of times i
has used the n-th strategy in Si in the history yi[T ]. Let (ot,n)1≤t≤mn represent the sequence
of observations seen after using the n-th strategy, in chronological order. Consider the
following finite union of cylinder sets, (st,n : oi(z(n, st,n,−i)) = ot,n)1≤t≤mn,1≤n≤N . This is the
set of response sequences consistent with the observations so far.

If S is to produce the observation o(T+1) from i’s next play of s(T+1)
i , then S must belong

to a more restrictive cylinder set that satisfies the additional restriction (s
m

s
(T +1)
i

+1,s(T +1)
i

:

oi(z(s(T+1)
i , s−i)) = o

m
s

(T +1)
i

+1,s(T +1)
i

). The conditional probability of S belonging to this

more restrictive cylinder set, given that it falls in (st,n : oi(z(n, st,n,−i)) = ot,n)1≤t≤mn,1≤n≤N ,

is given by the ratio of η-probabilities of these unions of cylinder sets, which from the product
structure of η on cylinder sets, must be σ(s : oi(z(s(T+1)

i , s−i)) = o(T+1)).

Thus, to prove that φi(s∗i ; ri, σ−i) ≥ φj(s∗j ; rj, σ−j), it suffices to show that for every S,
the period where s∗i is played for the k-th time in induced history yi(S, ri) happens earlier
than the period where s∗j is played for the k-th time in history yj(S, rj).

Now we turn to the proof of Proposition 5.

Proof. Let 0 ≤ γ < 1 and the social distribution σ be fixed. Enumerate the strategy sets of
i and j so that si and ϕ(si) are assigned the same number for every si ∈ Si. Consider the
product distribution η on the space of response paths, ((S)N)∞, as in the proof of Lemma 4.

By Lemma 4, denote the period where s∗i appears in yi(S, ri) for the k-th time as T (k)
i ,

the period where s∗j appears in yj(S, rj) for the k-th time as T (k)
j . The quantities T (k)

i , T
(k)
j

are defined to be ∞ if the corresponding strategies do not appear at least k times in the
infinite histories. Write #(s′i; k) ∈ N ∪ {∞} be the number of times s′i ∈ Si is played in the
history yi(S, ri) before T (k)

i . Similarly, #(s′j; k) ∈ N ∪ {∞} denotes the number of times
s′j ∈ Sj is played in the history yj(S, rj) before T (k)

j . Since ϕ establishes a bijection between
Si and Sj, it suffices to show that for every k = 1, 2, 3, ... either T (k)

j =∞ or for all s′i 6= s∗i ,
#(s′i; k) ≤ #(s′j; k) where s′j = ϕ(s′i).

We show this by induction on k. First we establish the base case of k = 1.
Suppose T (1)

j 6=∞, and, by way of contradiction, suppose there is some s′i 6= s∗i such that
#(s′i; 1) > #(ϕ(s′i); 1). Find the subhistory yi of yi(S, ri) that leads to s′i being played for
the (#(ϕ(s′i); 1) + 1)-th time, and find the subhistory yj of yj(S, rj) that leads to j playing
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s∗j for the first time (yj is well-defined because T (1)
j 6=∞). Note that yi,s∗i ≡ yj,s∗j vacuously,

since i has never played s∗i in yi and j has never played s∗j in yj.
Also, yi,s′i ≡ yj,s′j . To see this, note that i has played s′i for #(ϕ(s′i); 1) times and j has

played s′j for the same number of times. The definition of response paths implies they faced
the same sequence of opponent strategy profiles, and the definition of isomorphic learning
problems implies they have gotten equivalent observations in all these periods.

Since rj(yj) = s∗j and rj is an index policy, s∗j must have weakly the highest index at yj.
Since ri is more compatible with s∗i than rj is with s∗j , s′i must not have the weakly highest
index at yi. And yet ri(yi) = s′i contradiction.

Now suppose this statement holds for all k ≤ K for some K ≥ 1. We show it also holds
for k = K+1. If T (K+1)

j =∞ or T (K)
j =∞, we are done. Otherwise, by way of contradiction,

suppose there is some s′i 6= s∗i so that #(s′i;K + 1) > #(ϕ(s′i);K + 1). Find the subhistory
yi of yi(S, ri) that leads to s′i being played for the (#(ϕ(s′i);K + 1) + 1)-th time. Since
T

(K)
j 6= ∞, from the inductive hypothesis T (K)

i 6= ∞ and #(s′i;K) ≤ #(ϕ(s′i);K). That is,
i must have played s′i no more than #(ϕ(s′i);K) times before playing s∗i for the K-th time.
Since #(ϕ(s′i);K+ 1) + 1 > #(ϕ(s′i);K), the subhistory yi must extend beyond period T (K)

i ,
so it contains K instances of i playing s∗i .

Next, find the subhistory yj of yj(S, rj) that leads to j playing s∗j for the (K+1)-th time.
(This is well-defined because T (K+1)

j 6=∞.) Note that yi,s∗i ≡ yj,s∗j , since i and j have played
s∗i , s

∗
j for K times each, and they were facing the same response paths. Also, yi,s′i ≡ yj,s′j

since i has played s′i for #(ϕ(s′i);K + 1) times and j has played s′j for the same number of
times. Since rj(yj) = s∗j and rj is an index policy, s∗j must have weakly the highest index
at yj. Since ri is more compatible with s∗i than rj is with s∗j , s′i must not have the weakly
highest index at yi. And yet ri(yi) = s′i contradiction.

7.5 Proof of Lemma 1

Proof. By way of contradiction, suppose there is some profile of moves by −i, (ah)h∈H−i
,

so that h∗ is off the path of play in (si, (ah)h∈H−i
) = (si, ah∗ , (ah)h∈H−i\h∗). Find a different

action of j on h∗, a′h∗ 6= ah∗ . Since h∗ is off the path of play, both (si, ah∗ , (ah)h∈H−i\h∗) and
(si, a′h∗ , (ah)h∈H−i\h∗) lead to the same payoff for i. But by Condition (1) in the definition of
factorability and the fact that h∗ ∈ Fi[si], we have found two −i action profiles s−i, s′−i in
two different blocks of Πi[si] with ui(si, s−i) = ui(si, s′−i). This contradicts Πi[si] being the
coarsest partition of S−i that makes ui(si, ·) measurable.
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7.6 Proof of Lemma 2

Proof. Since i’s payoff is not independent of h∗, there exist actions ah∗ 6= a′h∗ on h∗ and
a profile a−h∗ of actions elsewhere in the game tree, so that ui(ah∗ , a−h∗) 6= ui(a′h∗ , a−h∗).
Consider the strategy si for i that matches a−h∗ in terms of i’s action, so we may equivalently
write

ui(si, ah∗ , (ah)h∈H−i\h∗) 6= ui(si, a′h∗ , (ah)h∈H−i\h∗),

where (ah)h∈H−i\h∗ are the components of a−h∗ corresponding to information sets of −i. If
h∗ /∈ Fi[si], then by Condition (1) of factorability, (ah∗ , (ah)h∈H−i\h∗) and (a′h∗ , (ah)h∈H−i\h∗)
belong to the same block in Πi[si]. Yet, they give different payoffs to i, which contradicts
that i’s payoff after si must be measurable with respect to Πi[si].

7.7 Proof of Proposition 6

Proof. Combining Lemmas 1 and 2 implies there is an action si ∈ Si such that h∗ is on the
path of play whenever i plays si at their information set.

8 Index Compatibility of OPT and WFP when s∗i % s∗j

In this section, we show that OPT and WFP are index compatible under the conditions of
Theorem 2. This conclusion, when combined with Proposition 5, implies Theorem 2.

With ϕ given from isomorphic factorability, define a pairing (ϕ, (≡si
)) so that for each

si ∈ Si, (si, ui(si, s̃−i)) ≡si
(ϕ(si), uj(ϕ(si), ŝ−j) if and only if s̃−i|Fi[si]∩H−ij

= ŝ−j|Fj [ϕ(si)]∩H−ij
.

Conditions on factorability and isomorphic factoring ensure that (ϕ, (≡si
)) is a pairing.

Indeed, if i and j faced the same pure profile s̃, then s̃−i|Fi[si]∩H−ij
= s̃−j|Fj [ϕ(si)]∩H−ij

since
Fi[si] ∩H−ij = Fj[ϕ(si)] ∩H−ij by isomorphic factoring.

8.1 Weighted Fictitious Play

To see that WFP satisfies index compatibility for s∗i and s∗j under the conditions of Theorem
2, let histories yi, yj and strategy s′i 6= s∗i be given with yi,s∗i ≡ yj,s∗j , yi,s′i ≡ yj,ϕ(s′i), and s∗j

having weakly the highest index for j. Construct two totally mixed, independent behavior
strategy profile, β, β̃ as follows. For each sj ∈ Sj, β(h) := αh(·; yj) for all h ∈ Fj[sj]. (This
is well-defined by Condition (2) of factorability, as Fj[sj] ∩ Fj[s′j] = ∅ if sj 6= s′j.) For those
h ∈ H\∪sj∈Sj

Fj[sj], arbitrarily specify a strictly mixed action αh ∈ ∆(Ah) for β(h). Having
constructed β we turn to β̃. For each si ∈ {s∗i , s′i}, β̃(h) := αh(·; yi) for all h ∈ Fi[si]. For all
other h ∈ H, let β̃(h) := β(h).
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From the definition of yi,s∗i ≡ yj,s∗j , β̃(h) = β(h) for all h ∈ Fi[s∗i ] ∩ H−ij. From the
definition of yi,s′i ≡ yj,ϕ(s′i), β̃(h) = β(h) for all h ∈ Fi[s′i] ∩H−ij. Also, β̃(h) = β(h) for all
other h ∈ H−ij by construction. So, β̃ and β are totally mixed behavior strategy profiles
that match on the −ij marginal, and they can be represented by σ̃, σ totally mixed strategy
distributions (over S) that match on the −ij marginal.

Since j’s payoff from each sj only depends on −j’s play on Fj[sj] by Condition (1) of
factorability, Uj(sj, σ) equals to the index that the weighted fictitious play agent assigns to sj
after history yj. Since s∗j has the weakly highest index, Uj(s∗j , σ) = maxs′j∈Sj

Uj(s′j, σ). From
the definition of player compatibility, s∗i is strictly optimal against σ̃, which in particular
means Ui(s∗i , σ̃) > Ui(s′i, σ̃). The RHS is i’s index for s′i after yi, since σ̃ marginalized to
every h ∈ Fi[s′i] is αh(·; yi) by construction. This says s′i does not have the weakly highest
index for i after yi.

Thus, WFP satisfies index compatibility for s∗i and s∗j .

8.2 The Gittins Index

Write V (τ ; si, νsi
) for the value of the auxiliary problem in Equation (1) under the (not

necessarily optimal) stopping time τ in the definition of the Gittins index. The Gittins index
of si is supτ>0 V (τ ; si, νsi

). We begin by linking V (τ ; si, νsi
) to i’s payoff from playing si.

From belief νsi
and stopping time τ , we will construct the correlated distribution α(νsi

, τ) ∈
∆◦(×h∈Fi[si]Ah), so that V (τ ; si, νsi

) is equal to i’s expected payoff when playing si while
opponents play according to this correlated distribution on the si-relevant information sets.

Definition 15. A full-support belief νsi
∈ ×h∈Fi[si]∆(∆(Ah)) for player i together with a

(possibly random) stopping rule τ > 0 together induce a stochastic process (ã(−i),t)t≥1 over
the space ×h∈Fi[si]Ah ∪ {∅}, where ã(−i),t ∈ ×h∈Fi[si]Ah represents the opponents’ actions
observed in period t if τ ≥ t, and ã(−i),t = ∅ if τ < t. We call ã(−i),t player i’s internal history
at period t and write P(−i) for the distribution over internal histories that the stochastic
process induces.

Internal histories live in the same space as player i’s actual experience in the learning
problem, represented as a history in Oi. The process over internal histories is i’s prediction
about what would happen in the auxiliary problem if they were to use τ.

Enumerate all possible profiles of moves at information sets Fi[si] as ×h∈Fi[si]Ah =
{a(1)

(−i), ...,a
(K)
(−i)}, let pt,k := P(−i)[ã(−i),t = a

(k)
(−i)] for 1 ≤ k ≤ K be the probability under

νsi
of seeing the profile of actions a(k)

(−i) in period t of the stochastic process over internal
histories, (ã(−i),t)t≥0, and let pt,0 := P(−i)[ã(−i),t = ∅] be the probability of having stopped
before period t.
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Definition 16. The synthetic correlated distribution at information sets in Fi[si] is the ele-
ment of ∆◦(×h∈Fi[si]Ah) (i.e. a correlated random action) that assigns probability

∑∞
t=1 β

t−1pt,k∑∞
t=1 β

t−1(1−pt,0)

to the profile of actions a(k)
(−i). Denote this profile by α(νsi

, τ).

Note that the synthetic correlated distribution depends on the belief νsi
stopping rule τ,

and effective discount factor β. Since the belief νsi
has full support, there is always a positive

probability assigned to observing every possible profile of actions on Fi[si] in the first period,
so the synthetic correlated distribution is totally mixed. The significance of the synthetic
correlated distribution is that it gives an alternative expression for the value of the auxiliary
problem under stopping rule τ .

Lemma 5.
V (τ ; si, νsi

) = ui(si, α(νsi
, τ))

The proof is the same as in Fudenberg and He (2018) and is omitted.23

Consider now the situation where i and j share the same beliefs about play of −ij on
the common information sets Fi[si] ∩ Fj[sj] ⊆ H−ij. For any pure-strategy stopping time τj
of j, we define a random stopping rule of i, the mimicking stopping time for τj. Lemma 6
will establish that the mimicking stopping time generates a synthetic correlated distribution
that matches the corresponding profile of τj on Fi[si] ∩ Fj[sj].

Note that τj maps j’s internal histories to stopping decisions, which do not live in the
same space as i’s internal histories. In particular, τj could make use of i’s play to decide
whether to stop. To mimic such a rule, i makes use of external histories, which include both
the common component of i’s internal history on Fi[si]∩Fj[sj], as well as simulated histories
on Fj[sj]\(Fi[si] ∩ Fj[sj]).

For a given bijection ϕ between Si and Sj with ϕ(si) = sj and Fi, Fj, we may write
Fi[si] = FC∪F̄−i with FC ⊆ H−ij and F̄−i ⊆ H−i. Similarly, we may write Fj[sj] = FC∪F̄−j

with F̄−j ⊆ H−j. (So, FC is the common information sets that are observed after both si
and sj.) Whenever j plays sj, they observe some (a(C),a(−j)) ∈ (×h∈FCAh) × (×h∈F̄−jAh),
where a(C) is a profile of actions at information sets in FC and a(−j) is a profile of actions at
information sets in F̄−j. So a pure-strategy stopping rule in the auxiliary problem defining
j’s Gittins index for sj is a function τj : ∪t≥1[(×h∈FCAh)× (×h∈F̄−jAh)]t → {0, 1} that maps
finite histories in Ojto stopping decisions, where “0” means continue and “1” means stop.

23Notice that even though i starts with the belief that opponents randomize independently at different
information sets, and also holds an independent prior belief, V (τ ; si, νsi

) may not be the payoff of playing
si against a independent randomizations by the opponent because of the endogenous correlation that we
discussed in the text.
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Definition 17. Player i’s mimicking stopping rule for τj draws α−j ∈ ×h∈F̄−j ∆(Ah) from
j’s belief νsj

on F̄−j, and then draws (a(−j),`)`≥1 by independently generating a(−j),` from
α−j each period. Conditional on (a(−j),`), i stops according to the rule

(τi|(a(−j),`))((a(C),`,a(−i),`)t`=1) := τj((a(C),`,a(−j),`)t`=1).

24

That is, the mimicking stopping rule involves ex-ante randomization across a family of
pure-strategy stopping rules τi|(a(−j),`)∞`=1, indexed by (a(−j),`)∞`=1. First, i draws a behavior
strategy on the information sets F̄−j according to j’s belief about −j’s play there. Then, i
simulates an infinite sequence (a(−j),`)∞`=1 of i’s play using this drawn behavior strategy and
follows the pure-strategy stopping rule τi|(a(−j),`)∞`=1.

As in the definition of internal histories, the mimicking strategy and i’s belief νsi
gen-

erates a stochastic process (ã(−i),t, ã(C),t)t≥1 of internal histories for i (representing actions
on Fi[si] that i anticipates seeing when they plays si). It also induces a stochastic process
(ẽ(−j),t, ẽ(C),t)t≥1 of “external histories” defined in the following way:

Definition 18. The stochastic process of external histories (ẽ(−j),t, ẽ(C),t)t≥1 is defined from
the process of internal histories (ã(−i),t, ã(C),t)t≥1 that τi generates and given by: (i) if τi < t,
then (ẽ(−j),t, ẽ(C),t) = ∅; (ii) otherwise, ẽ(C),t = ã(C),t, and ẽ(−j),t is the t-th element of the
infinite sequence (a(−j),`)∞`=1 that i simulated before the first period of the auxiliary problem.

Write Pe for the distribution over the sequence of of external histories generated by i’s
mimicking stopping time for τj, which is a function of τj, νsj

, and νsi
.25

When using the mimicking stopping time for τj in the auxiliary problem, i expects to
see the same distribution of −ij’s play before stopping as j does when using τj, on the
information sets in Fi[si] ∩ Fj[sj]. This is formalized in the next lemma.

Lemma 6. Suppose the game is isomorphcially factorable for i and j with ϕ(si) = sj, and
suppose i holds belief νsi

over play in Fi[si] and j holds belief νsj
over play in Fj[sj], such

that νsi
|Fi[si]∩Fj [sj ] = νsj

|Fi[si]∩Fj [sj ], that is the two sets of beliefs match when marginalized to
24Note this is a valid (stochastic) stopping time, as the event {τi ≤ T} only depends on i’s observations

in Oi in the first T periods, plus some private randomizations of i.
25To understand the distinction between internal and external histories, note that the probability of i’s

first-period internal history satisfying (ã(−i),1, ã(C),1) = (ā(−i), ā(C)) for some fixed values (ā(−i), ā(C)) ∈
×h∈Fi[si]Ah is given by the probability that a mixed play α−i on Fi[si], drawn according to i’s belief νsi

,
would generate the profile of actions (ā(−i), ā(C)). On the other hand, the probability of i’s first-period
external history satisfying (ẽ(−j),1, ẽ(C),1) = (ā(−j), ā(C)) for some fixed values (ā(−j), ā(C)) ∈ ×h∈Fj [sj ]Ah
also depends on j’s belief νsj , for this belief determines the distribution over (a(−j),`)∞`=1 drawn before the
start of the auxiliary problem.
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the common information sets in H−ij. Let τi be i’s mimicking stopping time for τj. Then,
the synthetic correlated distribution α(νsj

, τj) marginalized to the information sets of −ij is
the same as α(νsi

, τi) marginalized to the same information sets.

Proposition 7. Suppose the game is isomorphcially factorable for i and j with ϕ(si) = sj,
ϕ(s′i) = s′j, where s∗i 6= s′i. Suppose i is more player compatible with s∗i than j is with s∗j .
Suppose i holds belief νsi

∈ ×h∈Fi[si]∆(∆(Ah)) about opponents’ play after each si and j holds
belief νsj

∈ ×h∈Fj [sj ]∆(∆(Ah)) about opponents’ play after each sj, such that νs∗i |Fi[s∗i ]∩Fj [s∗j ] =
νs∗j |Fi[s∗i ]∩Fj [s∗j ] and νs′i |Fi[s′i]∩Fj [s′j ] = νs′j |Fi[s′i]∩Fj [s′j ]. If s∗j has the weakly highest Gittins index
for j under effective discount factor 0 ≤ δγ < 1, then s′i does not have the weakly highest
Gittins index for i under the same effective discount factor.

Proof. We begin by defining a collection of totally mixed correlated distributions (α[sj ])sj∈Sj

where α[sj ] ∈ ∆◦(×h∈Fj [sj ]Ah). For each sj 6= s′j the distribution α[sj ] is the synthetic cor-
related distribution α(νsj

, τ ∗sj
), where τ ∗sj

is an optimal pure-strategy stopping time in j’s
auxiliary stopping problem involving sj. For sj = s′j, the correlated distribution α[s′j ] is in-
stead the synthetic correlated distribution associated with the mimicking stopping rule for
τ ∗s′i

, i.e. mimicking agent i’s pure-strategy optimal stopping time in i’s auxiliary problem for
s′i.

Next, define a profile of totally mixed correlated actions (α[si])si∈Si
for i’s opponents

on information sets (Fi[si])si∈Si
. For each si /∈ {s∗i , s′i}, just use the marginal distribution of

α[ϕ(si)] constructed before on Fi[si]∩Fj[ϕ(si)], then arbitrarily specify play in Fi[si]\Fj[ϕ(si)],
if any. For s′i the correlated distribution is α(νs′i , τ

∗
s′i

), i.e. the synthetic move associated with
i’s optimal stopping rule for s′i. Finally, for s∗i , the correlated distribution α[s∗i ] is the synthetic
correlated distribution associated with the mimicking stopping rule for τ ∗s∗

j

.
From Lemma 6, for every si, the distribution of correlated actions α[si] and α[ϕ(si)]

agree when marginalized to the information sets Fi[si] ∩ Fj[ϕ(si)]. Therefore, (α[si])si∈Si

and (α[sj ])sj∈Sj
can be completed into two totally mixed correlated strategy distributions,

σ̃ and σ (over S), such that σ̃|Fi[si]∩Fj [ϕ(si)] = σ|Fi[si]∩Fj [ϕ(si)] for every si. For each sj 6= s′j,

the Gittins index of sj for j is Uj(sj, σsj
). Also, since α[s′j ] is the mixed distribution as-

sociated with the suboptimal mimicking stopping time, Uj(s′j, σs′j ) is no larger than the
Gittins index of s′j for j. By the hypothesis that s∗j has the weakly highest Gittins index for
j, Uj(s∗j , σs∗j ) ≥ maxsj 6=s∗j Uj(sj, σsj

). By the definition of player compatibility, we must also
have Ui(s∗i , σs∗i ) > maxsi 6=s∗i Ui(si, σsi

), so in particular Ui(s∗i , σs∗j ) > Ui(s′i, σs′i). But Ui(s
∗
i , σs∗i )

is no larger than the Gittins index of s∗i , for α[s∗i ] is the synthetic strategy associated with a
suboptimal mimicking stopping time. As Ui(s′i, σs′i) is equal to the Gittins index of s′i this
shows s′i cannot have even weakly the highest Gittins index at this belief, for s∗i already has
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a strictly higher Gittins index than s′i does.

To see that OPT is index compatible for s∗i , s∗j under the conditions of Theorem 2, let
histories yi, yj and strategy s′i 6= s∗i be given with yi,s∗i ≡ yj,s∗j , ≡ yj,ϕ(s′i). Since gi, gj are
equivalent priors, i, j’s posterior beliefs match on every F ∈ Fi[si]∩Fj[ϕ(si)], for si ∈ {s∗i , s′i}.
After such histories, if s∗j has weakly the highest Gittins index for j, we use the hypothesis
of player compatibility and Proposition 7 to see that s′i does not have the weakly highest
Gittins index for i.

8.3 Proof of Lemma 6

Proof. Let (ã(−i),t, ã(C),t)t≥1 and (ẽ(−j),t, ẽ(C),t)t≥1 be the stochastic processes of internal and
external histories for τi, with distributions P−i and Pe. Enumerate possible profiles of actions
on FC as ×h∈FCAh = {a(1)

(C), ...,a
(KC)
(C) }, possible profiles of actions on F̄−i as ×h∈F̄−iAh =

{a(1)
(−i), ...,a

(K−i)
(−i) }, and possible profiles of actions on F̄−j as ×h∈F̄−jAh = {a(1)

(−j), ...,a
(K−j)
(−j) }.

Write pt,(k−i,kC) := P−i[(ã(−i),t, ã(C),t) = (a(k−i)
(−i) ,a

(kC)
(C) )] for k−i ∈ {1, ..., K−i} and kC ∈

{1, ..., KC}. Also write qt,(k−j ,kC) := Pe[(ẽ(−j),t, ẽ(C),t) = (a(k−j)
(−j) ,a

(kC)
(C) )] for k−j ∈ {1, ..., K−j}

and kC ∈ {1, ..., KC}. Let pt,(0,0) = qt,(0,0) := P−i[τi < t] = Pe[τi < t] be the probability of
having stopped before period t.

The distribution of external histories that i expects to observe before stopping under
belief νsi

when using the mimicking stopping rule τi is the same as the distribution of internal
histories that j expects to observe when using stopping rule τj under belief νsj

, because i
simulates the data-generating process on F̄−j by drawing a mixed action α−j according
to j’s belief νsj

|F̄−j and νsi
|FC = νsj

|FC . Thus for every k−j ∈ {1, ..., K−j} and every
kC ∈ {1, ..., KC}, ∑∞

t=1(δγ)t−1qt,(k−j ,kC)∑∞
t=1(δγ)t−1(1− qt,(0,0))

= α(νsj
, τj)(a(k−j)

(−j) ,a
(kC)
(C) ).

For a fixed k̄C ∈ {1, ..., KC}, summing across k−j gives

∑∞
t=1(δγ)t−1∑K−j

k−j=1 qt,(k−j ,k̄C)∑∞
t=1(δγ)t−1(1− qt,(0,0))

= α(νsj
, τj)(a(k̄C)

(C) ).

By definition, the processes (ã(−i),t, ã(C),t)t≥0 and (ẽ(−j),t, ẽ(C),t)t≥0 have the same marginal
distribution on the second dimension:

K−j∑
k−j=1

qt,(k−j ,k̄C) = P−i[ã(C),t = a
(k̄C)
(C) ] =

K−i∑
k−i=1

pt,(k−i,k̄C).
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Making this substitution and using the fact that pt,(0,0) = qt,(0,0),

∑∞
t=1(δγ)t−1∑K−i

k−i=1 pt,(k−i,k̄C)∑∞
t=1(δγ)t−1(1− pt,(0,0))

= α(νsj
, τj)(a(k̄C)

(C) ).

But by the definition of synthetic correlated distributions, the LHS is∑K−i

k−i=1 α(νsi
, τi)(a(k−i)

(−i) ,a
(k̄C)
(C) ) =

α(νsi
, τi)(a(k̄C)

(C) ).
Since the choice of a(k̄C)

(C) ∈ ×h∈FCAh was arbitrary, we have shown that the synthetic dis-
tribution α(νsj

, τj) of the original stopping rule τj and the one associated with the mimicking
strategy of i, α(νsi

, τi), coincide on FC .
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Online Appendix

9 Proofs Omitted from the Appendix

9.1 Proof of Proposition 1

Proof. Suppose s∗k is weakly optimal for k against some totally mixed correlated distribution
σ(k). We show that s∗i is strictly optimal for i against any totally mixed and correlated σ(i)

with the property that marg−ik(σ(k)) = marg−ik(σ(i)).
To do this, we first modify σ(i) into a new totally mixed distribution by copying how the

action of i correlates with the actions of −(ik) in σ(k). For each s−ik ∈ S−ik and si ∈ Si,
σ(k)(si, s−ik) > 0 since marg−k(σ(k)) ∈ ∆◦(S−k). So write p(si | s−ik) := σ(k)(si,s−ik)∑

s′
i
∈Si

σ(k)(s′i,s−ik) > 0

as the conditional probability that i plays si given −ik play s−ik, in the distribution σ(k).
Now construct the strategy distribution ˆ̂σ ∈ ∆◦(S), where

ˆ̂σ(si, s−ik, sk) := p(si | s−ik) · σ(i)(s−ik, sk).

Distribution ˆ̂σ has the property that marg−jk(ˆ̂σ) = marg−jk(σ(k)). To see this, note first that
because ˆ̂σ and σ(k) agree on the −(ijk) marginal marg−ik(σ(k)) = marg−ik(σ(i)). Also, by
construction, the conditional distribution of i’s action given distribution of (−ijk)’s actions
is the same.

From the hypothesis that s∗j % s∗k, we get j finds s∗j strictly optimal against ˆ̂σ.
But at the same time, marg−i(ˆ̂σ) = marg−i(σ(i)) by construction, so this implies also

marg−ij(ˆ̂σ) = marg−ij(σ(i)). From s∗i % s∗j , and the conclusion that j finds s∗j strictly
optimal against ˆ̂σ just obtained, we get i finds s∗i strictly optimal against σ(i) as desired.

9.2 Proof of Proposition 2

Proof. Suppose that s∗i % s∗j and that neither (ii) nor (iii) holds. We show that these
assumptions imply s∗j 6% s∗i .

Partition the set ∆◦(S) into three subsets, Σ+∪Σ0∪Σ−, with Σ+ consisting of σ ∈ ∆◦(S)
that make s∗j strictly better than the best alternative pure strategy, Σ0 the elements of
∆◦(S) that make s∗j indifferent to the best alternative, and Σ− the elements that make
s∗j strictly worse. (These sets are well defined because |Sj| ≥ 2, so j has at least one
alternative pure strategy to s∗j .) If Σ0 is non-empty, then there is some σ ∈ Σ0 such that∑
s∈S uj(s∗j , s−j)σ(s) = maxs′j∈Sj

∑
s∈S uj(s′j, s−j)σ(s). Because s∗i % s∗j ,

∑
s∈S ui(s∗i , s−i)σ̂(s) >
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maxs′i∈Si\{s∗i }
∑
s∈S ui(s′i, s−i)σ̂(s) for every σ̂ ∈ ∆◦(S) such that marg−ij(σ) = marg−ij(σ̂).

Since at least one such σ̂ exists, we do not have s∗j % s∗i .
Also, if both Σ+ and Σ− are non-empty, then Σ0 is non-empty. This is because both σ 7→∑

s∈S uj(s∗j , s−j)σ(s) and σ 7→ maxs′j∈Sj\{s∗j}
∑
s∈S uj(s′j, s−j)σ(s) are continuous functions. If∑

s∈S uj(s∗j , s−j)σ(s)−maxs′j∈Sj\{s∗j}
∑
s∈S uj(s′j, s−j)σ(s) > 0 and also ∑s∈S uj(s∗j , s−j)σ̃(s)−

maxs′j∈Sj\{s∗j}
∑
s∈S uj(s′j, s−j)σ̃(s) < 0, then some mixture between σ and σ̃ must belong to

Σ0.
So we have shown that if either Σ0 is non-empty or both Σ+ and Σ− are non-empty, then

s∗j 6% s∗i .
If only Σ+ is non-empty, then s∗j is strictly interior dominant for j. Together with s∗i % s∗j ,

this would imply that s∗i is strictly interior dominant for i, contradicting the assumption that
(iii) does not hold.

Finally suppose that only Σ− is non-empty, so that for every σ ∈ ∆◦(S) there exists a
strictly better pure response than s∗j against σ−j. Then, from Lemma 4 of Pearce (1984),
there is a mixed strategy σj for j that weakly dominates s∗j against all correlated strategy
distributions. This σj strictly dominates s∗j against strategy distributions in ∆◦(S−j), so s∗j
is strictly interior dominated for j. Since (ii) does not hold, there is a σ−i ∈ ∆◦(S−i) against
which s∗i is a weak best response. Then, the fact that s∗j is not a strict best response against
any σ−j ∈ ∆◦(S−j) means s∗j 6% s∗i .

10 Refinements in the Link-Formation Game

Proposition 8. Each of the following refinements selects the same subset of pure Nash equi-
libria when applied to the anti-monotonic and co-monotonic versions of the link-formation
game: extended proper equilibrium, proper equilibrium, trembling-hand perfect equilibrium,
p-dominance, Pareto efficiency, and strategic stability. Pairwise stability does not apply to
the link-formation game. Finally, the link-formation game is not a potential game.

Proof. Step 1. Extended proper equilibrium, proper equilibrium, and trembling-
hand perfect equilibrium allow the “no links” equilibrium in both versions of the
game. For (qi) anti-monotonic with (ci), for each ε > 0 let N1 and S1 play Active with
probability ε2, N2 and S2 play Active with probability ε. For small enough ε, the expected
payoff of Active for player i is approximately (10 − ci)ε since terms with higher order ε
are negligible. It is clear that this payoff is negative for small ε for every player i, and that
under the utility re-scalings βN1 = βS1 = 10, βN2 = βS2 = 1, the loss to playing Active
is smaller for N2 and S2 than for N1 and S1. So this strategy profile is a (β, ε)-extended
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proper equilibrium. Taking ε → 0, we arrive at the equilibrium where each player chooses
Inactive with probability 1.

For the version with (qi) co-monotonic with (ci), consider the same strategies without
re-scalings, i.e. β = 1. Then already the loss to playing Active is smaller for N2 and S2
than for N1 and S1, making the strategy profile a (1, ε)-extended proper equilibrium.

These arguments show that the “no links” equilibrium is an extended proper equilib-
rium in both versions of the game. Every extended proper equilibrium is also proper and
trembling-hand perfect, which completes the step.

Step 2. p−dominance eliminates the “no links” equilibrium in both versions
of the game. Regardless of whether (qi) are co-monotonic or anti-monotonic with (ci),
under the belief that all other players choose Active with probability p for p ∈ (0, 1), the
expected payoff of playing Active (due to additivity across links) is (1 − p) · 0 + p · (10 −
ci) + (1− p) · 0 + p · (30− ci) > 0 for any ci ∈ {14, 19}.

Step 3. Pareto eliminates the “no links” equilibrium in both versions of the
game. It is immediate that the no-links equilibrium outcome is Pareto dominated by the
all-links equilibrium outcome under both parameter specifications, so Pareto efficiency would
rule it out whether (ci) is anti-monotonic or co-monotonic with (qi).

Step 4. Strategic stability (Kohlberg and Mertens, 1986) eliminates the “no links”
equilibrium in both versions of the game. First suppose the (ci) are anti-monotonic
with (qi). Let η = 1/100 and let ε′ > 0 be given. Define εN1(Active) = εS1(Active) = 2ε′,
εN2(Active) = εS2(Active) = ε′ and εi(Inactive) = ε′ for all players i. When each i

is constrained to play si with probability at least εi(si), the only Nash equilibrium is for
each player to choose Active with probability 1 − ε′. In particular, if ε′ < 1/100, then
the Nash equilibrium in the ε-constrained game is not η-close to the “no links” equilib-
rium. To see this, consider N2’s play in any such equilibrium σ. If N2 weakly prefers Ac-
tive, then N1 must strictly prefer it, so σN1(Active) = 1 − ε′ ≥ σN2(Active). On the
other hand, if N2 strictly prefers Inactive, then σN2(Active) = ε′ < 2ε′ ≤ σN1(Active).
In either case, σN1(Active) ≥ σN2(Active). When both North players choose Active
with probability 1 − ε′, each South player has Active as their strict best response, so
σS1(Active) = σS2(Active) = 1 − ε′. Against such a profile of South players, each North
player has Active as their strict best response, so σN1(Active) = σN2(Active) = 1− ε′.

Now suppose the (ci) are co-monotonic with (qi). Again let η = 1/100 and let 0 <

ε′ < 1/100 be given. Define εN1(Active) = εS1(Active) = ε′, εN2(Active) = ε′/1000,
εS2(Active) = ε′ and εi(Inactive) = ε′ for all players i. Suppose by way of contradiction
there is a Nash equilibrium σ of the constrained game which is η-close to the Inactive
equilibrium. In such an equilibrium, N2 must strictly prefer Inactive, otherwise N1 strictly
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prefers Active so σ could not be η-close to the Inactive equilibrium. Similar argument
shows that S2 must strictly prefer Inactive. This shows N2 and S2 must play Active with
the minimum possible probability, that is σN2(Active) = ε′/1000 and σS2(Active) = ε′ .
This implies that, even if σN1(Active) were at its minimum possible level of ε′, S1 would
still strictly prefer playing Inactive because S1 is 1000 times as likely to link with the low-
quality opponent as the high-quality opponent. This shows σS1(Active) = ε′. But when
σS1(Active) = σS2(Active) = ε′, N1 strictly prefers playing Active, so σN1(Active) =
1− ε′. This contradicts σ being η-close to the no-links equilibrium.

Step 5. Pairwise stability (Jackson and Wolinsky, 1996) does not apply to this
game. This is because each player chooses between either linking with every player on the
opposite side who plays Active, or linking with no one. A player cannot selectively cut off
one of their links while preserving the other.

Step 6. The game does not have an ordinal potential, so refinements of
potential games (Monderer and Shapley, 1996) do not apply. To see that this is not
a potential game, consider the anti-monotonic parameterization. Suppose a potential P of
the form P (aN1, aN2, aS1, aS2) exists, where ai = 1 corresponds to i choosing Active, ai = 0
corresponds to i choosing Inactive. We must have

P (0, 0, 0, 0) = P (1, 0, 0, 0) = P (0, 0, 0, 1),

since a unilateral deviation by one player from the Inactive equilibrium does not change
any player’s payoffs. But notice that uN1(1, 0, 0, 1) − uN1(0, 0, 0, 1) = 10 − 14 = −4, while
uS2(1, 0, 0, 1)−uS2(1, 0, 0, 0) = 30−19 = 11. If the game has an ordinal potential, then both
of these expressions must have the same sign as P (1, 0, 0, 1) − P (1, 0, 0, 0) = P (1, 0, 0, 1) −
P (0, 0, 0, 1), which is not true. A similar argument shows the co-monotonic parameterization
does not have a potential either.

11 Replication Invariance of PCE

This section argues that PCE is invariant to adding duplicate copies of strategies to the
game. Fix a base game with the strategic form (I, (Si, ui)i∈I) where I is the set of players,
each player i has a finite strategy set Si and utility function ui : S→ R.

Definition 19. An extended game with duplicates is any game with the strategic form
(I, (S̄i, ūi)i∈I) such that, for every i ∈ I, S̄i ⊆ Si × N is a finite set with projSi

(S̄i) = Si and
ūi((sj, nj)j∈I) = ui(s) for all s ∈ S and (nj)j∈I ∈ NI with (sj, nj)j∈I ∈ S̄.
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The interpretation is that each player i can have multiple copies of every strategy they
had in the base game, and could have different numbers of copies of different strategies,
where duplicate copies of the same strategy have the same payoff consequences. Mapping
back to the learning framework, we think of different strategies of i in the extended game as
different learning opportunities about −i’s play. Copies of different strategies are learning
opportunities that provide orthogonal information, while copies of the same strategy provide
the same information. As an example, suppose that in the Restaurant Game the critic can
arrive at the restaurant by taking the red bus or the blue bus, and the color of the bus
is not observed by other players, does not change anyone’s payoffs, and does not change
what the critic observes. We can then replace Rc with two actions Rred

c ,Rblue
c at the critic’s

information set and expand the game tree, letting Rred
c and Rblue

c both have the same payoff
consequences as Rc in the original game. This modified game is an extended game with
duplicates for the original game.

Subsection 11.1 defines player-compatible trembles and PCE in extended games with
duplicates. Using the compatibility relation % from the base game, a tremble profile in
the extended game with duplicates is player compatible if the sum of tremble probabilities
assigned to all copies of s∗i exceeds the sum assigned to all copies of s∗j , whenever s∗i % s∗j .
PCE is then defined using this restriction on trembles. We show that the set of PCE in the
base game coincides with the set of PCE in the extended game with duplicates.

This definition of player-compatible trembles in extended games with duplicates fits with
our interpretation of trembles as experimentation frequencies and an analysis of how learning
dynamics in the extended game compare with those in the base game. The idea is that if
all copies of a strategy si give i the same information about others’ play, then i should be
exactly indifferent between all such copies after all histories in the learning process. Holding
fixed initial beliefs and the social distribution, i’s weighted lifetime average play of si in the
base game should then equal the sum of their weighted lifetime average plays of all copies
of si in the extended game with duplicates. Thus, any comparisons that hold between the
“tremble” probabilities of i onto s∗i and j onto s∗j in the base game must also hold between
the sum of “tremble” probabilities of i onto the copies of s∗i and j onto the copies of s∗j in
the extended game. We formalize this intuition in binary participation games in Subsection
11.2 for rational learning and weighted fictitious play.

11.1 PCE in Extended Games with Duplicates

A tremble profile of the extended game ε̄ assigns a positive number ε̄(si, ni) > 0 to every
player i and every pure strategy (si, ni) ∈ S̄i. We define ε̄-strategies of i and ε̄-constrained
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equilibrium of the extended game in the usual way, relative to the strategy sets S̄i.

Definition 20. Tremble profile ε̄ is player compatible in the extended game if ∑ni
ε̄(s∗i , ni) ≥∑

nj
ε̄(s∗j , nj) for all i, j ∈ I, s∗i ∈ Si, s∗j ∈ Sj such that s∗i % s∗j , where % is the player-

compatibility relation from the base game. An ε̄-constrained equilibrium where ε̄ is player
compatible is called a player-compatible ε̄-constrained equilibrium (or ε̄-PCE).

We now relate ε̄-constrained equilibria in the extended game to ε-constrained equilibria
in the base game. Recall the following constrained optimality condition that applies to both
the extended game and the base game:

Fact 1. A feasible mixed strategy of i is not a constrained best response to a −i profile if
and only if it assigns more than the required weight to a non-optimal response.

We associate with a strategy profile σ̄ ∈ ×i∈I∆(S̄i) in the extended game a consolidated
strategy profile C (σ̄) ∈ ×i∈I∆(Si) in the base game, given by adding up the probabilities
assigned to all copies of each base-game strategy. More precisely, C (σ̄)i(si) := ∑

ni
σ̄i(si, ni).

Similarly, C (ε̄) is the consolidated tremble profile, given by C (ε̄)(si) := ∑
ni
ε̄(si, ni).

Conversely, given a strategy profile σ ∈ ×i∈I∆(Si) in the base game, the extended strategy
profile E (σ) ∈ ×i∈I∆(S̄i) is defined by E (σ)i(si, ni) := σi(si)/N(si) for each i, (si, ni) ∈ S̄i,
where N(si) is the number of copies of si that S̄i contains. Similarly, E (ε) is the extended
tremble profile, given by E (ε)(si, ni) := ε(si)/N(si).

Lemma 7. If σ̄ is an ε̄-constrained equilibrium in the extended game, then C (σ̄) is a C (ε̄)-
constrained equilibrium in the base game. If σ is an ε-constrained equilibrium in the base
game, then E (σ) is an E (ε)-constrained equilibrium in the extended game.

The proof of results in this section can be found in the Online Appendix.
PCE is defined as usual in the extended game.

Definition 21. A strategy profile σ̄∗ is a player-compatible equilibrium (PCE) in the ex-
tended game if there exists a sequence of player-compatible tremble profiles ε̄(t) → 0 and
an associated sequence of strategy profiles σ̄(t), where each σ̄(t) is an ε̄(t)-PCE, such that
σ̄(t) → σ̄∗.

These PCE correspond exactly to PCE of the base game.

Proposition 9. If σ̄∗ is a PCE in the extended game, then C (σ̄∗) is a PCE in the base
game. If σ∗ is a PCE in the base game, then E (σ∗) is a PCE in the extended game.

In fact, starting from a PCE σ∗ of the base game, we can construct more PCE of the
extended game than E (σ∗) by shifting around the probabilities assigned to different copies
of the same base-game strategy, but all these profiles essentially correspond to the same
outcome.
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11.2 Learning and Trembles in Binary Participation Games with
Duplicates

We give the simplest illustration of how learning dynamics in extended games with duplicates
relate to those in the base game, using binary participation games. These results can also
be developed for other factorable games, but at the cost of more complicated notation.

Consider a binary participation game for i (Definition 12) as the base game and create an
extended game with duplicates by adding an extra copy of the In strategy for i to the game
tree, called In-d. We show that when ri is an optimal learning policy for i or the weighted
fictitious play heuristic, the discounted lifetime play φi(In; ri, σ−i) for the base game is equal
to the sum φi(In; ri, σ−i)+φi(In-d; ri, σ−i) in the new game, for the same social distribution
σ.

We modify the original game tree Γ and information setsH to arrive at a new game tree Γ̄
with information sets H̄. The basic idea is that In-d gives the same payoffs and information
to i, and −i cannot tell which one i chose.

By the definition of a binary participation game for i, let hi be i’s unique information
set in H. Enumerate the vertices in hi as hi = {v1, ..., vn}. Playing In at vertex vk in the
original tree leads to some subtree Γ(k) ⊆ Γ. Start with Γ̄ = Γ and add a new move, In-d,
to every vk ∈ hi. Append a new subtree Γ̂(k) to Γ̄ for every vk ∈ hi, such that Γ̂(k) is a copy
of Γ(k) (including payoffs at terminal vertices) and playing In-d at vk leads to Γ̂(k). Now we
give a procedure to construct the information sets H̄ to capture the idea that In and In-d
are indistinguishable to others. Start with H̄ = H and let V (k) be the set of vertices in Γ(k).

For every 1 ≤ k ≤ n and v ∈ V (k), find the information set h ∈ H̄ with v ∈ h, then put
h := h ∪ {ṽ}, where ṽ is the copy of v in Γ̂(k). That is, each vertex reachable after i chooses
In-d is indistinguishable to others from its “twin” reachable when i chooses In.

As discussed before, the Restaurant Game is a binary participation game for the critic
and the diner, with going to the restaurant as In and ordering pizza as Out. We illustrate
adding a duplicate copy of Rc for the critic to the game, labeled Rc − d. The critic’s unique
information set contains two vertices, and the new game tree adds two new subtrees to the
original game, highlighted in red.

55



1.5
x+0.5
x-0.5

Critic

Diner

Restaurant

-0.5
x+1
0

4.5
y+0.5
y-0.5

1
0
y

0
0
0

Rc

ZcZc

Rd Rd Rd
RdZd Zd Zd

LH

Zd

2
0
x

0
0
0

3.5
y+1
0

1.5
x+0.5
x-0.5

-0.5
x+1
0

Rd Zd

Rc-d

4.5
y+0.5
y-0.5

Rd Zd

3.5
y+1
0

Rc-d
Rc

The set of histories in the learning framework for i with the extended game is Ỹi =
∪t≥0({In, In-d,Out} × R)t. We now define a notion of equivalence between a stochastic
learning policy in the extended game r̃i : Ỹi → ∆({In, In-d,Out}} and a (deterministic)
learning policy in the original game, ri : Yi → {In,Out}. Basically, r̃i behaves just like ri
except it can randomize between In and In-d.

Definition 22. Let ζ : Ỹi → Yi be such that for ỹi ∈ Ỹi, ζ(ỹi) ∈ Yi replaces every instance of
In-d with In. Learning policies r̃i : Ỹi → ∆({In, In-d,Out}} and ri : Yi → {In,Out} are
equivalent up to duplicates if for every ỹi ∈ Ỹi, if ri(ζ(ỹi)) = Out, then also r̃i(ỹi)(Out) = 1.
If ri(ζ(ỹi)) = In, then r̃i(ỹi)(In) + r̃i(ỹi)(In-d) = 1.

The main result of this section shows that rational learning and weighted fictitious play
lead to learning policies that are equivalent up to duplicates in the base game and the
extended game. Furthermore, any pair of such equivalent policies in the two settings lead to
the same lifetime discounted frequencies of playing In for the original game as playing In
and In-d for the extended game against the same social distributions of −i.

Technically, strategies in (Γ,H) and (Γ̄, H̄) are defined over two different domains. To
make sense of i facing the “same” social distribution of −i’s play in the two settings, let
ψ : H̄ → H be the natural isomorphism between the two collections of information sets.
Each information set h̃ in the modified game is either equal to an information set h ∈ H, or
it is an old information set with some extra vertices added, that is there is some (unique) h
with h̃ ) h. Let ψ(h̃) := h. Two strategy profiles σ, σ̃ for (Γ,H) and (Γ̄, H̄) are −i equivalent
if σ̃(h̃) = σ(ψ(h̃)) for all h̃ ∈ H̃−i.

Proposition 10. Suppose stochastic learning policy r̃i in the extended game is equivalent up
to duplicates with the learning policy ri in the base game.
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• For a fixed patience parameter 0 ≤ δ < 1 and regular prior gi over others’ play,26 ri is
OPTi if and only if r̃i is an optimal learning policy with the extended game.

• For a fixed decay parameter 0 ≤ ρ < 1 and initial counts Nah
h (∅), ri is WFPi if and

only if after every ỹi ∈ Ỹi, r̃i(ỹi) is supported on strategies that maximize payoffs under
the weighted fictitious play conjecture of −i’s play.

• For −i equivalent social distributions σ, σ̃ for the base game and extended games,
φi(In; ri, σ−i) = φi(In; r̃i, σ̃−i) + φi(In-d; r̃i, σ̃−i).

Theorem 2 shows that in the baseline binary participation game, φi(Ini; ri, σ−i) ≥ φj(Inj; rj, σ−j)
for every social distribution σ whenever Ini % Inj and ri, rj are either OPT or WFP under
the same “initial conditions,” where Ini and Inj refer to i and j’s copies of In. Com-
bining this result with the above proposition, we find a motivation for player-compatible
trembles in the extended game. If r̃i, r̃j are either OPT with the same δ and same prior
beliefs about −ij’s play, or WFP with the same initial counts on −ij’s information sets,
then φi(Ini; r̃i, σ̃−i) + φi(In-di; r̃i, σ̃−i) ≥ φj(Inj; r̃j, σ̃−j) + φj(In-dj; r̃j, σ̃−j) for any social
distribution σ̃ in the extended game, where In-di and In-dj refer to i and j’s copies of In-d.

11.3 Proofs

11.3.1 Proof of Lemma 7

Proof. We prove the first statement by contraposition. If C (σ̄) is not an C (ε̄)-constrained
equilibrium in the base game, then some i assigns more than the required weight to some
s′i ∈ Si that does not best respond to C (σ̄)−i. This means no (s′i, ni) ∈ S̄i best responds to σ̄−i,
since all copies of a strategy are payoff equivalent. Since C (σ̄) and C (ε̄) are defined by adding
up the respective extended-game probabilities, C (σ̄)i(s′i) > C (ε̄)(s′i) means ∑ni

σ̄i(s′i, ni) >∑
ni
ε̄(s′i, ni). So for at least one n

′
i, σ̄i(s′i, n′i) > ε̄(s′i, n′i), that is σ̄i assigns more than

required weight to the non best response (s′i, n′i) ∈ S̄i. We conclude σ̄ is not an ε̄-constrained
equilibrium, as desired.

Again by contraposition, suppose E (σ) is not an E (ε)-constrained equilibrium in the
extended game. This means some i assigns more than the required weight to some (s′i, n

′
i) ∈

S̄i that does not best respond to E (σ)−i. This implies s′i does not best respond to σ−i. By
the definition of E (ε) and E (σ), if E (σ)i(s′i, n′i) > E (ε)(s′i, n′i), then also E (σ)i(s′i, ni) >

26The prior is over ×h∈H−i
∆(Ah) in the original game and over ×h̃∈H̃−i

∆(Ah̃) in the extended game, but
we identify ∆(Ah̃) with ∆(Aψ(h̃)) for each h̃ ∈ H̃−i. The same identification applies for the initial counts in
the original and extended games.
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E (ε)(s′i, ni) for every ni such that (s′i, ni) ∈ S̄i. Therefore, we also have σi(s′i) > ε(s′i), so σ
is not an ε-constrained equilibrium in the base game as desired.

11.3.2 Proof of Proposition 9

Proof. Suppose σ̄∗ is a PCE in the extended game. So, we have σ̄(t) → σ̄∗ where each σ̄(t)

is an ε̄(t)-PCE, and each ε̄(t) is player compatible (in the extended game sense). This means
each C (ε̄(t)) is player compatible in the base game sense, and furthermore each C (σ̄(t)) is
an C (ε̄(t))-constrained equilibrium (by Lemma 7), hence an C (ε̄(t))-PCE. Since ε̄(t) → 0,
C (ε̄(t)) → 0 as well. Since σ̄(t) → σ̄∗, C (σ̄(t)) → C (σ̄∗). We have shown C (σ̄∗) is a PCE in
the base game.

The proof of the other statement is exactly analogous.

11.3.3 Proof of Proposition 10

Proof. We have ri = OPTi if and only if for every ỹi ∈ Ỹi, ri(ψ(ỹi)) has the (weakly) higher
Gittins index. Since ri, r̃i are equivalent up to duplicates, this means for any ỹi ∈ Ỹi, r̃i(ỹi)
either puts probability 1 on Out or probability 1 on In and In-d. Since In and In-d can be
viewed as two identical ways of pulling the risky arm in a two-armed bandit with one safe
arm and one risky arm, r̃i is optimal if and only if r̃i(ỹi) assigns positive probability 1 to In
and In-d when the risky arm has a (weakly) higher Gittins index than the safe one. These
two statements are equivalent when r̃i, ri are equivalent up to duplicates, since the Gittins
index of the risky arm is the same under ỹi and ψ(ỹi). Similarly, ri = WFPi if and only if
for every ỹi ∈ Ỹi, ri(ψ(ỹi)) has the (weakly) higher “WFP” index, defined as the one-period
expected payoff of playing a certain strategy against the weighted fictitious play conjecture
of −i’s play. These indices are the same after history ỹi in the extended game and after
ψ(ỹi) in the original game.

Finally, let X t
i be the random variable representing i’s play in period t in the base game

under policy ri and social distribution σ−i. Let X̃ t
i be the random variable representing i’s

play in period t in the extended game under policy r̃i and social distribution σ̃−i. Because ri, r̃i
are equivalent up to duplicates to the empty history, Pri,σ−i

[X1
i = Out] = Pr̃i,σ̃−i

[X̃1
i = Out].

Since σ−i and σ̃−i are −i equivalent, (ri, σ−i) and (r̃i, σ̃−i) generate the same distribution over
length-1 histories (up to duplicates), i.e. Pri,σ−i

[yi] = Pr̃i,σ̃−i
[ψ−1(yi)] for all yi ∈ ({In,Out}×

R). By induction suppose Pri,σ−i
[yi] = Pr̃i,σ̃−i

[ψ−1(yi)] for all yi ∈ ({In,Out}×R)t, for some
t ≥ 1. If ri(yi) = Out, then using the fact that ri, r̃i are equivalent up to duplicates,
r̃i(ỹi)(Out) = 1 for all ỹi ∈ ψ−1(yi). Thus, for all x ∈ R, by the inductive hypothesis
Pri,σ−i

[(yi,Out, x)] = Pr̃i,σ̃−i
[ψ−1(yi) × (Out, x)], and Pri,σ−i

[(yi, In, x)] = Pr̃i,σ̃−i
[ψ−1(yi) ×
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(In, x)] = Pr̃i,σ̃−i
[ψ−1(yi)× (In-d, x)] = 0. On the other hand, if ri(yi) = In, then using the

fact that ri, r̃i are equivalent up to duplicates, r̃i(ỹi)(In)+r̃i(ỹi)(In-d) = 1 for all ỹi ∈ ψ−1(yi).
Thus, for all x ∈ R, by the inductive hypothesis, Pri,σ−i

[(yi,Out, x)] = Pr̃i,σ̃−i
[ψ−1(yi) ×

(Out, x)] = 0, and Pri,σ−i
[(yi, In, x)] = Pr̃i,σ̃−i

[ψ−1(yi)× (In, x)]+Pr̃i,σ̃−i
[ψ−1(yi)× (In-d, x)].

In either case, we get Pri,σ−i
[yi] = Pr̃i,σ̃−i

[ψ−1(yi)] for all yi ∈ ({In,Out} × R)t+1, and
also Pri,σ−i

[X t
i = Out] = Pr̃i,σ̃−i

[X̃ t
i = Out]. By induction we get Pri,σ−i

[X t
i = Out] =

Pr̃i,σ̃−i
[X̃ t

i = Out] for every t ≥ 1, thus φi(In; ri, σ−i) = φi(In; r̃i, σ̃−i) +φi(In-d; r̃i, σ̃−i).
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