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This article examines a model in which advertisers bid for “sponsored-link”
positions on a search engine. The value advertisers derive from each position
is endogenized as coming from sales to a population of consumers who make
rational inferences about firm qualities and search optimally. Consumer search
strategies, equilibrium bidding, and the welfare benefits of position auctions are
analyzed. Implications for reserve prices and a number of other auction design
questions are discussed. JEL Codes: D44, L86, M37.

I. INTRODUCTION

Google, Yahoo!, and Microsoft allocate the small “sponsored
links” at the top and on the right side of their search engine
results via similar auction mechanisms. Sponsored-link auctions
have quickly become one of the more practically important topics
in the economics of auctions, as annual revenues now surpass
$30 billion. They have also quickly become an important topic
in the economics of advertising: they have driven the recent
growth of online advertising, which is having dramatic effects
both on products that are now heavily sold online and on
the competing media that are suffering in the competition for
advertising dollars. In this article, we address issues of relevance
to both fields by developing a model of sponsored-link advertising
that incorporates both standard auction-theoretic and two-sided
market considerations.

There has been a recent burst of academic papers on
sponsored-search auctions spurred by the importance of the
topic and by some very elegant results. This literature has
coined the phrase “position auctions” to describe the particular
multigood auction in which per-click bidding is used to auction
off n asymmetric objects with unidimensional bids.1 A striking
result, derived in Aggarwal, Goel, and Motwani (2006), Edelman,
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Ostrovsky, and Schwarz (2007), and Varian (2007), is that the
generalized second price (GSP) position auction in which the kth
highest bidder wins the kth slot and pays the k+1st highest bid is
not equivalent to the Vickrey–Clarke–Groves (VCG) mechanism
andthus does not inducetruthful bidding, but nonetheless results
in the same outcome as the VCG mechanism in an interesting
class of environments. A number of subsequent papers have
extended the analyses in various important dimensions, such as
allowing for reserve prices, the use of weights to account for
asymmetric click-through rates, and considering more general
relationships between positions and click-through rates.2

Most of the literature, however, is squarely auction-focused
and continues to abstract away from the fact that the “objects”
being auctioned are advertisements.3 We feel that this is an
important omission because when the value of a link is due to
consumers’ clicking on the links and making purchases, it is
natural to assume that consumer behavior and link values will
be affected by the process by which links are selected for display.
In this article, we develop this line of analysis. By incorporating
consumers into our model, we are able to answer questions
about how the design of the advertising auction marketplace
affects overall welfare, as well as the division of surplus between
consumers, search engines, and advertisers. Our framework
allows us to provide new insights about reserve price policies,
click-through weighting, fostering product diversity, advertisers’
incentives to write accurate ad text, and effects of different
bidding mechanisms.

Section II of the paper presents our base model. The most
important assumptions arethat advertisers differ inquality (with
high-quality firms being more likely to meet each consumer’s
need), that consumers incur costs of clicking on ads, and that
consumers act rationally in deciding howmany ads toclick on and
in what order.

2. See, among many others, Edelman and Schwarz (2010) on reserve prices,
Lehaie (2006), Liu and Chen (2006), and Liu, Chen, and Whinston (2010) on click-
weights, and Borgers et al. (2006) and Aggarwal et al. (2008) on alternate click-
position relationships.

3. As discussed, Chen and He (2006) is a noteworthy early exception—
they develop a model with optimal consumer search and note that the fact that
auctions leadtoa sorting of advertisers by quality can rationalize top-down search
and be a channel through which sponsored link auctions contribute to social
welfare.
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Section III presents some basic results on search, welfare,
and the economic role of sponsored search advertising. We
characterize optimal consumer search strategies. We note that a
search engine that presents sponsored links should be thought
of as an information intermediary that contributes to welfare
by providing information (in the form of an ordered list) that
allows consumers tosearch more efficiently, and we present some
calculations that quantify the welfare benefits.

SectionIV contains ourequilibriumanalysis ofthesponsored-
link auction. Because the value of being in any given position
on the search results page depends on the qualities of all
of the other advertisers, the auction is no longer a private-
values model and hence does not fit within the framework
of Edelman, Ostrovsky, and Schwarz (EOS) (2007). We note,
however, that the common value elements of our model are
perhaps surprisingly easy to deal with—the analysis of EOS
can be adapted with only minor modifications. We are able to
provideexplicit formulas describinga symmetricperfect Bayesian
equilibrium with monotone bidding functions, and we discuss a
number of properties of the equilibrium.

We then turn to auction-design questions. These are
obviously of practical interest to firms conducting sponsored-link
auctions and to policy makers who must interpret the actions
being taken in what is a highly concentrated industry. We find
them interesting from a theoretical perspective as well, because
the fact that Google is auctioning advertisements rather than
generic objects brings up a host of new concerns. Any changes to
the rules for selecting ads will affect what consumers infer about
the quality of each displayed ad, which in turn affects the value of
winning each of the prizes being auctioned. Effects of this variety
can substantially change the way one thinks about search engine
policies.

Ourfirst auctiondesignsection, SectionV, focuses onreserve-
price policies. Recall that in standard auctions with exogenous
values, reserve prices raise revenue for the auctioneer, but this
comes at a welfare cost—some potential gains from trade are not
realized. In contrast, in our model, reserve prices can enhance
total social surplus, and in some cases can even be good for
advertisers. The reason is that reserve prices can enhance welfare
in two ways: they help consumers avoid some of the inefficient
search costs they incur when clicking on low-quality links; and
they can increase the number of links that are examined in
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equilibrium.4 The section also focuses on conflicts (or the lack
thereof) between the preferences of consumers, advertisers, and
thesearchengine. Indeed, ouranalysis begins withanobservation
that when consumer search costs are uniformly distributed (but
other aspects of the model are left quite general) there is a perfect
alignment of consumer-optimal andsocially optimal policies. This
observation turns out to be a nice way to bring out several
insights: we derive results on consumer andsocial welfare; we use
it as a computational tool; and we note that it also implies that
there is an inherent conflict between the search engine and its
advertisers—any departure from the socially optimal policy that
increases search engine profits must do so by reducing advertiser
surplus. Wealsopresent anumberofresults concerningwhat does
and does not generalize to the case when consumer search costs
are drawn from general distributions.

Section VI examines click-weighted auctions similar to those
used by Google, Yahoo!, and Microsoft. Google’s introduction of
click-through weighting in 2002 is regarded as an important
competitive advantage and Yahoo!’s introduction of click-through
weights into its ranking algorithm in early 2007 (“Panama”)
was highly publicized as a critical improvement.5 It is intuitive
that weighting bids by click-through rates should improve
efficiency—surplus is only generated when consumers click on
links. EOS note briefly (at the end of Section III) that their
efficiency result extends to establish the efficiency of click-
weighted auctions when click-through rates are the product of
a position effect and an advertiser effect.6 Our analysis places
some caveats on this conventional wisdom about efficiency. In the
presence of search costs, we show that the click-weighted auction
does not necessarily generate the right selection of ads—general
ads may be displayed when it would be more efficient to display
ads that servea narrowerpopulationsegment well. Therecanalso
be welfare losses when asymmetries in the click-through weights

4. In this respect, our model is related to that of Kamenica (2008) which
develops a rational alternative to “behavioral” explanations for why demand
sometimes rises when consumers are presented with a smaller choice set.

5. Eisenmann and Hermann (2006) report that Google’s move was in part
motivatedby a desire for improvedadrelevance: “according toGoogle, this method
ensured that users saw the most relevant ads first.”

6. Lehaie (2006), Liu and Chen (2006), and Liu, Chen, and Whinston (2010),
note that although click-weighting is efficient, a profit-maximizing search engine
will typically want to choose different weights.
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make the ordering of the ads less informative about quality.
Finally, we note that the introduction of click-weighting can
create incentives for firms to write misleading and overly broad
text. The intuition for the latter result is that even though firms
pay per click, in a click-weighted auction, firms that generate
more clicks on average must pay less per click to maintain their
position, and so they have no incentive to economize on consumer
clicks. Theresult is alsorobust totheuseof pay-per-actionpricing
models, so long as the auction is action-weighted.

A number of results are described only informally in the
text with the formal models and analysis left to the appendixes.
Appendix A examines a special case in which we can derive
more explicit versions of several results. Appendices B and C
developthe models discussedin Sections V.F andVI, respectively.
Appendix D contains some omitted proofs. We direct readers who
prefer an integrated discussion to the working paper version of
this article to Athey and Ellison (2009).

As noted, our article contributes to a rapidly growing
literature. Edelman, Ostrovsky, and Schwarz (2007), Aggarwal,
Goel, and Motwani (2006), and Varian (2007) all contain versions
oftheresult that thestandardunweightedpositionauction(which
EOS call the generalized second price or GSP auction) is not
equivalent to a VCG mechanism but can yield the same outcome
in equilibrium. Such results can be derived in the context of
a perfect information model under certain equilibrium selection
conditions. EOS show that the equivalence can also be derived
in an incomplete information ascending bid auction, and that in
this case the VCG-equivalent equilibrium is the unique perfect
Bayesian equilibrium. The papers also note conditions under
which the results would carry over to click-weighted auctions.

We have already mentioned a number of publications that
extend the analysis in various directions. Edelman and Schwarz
(2010) were the first to analyze optimal reserve prices. They
present both theoretical and numerical analyses, including a
demonstration that the GSP auction with a single, optimally
chosen reserve price is an optimal mechanism. Our work departs
from theirs in our consideration of the feedbacks between auction
rules, consumer expectations, and the value of advertising slots,
and our model provides a motivation for reserve prices that vary
with position. Two other papers are noteworthy for considering
more general click-through processes and presenting empirical
results. Borgers, Cox, Pesendorfer, and Petricek (BCPP) (2007)
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extend the standard model to allow click-through rates and value
per click to vary across positions in different ways for different
advertisers andemphasizethat therecanbeagreat multiplicityof
equilibrium outcomes in a perfect information setting.7 Jerziorski
and Segal (2009) develop a model in which consumers have
more general preferences across bundles of ads and provide
both reduced form empirical results relevant to our article, for
example, noting that consumers do not always search in a top-
down manner and that clicks on lower ads are affected by the
qualityof higherads, andstructural estimates of consumerutility
parameters.

Chen and He (2006) previously developed a model that
introduced several of the key elements of our model. They
assumed that consumers have needs, that advertisers have
different valuations because they have different probabilities of
meeting consumers’ needs, and that consumers search optimally
until their need is satisfied. They also included some desirable
elements that we do not include: they endogenize the prices
advertisers charge consumers and allow firms to have different
production costs.8 Our primary departure from their framework
is our consideration of incomplete information: we assume that
advertisers’ qualities are drawn from a distribution and not
known to consumers (and other advertisers). This assumption
plays a central role in many of our analyses. For example, most
of our auction design analyses hinge on how the design affects
the information consumers get about firm qualities and thereby
influences consumer search. Our article alsodiffers from theirs in
that muchofourarticleis devotedtotopics, forexample, consumer
welfare, reserve prices, and click weighting, that that they do not
address.

Several more recent papers have also examined issues that
reflect that search engines are auctioning advertisements. White
(2008) and Xu, Chen, and Whinston (2009) develop models that

7. Our model does not fit in the BCPP framework either, however, because
they maintain the assumption that advertiser i’s click-through rate in position j
is independent of the characteristics of the other advertisers. BCPP also contains
an empirical analysis which includes methodological innovations and estimates of
howvalue-per-clickchanges withpositioninYahoo! data. Chen, Liu, andWhinston
(2009) develop a model (without consumer search) which treats the fraction of
clicks allocated to each advertiser as a design variable.

8. As in Diamond (1971) the equilibrium turns out to be that all firms charge
the monopoly price.
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include both organic and paid search results. Xu, Chen, and
Whinston (2008) develop a model in which advertisers are also
competing in prices for the goods they are advertising andprovide
a number of interesting observations about howthis may interact
with the willingness to bid for a higher position.

II. A BASE MODEL

A continuum of consumers have a “need.” They receive a
benefit of 1 if the need is met. To identify firms able to meet
the need, they visit a search site. The search site displays
M sponsored links. Consumer j can click on any of these at
cost sj. Consumers click optimally until their need is met or
until the expected benefit from an additional click falls below
sj. We assume the sj have an atomless distribution G with
support [0, 1].

N advertisers wish to advertise on a website. Firm i has
probability qi of meeting each consumer’s need, which is private
information. Weassumethat all firms drawtheir qi independently
froma commondistribution, F, whichis atomless andhas support
[0, 1]. Advertisers get a payoff of 1 every time they meet a
need.

Informally, we follow EOS in assuming that the search
site conducts an ascending bid auction for the M positions: if
the advertisers drop out at per-click bids b1, . . . , bN , the search
engine selects the advertisers with the M highest bids and lists
them in order from top to bottom.9 The kth highest bidder pays
the k+1st highest bid for each click it gets.10 To avoid some of the
complications that arise in continuous time models, however, we
formalize the auction as a simpler M-stage game in which the
firms are simply repeatedly askedtoname the price at which they

9. EOS showthat in their model the equilibrium of such an ascending auction
is also the lowest-revenue envy-free Nash equilibrium of a complete-information,
simultaneous-move bidding game. Because our model has endogenous click-
throughrates, theenvy-freeconcept wouldrequiresomemodificationtobeapplied
to our model.

10. Note that this model differs from the real-world auctions by Google,
Yahoo!, and MSN in that it does not weight bids by click-through weights. We
discuss such weighted auctions in Section VI. We present results first for the
unweighted auction because the environment is easier to analyze. It should also
be an approximation to real-world auctions in which differences in click-through
rates across firms are minor, for example, where the bidders are retailers with
similar business models.
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will next drop out if no other firm has yet dropped out.11 In the
first stage, which we call stage M + 1, the firms simultaneously
submit bids bM+1, . . . bM+1N ∈ [0,∞) specifying a per-click price
they are willing topay tobe listedon the screen. The N−M lowest
bidders areeliminated.12 WritebM+1 forthehighest bidamongthe
firms that have been eliminated. In remaining stages k, which we
will indexbythenumberof firms remaining, k ∈ {M, M−1, . . . , 2},
the firms which have not yet been eliminated simultaneously
submit bids bkn ∈ [bk+1,∞). The firm with the single lowest bid
is assigned position k and eliminated from future bidding. We
define bk to be the bid of this player. At the end of the auction,
the firms in positions 1, 2, . . . , M will make per-click payments of
b2, b3, . . . , bM+1 for the clicks they receive.

Before proceeding, we pause to mention the main simplifi-
cations incorporated in the baseline model. First, advertisers are
symmetric except for their probability of meeting a need: profit-
per-action is the same for all firms, and we do not consider
the pricing problem for the advertiser. By focusing on the
probability of meeting a need rather than pricing, we focus
attention on the case—which we believe is most common on
search engines (as opposed to price comparison sites)—where
search phrases are sufficiently broad that many different user
intentions correspond to the same search phrase, and so the
first-order difference among sites is whether they are even
plausible candidates for the consumer’s needs. If we allowed
for firms to set prices but required consumers to search to
learn prices, firms would have an incentive to set monopoly
prices, following the logic of Diamond (1971) and Chen and
He (2006); thus, the main consequence of our simplification
is the symmetry assumption. Generalizing the model to allow
for heterogeneous values conditional on meeting the consumer’s
need would allow us to distinguish between the externality a
firm creates on others by being higher on the list, which is
related to the probability of meeting the need, and the value
the firm gets from being in a position; we leave that for future
work.

11. Two examples of issues we avoid dealing with in this way are formalizing
aclock-process inwhichfirms canreact instantaneouslytodropouts andspecifying
what happens if two or more firms never drop out. See Demange, Gale, and
Sotomayor (1986) for more on extensive form specifications of multiunit auctions.

12. If two or more firms are tied for the Mth highest bid, we assume that the
tie is broken randomly with each tied firm being equally likely to be eliminated.
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Our baseline model assumes that advertisers receive no
benefit when consumers see their ad but do not click on it.
Incorporatingsuchimpressionvalues (as inBCPP)places a wedge
between the externality created by a firm and its value to being
in a given position. In addition, consumers get no information
about whether listed firms are more or less likely to meet their
needs from reading the text of their ads. In Section VI we consider
extensions of our model where the ad text of firms is informative,
leading to heteroeneous click-through rates, and its accuracy is
endogenous; we also consider the effect of advertiser value for
impressions in this context.

III. CONSUMER SEARCH AND THE ECONOMIC ROLE OF

SPONSORED-LINK AUCTIONS

In this section we bring out the idea that search engines
auctioning sponsored links are information intermediaries and
one way in which they contribute to social welfare is by making
consumer search more efficient. We do so by characterizing
consumer welfare with sortedandunsortedlists. This section also
contains building blocks for all of our analyses: an analysis of
the Bayesian updating that occurs whenever consumers find that
a particular link does not meet their needs, and a derivation of
optimal search strategies.

III.A. Consumer Search and Bayesian Updating

Suppose that advertisers’ bids in the position auction are
strictly monotone in q.13 Then, in equilibrium the firms will be
sorted so that the firm with the highest q is on top. Consumers
know this, so the expected utility from clicking on the top firm
is the highest order statistic, q1:N .14 The expected payoff from
any additional click must be determined by Bayesian updating:
the fact that the first website didn’t meet a consumer’s need
leads them to reduce their estimate of its quality and of all lower
websites’ qualities.

Let q1:N , . . . , qN:N be the order statistics of the N firms’
qualities and let z1, . . . , zN be Bernoulli random variables equal

13. We will see in Section IV that our model does have an equilibrium in which
this occurs.

14. We write q1:N for the highest value, in contrast to the usual convention in
statistics, which is to call the highest value the Nth order statistic.
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to 1 with these probabilities. Define q̄k to be the expected quality
of website k in a sorted list given that the consumer has failed to
fulfill his need from the first k− 1 advertisers:

q̄k ≡ E(qk:N |z1 = . . . = zk−1 = 0).

PROPOSITION 1. If the firms are sorted by quality in equilibrium,
then consumers follow a top-down strategy: they start at the
top and continue clicking until their need is met or until the
expected quality of the next website is below the search cost:
q̄k < s. The numbers q̄k are given by

q̄k = E(qk:N |z1 = . . . = zk−1 = 0)

=

∫ 1
0 xf k:N(x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx
∫ 1

0 f k:N(x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx
.

A firm in position k will receive (1−q1:N) ∙ ∙ ∙ (1−qk−1:N)G( q̄k)
clicks.

Proof. Consumers search in a top-down manner because the
likelihood that a site meets a consumer’s need is consumer-
independent, and hence maximized for each consumer at the
site with the highest q. A consumer searches the kth site if and
only if the probability of success at this site is greater than
s. The expected payoff to a consumer from searching the kth
site conditional on having gotten failures from the first k − 1 is
E(qk:N |z1 = . . . = zk−1 = 0). (The f k:N in the formula is the PDF of
the kth order statistic of F.) �

The special case of the model when the quality distribution F
is uniform is surprisingly tractable: there are simple closed-form
expressions for the q̄k and this makes it possible to give more
explicit formulas characterizing consumer strategies, welfare,
and so on. Appendix A presents these results.

One way tomotivate interest in equilibrium consumer search
rules wouldbe toassume that consumers are highly sophisticated
and know the number N of bidders, the distribution F of firm
qualities, and do all the Bayesian updating. Note, however, that
such sophistication is not really necessary. In practice, consumers
just need to have learned the probabilities q̄1, q̄2, . . . , q̄M, with
which they meet their needs when clicking on each link. In
practice, consumers will not get this fully right. For example,
they will not know the exact number of potential advertisers
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N and have learned different values of the q̄k applicable to
each N. But we think consumers will have some ability to
know whether a query is likely to have a small or large
number of potential advertisers and to have roughly learned the
probabilities conditional on some such distinctions. In our later
auctiondesigndiscussions wearemotivatedbysimilarreasoning:
we think that real worldconsumers knowvery little about reserve
price policies, but will eventually react to policy changes as the
equilibrium theory predicts because they will eventually learn
that links have become more or less likely to meet their needs.

III.B. Welfare Gains from Information Provision

Lists of sponsored links provide consumers with two types
of information. They identify a set of links that may meet the
consumer’s need, andthey provide information on relative quality
that helps consumers search through this set more efficiently.
To bring out this latter source of welfare gains, it is instructive
to consider how consumer search would differ if advertisements
were instead presented to consumers in a random order. Define
q̄=E(qi) . In that case, the consumer expects each website tomeet
the need with probability q̄.

PROPOSITION 2. If the ads are sorted randomly, then consumers
with s > q̄ don’t click on any ads. Consumers with s < q̄ click
on ads until their needis met or they run out of ads. Expected
consumer surplus is

E(CS(s))=

{
0 if s ∈ [q̄, 1]

( q̄− s) 1−(1−q̄)M

q̄ if s ∈ [0, q̄]

If ads are sorted in order of decreasing quality then

E(CS(s))=






0 if s ∈ [q̄1, 1]

q̄1 − s if s ∈ [q̄2, q̄1]

. . . . . .

( q̄1 − s) + ( q̄2 − s)(1− q̄1)+ . . .

+ ( q̄k − s)
∏k−1

j=1 (1− q̄j) if s ∈ [q̄k+1, q̄k]

Proof. When links are not sorted equilibrium search is
straightforward. Consumers with s > q̄ never click. Consumers
with lower s will click on links until their need is met or they
exhaust the list. They get ( q̄ − s) from the first search. If this
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is unsuccessful (which happens with probability (1 − q̄)) they get
( q̄−s) from their secondsearch. The total payoffis ( q̄−s)(1 + (1−
q̄) + (1− q̄)2 + . . .+ (1− q̄)M−1 ) .

The payoffs in the sorted list are computed similarly, but
reflect that the searches occur in a top-down manner and stop
endogenously as described Proposition 1. �

Comparing the two expressions brings out the welfare gains.
Consumers with s ∈ [q̄, q̄1] get no utility at all from an unsorted
list but positive utility from a sorted list because the higher
quality of the top links makes clicking worthwhile. Consumers
with low search costs also benefit from the sorted list because
they find what they want more quickly. One case in which this is
particularly clear is when N is very large. In that case, consumer
surplus is approximately 1 − s with a sorted list (provided F
has full support so that the highest order statistic is very close
to 1) and approximately 1 − s

q̄ with an unsorted list because
approximately 1

q̄ searches are needed to find an advertiser that
can meet the consumer’s need. Appendix A gives some more
explicit expressions and a comparative graph for the case where
the quality distribution, F, is uniform.

IV. EQUILIBRIUM OF THE SPONSORED SEARCH AUCTION

In this section we solve for the equilibrium of our base model
taking both consumer and advertiser behavior into account. We
restrict our attention to equilibria in which advertisers’ bids are
monotone increasing in quality, so that consumers expect the list
of firms to be sorted from highest to lowest quality and search in
a top-down manner.15

IV.A. Equilibrium in the Bidding Game

Considerourformalizationof an“ascendingauction”inwhich
N firms bid for the M < N positions. When clicked on, firm i will
be able to meet a consumer’s need with probability qi. We have
exogenously fixed the per-consumer profit at 1, so qi is like the
value of a click in a standard position auction model.

15. In a model with endogenous search there will also be other equilibria. For
example, if all remaining bidders drop out immediately once M firms remain and
areorderedarbitrarilybyanauctioneerthat cannot distinguishamongthem, then
consumers beliefs will be that the ordering of firms is meaningless, so it would be
rational for consumers to ignore the order in which the firms appear and for firms
to drop out of the bidding as soon as possible.
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Although one can think of our auction game as being
analogous to the EOS model, but with endogenous click-through
rates, the auction part of our model does not fit directly within the
EOS framework. The reason is that the click-through rates are a
function of the bidders’ types as well as of the positions on the
list.16 The equilibrium derivation, however, is similar to that of
EOS.

Our first observation is that, as in the EOS model, firms will
bid up to their true value to get on the list, but will then shade
their bids in the subsequent bidding for higher positions on the
list.

In the initial stage (stage M + 1) when N > M firms remain,
firms will get 0 if they are eliminated. Hence, for a firm with
quality q it is a weakly dominant strategy to bid q. We assume
that all bidders behave in this way.

Once firms are sure to be on the list, however, they will not
want to remain in the bidding until it reaches their value. To see
this, suppose that k firms remain and the k+1st firm dropped out
at bk+1. As the bid level b approaches q, a firm knows that it will
get q−bk+1 perclickif it drops out now. If it stays inandnooneelse
drops out before b reaches q, nothing will change. If another firm
drops out at q− ε, however, the firm would do much worse: it will
get more clicks, but its payoff per click will just be q− (q− ε) = ε.
Hence, the firm must drop out before the bid reaches its value.

Assume for now that the model has a symmetric strictly
monotone equilibrium in which drop out points b∗(k, bk+1;q) are
only a function of (1) the number of firms k that remain; (2) the
current k+1st highest bid, bk+1; and (3) the firm’s privately known
quality q.17

Suppose that the equilibrium is such that a firm will be
indifferent between dropping out at b∗(k, bk+1;q) and remaining
in the auction for an extra db and then dropping out at
b∗(k, bk+1;q) + db. This change in the strategy does not affect the
firm’s payoff if no other firm drops out in the db bid interval.
Hence, to be locally indifferent the firm must be indifferent
between remaining for the extra db conditional on having another

16. BCPP have a more general setup, but they still assume that click-through
rates do not depend on the types of the other bidders.

17. Inprinciple, dropout points couldconditiononthehistoryofdropout points
in other ways. One can set bk+1 = 0 in the initial stage when no firm has yet to
drop out.
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firm drop out at b∗(k, bk+1; q). In this case the firm’s expected
payoff if it is the first to drop out is

E
(

(1− q1:N)(1− q2:N) ∙ ∙ ∙ (1− qk−2:N)(1− q) |qk−1:N = q
)

∙G( q̄k) ∙(q− bk+1) .

The first term in this expression is the probability that all higher
websites will not meet a consumer’s need. The second is the
demand term coming from the expected quality. The third is the
per-click profit. If the firm is the second to drop out in this db
interval then its payoff is

E
(

(1− q1:N)(1− q2:N) ∙ ∙ ∙ (1− qk−2:N) |qk−1:N = q
)

∙G( q̄k−1) ∙ (q− b∗) .

The first two terms in this expression are greater, reflecting the
two mechanisms by which higher positions lead to more clicks.
The final is smaller reflecting the lower markup. Indifference
gives

G( q̄k)(1− q)(q− bk+1) = G( q̄k−1)(q− b∗)

This can be solved for b∗.

PROPOSITION 3. The auction game has a symmetric strictly
monotone pure strategy equilibrium. In particular, it is a
perfect Bayesian equilibrium for firms tochoose their dropout
points according to

(1)

b∗(k, bk+1; q) =

{
q if k >M

bk+1+(q− bk+1)
(

1− G(̄qk)
G(̄qk−1)(1− q)

)
if k ≤M.

Proof. Sketch of proof First, it is easy to show by induction on
k that the strategies defined in the proposition are symmetric
strictly monotone increasing and always have qi ≥ bk+1 on
the equilibrium path. The calculations establish that the given
bidding functions satisfy a first-order condition.

Toshowthat thesolutiontothefirst-orderconditionis indeed
a global best response we combine a natural single-crossing
property of the payoff functions—the marginal benefit of a higher



POSITION AUCTIONS WITH CONSUMER SEARCH 1227

bid is greater for a higher quality firm—and the indifference on
which the bidding strategies are based. For example, we can show
that the change in profits when a type q′ bidder increases his bid
from b∗(q′) to b∗( q̂) is negative using

π(b∗( q̂) ; q′)− π(b∗(q′) ; q′) =
∫ q̂

q′

∂π

∂b
(b∗(q) , q′)

db∗

dq
(q)dq

≤
∫ q̂

q′

∂π

∂b
(b∗(q) , q)

db∗

dq
(q)dq

= 0.

This argument is formalized in Appendix D. �

REMARK 1. In this equilibrium firms start out bidding up to their
true value until they make it onto the list. Once they make
it onto the list they start shading their bids. If q is close
to 1, then the bid shading is very small. When q is small,
in contrast, bids increase slowly with increases in a firm’s
quality because there isn’t much gain from outbidding one
more bidder.

REMARK 2. The strategies have the property that when a firm
drops out of the final M, it is common knowledge that noother
firm will drop out for a nonzero period of time.

REMARK 3. Bidders shade their bids less when bidding for higher
positions, that is, b∗(k, b′; q) is decreasing in k with b′ and q
fixed, if and only if G(̄qk−1)

G(̄qk) is decreasing in k. This can be seen
most easily by rewriting Equation 1 as

b∗ = q−
G( q̄k)

G( q̄k−1)
(1− q)(q− bk+1) .

Onemayget someintuitionforwhethertheconditionis likely
to hold in practice by examining the growth in click-through
rates as a firm moves from position k to position k− 1. In the
model this is G(̄qk−1)

(1−qk−1:N)G(̄qk)
, and industry sources report that

it decreases moderately to rapidly in k, which is consistent
with less bid shading at the top positions. However, because
qk:N is also declining in k, the declining click-through rates
couldalsobeduetorapidlydecreasingquality lowerdownthe
list.
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REMARK 4. EOS showthat the similar equilibrium of their model
is unique among equilibria in strategies that are continuous
in types and note that there are other equilibria that are
discontinuous in types. The indifference condition we derive
should imply that equilibrium is also unique in our model if
one restricts attention to an appropriate class of strategies
withcontinuous strictlymonotonebiddingfunctions. As Chen
and He (2006) also note, however, there are also other
equilibria. For example, if consumers believe that the links
aresortedrandomly(andthereforesearchina randomorder),
then there will be an equilibrium in which all firms drop out
as soon as M firms remain.

V. RESERVE PRICES

We now turn to questions of auction design. Such questions
are of practical interest for three reasons: they are of interest to
firms designing auctions; auction design also affects the welfare
of consumers and advertisers; and antitrust and regulatory
authorities will need to understand both the incentives and
welfare effects to interpret actions in what is a concentrated
industry. Auction design questions in our model are also
interesting theoretically because the standard principles of
auction design can be substantially altered by the fact that
changes to the auction design affect consumer beliefs about the
quality of sponsoredlinks andthereby affect the “values”of prizes
that are being auctioned. In this section we discuss a common and
important design decision: the setting of reserve prices.

In a standard auction model, reserve prices increase the
auctioneer’s expected revenues. At the same time, however, they
reduce social welfare.18 Here, we show that the considerations
are somewhat different in our model: reserve prices can increase
both the profits of the auctioneer and social welfare. The reason
for this difference is that consumers incur search costs on the
basis of their expectation of firm quality. When the quality of a
firm’s product is low relative to this expectation, the search costs
consumers incur are inefficient. By instituting a reserve price,

18. The reduction in the gains from trade could inhibit seller or buyer entry in
a model in which these were endogenous, soreserve prices might not be optimal in
such models. See Ellison, Fudenberg, and Möbius (2004) for a model of competing
auction sites in which this effect would be important.
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the auctioneer commits not to list products of sufficiently low
quality and can reduce this source of welfare loss. This in turn
can increase the number of searches that consumers are willing
tocarry out. Increases in the volume of trade are another channel
through which welfare can increase.

Most of this section examines the special case of consumer
search costs being uniformly distributed on [0, 1] (in fact, our
results generalize to the case where the search cost distribution
takes the form G(s) = sd, but we focus on the uniform case
for simplicity of exposition).19 By specializing the search cost
distribution, we are able to derive a neat theorem on the
alignment of interests that is very general on other dimensions.
This allows us to provide some complete characterizations, and
it is also a nice way to highlight forces that remain present in
more general specifications. Section V.F contains some results on
general search cost distributions, illustrating some results that
are robust and highlighting forces that can make others change.

V.A. An Alignment Theorem

In this section, we assume that the distribution G of search
costs is uniform (without making assumptions about the
advertiser quality distribution). We present a striking result
on the alignment of consumer and advertiser/search engine
preferences: the welfare-maximizing and consumer surplus–
maximizing policies coincide. Moreover, for any reserve price,
the sum of advertiser profit and search engine profit is twice
the consumer surplus. The intuition for the result can be given
as follows. First, producer surplus and gross consumer surplus
(ignoring search costs) are both determined by the probability
that consumers have their needs satisfied. Second, consumers
search optimally, so that their search intensity and thus average
search costs increase with their (perceived) probability that
their need will be met. Third, when the search cost distribution
takes the form G(s)= sd, average search costs increase with the
probability that their need will be met in a constant proportion.
Finally, the third fact implies that consumer surplus net of
search costs is also proportional to the probability that needs are
satisfied.

19. We also restrict our analyses to equilibria like those described in the
previous section in which firms use strictly monotone bidding strategies and bid
their true value when they will not be on the sponsored link list.
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PROPOSITION 4. Suppose the distribution of search costs is
uniform. Consumer surplus andsocial welfare are maximized
for the same reserve price. Given any bidding behavior
by advertisers and any reserve price policy of the search
engine, equilibrium behavior by consumers implies E(W) =
3E(CS).

Proof. Write GCS for the gross consumer surplus in the model:
GCS = CS + Search Costs.20 Write GPS for the gross producer
surplus: GPS = Advertiser Profit + Search Engine Profit. Because
a search produces one unit of GCS and one unit of GPS if a
consumer need is met and zero units of each otherwise, we have
E(GCS) = E(GPS).

Welfare is given by W = GCS + GPS − Search Costs.
Hence, to prove the theorem we only need to show that
E(Search Costs)= 1

2E(GCS). This is an immediate consequence of
the optimality of consumer search and the uniform distribution
of search costs: each ad is clicked on by all consumers with s ∈
[0, E(q|X) ] who have not yet had their needs met, where X is
the information available to consumers at the time the ad is
presented. Hence, the average search costs expended are exactly
equal to one-half of the expected GCS from each click. �

REMARK 1. Note that the alignment result does not require any
assumption on the distribution F of firm qualities and is thus
fully general in this dimension.

REMARK 2. The alignment result does not depend on the
assumption that consumers and advertisers both receive
exactly one unit of surplus from a met need. If advertisers
receive benefit α from meeting a consumer’s need, then
E(W) =

(
1
2 + α

)
E(GCS) = (1 + 2α)E(CS).

REMARK 3. The alignment result with uniform search costs is a
special caseof a slightlymoregeneral result. If thesearchcost
distribution is G(s) = sd, then welfare and consumer surplus
are proportional with E(W) =

(
2 + 1

d

)
E(CS). The argument is

20. More precisely, GCS is the population average gross consumer surplus.
It is a random variable, with the realized value being a function of the realized
qualities. The other measures of welfare and consumer and producer surplus we
discuss should be understood similarly.



POSITION AUCTIONS WITH CONSUMER SEARCH 1231

similaranduses thefact that E(s|s ≤ q) remains proportional
to q for this family of distributions.

(
E(s|s ≤ q) = q

(d+1).
)

REMARK 4. The alignment result pertains to producer surplus,
but it does not say anything about the distinct reserve price
preferences of advertisers and search engines. As shown in
more detail in the next section, advertisers and the search
engine are typically in conflict with one another and with
consumers about the level of reserve prices.

Ournext result is acorollarythat points out that commitment
problems are absent in one particular (and infrequently studied)
case: it shows that a search engine that has consumer surplus
maximization as its objective function would choose the socially
optimal reserve price even if the search engine lacked the ability
to commit to a reserve price. One may initially wonder why we
bother to point out this lack of a commitment problem. We have
three motivations: it highlights a contrast between consumer
surplus–maximizing search engines and search engines with
other objective functions; the consumer surplus maximization
objective function may have some practical relevance in the
search engine industry; and the corollary also turns out to be a
useful technical tool. We elaborate on these after presenting the
result.

COROLLARY 1. Supposethedistributionof searchcosts is uniform.
Suppose that reserve price rW maximizes social welfare when
the search engine has the ability to commit to a reserve
price. Then, rW is an equilibrium choice for a consumer
surplus–maximizing search engine regardless of whether
the search engine has the ability to commit to a reserve
price.

Proof. Proposition 4 says directly that rW will be chosen if
the search engine has commitment power. The fact that a CS-
maximizing search engine won’t have a commitment problem
is less obvious, but nearly as immediate once one sets up the
argument.

Write CS(q, q′) for the expected consumer surplus if
consumers believe that the search engine displays a sorted list
of all advertisers with quality at least q, but the search engine
actually displays all advertisers with quality at least q′. If
consumers expect that the search engine is using reserve price
rW , then the CS-maximizing search engine gets payoff CS(rW , rW)
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if it indeed uses rW and CS(rW , q′) if it deviates and uses reserve
price q′ instead. We can see that the deviation is not profitable by
a simple two-stepargument: CS(rW , q′)≤ CS(q′, q′)≤ CS(rW , rW).
The first inequality is a consequence of consumer rationality—
holding the policy fixed consumers do best if they know the policy
and therefore act in the way that maximizes their payoff. The
second is the conclusion of Proposition 4. �

We noted that one motivation for presenting Corollary 1
is that it highlights that profit-maximizing (or social welfare–
maximizing) search engines would have a commitment problem.
An intuition for this is that consumers do not internalize the
potential profits that advertisers and the search engine will get
when they consider whether to click on a website. Hence, holding
consumer expectations fixed, a deviation toa reserve price slightly
lowerthanwhat consumers areexpectingwouldtypicallyincrease
profits (and social welfare) by leading consumers to click on more
links. In equilibrium, of course, the search engine cannot benefit
from deviating from the policy that consumers believe it to be
using, so we end up with an equilibrium in which the search
engine is worse off. The contrast between a consumer surplus–
maximizing and a social welfare–maximizing search engine is
interesting: an incentive to try to increase the broader welfare
measure ends upreducing social welfare relative towhat happens
if the search engine acts to maximize just consumer surplus.

A second motivation for presenting Corollary 1 is that
the behavior of consumer surplus–maximizing firms could be
directly relevant in the search engine application. Search engines
are engaged in dynamic competition to attract consumers. If
current market shares are sensitive to the consumer surplus a
search engine provides, higher current market shares lead to
higher future market shares, and future profits are important
relative toforgone current profits, then designing a search engine
to maximize consumer surplus may be a rough rule-of-thumb
approximation to the optimal dynamic policy of a firm competing
aggressively for consumers.

A final motivation for presenting Corollary 1 is that it turns
out to be a useful computational tool. Corollary 1 implies that we
can find the policy that maximizes the social welfare function by
finding the equilibrium policy in the no-commitment model with
a consumer surplus–maximizing search engine. The latter turns
out to provide an easier path to some results.
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V.B. Socially Optimal Reserve Prices with One-Position Lists and
Uniformly Distributed Search Costs

To bring out the economics of setting reserve prices and the
trade-offs for the welfare of participants, we first consider the
simplest version of our model: when the position auction lists only
a single firm (M = 1). In this case, if the auctioneer commits to a
reserve price of r, then consumers’ expectations of the quality of a
listed firm is

E(q1:N |q1:N > r) =

∫ 1
r xNF(x)N−1 f (x)dx
∫ 1

r NF(x)N−1 f (x)dx
.

Because consumers with s ∈ [0, E(q1:N |q1:N > r)) will examine
a link if it is presented, the average search cost of searching
consumers is 1

2E(q1:N |q1:N > r). In the no-commitment model,
a consumer surplus–maximizing search engine will only display
a link if the net benefit to consumers is positive. This implies
that it will display links with quality at least 1

2E(q1:N |q1:N > r).
Equilibrium in the no-commitment model therefore requires that
r = 1

2E(q1:N |q1:N > r). By Proposition 4 and Corollary 1 we then
have:

PROPOSITION 5. Suppose that the list has one position and that
the distribution of search costs is uniform. Then, consumer
surplus andsocial welfarearemaximizedforthesamereserve
price. The optimal r satisfies

(2) r =
1
2

E(q1:N |q1:N ≥ r) .

REMARK 1. Note that Equation 2 applies for any advertiser-
quality distribution, not just when advertiser qualities are
uniform. Providing a general result is easier here than in
some other places because with lists of length 1 it is not
necessary to consider how consumers Bayesian update when
links do not meet their needs.

REMARK 2. For any quality distribution F with full support on
[0, 1] we will have E(q1:N |q1:N > r)≈ 1 for N large. Hence, for
N large the optimal reserve price will be close to 1

2 .

REMARK 3. The probability that a link is displayed is 1 − F(r)N .
The mass of consumers who will click on a link if one is
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displayed is E(q1:N |q1:N > r). Hence, a formula for expected
consumer surplus given an arbitrary reserve price r is:

E(CS) = (1− F(r)N )G( q̄1(r))
(
E(q1:N |q1:N > r)

−E(s|s < E(q1:N |q1:N > r))
)

=
1
2

E(q1:N |q1:N > r)2 (1− F(r)N ) .

V.C. Welfare and the Distribution of Rents

We noted that expected consumer surplus and expected
producer surplus are proportional, and hence maximized at the
same reserve price. The “producer surplus” in that calculation
is the sum of search engine revenue and advertiser surplus.
In this section we note that these two components of producer
surplus are less aligned: search engines may prefer a reserve
price much greater than the social optimum and advertisers
may prefer a reserve price much smaller than the social
optimum.21

The producer surplus in our model, GPS(r), is a sum of two
terms: advertiser surplus AS(r), and search-engine profit SR(r).
First, we note that a general result on preference conflicts is
another simple corollary of our alignment theorem.

PROPOSITION 6. Consider the model with uniformly distributed
searchcosts. Supposethat thereserveprice rπ that maximizes
the search engine’s expected profit does not coincide with
the socially optimal reserve price rW . Then, both consumers
and advertisers are worse off under the profit-maximizing
reserve price, that is, E(CS(rπ))< E(CS(rW)) and E(AS(rπ))
< E(AS(rW)).

Proof. If rπ and rW do not coincide then E(W(rπ))< E(W(rW)).
The fact that expected consumer surplus is lower at rπ than at rW

is an immediate corollary of Proposition 4: E(CS(r)) = 1
3E(W(r)).

The advertiser surplus result is nearly as easy. The fact that
E(GPS(r)) = 2

3E(W(r)) forany r gives E(GPS(rπ))< E(GPS(rW)).
Gross producer surplus is the sum of advertiser surplus and
search engine profit. The latter is higher at rπ than rW , so it must
be that advertiser surplus is lower at rπ than at rW . �

21. Edelman and Schwarz (2010) illustrate this preference divergence in
simulations for the case they study, exogenous click-through rates.
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In the special case where the search engine displays only a
single link we can get some additional insight by writing out an
explicit division-of-surplus function:

E(SR(r)) = (1− F(r)N )G( q̄1(r))E(max(q2:N , r) |q1:N ≥ r)

= τ(r)E(GPS(r))

E(AS(r)) = (1− τ(r))E(GPS(r)) ,

where the division-of-surplus function τ(r) is given by

τ(r)≡
E(max(q2:N , r) |q1:N ≥ r)

E(q1:N |q1:N ≥ r)
,

The τ(r) function has r ≤ τ(r) ≤ 1 and hence satisfies limr→1

τ(r) = 1 for any quality distribution, that is, the search engine
gets almost all of the (very small) surplus when the reserve price
is very high. For many distributions, including the uniform, the
τ(r) function is strictly increasing on [0, 1], although this is not
true for all distributions.22 When the division of surplus function
τ(r) is increasing in r, the profit-maximizing reserve price for the
search engine is greater than the social optimum.23

In Section V.A we notedthat consumer surplus maximization
might be a reasonable approximation to the objective function
of a search engine in a competitive dynamic environment. If a
search engine insteadmaximizes a weightedaverage of consumer
surplus and profit and the consumer surplus and profit functions
are single-peaked, then a lesser weight on consumer surplus
will result in a reserve price that is worse for social welfare,
consumers, andadvertisers, but better for the search engine. This
comparison could be relevant for evaluating changes in industry
structure that make search engines less willing to invest in
attracting consumers instead of maximizing short-run profits.24

22. The τ(r) function is alsoincreasing when F(r) = rα for anyα > 0. A simple
example toshowthat it is not always increasing would be a two-point distribution
with mass 1−ε on q= 1

2 andmass ε on q=1. For this distribution we have τ( 1
2 )≈ 1

and τ( 1
2 + ε)≈ 1

2 .
23. More precisely, the profit-maximizing reserve price is always weakly

greater than the social optimum if τ(r) is weakly increasing and strictly greater if
oneassumes otherregularityconditions. Forexample, if E(CS(r) ) is differentiable
at the social optimum and τ(r) has a nonzero derivative at this point.

24. For practical application one would also want to augment the model to
include fixed costs that advertisers must pay to participate. There would then
be additional effects that stem from the search engine’s willingness to invest in
attracting advertisers.
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Appendix B presents a figure illustrating the magnitudes of the
welfare changes in a couple examples.

V.D. Optimal Reserve Prices with M Position Lists

Thinking about the socially optimal reserve price as the
equilibriumoutcomewithaconsumersurplus–maximizingsearch
engine is also useful in the full M position model. Holding
consumer expectations about the reserve price fixed, making a
small change dr to the search engine’s reserve price makes no
difference unless it leads to a change in the number of ads
displayed. We can again solve for the socially optimal r by finding
the reserve price for which an increase of dr that removes an ad
from the list has no impact on consumer surplus.

The calculation, however, is more complicated than in the
one-position case because there are two ways in which removing
a link from the set of links displayed can affect consumer surplus.
First, as before there is a change in consumer surplus from
consumers whoreachthebottomofthelist andwouldhaveclicked
on the final link with q = r if it had been displayed, but will not
clickonit if it is not displayed. Thebenefit fromtheseclicks would
have been r. The cost would have been the search cost, which is
one-half of the average of the consumers’ conditional expectations
of q when considering clicking on the final link on the list. Second,
not displayinga linkat thebottomof the list will reduceconsumer
expectations about the quality of all higher-up links, and thereby
deter some consumers from clicking on these links. Any changes
of this second type are beneficial: when the list contains m < M
links, consumerexpectations whenconsideringclickingonthe kth
link, k < m are E(qk:N |z1 = . . . = zk−1 = 0, qm:N > r, qm+1:N <
r). If the final link is omitted, consumer beliefs will change to
E(qk:N |z1 = . . . = zk−1 = 0, qm−1:N > r, qm:N < r). This latter belief
coincides with E(qk:N |z1 = . . . = zk−1 = 0, qm−1:N > r, qm:N = r).
Hence, by not including the marginal link, consumers will be
made to behave exactly as they would with correct beliefs about
the mth firm’s quality.

We write pm(r) for the probability that the mth highest
quality is r conditional on one of the M highest qualities being
equal to r. The discussion shows:

PROPOSITION 7. Suppose the distributions of search costs and
firm qualities are uniform. For any N and M, the welfare-
maximizing reserve price r is the solution to the first-order
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condition ∂E(CS)
∂r = 0 with consumer behavior held constant.

This reserve price has

r>
1
2

(
pM(r)E(qM:N |qM:N > r)

+
M−1∑

m=1

pm(r)E(qm:N |qm:N > r, qm+1:N < r)
)
.

V.E. More General Policies

In the foregoing analysis we considered policies that involved
a single reserve price that applies regardless of the number of
links that are displayed. A search engine would obviously be at
least weakly better off if it could commit to a policy in which the
reserve price was a function of the position. For example, a search
engine could have the policy that no ads will be displayed unless
the highest bid is at least r1, at most one ad will be displayed
unless the second-highest bid is at least r2, and so on. A rough
intuition for how such reserve prices might be set (from largely
ignoring effects of the second type noted in the previous section)
is that reserve prices should be set so that the reserve price for
the mth position is approximately (but greater than) one-half
of consumers’ expectations of quality when they are considering
clicking on the mth and final link on the list. This suggests that
declining reserve prices may be better than a constant reserve
price.25

The idea of using more general reserve prices illustrates
a more general idea: as long as an equilibrium in which
advertisers’ qualities are revealed still exists, consumer surplus
(and hence welfare) is always improved if consumers are given
more information about the advertisers’ qualities. In an idealized
environment, the search engine could report inferred qualities
along with each ad. In practice, different positionings might be
used to convey this information graphically. One version of this
already exists on the major search engines: sponsored links are
displayed both on the top of the search page and on the right side.
The top positions are the most desired by advertisers, but they
are not always filled, even when some sponsored links are being
displayed on the right side, due in part to different reserve prices
for the top positions and the side positions.

25. This contrasts with Edelman and Schwarz (2010), who show that a single
reserve price is optimal for all positions when clicks are exogenous.
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V.F. Reserve Prices under General Distributions

The analyses of reserve prices assume that consumer search
costs are uniformly distributed. When search costs are not
uniformly distributed, the consumer optimal and socially optimal
reserveprices will nolongerexactlycoincide. AppendixBpresents
three results illustrating how results may change with general
search costs.

First, we note that the conclusion that the consumer-optimal
reserve price is positive is fully robust: it holds for any search
cost distribution. Second, we note that the socially optimal
reserve price is not necessarily positive. An intuition for why
this conclusion may change builds on our earlier comment that
consumers do not take into account firm profits when they choose
whether to click on a link. In some situations increasing the
reserve price can (counterintuitively) make consumers less likely
to click on links, and this can reduce welfare. Third, we note that
the search engine optimal reserve price can also be 0. The effect
that makes this possible is that by making consumers more
willing to click on lower-ranked links, the institution of a reserve
prices can reduce the incentive that firms have to bid for higher
positions.

The examples we use to show that reserve prices can
reduce search engine profits and social welfare are highly special
examples. Our motivation for presenting them is not to suggest
that the outcomes that occur in them are likely to occur in
practice, and we emphasize that consumer and social preferences
will be roughly aligned whenever the search cost distribution is
approximately uniform or approximated by any CDF of the form
G(z)= zα. Our motivation for presenting the examples is instead
toillustrate the mechanisms that drive them sothat readers may
be aware of them in case they are important in some situations.

VI. CLICK-WEIGHTED AUCTIONS

Around 2003 Google was the first to implement a modified
position auction: it assigned each advertisement i a quality score
wi; ranked bids on the basis of the product biwi rather than on bi

alone; andmodifiedper-clickpayments toreflect differences inthe
quality scores. This modification was tremendously important in
practice: the textbook unweighted position auction lets obviously
“wrong” bidders winning most auctions. For example, sites
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selling ringtones and pornography sites might outbid camera
stores for the right tobe listedwhen consumers search for “digital
cameras.”Althoughmost consumers searchingfordigital cameras
have no interest in buying ringtones or pornography, ringtone
merchants and pornographers may get higher per-click profits
than camera stores because profit margins are high in ringtones
and pornography, and the few people who click on the ads are
reasonably likely to purchase. Such an outcome would be highly
inefficient: consumer surplus is very low, and neither the search
engine nor the advertising merchants make much money because
the number of clicks is so low.

The simplest rule of thumb for choosing weights that is
often mentioned in the literature is that they can be set equal
to the predicted click-through rate of the advertisement.26 The
rough motivation for this is straightforward: weighting bids
by their click-through rates is akin to ranking them on their
contributions to search engine revenues.27 In this section we
develop an extension of our model with observably heterogeneous
firms and use it to examine the implications of click-through
weighting. Wenotethat theargument forclick-throughweighting
is not straightforward in our environment and identify several
considerations that firms will want to take into account in
designing a weighting scheme.

VI.A. A Model of Click-Weighting

To create a model in which click-weighting is natural, we
modify our model to allow each firm to have a two-dimensional
type (δ, q). A firm of type (δ, q) is able to meet the needs of a
fraction δq of consumers. Consumers get some information about
whether a firm can meet their need at zero cost by looking at the
ad. A fraction 1− δ immediately learn that the advertiser cannot
meet their need. The remaining δ fraction learn that the firm
might meet their need. If they click, the firm will meet their need
with probability q. As before, consumers incur a cost of s if they
clickonanadtolearnwhetherit infact meets theirneed. Whether
each firm can potentially help a consumer is independent across

26. See BCPP(2007) and Jerziorski andSegal (2009) for empirical evidence on
the magnitude of differences in click-through rates and many other insights.

27. In practice, weights are the output of highly complex algorithms that may
incorporate many other factors in addition topredictedclick through rates. Search
engines invest a great deal in trying to improve these algorithms, which are seen
as a source of competitive advantage.
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firms. We assume that the δ of each ad is known tothe search site
and to consumers. As before each site’s q is private information.

One example that readers could keep in mind is a consumer
who has searched for “shoes.” The text in some sponsored links
will reveal that the store in question serves only women or sells
only athletic shoes. This immediately tells some consumers that
the link would not meet their need. A store that potentially
serves all consumers would have a large δ. A store that serves a
small niche, for example, ballroomdancingshoes.com, would have
a small δ.

In this environment a click-weighted auction could use the
δ’s as the weights. Firms submit per-click bids b1, . . . , bN .28 The
winning bidders are the M bidders for which δibi is largest. They
are ranked in order of δibi. If firm i is in the kth position, its per-
click payment is the lowest bid that would have placed it in this
position, δ

k+1bk+1

δi
.29

VI.B. Inefficiencies of the Click-Weighted Auction

In some models without explicit consumer search costs it is
obvious that a click-weighted auction is efficient. Things are not
so obvious in our model. We note in this section that the click-
weighted auction is efficient in one limiting case, but otherwise
there are at least two distinct sources of inefficiency.

Our efficiency result is that the outcome approximates the
first best in the limit as search costs become negligible.

PROPOSITION 8. In the limit as s → 0, social surplus of the click-
weighted auction converges to the first-best.

The argument for this has two steps, but is straightforward.
The first step is to note that the firms that win places on the
sponsored-link list will be the M firms for which δiqi is largest.
To see this, note that firms must bid up to qi if it is necessary to
get on the sponsored-link list because the firms get a zeropayoffif
they do not make the list. The second step is to note what makes

28. Again, we can think of this informally as an oral ascending bidauction, but
our formalization will be as a multistage game as in our base model.

29. Note that as in our earlier discussions of bids we use subscripts as indexes
when the index is a firm identity and superscripts as indexes when the index is
the rank of the firm in the bidding, for example, δ1 is the click-through weight of
firm 1 andδ3 is the click-through weight of the firm that is the third-to-last todrop
out (in the weighted bidding).
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consumers best off in the limiting case is to have the highest
probability of meeting their need. The probability of finding a
match is 1 −

∏M
k=1(1 − δkqk). This is maximized when the listed

firms are those for which δiqi is largest.
The efficiency result is, however, limited by two other

observations:

• The set of firms on the sponsored-link list is not necessarily
optimal away from the s→ 0 limiting case.

• Even in the s → 0 limit the ordering of the sponsored-link
list may not provide consumers with as much information
about advertiser quality.

In more detail, the first observation is that social welfare will
sometimes be improved if some firms are replaced by other firms
with higher q’s. This can be an improvement if the reduction in
the number of needs met is more than outweighed by a saving
of search costs. The inefficiency is most stark when M is large
and the set of advertisers consists of both high-quality specialist
firms, forexample, (δ, q) = ( 1

4 , 1), andlow-qualitygeneralist firms,
for example, (δ, q) = (1, 1

3) with a slighly higher probability of
meeting any given consumer’s need. The click-weighted auction
will produce list of low-quality generalist firms. But it would
have been more efficient to have given consumers a list of high-
qualityspecialists. Either list lets most consumers finda firmthat
meets their need, and there are many fewer wasted clicks when
consumers get the list of high-quality specialists. One practical
application is that click-weighted auctions may allow firms like
eBay and Nextag to win more sponsored-link slots than would be
socially optimal.

The second observation relates to the fact that the
unweighted position auction always has an equilibrium in which
firms end up sorted in order of quality. This ordering conveys
valuable information toconsumers. In the click-weightedauction,
suchequilibriagenerallywill not exist. Intuitively, consumers will
infer that a low δ firm that has made it into the top M firms must
have a fairly high q; consumers will therefore sometimes click
on such a firm first even if it is not at the top of the list; this
makes it hard to get low δ firms to bid for position. Appendix C
presents some formal results. One notes that equilibria in which
noadditional quality information is revealedalways exist andare
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morerobust inthis model. Anothernotes that anequilibriumwith
quality sorting is possible in one special case.

VI.C. A New Auction Design: Two-Stage Auctions and Efficient
Sorting

To eliminate the information loss due to imperfect sorting,
one could use a two-step procedure. First, have the firms bid as in
the standard click-weighted auction until only M bidders remain.
Then, continue with a second-stage auction allowing bidders to
raise bids further, but using a different payment scheme so that
the equilibrium will have the firm with the highest q winning.
AppendixC presents a formal model illustratinghowthis couldbe
done. The mechanism, however, is more complex than a standard
position auction and informational requirements could make it
difficult to implement in practice.

VI.D. Obfuscation

A relatedissueof substantial practical importanceis whether
the snippet of text that accompanies each sponsored link conveys
useful information about the link. Consumers benefit when the ad
text lets them avoid unproductive clicks. And the search engine
and advertisers benefit when consumers are more willing to click
on seemingly relevant ads. In this section we discuss advertisers’
incentives tomakeadtext accurateandinformative. Wenotethat
click-weighted auctions can create incentives for obfuscation.30

Our formal analysis is presented in Appendix C. The model
augments our base model in two ways. First, we assume firms
receive some small benefit a from each click regardless of whether
the firm meets the consumer’s need. This couldreflect advertising
revenues, future sales, sales unrelated to the need, or other
factors. Second, we model the endogenous choice of an obfuscation
strategyas anabilitytochoosethefraction δi ∈ [qi, 1] ofconsumers
who will think after reading the ad text that firm i might meet
their need. We assume that firm i cannot affect the fraction qi

of consumers whose needs it will meet, so choosing a larger δi is
implicitly choosing a lower probability of meeting the consumer’s
need conditional on the ad text being consistent with the need.

30. See Ellison and Ellison (2004, 2009) for a discussion of obfuscation
including a number of examples involving e-retailers, and Wilson (2008) and
Ellison and Wolitzky (2009) for models in which firms intentionally make search
more costly.
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Consumers cannot observe obfuscation choices: they believe that
each firm is using the equlibrium level of obfuscation.

Our analysis of this model brings out two results:

• There would be no obfuscation in a position auction without
click-weighting.

• Firms will engage in obfuscation in the click-weighted
auction.

The first result should be intuitive—firms do not want
unproductive clicks if they have to pay for them. The easiest way
to see this mathematically is to condition on the firm’s position k
on the list and normalize the mass of consumers who will click on
the firm’s link if it is consistent with their need to 1. The firm’s
revenue from product sales is always qi. There is an additional
benefit δia from the extra revenue source. And the firm pays
δibk+1 for the clicks it gets. Total profits are qi + δi(a − bk+1). This
is decreasing in δi whenever bk+1 > a, which will always be true
when the firms who don’t make the list would have gotten at
least a from each consumer.

The second result is more striking. The key observation
is that the formula for per-click payments in the click-
weightedauction, bk+1δk+1

δi
, makes firm i’s total payment completely

independent of its click-throughrate—thetotal payment is simply
equal tobk+1δk+1.31 The gross benefit firm i receives from from the
clicks it receives, qi + δia, is increasing in the number of clicks
received. So the insensitivity of payments makes firms want to
obfuscate and make the click-through rate as large as possible. A
feature of this argument that may make it practically relevant is
that it applies even if the benefit, a, from unproductive clicks is
very small.

Search engines may attempt tocombat obfuscation in various
ways. One is to try to enforce rules forbidding misleading ad text
by refusing to display ads flagged by a manual or automated
review. Another is to adjust the pricing formula either so that
firm i’s per-click payment decreases less than one-for-one with
increases intheclickthroughrate, orsothat theper-clickpayment
is affected by relevance measures (which can be based on textual

31. Immorlica et al. (2006) can be seen as showing that this invariance is
advantageous in other dimensions—it makes it possible to generate click-through
weights in a way that is resistant to click fraud.
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analyses or on the number of consumers who immediately return
tothesearchpage). Pay-per-actionauctions arenot a solution: the
Appendix shows that they have the same obfuscation problem.

VI.E. Product Variety

In practice, consumers whotype in a given keyword will have
heterogeneous needs. For example, a consumer who types the
keyword “shorts” may be interested in upscale women’s clothing,
athletic shorts, or perhaps even short films. Intuitively it would
be desirable to serve such a population by presenting a diverse
set of ads. The model we have presented so far cannot capture
this intuition—our assumption that the probability that each
website meets a consumers need is independent rules out the
possibility that particular pairs of sites, for example, two sellers
of athletic shorts, are likely to meet the same needs. Appendix C
works through a simple extension of the model in which there
are different categories of advertisers. We show that an optimal
weighted auction will give a higher weight to sites that increase
product variety. Note that in this context the weight given to site
i cannot be defined just as a function of site i’s characteristics:
contributions to product variety depend on the characteristics of
the other advertisers who appear on the sponsored-link list.

VI.F. What Does Click-Weighting Mean?

The question of what is meant by the “standard” click weight
is of broader importance. In the model of Section VI.A, the click
weights wereassumedtobethe(known)parameters δ. Inpractice,
click weights will be estimated from data on click-throughs as a
function of rankings. When the relationship between clicks and
rankings is not a known function independent of other website
attributes, it is not clear what these will mean.

One interesting example is our base model. In this model,
suppose that click-through rates are estimated via some
regression estimated on data obtained when different subsets of
firms randomly choose tocompete on different days. Suppose that
each website has the same q across days. In this situation, the
clicks that a given site gets when it is in the kth position is a
decreasing function of its quality. Conditional on k, the quality
of sites 1, 2, . . . , k − 1 is higher when qk:N is higher. Hence,
the likelihood that consumers will get down to the kth position
without satifying their need is lower.
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Usingclickweights likethis will tendtodisadvantagehigher-
quality sites, reducing both the average quality of the set of
sites presented and eliminating the sorting property of our base
model.

VII. CONCLUSIONS

In this article, we have integrated a model of consumer
search into a model of auctions for sponsored-link advertising
slots. General observations from previous papers about the form
of theauctionequilibriumarenot muchaffectedbythis extension:
advertisers bid up to their true value to be included in the
sponsored-link list and then shade their bids when competing for
a higher rank.

The differences in the auction environment does, however,
have a number of different implications for auction design. One
of these is that reserve prices can increase both search engine
revenues and consumer surplus. The rationality of consumer
search creates a strong alignment between consumer surplus and
social welfare in our model and a consumer surplus–maximizing
search engine will have a strong incentive to screen out ads so
that consumers don’t lose utility clicking on them. Another set
of different implications arise when we consider click-through
weighting. Here, the auction that is efficient with no search costs
ceases tobeefficient fortworeasons: it mayselect thewrongfirms,
and it may provide consumers with little information to guide
their searches. The informational inefficiency can be avoidedwith
an alternate auction mechanism. An additional worry about click-
weighted auctions is obfuscation—since advertisers’ steady-state
payments do not vary with their click-through rate (they are
determined by the revenue bid of the bidder in the next-lower
position), advertisers have no incentive to design ad text to help
consumers avoid unnecessary clicks. The working paper version
of this article, Athey and Ellison (2009), discusses additional
auctiondesignquestions as well, includingpolicies towardsearch-
divertingsites andtheuseofminimumrelevancethresholds when
consumers are uncertain about the distribution of advertiser
quality.

A more basic theme of our article is that sponsored link
auctions create surplus by providing consumers with information
about the quality of sponsored links. Sorting links on the
basis of weighted bids is an effective mechanism for providing
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such information. But once one thinks about search engines
as intermediaries whose role is to make consumer search
more efficient, it immediately becomes salient that there could
be effective ways to perform this role with quite different
designs. For example, search engines could try to convey finer
information about quality. They could try to convey raw data
like bids, conversion rates, estimated textual relevance, or
aggregates of these. Data could be conveyed numerically or
via visual schemes varying the placement, size, or color of
ads. Landing page previews could be added to help consumers
assess the relevance of links, and so on. The scope for
creative exploration is enormous and should make this an
interesting area for pure and applied research for many years to
come.32

APPENDIX A: UNIFORMLY DISTRIBUTED QUALITY

This appendix presents some additional results on our model
for the case when the the distribution F of the advertisers’
qualities is uniform on [0, 1]. This special case is surprisingly
tractable. This enables us to derive more explicit versions of
several propositions.

A. Consumer Search

The tractability of the model with uniform F stems from the
fact that there is a simple closed-form expression for consumers’
expectations of the quality of the kth link conditional on not
having found that the first k− 1 links do not meet their need.

PROPOSITION A1. For uniform F, if consumers search an ordered
list from the top down, then

E(qk:N |z1 = . . . = zk−1 = 0) =
N + 1− k

N + k

Prob{z1 = . . . = zk−1 = 0} =
k−1∏

j=1

2j− 1
N + j

32. SeeRayoandSegal (2010) foroneinterestingapproachtothemoreabstract
question of how consumers might be provided with information on advertiser
quality.
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Proof. When F is uniform, f k:N(x) = N!
(N−k)!(k−1)! (1−x)k−1 xN−k. The

general formula in Proposition 1 gives

E(qk:N |z1 = . . . = zk−1 = 0)

=

∫ 1
0 xf k:N(x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx
∫ 1

0 f k:N(x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx
.

The conditional probability that shows up in the numerator and
denominator is:

Prob{z1 = . . . = zk−1 = 0|qk:N = x} =

(
1− x

2

)k−1

.

Hence, both the numerator and the denominator are some
constant times an integral of the form

∫ 1
0 xa(1−x)b dx. Integrating

by parts, one can show that this is equal to a!b!
(a+b+1)! . Evaluating

the integrals gives the first formula in the statement of the
proposition.

The second formula in the proposition follows from computing
the integral that is the dominator of the foregoing formula or it
can be proved more quickly by noting that

Prob{z1 = . . . = zk−1 = 0} = Prob{z1 = 0}Prob{z2 = 0|z1 = 0} . . .

=
k−1∏

j=1

(
1− E(qj:N |z1 = . . . zj−1 = 0)

)

�
Having an explicit expression for the conditional expectations

makes it easy togive an explicit description of consumerbehavior.

PROPOSITION A2. If the firms are sorted by quality in equilibrium
and the distribution F of firm qualities is uniform, then a
consumer with search cost s stops clicking when she reaches
position kmax(s), where

kmax(s)=

⌈
1− s
1 + s

N +
1

1 + s

⌉

.

The proof of this result is immediate: the consumer will want
tosearch the kth website if (N+1−k)

(N+k) > s. This holds for k < kmax(s).

B. Consumer Welfare

Assuming that the quality distribution is uniform also makes
it easy to compute expected consumer surplus. The expected
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payoff from clicking on the top link is E(q1:N)−s = N
(N+1)−s . If the

first link is unsuccessful, which happens with probability 1
(N+1),

then (using Proposition A1) the consumer gets utility E(q2:N |z1 =
0)−s = (N−1)

(N+2) − s from clicking on the second. Adding up these
payoffs over the number of searches that will be done gives the
following result:

PROPOSITION A3. If the distribution of firm quality F is uniform,
the expected utility of a consumer with search cost s is:

E(CS(s))=






0 if s ∈
[

N
N+1 , 1

]

N
N+1 − s if s ∈

[
N−1
N+2 , N

N+1

]

N
N+1 − s + 1

N+1

(
N−1
N+2 − s

)
if s ∈

[
N−2
N+3 , N−1

N+2

]

N
N+1 − s + 1

N+1

(
N−1
N+2 − s

)

+ 1
N+1

3
N+2

(
N−2
N+3 − s

)
if s ∈

[
N−3
N+4 , N−2

N+3

]

. . .

1− 1
2

M if s ≈ 0

When N is large, the graph of the function above approaches
1 − s, whereas the unordered payoff is approximately 1 − 2s. N
doesn’t need to be very large at all for the function to be close to
its limiting value. For example, just looking at the first term we
know that for N = 5 we have E(CS(s))> 5

6 − s for all s. Figure A.1
plots the relationship between E(CS) and s for N = 4.

FIGURE A.1

Consumer Surplus with Sorted and Unsorted Links: N = 4
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C. Click-Through Rates

If we add an assumption that consumer search costs are
also uniformly distributed, then we also obtain simple explicit
expressions for click-through rates in our model. Proposition A4
gives two explicit formulas: one for the expected click-through
rate; and another for the conditional expected click-through rate
when the kth link has quality q. The former might be compared
with data on actual click-through rates. The is relevant to the
firm’s bidding problem.

PROPOSITION A4. Assume s and q ∼ U[0, 1]. Consider an equi-
librium of the bidding game in which firms are sortedin order
of quality. Then, the expected number of clicks D(k) that will
be received by the kth website is

D(k)=
1 ∙ 3 ∙ ∙ ∙ ∙ ∙ (2k− 3)

(N + 1)(N + 2) . . . (N + k− 1)

The expected number of clicks conditional on the kth highest
quality website having quality q is

D(k, q) =
(1 + q

2

)k−1 N + 1− k
N + k

Proof. Expectedclick-through rates can be computedas a product
of two terms: the probability that a consumer’s search costs is
such that he/she would be willing to click on the kth link if the
he/shedoes not meet his orherneedat thefirst k−1 websites; and
the probability that the first k − 1 clicks will all be unsuccessful.
With uniformly distributed search costs the former is simply the
expectedqualityofthekthlinkconditional onk−1 failures. Hence,
theunconditional expectedclickthroughrateis simplytheproduct
of two expressions from Proposition A1.

The second expression is derived by thinking of the first k− 1
websites as ordered at random rather than ordered by decreasing
quality. With this reordering, whether each of the k − 1 websites
meets the consumer’s need is independent. Hence, the probability
that none of the k − 1 sites meets the need is (1 − E(qj|qj >

q))k−1 =
(1+q

2

)k−1
. The probability that a consumer’s search cost

is such that she would click on the website is as in the previous
formula. �
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D. Equilibrium Bidding

Plugging the conditional expectation formula intothe formula
forequibriumbiddingalsoyields a formula forequilbriumbidding
which simplifies.

PROPOSITION A5. When both qualities and search costs are
uniform it is a PBE for firms to choose dropout points
according to

b∗(k, bk+1; q) = bk+1 + (q− bk+1)

×

(

1− (1− q)

(

1−
2N + 1

(N + 1)2− (k− 1)2

))

.

Proof. The formula is obtained by substituting the expression
for G( q̄k) from Proposition A1 into the general formula for the
equlibrium in Proposition 3 and simplifying:

G( q̄k)
G( q̄k−1)

=
(N + 1− k)/(N + k)

(N + 1 − (k− 1))/(N+(k− 1))

= 1−
2N + 1

(N + 1)2− (k− 1)2
.

�

E. Optimal Reserve Prices with One-Position Lists

The analysis of the optimal reserve price with a one-position
list (and uniformly distributed search costs) also becomes very
tractable when the quality distribution is uniform.

PROPOSITION A6. Suppose that the list has one position, the
distribution of search costs is uniform, and the distribution F
of firmqualities is alsouniform. Thenthewelfaremaximizing
reserve price r is the positive solution to r + r2 + . . .+ rN = N

(N+2).

Proof. Using the decomposition

E(q1:N) = Prob{q1:N < r}E(q1:N |q1:N < r)+Prob{q1:N > r}

E(q1:N |q1:N > r)

we find that the conditional expectation of the order statistic is:

E(q1:N |q1:N > r) =
N

N + 1
1− rN+1

1− rN
.

The formula follows from the general formula of Proposition 5 of
the main text after a bit of algebra. �



POSITION AUCTIONS WITH CONSUMER SEARCH 1251

The formula implies that the welfare-maximizing reserve
price is one-third when N = 1. With r = 1

3, consumer expectations
will be that q ∼ U[ 13 , 1], and consumers search if and only if
s ∈ [0, 2

3 ]. Hence the average search cost is indeed 1
3 as the general

formula of Proposition 5 requires.
The expected consumer surplus, search engine profits, and

social welfare are all higher with a small positive reserve price
than with no reserve price when the quality distribution is
uniform. The general expression for consumer surplus with a
reserve price of r becomes

E(CS) =
1
2

(
N

N + 1

)2 (1− rN+1)2

1− rN

Writing SR(r) for the search engine’s revenue when it uses a
reserve price of r we find

E(SR(r)) =
N

N + 1
1− rN+1

1− rN

×
∫ 1

r

(( r
x

)N−1
r +

∫ x

r
(N − 1)

(z
x

)N−2
zdz

)

NxN−1dx

Each of these expressions is increasing in r for small r.

APPENDIX B: RESERVE PRICES WITH NONUNIFORM SEARCH COSTS

The analysis of reserve prices in the text focuses on the case
when the distribution G of consumer search costs is uniform on
[0, 1]. In this appendix we present some results involving general
search costs distributions and a figure illustrating the welfare
trade-off in a few examples.

A. Consumer Optimal Reserve Prices

Our first result is that consumer surplus maximization does
require a positive reserve price for any G. We prove this by
showing that consumer surplus is increased when small positive
reserve prices are implemented.

PROPOSITION A7. Consumer surplus is maximized at a strictly
positive reserve price.

Proof. Considertheeffect onconsumersurplus of a small increase
in r starting from r = 0. We show that consumer surplus is
increased via a two-step argument. The simple first step is to
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note that consumer rationality implies that consumer surplus
with optimal consumer behavior is greater than the surplus that
consumers would receive if they behaved as if r = 0.33 The second
step is to show that consumer surplus under this “r = 0” behavior
is greater when the search engine uses a small positive reserve
price dr than when the search engine uses r = 0.

If consumers use the r = 0 behavior, then consumer surplus is
only affected by the institution of a reserve price if the reserve
price eliminates links from the list and consumers would have
clicked on these links if they were displayed. The gross consumer
surplus from each such click is bounded above by dr. The average
search costs incurred on each such click are bounded below by
E(s|s ≤ q̄M). The cost is independent of dr whereas the benefit is
proportional to dr, so the costs dominate for small dr. �

B. Social Welfare

Proposition 5 of the main text implies that the socially optimal
reserve price is always positive when G is uniform. Here, we note
that social welfare need not be maximized at a positive reserve
price for arbitrary G. An intuition for why reserve prices can be
harmful is that consumers do too little searching from a social
perspective because they do not take firm profits into account. If
changes tothe reserve price policies decrease the number of clicks
that occur in equilibrium, then social welfare can decrease.

PROPOSITION A8. Social welfare can be strictly greater with a zero
reserve price than with any positive reserve price.

Proof. Consider a model with M = N = 2 and the quality
distribution F is uniform on [0, 1]. Suppose that a fraction γ1 of
consumers have search costs uniformly distributed on [ 23 − ε,

2
3 ], a

fraction γ2 have search costs uniformly distributed on [0, 1], and a
fraction γ3 have have search costs uniformly distributed on [0, ε].

In the first subpopulation (with s ≈ 2
3), small reserve prices

reduce welfare. These consumers click on the first website but
not the second when there is no reserve price. Hence, the gain
in welfare derived from the search engine not displaying a site
they would have clicked on is just O(r2). Small reserve prices also

33. Formally, we suppose that consumers behave exactly as they would if the
list had M links and r = 0 when deciding whether to click on any link that is
displayed and do not click on links that are not displayed.
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have an effect that works through changes in consumer beliefs:
given any small positive r, consumers will not click at all if only
one link is displayed. The expected gross surplus from clicking on
a single link is 21+r

2 , whereas the search cost incurred is less than
2
3, so losing these clicks is socially inefficient. The probability that
this will occur is 2r(1 − r) so the loss in social welfare is O(r).
Appendix D contains a formal derivation of this and shows that
the per-consumer loss in welfare from using any reserve price in
[0, 1

3 − 2ε] is at least 2
3r.

An example using just the first subpopulation does not suffice
to prove the proposition for two reasons: (1) the search cost
distribution in this example does not have full support; and
(2) although small reserve prices reduce welfare in the first
subpopulation it turns out that a larger reserve price (r > 1

3 − 2ε)
will increase welfare. (The argument above no longer applies
when r is sufficiently large so that consumers click on the link
when a single link is displayed.)

The first problem is easily overcome by adding a very small
fraction γ2 of consumers with search costs uniformly distributed
on [0, 1]. Welfare gains in this group are first-order in r when r is
small and bounded when r is large, so adding a sufficiently small
fraction of such consumers won’t affect the calculations.

The second problem is also easily overcome by adding a
subpopulation of consumers with search costs in [0, ε]. Welfare
is improved in this subpopulation when a small positive reserve
price is implemented, but the effect is so weak that we can add
a large mass of these consumers without overturning the small
r result from the first subpopulation.34 There is a substantial
welfare loss in this subpopulation if the search engine uses a
large reserve price. Hence, adding an appropriate mass of these
consumers makes the net effect of using a reserve price of 1

3 − 2ε
or greater also negative. �

Theexampleusedintheproof is obviouslyquitespecial. Wedo
not mean to suggest that the adverse effects of reserve prices are
likely to dominate the beneficial effects in the real world. Rather,
the motivation for presenting the proposition was simply to note
that one property of socially optimal reserve prices in the model
with uniform search costs cannot be generalized toapply for all G

34. The per consumer welfare benefit from a small reserve price is bounded
above by total search costs incurred in clicking on ads with quality less than
Min{r, ε}, which is less than 2Min{r, ε} ε2 .
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and toillustrate a channel through which reserve prices can have
a negative impact on social welfare.

C. Reserve Prices

It is also theoretically possible that using a small positive
reserve price can alsoreduce search engine revenue. The example
we use todemonstrate this highlights another difference between
our model and standard auction models. The crucial property of
these models that helps drive our examples is that increasing
r increases consumer expectations of the quality of all links,
including the bottom one. This makes the Mth position more
attractive, which can reduce bids for the M-1st position. Because
bids depend recursively on lower bids, this can reduce bids on
higher positions as well.

PROPOSITION A9. There exist distributions F and G for which
search engine revenue is decreasing in the reserve price in
a neighborhood of r = 0.

Again, the proof consists of a very special example. Suppose
M = N = 2, and all consumers have search costs of exactly q̄2.
Assume that with no reserve price consumers click only on the
top link. Hence, firms will bid up to their true value to be in
the top position and and search engine revenue is E(q2:N). Given
any positive reserve price r, consumers will click on both links.
The increased attractiveness of the second position leads to a
jump down in bids for the first position. This, of course, leads to
a jump down in revenue. To see this formally, bids for the first
position (when two firms have q > r) will satisfy the indifference
condition:

(q− b∗(q)) = (1− q)(q− r) .

This gives b∗(q) = r + q(q − r). When r ≈ 0 expected revenues
are approximately E((q2:N)2 ). This is a discrete jump down from
E(q2:N).

The example above is not a formal proof of the proposition
for two reasons: (1) the search cost distribution does not have
full support; and (2) we’ve assumed the search cost distribution
has a mass point at q̄2. One could easily modify the example
to make it fit within our model. Problem 1 could be overcome
by adding a small mass γ2 of consumers with search costs
uniformly distributed on [0, 1]. And problem 2 could be overcome
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by spreading out the first population to have search costs
uniformly distributed on [q̄2, q̄2 + ε]. We omit the details of these
modifications.

D. Numerical Examples of Welfare Trade-Offs

Figure A.2 illustrates the conflicting preferences of
advertisers, consumers, and the search engine in two
specifications of the model. In each panel, we graph expected
advertiser surplus, expected consumer surplus, and expected
search engine profit as a function of the reserve price and draw
vertical lines at the values of r that maximize each of these
functions.
The right panel is for a model with three firms drawn from

a uniform quality distribution. In this model, consumer surplus
turns out to be fairly flat over a wide range of reserve prices.
The advertiser-optimal and search engine profit-maximizing
prices are quite far apart, but consumer surplus at both of these
points is not very far from its optimum. An intuition for the
flatness of the consumer surplus function is that reserve prices
in this range are rarely binding, and hence there is little direct
effect on the probability of a link being displayed and little
indirect effect via changes in consumer beliefs. The main effect
of a shift from consumer-optimal to profit-maximizing reserve

FIGURE A.2

Welfare and Distribution of Surplus for Two Specifications
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prices is a redistribution in surplus from advertisers tothe search
engine.

The left panel is for a model with three firms with qualities
drawn from the CDF F(q) =

√
q. This distribution is more

concentrated on low-quality realizations, which makes consumer
surplus and advertiser profits more sensitive to the reserve price
in the relevant range. In each panel we also graph an equally
weighted average of consumer surplus and search engine profit.
Thecurvatureofthefunctions involvedis suchthat themaximizer
of this average is closer to the profit-maximizing level than to the
socially optimal level.

APPENDIX C: CLICK-WEIGHTED AUCTIONS

In this appendix we present some additional formal results on
click-weighted auctions.

A. Inefficiency in the Ordering of Listed Firms

One result highlighting the potential loss of efficiency about
advertiser qualities is very simple:

PROPOSITION A10. The click-weighted auction always has
an equilibrium in which all remaining firms drop out
immediately as soon as just M firms remain.

The equilibrium strategies are the obvious ones: firms remain
in bidding until the bid reaches q if there are more than M
firms remaining and then drop out immediately once M firms
remain. When firms follow these strategies, consumers’ beliefs
about the quality of each remaining firm i conditioning on all
available information X is E(qi|X) = EbM+1E(qi|δiqi > δ

M+1bM+1).
This is higher for firms with a lower δ, so it is an equilibrium for
consumers toignoretheorderingofthefirms onthelist andsearch
in increasing order of δ. With this consumer behavior, there is no
benefit to bidding for a higher position and immediate dropout is
optimal.

Immediate dropout equilibria also existed in the unweighted
auction model—all consumers can search in a random order—but
wementionthemherebecausetheyseemmorenatural androbust
when consumers have reason to believe that some advertisers
are better than others and strictly prefer to search in the way
that they do. One robustness criterion that would distinguish
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the click-weighted model from the unweighted model is that
behavior would not change substantially in the click-weighted
model if consumers thought that there was an ε probability that
the ordering was informative and a 1 − ε probability that the
ordering was not.35

A second formal result illlustrates that greater information
revelation is also possible: the click-weighted auction model does
haveanequilibriumwithfull sortinginonespecial case. Todefine
this, let s be such that all consumers with search costs s < s
will search all listed websites as long as their need has not been
met.36

PROPOSITION A11. Suppose that N = M = 2 and the support of
the search cost distribution G is a subset of [0, s]. Then, the
click-weighted auction has an equilibrium in which the two
firms bid according to b∗i (q) = δjq2

i . In this equilibrium the
firm with the highest q is always in the first position on the
list.

Proof. Note that the strategies are monotone and satisfy
δ1b∗1(q) = δ2b∗2(q). Hence, if firms follow these strategies the
winner in a click-weighted auction is the firm with the highest
q. Because all consumers search both firms, firm i’s demand is δi
if it is first on the list and its expected demand from the second
position (conditional on the other firm being about to drop out) is
δi(1− δjq). Firm i’s indifference condition becomes

δi(q− b∗i (q)) = δi(1− δjq)(q− 0).

This condition is satisfied for the given bidding function. �
The full-sorting example uses several special assumptions.

These are largely necessary to get full sorting. For example, one
can show that there are no equilibria with full sorting when
δ1 ≠ δ2 if one assumes instead that N > 2 and/or that G has
full support on [0, 1].37 A rough intuition for this is that the
solutiontotheasymmetricfirst-orderconditionwill not satisfythe

35. Chen and He (2006) note that the immediate-dropout equilibria in the
unweighted model are nonrobust to assuming that an ε fraction of consumers
always search in a top-down manner. This remains true in the click-weighted
auction.

36. An s > 0 with this property will exist if the δ’s are bounded away from 0.
For example, it suffices to set s = E(qM|δM = 1, δ1 = . . . = δM−1 = δ, z1 = z2 =
. . . = zM−1 = 0) .

37. We thank Dmitry Taubinsky for these results.
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symmetry condition necessary for full sorting, δib∗i (q) = δjb∗j (q),
except in particular special cases. Accordingly, we feel that the
more important lesson from this section is the first one: click-
weightedauctions donot have the the nice information-revelation
feature of the unweighted position auction.

B. A New Auction Design: Two-Stage Auctions and Efficient
Sorting

Suppose M = 2 and N > 2 and firms 1 and 2 are the remaining
firms. To design an auction in which there will be an equilibrium
in which the firms are sorted by quality, it will suffice to choose
asymmetric payment schedules p1(q) and p2(q) such that it will
beanequilibriumforfirms toannouncetheir truequalities q1 and
q2 if we ask firms to announce their qualities, put the firm with
the highest announced quality in the first position, and assign a
per-click payment of pi(q−i) to the winning firm i and b3δ3

δj
to the

losing firm j.
To see that such payment schedules exist, note that if a firm

is the last to drop out, its expected profit is

μ1iδi(qi − pi(q−i)) ,

whereμ1i =G(E(qi|qi > q−i, X)) with X the event that firms 1 and
2 are the two winning bidders. If the firm is the second to drop
out, its expected profit is

(μ2i(1− δj)+ μ3iδj(1− q−i))δi

(

qi −
b3δ3

δi

)

,

whereμ2i = G(E(qi|qi < q−i, X)) andμ3i = G(E(qi|qi < q−i, X, z−i =
0)). It is straightforward to choose pi(q) so that these two
expressions are equal conditional on q−i = qi, in which case the
necessary indifference condition for a truth-telling equilibrium is
satisfied.38 Note that to implement such rules the search engine
needs to know the δ’s and also needs to know what click-through
rates each firm will receive given each possible ordering. Knowing
the δ’s is necessary for everything we’ve done in this section. The

38. One can show that the pi(q) function defined in this way is monotone.
Indifference need not hold when the high δ firm drops out at a point when the
other firm is known to have higher quality. To complete the specification without
interfering with the selection of the final two firms we set pi(q)= b3δ3

δi
if δi < δ−i

and q < b3δ3

δi
.
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additional informational requirements will be more of an obstacle
to implementing such schemes in practice.

When s < s for all consumers the payment functions take a
particularly simple form:

pi(q) =
b3δ3

δi
+ δ−iqmax

{(

q−
b3δ3

δi

)

, 0

}

.

Using this formula we can see that firm 2 is favoredat lowquality
levels when δ1 < δ2 in the sense that it makes a lower payment
when the firms have equal qualities and these qualities are near
the lowest possible. At high quality levels the bid preference may
be reversed.

C. Obfuscation

We augment our base model in two ways. First, we assume
that each firm i receives some benefit a from each click it receives
independent of whether it meets the consumer’s need. Second, we
assume that each firm chooses an obfuscation level λi ∈ Λ ⊂ [0, 1].
If firm i chooses obfuscation level λi then a fraction 1 − λi of the
consumers whose needs will not be met by the website will realize
this just by reading the text of the firm’s ad (without incurring
any search costs). We define δi ≡ qi + λi(1− qi) to be the fraction
of consumers who cannot tell whether site j will meet their need.
Note that our base model can be thought of as a special case of
this model with a = 0 and no option other than full obfuscation,
Λ = {1}.

We assume instead that consumers cannot detect the
obfuscation level chosen by any individual firm. We restrict our
analysis to equilibria in which firms are sorted on quality and
consumers search in a top-down manner.

Let γk be the fraction of consumers who click on link k if the
first k − 1 links do not meet their needs and they are in the
group that cannot tell whether the kth link meets their needs.
This will be a function of consumer beliefs about the quality of
the kth website andthe equilibrium obfuscation strategies.39 One
thingthat simplifies ouranalysis is that γk does not dependonthe
actual obfuscation level of the firm in position k.

39. Note that beliefs about the quality of the kth firm will no longer be
independent of the realizedqualities because consumers will get some information
about thequalities of lower-rankedfirms byobservingwhetherthesefirms canalso
potentially meet their needs.
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Consider first the simplest unweighted pay-per-click auction.
Conditional on having dropped out of the auction at a bid that
places firm i in the kth position (k ≤M), firm i’s payoff is

Π(k,λ, bk+1; qi) = Xγkδi

(
qi

δi
+ a− bk+1

)

= Xγk(qi + δia− δib
k+1) ,

where X is the number of consumers whoreach position k without
having their needs met. In equilibrium, a small change in λi that
does not affect firm i’s position on the list cannot increase its
profits. Note that

∂Π

∂λi
=
∂δi
∂λi

(a− bk+1)Xγk = (1− qi)(a− bk+1)Xγk.

In equilibrium bM+1 will be at least a + qM+1:N , so this is negative
and no obfuscation occurs in equilibrium.

If there was heterogeneity in the benefits ai that firms receive
from clicks that do not meet consumers’ needs, then it is possible
that firms with large ai couldengage in obfuscation. But note that
it would still be necessary for ai to be larger than the bid of the
firm in the next highest position, which suggests that obfuscation
is unlikely to occur except perhaps at very low positions on the
list.

Consider now a click-weighted pay-per-click auction in which
the search engine uses click-through weights proportional to the
δi.40 Conditional on being in the kth position (k ≤ M), firm i’s
payoff is

Π(k,λ, bk+1;qi) = Xγk

(

qi + δia− δi
δk+1bk+1

δi

)

.

This expression is monotone increasing in δi. Hence, in
equilibrium we get full obfuscation: all firms choose λi = 1.

Search engines have been developing the capability to track
sales made by their advertisers. This enables pay-per-action
auctions: firms submit bids bi which represent payments to be
made to the search engine only if a consumer clicks on their link
and has their need met. Suppose that a search engine records the
fraction of clicks which result in needs being met, yi, anduses this
as an additional weighting factor just as click-through rates are
used in the click-weighted auctions: the search engine ranks the

40. Note that we are implicitly assuming here that in equilibrium the search
engine has learned firm i’s click-through rate and uses it in determining the
rankings and the per-click price firm i must pay.
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firms on the basis of δiyibi and firm i will make a payment of

of δ
k+1yk+1bk+1

δiyi
every time it meets a need if its ad is displayed in

position k. Conditional on being in the kth position (k ≤ M), firm
i’s payoff is

Π(k,λ, bk+1; qi) = Xγk

(

qi + δia− δiyi
δk+1yk+1bk+1

δiyi

)

.

This expression is virtually identical to the expression for the
standardclick-weightedauction. Theresult onobfuscationcarries
over.

D. Product Variety

We consider here the simplest extension of our model with
different categories of advertisers. There are three sites: site 1A,
site1B, andsite2. Supposethat a fraction δ1 > 1

2 of consumers are
type1 consumers andcanpotentiallyhavetheirneeds met byboth
site 1A and site 1B. The remaining δ2 = 1− δ1 consumers are type
2 consumers andcan potentially have their needs met only by site
2. Suppose that the sponsored link list contains twofirms (M = 2).
Assume that the qualities are independent draws from a uniform
distribution on [0, 1]. To simplify the analysis we suppose that all
consumers have s ≈ 0 so that clicks decline at lower positions
only because needs are being met and not also because of quality-
inferences.

Consider a weighted k+1st price ascending bid auction in
which winning bidders are chosen by comparing b1A, b1B, and
wb2. As before, assume that the per-click payment of firm k is the
k+1st highest bidadjustedfortheweight difference(if a difference
exists). Wefocus onthecaseof w ≥ 1 todiscuss whenfavoringfirm
2 is better than equal weighting.

Again, each firm i will bid up to qi to be included on the two-
firm list. Once the bidding is down to two firms, there will again
be an equilibrium with full sorting if firms 1A and 1B are the two
remaining firms. When firms 1x and 2 are on the list, however,
there cannot be an equilibrium with full sorting. Because demand
is independent of the expected quality of each site (due to the
simplifying assumption that s ≈ 0 for all consumers and the fact
that customers served by the two sites are distinct), both firms
will drop out immediately.

Given these bidding strategies, suppose that firm 1A is first
on the list and the weight w is pivotal in determining which
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other firm appears, that is, q1B = wq2. Having firm 1B also
on the list provides incremental utility only to type 1 buyers
whose needs were not met by firm 1A. Hence, the expected
incremental value of including firm 1B (conditional on q1A) is
δ1(1 − q1A)E(q1B|q1B < q1A, q1B = wq2) = δ1(1−q1A)q1A

2 .41 Including
firm 2 can provide incremental utility to any type 2 buyer: the
incremental benefit is (1−δ1)E(q2|q1B < q1A, q1B =wq2) = (1−δ1)q1A

2w .
Usingw > 1 will providegreaterconsumersurplus thanw=1 if the
second term is greater than the first (in expectation) when w = 1.
The distribution of q1A conditional on q1A being the largest of the
threeandtheothertwosatisfyingq1B = wq2 is just thedistribution
of the larger of two uniform [0, 1] random variables. This implies
that the conditional expectation of q1A is 2

3 and the conditional
expectation of q2

1A = 1
2. Hence, there is a gain in consumer surplus

from choosing w > 1 if δ1( 1
3 −

1
4) <(1− δ1) 1

3 . We have

PROPOSITION A12. The consumer surplus–maximizing weighted
auction is one that favors diversity of the listings (w > 1) if
δ1 <

4
5 .

Proof. To compute expected consumer surplus we compute the
probability that each subset of firms is listed and the expected
quality of the listed firms conditional on that subset being
selected. Write L for the set of firms listed. The main probability
fact we need is easy:

Prob{L = {1A, 1B}} =
1
3

w

To see this, note that L = {1A, 1B} is possible only if q2 ∈ [0, 1
w ].

This happens with probability 1
w conditional on q2 being in this

range, L ={1A, 1B} occurs with probability 1
3 (because wq2 is then

uniformly distributed on [0, 1]).
The expected qualities are

E(q1x|L = {1A, 1B}, q1x > q1y) =
3
4

E(q1x|L = {1A, 1B}, q1x < q1y) =
1
2

E(q1x|L = {1x, 2}) =
8w− 3
12w− 4

E(q2|L = {1x, 2}) =
6w2 − 1

12w2 − 4w
.

41. Conditioning on q1B = wq2 is irrelevant because conditional on wq2 < q1A,
wq2 is uniform on [0, q1A].
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The first two are again identical to the formulas for the
unweighted case because this L only arises when q2 ∈ [0, 1

w ] and
in this event wq2 is uniformly distributed on [0, 1]. The latter two
formulas canbederivedfairlyeasilybyconditioningseparatelyon
values with q2 ∈ [0, 1

w ] and values with q2 ∈ [ 1w , 1]. For example,

E(q1x|L = {1x, 2})

=

Pr{q2 ∈ [ 1
w , 1]}Pr{L = {1x, 2}|q2 ∈ [ 1

w , 1]}E(q1x|L = {1x, 2}, q2 ∈ [ 1
w , 1])

+Pr{q2 ∈ [0, 1
w ]}Pr{L = {1x, 2}|q2 ∈ [0, 1

w ]}E(q1x|L = {1x, 2}, q2 ∈ [0, 1
w ])

Pr{q2 ∈ [ 1
w , 1]}Pr{L = {1x, 2}|q2 ∈ [ 1

w , 1]}
+Pr{q2 ∈ [0, 1

w ]}Pr{L = {1x, 2}|q2 ∈ [0, 1
w ]}

=
(1− 1

w )( 1
2 )( 2

3 )+( 1
w )( 1

3 )( 5
8 )

(1− 1
w )( 1

2 )+( 1
w )( 1

3 )

Expected consumer surplus when weight w is used is then
given by

E(CS(w)) = α

((
1−

1
3w

) 8w− 3
12w− 4

+
1

3w

(3
4

+
1
4
∙

1
2

))

+ (1− α)

((
1−

1
3w

) 6w2 − 1
12w2 − 4w

+
1

3w
∙ 0

)

The difference between this expression and the expected
consumer surplus from an unweighted auction can be put in a
relatively simple form by grouping terms corresponding to cases
when the list is unaffected by the changes in weights and cases
when it is affected. We find

E(CS(w))−E(CS(1)) =
2
3

(

α
8w− 3
12w− 4

+ (1− α)
6w2 − 1

12w2 − 4w
− 5/8

)

+
1

3w

(
α
(3

4
+

1
4

1
2

)
− α

7
8

)

×
(1

3
−

1
3w

)

×

(

α
8w− 3
12w− 4

+ (1− α)
6w2 − 1

12w2 − 4w
− α

7
8

)

Writing f1(w), f2(w), g3(w) , and h3(w) for the four lines of this
expression note that the first three terms are equal to 0 at w = 1.
f2(w) is identically0. Thederivativeof thethirdevaluatedat w = 1
is just dg3

dw |w=1h3(1). After these simplifications it takes just a little
algebra to show

d(E(CS(w))−E(CS(1))
dw

=
1
24

(4− 5α) .
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This implies that some w > 1 provides greater consumer surplus
than w = 1 provided that α < 4

5 . To complete the proof, we should
also work out the equations for consumer surplus when w < 1
and show that these do not also provide an increase in consumer
surplus. �

REMARK 1. The proof contains an explicit formula for consumer
surplus that could be maximized over w to find the optimal
weight for particular values of δ1.

REMARK 2. The sense in which diversity is favored in this
proposition is quite strong. The diversity-providing link is
favored in an absolute sense, not just relative to the fraction
of consumers for which it is of interest.

To implement diversity-favoring weights, a search engine
would need to infer which sponsored links contributed to the
diversity of a set of offerings. One way to do this might be to
estimate contributions to diversity by looking at whether the
likelihood that a particular consumer clicks on a particular site
is positively or negatively correlated with whether that consumer
clicked on another site.

What is meant by “standard” click-weighting is not obvious
in models like this. One description of the click-weighted auction
one sees in the literature is the weight used is the estimated CTR
conditional on the firm being first on the list. In the example, the
CTR’s for firms 1A, 1B, and 2 conditional on being first on the list
are δ1, δ1, and δ2, respectively, so these standard weights would
favorfirms 1A and1Bforany δ1 > 1

2 . CTRs couldalsobeestimated
using an average of observedCTRs from when a firm is in the first
and second positions. This would still favor firm 2 for a smaller
range of δ1 than is optimal, however, because the optimal weights
are entirely based on CTRs when firms are in the second position.

APPENDIX D: PROOFS

Proof of Proposition 3. First, we show by induction on k that
the specified strategies are differentiable and strictly monotone
increasing in q and satisfy b∗(k, bk+1; q)≤ q on the equilibrium
path. For k = M + 1 this is immediate from b∗(M + 1, 0; q) = q. If it
holds for some K > 2 then for any bK faced by a type q bidder on
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the equilibrium path we have

b∗(K − 1, bK ; q) = bK + (q− bK)

(

1−
G( q̄K−1)
G( q̄K−2)

(1− q)

)

≤ bK + (q− bK) = q.

The inequality here follows from two observations: q − bK > 0;
andthe term in parentheses is between 0 and1. (The first of these
follows from the inductive hypothesis via q− bK ≥ qK:N − bK ≥ 0
and the second comes from 1− q < 1, q̄K−1 < q̄K−2, and G strictly
monotone.) To see that the bidding function is differentiable and
strictly monotone increasing in q, one can compute the derivative
and see that it is positive. (The inductive hypothesis is again used
here via q− bK ≥ 0.)

Wenowshowthat thebiddingfunctions areaperfect Bayesian
equilibrium. By the single-stage deviation principle, it suffices to
show that no single-stage deviation can increase the profit of a
player i of type qi. We do this by another inductive argument. We
first show that this is true of deviations in the final stage (k = 2).
Then we showthat the nonexistence of profitable deviations at all
later stages (all k′ < k) implies that there is also no profitable
single-stage deviation at stage k.

Considerthefinal stageofthegame. Supposefirm i has quality
qi and that b3 = b∗(3, b4, q) so that firm i’s belief is that the other
active firm has qj ∼ F|q>q. Firm i’s expected payoff as a function
of its dropout point q̂ can be written as 1

1−F(q)π(qi, q̂) where

π(qi, q̂) =

(∫ q̂

q
G( q̄1)(qi − b∗(3, b3; q)) f (q)dq

+
∫ 1

q̂
G( q̄2)(1− q)(qi − b3) f (q)dq

)

.

To show that this is maximized at q̂ = qi it suffices to show that
π(qi, qi)− π(qi, q̂)≥ 0 for all q̂.

For q̂ ≤ qi we have

π(qi, qi)−π(qi, q̂) =
∫ qi

q̂
(G( q̄1)(qi − b∗(3, b3; q))

−G( q̄2)(1− q)(qi − b3)) f (q)dq.

To show that this is non-negative, it suffices to show that

G( q̄1)(qi − b∗(3, b3; q))≥ G( q̄2)(1− q)(qi − b3)
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for all q ∈ [q̂, qi]. Because the bidding functions are differentiable
and strictly monotone increasing in q, the argument in the text
before the proposition applies and therefore for each q in this
interval the local indifference condition holds:

G( q̄1)(q− b∗(3, b3, q)) = G( q̄2)(1− q)(q− b3)

Subtracting the two equations we find that it suffices to show

G( q̄1)(qi − q)≥ G( q̄2)(1− q)(qi − q) .

This is indeed satisfied for all q ∈ [q̂, qi] because G( q̄1)> G( q̄2)
and (1 − q)< 1. The argument for q̂ > qi is virtually identical.
Together, these two cases establish that there is no profitable
single-stage deviation in the final stage.

Suppose now that there are no profitable deviations from the
given strategies in stages 2, 3, . . . , k − 1 and consider a stage
k history with bk+1 = b∗(k + 1, bk+2; q). To show that there is
no profitable single-stage deviation, we’ll consider separately
deviations to b̂ > b∗(k, bk+1; qi) anddeviations to b̂<b∗(k, bk+1; qi).

The first case is quite similar to the argument for k = 2.
Deviating to b̂ > b∗(k, bk+1; qi) makes no difference unless player
i is eliminated in stage k when he bids b∗(k, bk+1; qi) and is not
eliminated when he bids b̂. Hence for all relevant realizations of
the k-1st highest quality, player i will be the first to drop out in
stage k−1 if he then follows the equilibrium strategy. Hence, the
change in payoff is proportional to
∫ q̂

qi

E
(

(1− q1:N)(1− q2:N) ∙ ∙ ∙ (1− qk−2:N)(1− q) |qk−1:N = q
)

× G( q̄k) ∙ (qi − bk+1) f (q)dq

−
∫ q̂

qi

E
(

(1− q1:N)(1− q2:N) ∙ ∙ ∙ (1− qk−2:N) |qk−1:N = q
)

× G( q̄k−1) ∙ (qi − b∗(k, bk+1, q)) f (q)dq,

where q̂ is thesolutiontob∗(k, bk+1;q̂) = b̂. (A solutiontothis exists
becausethebiddingfunctions aredifferentiableandapproach1 in
the limit as q→ 1.) As before, this will be non-negative if

(1− q)G( q̄k)(qi − bk+1)≥ G( q̄k−1)(qi − b∗(k, bk+1, q))
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for all q ∈ [qi, q̂]. Subtracting the local indifference condition from
the two sides of this equation we again obtain that a sufficient
condition is

(1− q)G( q̄k)(qi − q)≥ G( q̄k−1)(qi − q) ∀q ∈ [qi, q̂].

This will hold because qi−q < 0 and 0 < (1−q)G( q̄k)< G( q̄k−1) .
Theargument fordeviations to b̂ < b∗(k, bk+1; qi) is just a little

more complicated. In this case, the deviation makes no difference
unless player i is eliminated in stage k when he bids b̂ and is not
eliminatedat this stage when he bids b∗(k, bk+1; qi). We showthat
the change in payoff is not positive by a two-step argument: we
show that the payoff from dropping out at b̂ is worse than the
payoff from bidding b∗(k, bk+1; qi) at stage k and then dropping
out immediately in stage k − 1; and this in turn is less than the
payoff from bidding b∗(k, bk+1; qi) at stage k and then following
the given strategies. The latter comparison is immediate from the
inductive hypothesis. Hence, it only remains to show that
∫ qi

q̂
E
(

(1− q1:N)(1− q2:N) ∙ ∙ ∙ (1− qk−2:N) |qk−1:N = q
)

× G( q̄k−1) ∙ (qi − b∗(k, bk+1; q)) f (q)dq,

−
∫ qi

qh

E
(

(1− q1:N)(1− q2:N) ∙ ∙ ∙ (1− qk−2:N)(1− q) |qk−1:N = q
)

× G( q̄k) ∙ (qi − bk+1) f (q)dq

is non-negative where q̂ < qi is the solution to b∗(k, bk+1, q̂) = b̂.
This is just like the argument for the q̂ ≤ qi case. The expresion
is non-negative if

G( q̄k−1)(qi − b∗(k, bk+1;q))≥(1− q)G( q̄k)(qi − bk+1)

for all q ∈ [q̂, qi]. Subtracting the local indifference condition from
the two sides of this equation we again obtain that a sufficient
condition is

G( q̄k−1)(qi − q)≥(1− q)G( q̄k)(qi − q) ∀q ∈ [q̂, qi].

This will hold because qi−q > 0 and 0 < (1−q)G( q̄k)< G( q̄k−1) .
This completes the proof that there is no profitable deviation

at stage k and the result follows by induction. �
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Additional Details on the Proof of Appendix Proposition A8.
With no reserve price, consumers with search costs in [ 23 − ε,

2
3 ]

will click only on the first link. Per-consumer social welfare is

W = 2E
(
q1:N)−

(2
3
−
ε

2

)

=
2
3

+
ε

2
.

Suppose now that the search engine uses a small positive
reserve price r. (More precisely assume r ∈(0, 1

3 − 2ε)). These
consumers now click on the first link only if two links are
displayed. Per-consumer social welfare becomes

W = (2E(q1:N |q2:N ≥ r)−s)(1− r)2

=
(

2
(2

3
+

1
3

r
)
−
(2

3
−
ε

2

))
(1− r)2

=
2
3

+
ε

2
−

2
3

r−
2
3

(r2 − r3)−
ε

2
(2r− r2)

<
2
3

+
ε

2
−

2
3

r.

For somewhat larger r, specifically r ∈ [ 13 − 2ε, 5
9 −

4
3ε],

consumers in the high search cost group will click on the top
link even if only one link is displayed. In the high search cost
population per-consumer welfare is now

W = (2E(q1:N |q2:N ≥ r)−s)(1− r)2

+ (2E(q1:N |q1:N > r, q2:N < r)2r(1− r) .

Using this, we one can show that the per-consumer welfare gain
in the high search cost subpopulation is at most 2

3r2(1− 2r). This
is negative for r > 1

2 and is uniformly bounded above by 2
81 .

Computingthemass ofneeds that gounmet becauseof thereserve
price, we find that the per-consumer loss in welfare in the low
searchcost populationis at least 2r(1−r) 1−r

2 2 r
2 + r2(4 r

2−2 r2

4 )−2ε2.
It is easy to choose γ1 and γ3 so that this outweighs any gains in
the high search costs population whenever r ≥ 1

3 − 2ε.
Forevenlargerr thehighsearchcost consumers will bewilling

to search both sites when two are listed. But again, one can show
that the welfare losses in the low search cost population will
outweigh this. �

HARVARD UNIVERSITY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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