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We use simulations of a simple learning model to predict cooperation
rates in the experimental play of the indefinitely repeated prisoner’s
dilemma. We suppose that learning and the game parameters only
influence play in the initial round of each supergame, and that
after these rounds play depends only on the outcome of the previous
round. We find that our model predicts out-of-sample cooperation
at least as well as models with more parameters and harder-to-
interpret machine learning algorithms. Our results let us predict
the effect of session length and help explain past findings on the
role of strategic uncertainty.
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Determining when and how people overcome short-run incentives to behave cooperatively
is a key issue in the social sciences. The theory of repeated games has determined which
factors allow cooperation as an equilibrium outcome, but since these games typically also
have equilibria where people do not cooperate, equilibrium theory on its own is not a useful
way of making predictions about cooperation rates. Moreover, the assumption that people
play the most cooperative equilibrium possible, which is often used in applications, is a very
poor fit for observed behavior in the laboratory. It is therefore important both for policy
decisions and the development of more useful theories to have a better understanding of
how cooperation rates in experimental play of repeated games depend on their parameters.

To that end, we treat the relation between the average cooperation rate in the experimental
play of the prisoner’s dilemma and its exogenous parameters as a prediction problem. That
is, in contrast to past work, which has tried to match observed behavior in-sample by, e.g.,
conditioning on initial play or the entire sequence of previous actions, we try to predict the
average cooperation in a session without using any data about how people in the session
actually played. Studying predictions rather than in-sample fit helps us identify aspects of
behavior that are stable across experiments and significant determinants of behavior. And
studying average cooperation rates lets us also study aggregate payoffs, since the outcomes
in most rounds of most of these experiments are symmetric: Either both players cooperate
or they both defect.

To make our predictions, we estimate a very simple model of reinforcement learning, where
all that varies with treatment or personal experience is the probability of cooperating in the
first round of a new match. After these initial rounds, play depends only on the outcome
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of the previous round: If both players cooperated, they keep cooperating, if they both
defected, they keep defecting, and if they mismatch, i.e., one player cooperated and one
defected, they both cooperate with roughly 1/3 probability. Of course, actual behavior is
much more complicated than our model supposes, and exhibits many individual-specific
effects. However, our goal here is not to identify all aspects that sometimes matter, and
include them in a model. Such a model would be difficult to interpret, and could only be
estimated with orders of magnitude more data than is currently available.

In our learning model, the way that people play in the first round of their very first
supergame depends on a composite parameter ∆RD that is intended to capture the effect
of strategic uncertainty. This parameter is defined as the difference between the actual
discount factor of the game and the discount factor that makes players indifferent between
the strategies Grim and Always Defect on the assumption that everyone in the population
uses one of these strategies, and moreover, that exactly half of the population uses each
one. (This is not meant as a realistic assumption, but is simply one explanation of how
∆RD is defined.) Past work (discussed in Section II) has found that ∆RD is correlated with
cooperation rates, and it plays an important role in our model as well.

The second key component of our model is that agents learn from experience, and
specifically that initial-round play after the first supergame depends on the overall payoffs
the player received in past supergames for each initial-round action. The direct effect of
the game parameters on these payoffs is only partially captured by ∆RD, so the predicted
overall cooperation rates also depend on the individual game parameters. We do not have
a closed-form solution for the cooperation rates that our learning model generates as a
function of the game parameters and model parameters. Therefore, to calibrate the model’s
parameters, we first select a training set from the actual data. We then simulate play on
a wide range of model parameters, and select the parameters where the simulated time
path of the cooperation rates minimizes the mean squared error (MSE) with respect to the
time paths in the training set. Importantly, these simulations do not use any aspects of
the actual data, such as the initial actions played at the start of a match or the payoffs
the players received. We then use the calibrated learning model to make predictions for
average cooperation rates and the time-path of cooperation on a test set of data. We use
cross-validation, i.e., we repeatedly split the data into training sets and test sets to estimate
the out-of-sample prediction errors and thus the model’s performance.

Using data from the 103 experimental sessions gathered in Dal Bó and Fréchette (2018) as
well as 58 sessions in papers published since then, we find that the learning model predicts
both average cooperation and the time path of cooperation in a session at least as well as
any of the model-free methods we consider, and better than alternative learning models
based on pure strategies. Moreover, we find that allowing for heterogeneous agents, or a
more complex learning model with learning at all memory-1 histories, gives no noticeable
improvements. We then consider the more challenging problem of predicting behavior in
treatments different from those the model is estimated on. Here all the prediction methods
perform less well, but our learning model does better than any of the model-free methods.

The learning model also lets us predict what would happen in longer experimental sessions
than are typical in the lab. As a first step, we use data from the first halves of some
laboratory sessions to predict cooperation rates in the second halves of other sessions, and
find that our model has significantly better outsample predictions than OLS on ∆RD, Lasso,
support vector regression (SVR), or a gradient boosting tree (GBT). We then use the
model to simulate cooperation rates in extremely long sessions. We find that, as expected,
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cooperation rates are low when ∆RD is negative and that cooperation rates are high when
∆RD is large. However, for intermediate values of ∆RD there is substantial cross-session
variability in cooperation even in the long run: Even after 10,000 supergames, the 90%
interval goes from 0% to 79%.

As we detail in Section II, past work has already found evidence that overall cooperation
rates depend on ∆RD. Our preliminary data analysis sharpens this conclusion: cooperation
tends to increase over the course of a session when ∆RD > 0.15, and to decrease when
∆RD < 0. Our learning model predicts this pattern, which suggests that the reason for
the observed impact of the composite parameter ∆RD is its effect on the reinforcement of
cooperation in the initial round of each supergame. Furthermore, our model predicts that
the individual parameters matter in addition to the way their effect on ∆RD. This helps
explain why our learning model can make better predictions than models using ∆RD alone.

Our model predicts that participants who use the same learning rule can encounter different
behavior by their partners because of their own randomization in the initial rounds and the
random matching of partners. This difference in outcomes can lead participants with the
same learning rule to behave very differently, and we argue that ignoring this endogenous
heterogeneity may lead to overestimates of how different the participants are ex-ante. For
example, our reinforcement learning model can explain why a sizable number of participants
consistently defect in treatments that are very conducive to cooperation. Finally, our learning
model replicates the empirical regularity that there is more cross-session variation in average
cooperation rates for intermediate values of ∆RD. Among other things, this suggests caution
in interpreting experimental studies of prisoner’s dilemmas with parameters in this range
that are based on only a small number of sessions.

I. Preliminaries

In the experiments we analyze, participants played a sequence of repeated prisoner’s
dilemma games with perfect monitoring.1 The game parameters were held fixed within each
session, so each participant only played one version of the repeated game. The treatments
all had randomly chosen partners and a random stopping time, so the discount factor δ
corresponds to the probability that the current repeated game continues at the end of the
current round. (We will refer to the “rounds” of a given repeated game and call each repeated
game a new “supergame.”)

We represent the prisoner’s dilemma with the following strategic form, where g, l > 0 and
g < l + 1. Here g measures the gain to defection when one’s opponent cooperates, l measures
the gain to defection when one’s opponent defects, and g < l + 1 implies that the efficient
outcome is (C, C). Standard arguments show that “Cooperate every round” is the outcome

C D
C 1, 1 −l, 1 + g
D 1 + g, −l 0, 0

Figure 1. : The Prisoner’s Dilemma

1There are many more experiments on this case than on the prisoner’s dilemma with implementation errors or
imperfect monitoring.
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of a subgame-perfect equilibrium if and only if it is a subgame-perfect equilibrium (SPE) for
both players to use the strategy “Grim”: Play C in the first round and then play C iff no
one has ever played D in the past. This profile is a SPE iff

1 ≥ (1 − δ)(1 + g) ⇐⇒ δ ≥ g/(1 + g) ≡ δSPE.

Note that the loss l incurred to (C, D) does not enter into this equation, because the
incentive constraints for equilibrium assume that each player is certain their opponent uses
their conjectured equilibrium strategy.

Applications of repeated games often assume that players will cooperate whenever coop-
eration can be supported by an equilibrium,2 but this hypothesis has little experimental
support. Instead, the level of cooperation in repeated game experiments can be better
predicted by measures that reflect uncertainty about the opponents’ play. In particular, our
work uses the composite parameter

∆RD ≡ δ − δRD = δ − (g + l)/(1 + g + l)

that was suggested by Blonski, Ockenfels and Spagnolo (2011).3
Inspired by previous work and descriptive evidence that we present in Section III and

Online Appendix A, we develop a very simple model that assumes all individuals use
memory-1 strategies, i.e. strategies that only condition on the immediately preceding round
of the same supergame, which takes on the value ∅ in the initial round and otherwise is one
of {CC, CD, DC, DD}. Moreover, we assume that strategies only differ across treatments
and supergames in how they play in the initial round of each supergame.

We assume that the probability of cooperation pinitial
i (s) in the initial round of each

supergame s ∈ {1, 2, ...}, depends on the game parameters and the effect of individual
experience in previous supergames, ei(s), according to

(1) pinitial
i (s) = 1

1 + exp (−(α + β · ∆RD + ei(s))) .

Thus initial-round behavior in the model is driven by two components: a direct effect of
game parameters, captured by the linear function α+β ·∆RD, and the effect of reinforcement
learning, captured by individual experience ei(s).4

To model learning, we suppose that after each supergame s ∈ {1, 2, ...}, ei(s) is updated
according to

(2) ei(s) = λ · ai(s − 1) · Vi(s − 1) + ei(s − 1),

where ai(s) = 1 if player i’s initial round action in supergame s was C and ai(s) = −1 if
player i’s initial round action was D, Vi(s) is the total payoff received in that supergame, λ

2See e.g. Rotemberg and Saloner (1986), Athey and Bagwell (2001), and Harrington (2017).
3Here δRD = (g + l)/(1 + g + l) is the discount factor that makes players indifferent between the Grim strategy and

“Always Defect” if they believe their assigns opponent’s strategy is a 50 − 50 randomization between Grim and Always
Defect. Rand and Nowak (2013) regresses first-round cooperation on ∆RD; Dal Bó and Fréchette (2011, 2018) instead
uses the size of the basin of attraction for AllD. We tried using that instead of ∆RD, but the results were slightly
worse.

4The additive form of reinforcement is standard in the literature, see e.g. Erev and Roth (1998).
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determines the strength of the learning, and ei(1) = 0.5 Thus, reinforcement of cooperation
or defection in the initial round depends on the resulting supergame payoffs, while the direct
influence of ∆RD is constant across supergames.

We assume that behavior at non-initial rounds follows a memory-1 mixed strategy that
is constant across individuals, treatments, and time. Let h ∈ {CC, DC, CD, DD} denote
a memory-1 history, and let σh be the probability of cooperation at one of these histories.
Following Breitmoser (2015), we assume these correspond to a “semi-grim” strategy, i.e.
that σCC > σDC = σCD > σDD. The evidence reviewed in Section III shows that this is a
good approximation of our data. The interpretation of this mixed strategy is not necessarily
that participants are consciously randomizing their behavior with these probabilities, and
would say so if asked. Instead, they might be unsure what to do as they play the game.

In total, our model has 6 parameters, (α, β, λ, σCC , σCD/DC , σDD). We call this “IRL-SG”
for “the initial-round learning with semi-grim strategies model.”

Importantly, to predict average cooperation, we use simulations that suppose all partici-
pants use learning rules of the form (1) and (2) to determine the evolution of each simulated
participant’s experience and play. These simulations do not use any data on the actual play
or payoffs of participants; that data is used only to calibrate the model parameters.

II. Prior Work

Blonski, Ockenfels and Spagnolo (2011) assumes that play will always correspond to an
equilibrium of the repeated game, and that there is a functional form that determines which
equilibria are possible for each parameter configuration. It then uses five axioms on this
functional form6 to conclude all players will defect if ∆RD is negative. Blonski and Spagnolo
(2015) shows that the sign of ∆RD corresponds to whether Grim is risk dominant in a
2x2 matrix game with the strategies Grim and Always Defect, and refines the prediction
that players will cooperate to a prediction of which cooperative strategies the players will
use. Chassang (2010) shows that the risk-dominance threshold characterizes the limits of
equilibria of incomplete-information repeated games with an exit option. Because players
know each other’s equilibrium strategies, and have the option of leaving a match early, the
setting is rather different than the one we study here.

On the empirical side, Blonski, Ockenfels and Spagnolo (2011), Rand and Nowak (2013),
and Blonski and Spagnolo (2015) show that the average cooperation rates in a session are
increasing in ∆RD. Dal Bó and Fréchette (2018) shows that the sign of ∆RD is much more
correlated with high cooperation rates than is the sign of (δ − δSPE).7 These papers did not
treat cooperation as a prediction problem.

Several papers estimate the strategies used by participants treatment by treatment on the
assumption that each participant uses a fixed strategy either in the entire session or in the
latter part of it. The papers that assume participants use pure strategies consistently find
that most of the behavior can be captured by the strategies AllD (Always Defect), TFT
(Play C in the initial round of a supergame, and thereafter play the action your partner

5The alternative specification where learning responds to the average payoff in a supergame instead of the total
does worse in-sample than our model’s cross-validated error, so we did not try to evaluate its outsample performance.
This suggests that learning between supergames is stronger when the supergames are longer.

6The axioms include an additive separability condition and the requirement that g and l have equal weight.
7Dal Bó and Fréchette (2011) find that cooperation is correlated with a different function of g, l and δ, namely

(1−δ)l
1−(1−δ)(1+g−l) . This is highly correlated with ∆RD, but when we used it instead we obtained less accurate predictions.
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played in the previous round), Grim (Play C in the initial round and thereafter play D if
either partner has ever defected), and for lower values of ∆RD, D-TFT (play D in the initial
round and thereafter play what your partner played in the previous round).8

More recent within-session studies find evidence for the use of “memory-1” mixed strategies
that depend only on the actions played in the previous round. Breitmoser (2015) finds that
semi-grim strategies fit play after the initial round better than pure strategies do. Backhaus
and Breitmoser (2018) argues that a combination of AllD and two types of semi-grim with
the same non-initial play best fits behavior when the mixtures of the types, as well as their
play, is estimated treatment by treatment. In Online Appendix E, we adapt our model
to predict the next action played given the history so far and find that it performs well.
However, since this procedure requires use of the data from the session being predicted, it
cannot be used for our out-of-sample prediction task.

Dal Bó (2005) and subsequent work shows that behavior changes between the first and
last supergame in a session. Moreover, Dal Bó and Fréchette (2011) argues that δ has
no apparent effect on behavior in the first supergame, but a substantial impact on later
supergames. Similarly, the difference between treatments increases over time, with average
cooperation going down in games where no cooperative SPE exist, and going up in games
where ∆RD is high. A common explanation for the observed time trends is that participants
learn from feedback over the course of a session, and choose their supergame strategies based
on outcomes in the previous supergames. 9

The literature establishes two other empirical regularities that are related to learning.
First, cooperation increases when the realized supergame lengths are longer than expected,
and decreases when they are shorter than expected. Engle-Warnick and Slonim (2006) and
Dal Bó and Fréchette (2011, 2018) find that cooperation in the initial round increases if
the previous supergame was longer than expected, and Mengel, Orlandi and Weidenholzer
(2022) finds that this effect is persistent: cooperation later in a session is higher when the
early supergames are longer than expected. Second, Dal Bó and Fréchette (2011, 2018) find
that initial-round cooperation is higher if the player’s partner cooperated in the first round
of the previous supergame. These two effects point to a model where some form of learning
or reinforcement drives play in the initial rounds.

The larger literature on learning in game theory experiments has been focused on one-shot
games, for example in Cheung and Friedman (1997); Erev and Roth (1998); Camerer and
Ho (1999), and has not emphasized the issue of out-of-sample prediction. Fudenberg and
Liang (2019) and Wright and Leyton-Brown (2017) study ways to predict initial play in
matrix games, but don’t consider learning.

III. Summary of the data

We analyze the data from the meta-analysis in Dal Bó and Fréchette (2018), data gathered
from repeated prisoner’s dilemma experiments with perfect monitoring, deterministic payoffs,

8See for example Dal Bó and Fréchette (2011); Fudenberg, Rand and Dreber (2012); Dal Bó and Fréchette (2018).
Fudenberg, Rand and Dreber (2012) shows that longer memories are used when the intended actions are implemented
with noise and only the realized actions are observed. Romero and Rosokha (2018) and Dal Bó and Fréchette (2019)
directly elicit pure strategies; Romero and Rosokha (2019b,a) elicit mixed strategies as well and find that most
participants prefer to randomize, though the elicited strategies become less mixed over time.

9Dal Bó and Fréchette (2011) considers a simple belief learning model involving only TFT and AllD, Mengel,
Orlandi and Weidenholzer (2022) consider a similar learning model that also incorporates learning about expected
supergame length, and Erev and Roth (2001), Hanaki et al. (2005) and Ioannou and Romero (2014) study learning
within supergames.
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and constant parameters within a session that were published by 2015. We use only the
treatments with δ > 0, and augment this data with data from sessions that match these
criteria from four papers published since then (Aoyagi, Bhaskar and Fréchette (2019); Dal Bó
and Fréchette (2019); Proto, Rustichini and Sofianos (2019); Honhon and Hyndman (2020)).
This increases the number of sessions by approximately 60%. Our resulting data set contains
observations from 17 papers, 28 different treatments,10 and 161 incentivized experimental
laboratory sessions, containing 2,612 distinct participants and 232,298 individual choices.
Here we highlight some aspects of the data that are of particular relevance to our work.

The discount factors ranged from 0.125 to 0.95, with almost all at least 0.5. The median
session has an average realized supergame length of 6.7 rounds. Figure 2 of the Online
Appendix shows the CDF of the average realized supergame per session.

In 20 of the sessions, δ < δSPE, so no cooperation can occur in a subgame perfect
equilibrium. In 28 sessions, cooperation can be supported by a SPE, i.e. δ > δSPE, but
δ < δRD, so cooperation is not risk dominant in the sense of Blonski, Ockenfels and Spagnolo
(2011). In the remaining 113 sessions, δ > δRD or equivalently ∆RD > 0.

The average rate of cooperation over all sessions was 44.1%. It was 10.5% for games where
δ < δSPE, 18.6% for δSPE < δ < δRD, and 53.6% for δ > δRD.

Table 1 shows average play after the different memory-1 histories, and the histories’
frequencies. We see that the CD and DC histories are only a small subset of observations,
roughly 14% combined. Furthermore, average behavior is close to the semi-grim memory-1
mixed strategy from Breitmoser (2015), with the difference that the probability of cooperation
only slightly higher after DC than after CD.

Table 1—: Average cooperation rate after different memory-1 histories

History Average C N
CC 96.6% 59,436
CD 30.6% 16,704
DC 33.2% 16,704
DD 5.2% 74,624
initial 47.1% 64,830
Total 44.1% 232,298

As shown in Online Appendix A, the average rate of cooperation in the initial round of the
first supergame is increasing in ∆RD. Moreover, the way initial-round cooperation changes
over the course of a session varies with ∆RD: For ∆RD > 0.15, initial-round cooperation
rates increase over the course of a session; for ∆RD < 0 they decrease, and in sessions where
0 < ∆RD < 0.15, they remain roughly constant at around 50%. This pattern is much less
sharp after the other memory-1 histories, which suggests that the differences in average
cooperation across treatments are primarily driven by differences in the behavior at the
initial round.

To investigate whether that is the case, we use some simple regressions. As reported in
Table 1 of the Online Appendix, we can predict cooperation in a given match relatively

10Following Dal Bó and Fréchette (2018), we consider experiments in different labs to be the same treatment if they
had the same normalized parameters. The total number of unique paper and parameter combinations is 47.
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well using only the outcome of the initial round. Adding the game parameters (g, l, δ, and
∆RD) increases R2 by less than 0.01, and keeping the game parameters omitting the initial
round yields a much lower R2. Doing the same regressions but with second-round average
cooperation as the outcome does not change the picture.

Finally, we investigate the assumption that behavior in non-initial rounds is roughly
constant and consistent with the restriction that σCD = σDC . When we regress cooperation
in non-initial rounds conditional on the outcome of the previous round, the round, ∆RD, and
the supergame, none of the additional effects is quantitatively relevant, and the in-sample
increase in R2 is only 0.002. Moreover, as shown by Table 7, while initial play and average
cooperation vary substantially with ∆RD, behavior after non-initial histories is roughly the
same across rounds and different values of ∆RD.

IV. Predicting Cooperation

We try to develop models that can successfully predict cooperation levels in a repeated
game experiment before the experiment is run, based on the game parameters, the number
of repeated games played, and their lengths, without using any data from the experiment
itself. We would also like the model to roughly accord with how people actually behave,
but we do not try to capture all of the details of individual or even aggregate behavior.
To choose model parameters and compare models, we use their estimated out-of-sample
predictive performance as measured by cross-validated mean squared error (MSE). Using
cross validation helps prevent overfitting, and makes sure that the regularities we find
actually improve predictions. In general, out-of-sample predictions will favor models that
rely on stable predictors, and such models are typically simpler than those that give the
best in-sample fit.

In addition, using out-of-sample prediction error as the benchmark makes it easy to
compare models of different complexities, because the out-of-sample prediction criterion
endogenously penalizes models that are too complex. We also report the relative improvement
of the models compared to a constant prediction benchmark, in order to get a better sense
of how big the differences are.11

A. Predicting Cooperation with Learning

We do not have an analytic solution for the probability distribution of time-paths that is
generated by the IRL-SG. Thus to use the IRL-SG (and more general variants of it that we
discuss later) to make predictions, we simulate populations playing the different sessions
assuming they behave as the model specifies. In particular, we use the simulations to
generate the experience levels ei, and do not use data on the actual initial round actions or
the payoffs that people actually received. We initialize a large population of individuals, all
with ei(1) = 0. For a given specification of parameters of the learning model, we randomly
match these simulated individuals to play a sequence of supergames. After each supergame,
the individual experiences are updated according to equation (2), using the simulated values.
The simulated individuals are then randomly re-matched and play the second supergame
for the number of rounds it was played in the experimental session. So it continues until

11This use of a simple prediction rule as a benchmark is inspired by the completeness measure of Fudenberg et al.
(2022), but we do not have enough data to make a good estimate of the problem’s irreducible error as the completeness
measure requires.
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we have simulated a population playing exactly the same sequence of supergames as in the
experimental session, updating the ei(s) after each supergame.

Once we have simulated a population, we can calculate either average cooperation or the
time path of cooperation, that is the percentage of participants who cooperate in each round
1, 2, ... of any supergame in a given treatment. We use the simulations as predictions and
compute the approximate prediction losses and associated standard errors. 12

We estimate the learning models based on the time path of cooperation, even when
predicting average cooperation. That is, we find the parameters that best predict the time
path of cooperation in the training set, and use those parameters to predict both the average
cooperation and the time path of cooperation in the test sets. This way, we use more of the
data to estimate the model.

Appendix A gives a detailed description of the numerical process. In Online Appendix
C we evaluate this estimation procedure on synthetic data generated by simulations, and
confirm that it should work on a data set of the size we have.

Our main learning model, presented earlier in equations (1) and (2), assumes all agents
use the same learning rule, which is an oversimplification. However, agents with the same
learning rule can behave differently as the result of different experiences, and as we will see,
allowing heterogeneous learning rules does not improve our predictions.

The restriction to memory-1 strategies is motivated by past work and by the machine
learning analysis in Online Appendix D. The assumption that play across treatments is
the same except in the initial rounds is motivated by the descriptive statistics. We relax
the assumption of fixed behavior at non-initial histories in section IV.D, which considers a
more richly parameterized model that lets play at these histories depend on ∆RD. We also
consider variations of the IRL-SG that generalize the learning part of the model in various
ways, and alternative models where individuals learn which pure strategy to use. None of
these extensions improve predictions.

B. Results

We now compare the performance of IRL-SG to that of OLS, Lasso, SVR (support vector
regression), and GBT (gradient boosting trees). When we use machine learning to predict
the average cooperation level in a session, each session is a single data point. The feature
set consists of ∆RD, the game parameters (g, l, δ), the total number of rounds played in the
session, the number of supergames played in the session, an indicator variable for whether
∆RD > 0, the difference between expected and realized supergame lengths in the first third
of the session13, the total difference between expected and realized supergame lengths, and
some interaction terms.14

When we predict the time path of cooperation, a data point is the average (across
participants) cooperation level of each round of each supergame in a session; this gives a
total of 15,599 data points, though the data within each session is highly correlated. For the
feature set of the time path, we add an indicator for the initial round, the round number,

12Our method only tries to match the mean cooperation rates of the simulations and the actual data. However, as
Table 7 shows the resulting estimates also do a good job of matching variance in cooperation levels across supergames
with the same parameters.

13Mengel, Orlandi and Weidenholzer (2022) argues that the realized length in the first third of the supergames has
an oversized impact on cooperation in later supergames.

14The alternative method of training the ML algorithms on time paths, and using time path predictions to predict
average cooperation, yields similar but slightly worse results.
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and the supergame number, along with some interaction terms. We replace the features
about realized supergame lengths with the cumulative difference in expected and realized
supergame lengths, and the difference between expected and realized length of the previous
supergame.

Table 2 shows the out-of-sample prediction errors for average cooperation for the IRL-SG
and for OLS. In this and the subsequent tables we also report the performance of the best
of the model-free predictors, which here is SVR. We see that our learning model performs
better than simple OLS on ∆RD, and in fact slightly better than the harder-to-interpret
machine learning algorithms. This is in part due to the fact that our data set is relatively
small by machine learning standards.

Model Average C MSE S.E. Relative Improvement
Constant 0.0517 (0.0040) -
OLS on ∆RD 0.0189 (0.0020) 63.4%
Best ML 0.0143 (0.0016) 72.3%
IRL-SG 0.0138 (0.0015) 73.3%

Table 2—: Out-of-sample prediction MSE for average cooperation. The best ML method is
Lasso.

To estimate the out-of-sample prediction errors, we use cross validation with the standard
10 folds.15 For each fold, we use the other nine folds as a training set to estimate the
parameters, and make predictions on the test fold using those parameters. Importantly, we
split on the level of the session, so each observation is predicted using only data from other
sessions. To estimate the standard errors of the estimated mean squared error (MSE), we do
10 different such cross validations, leading to 10 predictions of each session, to capture the
randomness from the assignment to different folds. We then bootstrap to get standard errors.
By using the same folds for all models, we can perform pairwise comparisons. Pairwise tests
are presented in Appendix E. According to those pairwise tests, our learning model is indeed
significantly better than an OLS on ∆RD, though its improvement on best ML method is
too small to be significant.

In table 3 we see similar results for predicting the time path of cooperation. Not only is
IRL-SG better than the alternatives at predicting average cooperation in a session, but it is
also better at predicting the time path of cooperation:

Figure 2 shows the out-of-sample predictions and actual values of cooperation in the initial
round of the first 20 supergames. (We plot the initial round to reduce the noise introduced
by changing supergame lengths.) To get the out-of-sample predictions for the figure, we
use a single 10-fold cross validation split and then predict each session’s time path with
the parameters estimated without data from that session. The learning model predicts the
general pattern well, but it slightly underestimates the level of cooperation for intermediate
values of ∆RD.

The next table shows the average of the estimated parameters; the standard deviations
show how much these parameter estimates vary between folds.

15See, e.g., Hastie, Tibshirani and Friedman (2009) for an explanation of cross validation.
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Model Time-path MSE S.E. Relative Improvement
Constant 0.0775 (0.0050) -
OLS on ∆RD 0.0398 (0.0025) 48.6%
Best ML 0.0316 (0.0020) 59.2%
IRL-SG 0.0309 (0.0020) 60.1%

Table 3—: Out-of-sample prediction loss for predicting the time path of cooperation. The
best ML method is GBT

Figure 2. : Actual (solid line) and out-of-sample predicted (dashed line) initial-round
cooperation by supergame for sessions of at least 20 supergames

Parameter α β λ pCC pCD/DC pDD

Average -0.268 1.291 0.182 0.995 0.355 0.012
Standard Deviation (0.061) (0.160) (0.036) (0.002) (0.026) (0.006)

Table 4—: Parameter estimates

From here on, when we analyze the behavior of the model and discuss parameter values,
we will be using these average estimates.
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To interpret the parameter estimates, recall that experience is updated according to

ei(s) = λ · ai(s − 1) · Vi(s − 1) + ei(s − 1).

which then enters into the probability of initial round cooperation via

pinitial
i (s) = 1

1 + exp (−(α + β · ∆RD + ei(s))) .

The estimated α = −0.268 means that for ∆RD = 0, about 43.3% of participants would
cooperate in the first round of their first supergame. With ∆RD = 0.1, the probability of
cooperation in the first round of the first supergame increases, but only to 46.5%, and even
when ∆RD increases to 0.3 first-round cooperation only increases to 53%.

In contrast, λ = 0.182 implies a strong learning effect. As an example, consider the case
where g = l = 2 and δ = 0.8, so ∆RD = 0. If the first supergame an individual i plays goes
the expected 5 rounds and both partners cooperate all 5 rounds, then i’s probability of
first-round cooperation goes from 43.3% to 65.6%. An individual j experiencing DC in the
first round and DD in the remaining 4 rounds gets a payoff of 3, which implies that their
initial-round cooperation would decrease to 30.6%.

To get a sense of the relative importance the model assigns to ∆RD and the learning effect
that works through ei(s), we compute the Shapley values of these terms in a decomposition
of the variance of predicted initial play in the last supergame. 16

As we show in Appendix D, this decomposition suggests that in the last supergame of
each session, approximately 88% of the variation between treatments is driven by learning
as opposed to the direct influence of the game parameters.

C. Across-Treatment Predictions

Our main analysis considers out-of-sample prediction within the same domain. That is,
the whole set of treatments is considered for both the training and test set, so the prediction
algorithm does not have to generalize to a different setting. One reason to prefer more
structured economic models is the hope that such models are more likely than model-free
algorithms to capture regularities that generalize across domains.

To test this intuition, we consider the problem of predicting behavior in treatments
different from those the model is estimated on. We divide the data into the five ∆RD-groups
used in Figure 2. We consider separately the treatments where δ ≤ δspe, δspe < δ ≤ δRD,
0 < ∆RD ≤ 0.15, 0.15 < ∆RD ≤ 0.3, and 0.3 < ∆RD.

For each ∆RD-groups we create a training pool by merging the data from the other four
groups. We then randomly generate 10 training sets by sampling with replacement from
the training pool, each of the same size as the training pool itself. We use these training
sets to estimate parameters for the held-out group. For example, we use only treatments
with δ > δspe to predict the treatments where δ < δspe. The randomly generated training
sets are then kept the same across all the different prediction methods. Each session is thus

16Since ∆RD and ei(s) are correlated, and enter into the model in a non-linear fashion, their marginal contribution
depends on whether they are considered alone or in addition to the other factor. Our use of the Shapley value to
account for this follows Lundberg and Lee (2017) and Molnar (2019).
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predicted 10 times, each time with a different training set. We then bootstrap samples from
those predictions to estimate the standard errors for the predictions.

In Table 5 we see that all the prediction methods perform worse, but the model-free
methods are considerably worse than the IRL-SG model. Most model-free methods perform
worse than an OLS on ∆RD. Moreover, as shown in Table E2 of the Appendix, IRL-SG is
significantly better at this across-treatment prediction task than all but the SVR method,
for which the difference is narrowly insignificant. This finding echoes that of Andrews et al.
(2022), who find that even though the out-of-sample performance of cumulative prospect
theory and machine learning algorithms is similar when the model or algorithms are trained
and tested on data from the same domain, the model does a better job of extrapolating
from one set of lotteries to another.

Model Average C MSE S.E. Relative Improvement
Constant 0.0885 (0.0057) 0.0%
OLS on ∆RD 0.0255 (0.0028) 71.2%
Best ML method 0.0235 (0.0027) 73.4%
IRL-SG 0.0177 (0.0019) 80.0%

Table 5—: Across-treatment out-of-sample prediction MSE for average cooperation. The
best ML method was SVR. A full table can be found in Appendix C

D. Comparison with Alternative Models

We considered variants of our model that add more parameters, and also models where
participants learn to play pure strategies. We present the most relevant comparisons here,
and include further models and complete results in Appendix B and C. The variant with two
types of agents with different parameters does very slightly better than the IRL-SG in terms
of cross-validated prediction error (but not significantly so); all of the other alternatives do
worse and in particular all models based on pure strategy learning are significantly worse.

We choose to focus on the IRL-SG model, and not one of its extensions, since it is the
simplest. However, one of the extensions might be more suitable for other purposes, such as
predicting responses to opponent’s play near the end of a supergame.

Learning with memory-1 Here we drop the semi-grim requirement that σDC = σCD,
increasing the total number of parameters to 7.

Learning at all memory-1 histories So far, we have restricted learning to the initial
round, and kept behavior at non-initial rounds constant, both across time and treatments.
To relax this and allow learning at all memory-1 histories, we track experience ei(h, t) at
each memory-1 history h, where t is now a time variable running over all rounds and all
supergames.

The intuition behind this model is similar to the intuition for the IRL-SG. If a player chose
action a at memory-1 history h, she is more likely to choose a the next time she observes h if
it lead to a good outcome, and less likely if it lead to bad outcome. However, since the final
outcome of an action is not known until the supergame is over, the cooperation probabilities
are only updated at the beginning of each supergame. To define good or bad outcomes, we
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let Vi(t) be the total payoff from time t to the end of the corresponding supergame. If a
player cooperated after a CD history in round 3 in a supergame, and both players ended
up cooperating in the remaining two rounds of that supergame, the corresponding Vi(t) is
2. This is independent of the payoffs in earlier rounds in that supergame. Furthermore,
since Vi(t) is not known before the supergame has ended, we only consider learning across
supergames.

In other words, the experience at memory-1 history h is updated when h occurs using the
rest of the supergame payoff Vi(t) according to

ei(h, t + 1) =
{

λ · ai(t) · Vi(t) + ei(h, t) if h(t) = h

ei(h, t) if h(t) ̸= h

where h(t) is the memory-1 history at time t.
The probabilities of cooperation are only updated at the beginning of each supergame,

and remain constant during the rest of that supergame. So the probability of cooperating at
memory-1 history h is given by

pi(h, t) =


1

1 + exp(−(αh + βh · ∆RD + ei(h, t)) if r(t) = 1

pi(h, t − 1) if r(t) > 1

where r(t) denotes the round at time t. This model thus has 11 parameters.
A last variation of this model allows for two different learning rates: Learning in the initial

round happens with λinitial, and learning for the memory-1 histories is reinforced with λ1,
which increases the number of parameters to 12.

The IRL-SG with two types. We assume that there are two different types with
different parameters, and one parameter that determines the shares of the two types in the
population, which adds seven parameters. 17

Pure strategy belief learning. The pure strategy belief learning model in Dal Bó and
Fréchette (2011) assumes that all participants follow either TFT or AllD. Each participant
has beliefs about how common TFT and AllD are in the population, which the participant
updates based (only) on the opponents’ moves in the initial rounds, and uses them to
calculate the expected values from playing TFT or AllD. Given these expected values, the
participant’s choice of whether to play TFT or AllD in the following supergame is given by
a logistic best reply function. We extend this model to allow for across-treatment prediction,
increasing the original 6 parameters to 8. We also consider a version of the pure strategy
model with symmetric implementation errors. A more complete description of the model
can be found in Online Appendix B

Pure strategy reinforcement learning. In the pure strategy reinforcement learning
model, we consider reinforcement learning over the pure strategies AllD, Grim, and TFT.
Each of the pure strategies k starts with an initial attraction Ak(1). At the beginning of
each supergame s, the individual samples the pure strategy to use according to

17Allowing for heterogeneous participants only improves our predictions very slightly. But other work suggests that
we might be able to make larger improvements if we had demographic information about the participants in each
session. For example, Proto, Rustichini and Sofianos (2019) shows that groups of more intelligent people are more
likely to cooperate.
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pk(s) = exp (λAk(s))∑
l∈{T F T,AllD,Grim}

exp (λAl(s))

where pk(s) is the probability of using pure strategy k in supergame s, and λ denotes the
sensitivity. Let k(s) denote the pure strategy used in supergame s, then after supergame s,
the attraction of the pure strategy used is updated according to

Ak(s + 1) =
{

Ak(s) + V (s) if k(s) = k

Ak(s) otherwise.

The initial attractions are given by linear functions of ∆RD, i.e., Ak(1) = αk + βk∆RD.
We then extend the model to allow for symmetric errors or “trembles” ε when implementing

a pure strategy. In other words, if an individual is following TFT and the previous history
is DC, the probability of cooperating is 1 − ε, instead of 1, and similarly for other pure
strategies and histories. In total this model has 7 (8) parameters without (with) symmetric
trembles.

Results. — Table 6 compares some of the alternatives considered in this subsection. Neither
pure strategy model does as well as IRL-SG. Appendix C gives a complete table of these
comparisons, and the results for the time-path prediction problem, which show a similar
relationship between the models. Pairwise tests for significance are presented in Appendix E.

Model Average C MSE S.E. Relative Improvement
Pure strategy belief learning w/ trembles 0.0191 (0.0020) 63.0%
Pure strategy reinf. learning w/ trembles 0.0175 (0.0020) 66.1%
Learning with memory-1 0.0140 (0.0015) 72.7%
Learning at all memory-1 0.0139 (0.0016) 73.1%
IRL-SG 0.0138 (0.0015) 73.3%
IRL-SG, two types 0.0136 (0.0015) 73.7%

Table 6—: Out-of-sample prediction loss (MSE) of average cooperation

Taken together, this suggests that the simple IRL-SG captures most of the predictable
regularity in cooperation rates. Introducing heterogeneity improves predictions at most
marginally, as does learning or flexibility at non-initial rounds. If fact, extending our model
often seems to lead to slightly worse out-of-sample performance, most likely due to overfitting,
and pure-strategy learning models do predict well.

To further test how well IRL-SG captures the predictable aspects of the data, in Online
Appendix E we consider different combinations of IRL-SG predictions and ML-methods. In
the first approach, we use the predictions of the IRL-SG as a feature for the ML-methods.
In the second, predictions of initial-round behavior are taken from the IRL-SG. We then
use machine learning to predict play in subsequent rounds. Neither approach improved
predictions by a non-trivial amount.
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In Online Appendix D we instead consider the problem of predicting the next actions
taken by an individual player. Here we see some advantage to allowing different types.
However, that advantage is much smaller for our learning model than for models without
learning, and a single IRL-SG performs as well as a mixture model that estimates the shares
of 11 different pure strategies on each treatment.

E. Understanding the Model

Our simple learning model is able to accurately predict average cooperation and the time
path of cooperation, while holding fixed the strategies used in the non-initial rounds. We
now briefly discuss the roles of the more important parts of our model.

Reinforcement of Initial Actions. For each session, let π(C) be the average supergame
payoff received by participants who cooperated in the initial round and define π(D) anal-
ogously. Figure 3 demonstrates the correlation between π(C) − π(D) and ∆RD in the
experimental and simulated data sets. The simulated data is generated with 100 populations
of size 16 for each session, simulated on sessions with the same supergame lengths as in the
data. The populations size 16 is chosen based on the average population size in the data.

Figure 3. : Per-session empirical (left) and simulated (right) average difference between total
payoff in supergames where the participant cooperated and defected

For ∆RD < 0, initial-round defection is reinforced in all but one session. For positive but
low values of ∆RD, the difference in reinforcement π(C) − π(D) is centered around 0, so
cooperating and defecting are on average equally reinforced. This helps explain why we see
no clear time trends in the sessions where 0 < ∆RD < 0.15.

Even though π(C) − π(D) is correlated with ∆RD, our learning model makes better
predictions than using ∆RD directly. This suggests that the dynamics of our learning
model help capture some additional forces that determine cooperation, such as how many
supergames were played and their realized lengths. Indeed, as we observed above, our
model does make better use of the realized supergame lengths than our ML algorithms
do. In particular, our model succeeds in replicating the empirical fact that there is more
cooperation when the realized supergames are longer. Intuitively, this is because regardless of
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the distribution of opponent play, the potential reward from initially playing C is increasing
in the realized supergame length, as it comes from triggering many future rounds of where
both play C, while the reward from an initial D is obtained immediately.

The composition of ∆RD To see how well ∆RD captures the effects of the individual
game parameters, we simulate populations with the same ∆RD but with different game
parameters. The next figure plots predicted average cooperation for g + l = 3, with δ
chosen so that ∆RD ∈ {0, 0.1, 0.2}.18 For each of the treatments we consider (a dot in the
figure), we simulate 1000 populations of 16 playing 27 supergames (the average in the data).
As Figure 4 shows, our model predicts that the values of g and l have an effect that is
not captured by the composite parameter ∆RD. In particular, increasing g − l for fixed
g + l seems to dampen the effect of ∆RD. In other words, higher g − l results in decreased
cooperation if ∆RD is high, but increased cooperation if ∆RD is low.19

Figure 4. : Predicted average cooperation over 27 supergames for fixed g + l but varying
g − l

Between session variation and ∆RD In the IRL-SG, behavior is reinforced based on
experience. Since both behavior and realized supergame lengths are random, there is noise
in the realized experiences. When δ < δSP E , there is a unique equilibrium and over time
experiences should drive all individuals to defection. When δ ≥ δSP E , randomness could
drive the population to either cooperation or defection. Thus for low values of ∆RD we
predict and see consistently low cooperation rates with relatively small between session
variance. For intermediate values, we should see very high levels of between session variance,
since small random differences can have big effects. Lastly, for high values of ∆RD we should

18The value of ∆RD depends on g and l only though their sum; with g + l = 3, s ∆RD = 0 when δ = 0.75.
19There are not enough experiments with the same ∆RD and different g, l to directly test this prediction.
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see more variance than for very low values of ∆RD, but less than for intermediate values of
∆RD.

Table 7 shows that the predicted pattern is observed in both the experimental and
simulated data. For the simulated data, 100 sessions with population size 16 were simulated
for each session in the experimental data, each with the same realized sequence of supergame
lengths. For most values of ∆RD, we only have a few sessions. We, therefore, group the
sessions into similar values of ∆RD. For each of the group we report the 5%-quantile, the
median, and the 95%-quantile.

Actual Simulated
∆RD-group Q05 Median Q95 Q05 Median Q95
δ < δSP E 0.03 0.14 0.26 0.08 0.13 0.29

δSP E < δ ≤ δRD 0.03 0.18 0.30 0.10 0.19 0.29
0 < ∆RD ≤ 0.15 0.15 0.40 0.70 0.21 0.37 0.65

0.15 < ∆RD ≤ 0.3 0.30 0.55 0.74 0.26 0.49 0.67
0.3 < ∆RD 0.44 0.65 0.83 0.53 0.65 0.85

Table 7—: Across session variation in average cooperation for different groups of ∆RD

This large variation in outcomes for intermediate values of ∆RD suggests that caution
should be taken when interpreting experimental studies of the Prisoner’s Dilemma. Most
experiments have few sessions per treatment condition, and learning effects can give rise to
large variations between sessions even when the individuals are ex-ante identical.

Non-initial play The performance of the IRL-SG suggests that learning does not lead
agents to adjust their play very much at non-initial rounds. Here is one conjecture about why
this might be: Suppose there is a cognitive cost associated with learning from experience and
adjustment to game parameters. In that case, we should expect learning and adjustment to
happen where the relative payoff is the greatest, which is in the initial round.20 To test this
intuition, we assume that all other individuals behave according to our estimated IRL-SG,
and then calculate the potential gain from learning and adjustment at different histories. We
first consider a baseline fixed memory-1 model without any learning or adjustment to ∆RD.
We then consider extensions where learning and adjustment are added to initial and/or
non-initial memory-1 histories. The best fixed-memory model achieves a normalized average
payoff per session of 43.6; the best IRL-SG achieves 54.3 and the model with learning at all
histories and two learning rates only increases that to 55.4.

V. Extrapolating to Longer Experiments

Due to practical constraints, experiments on the PD are of limited duration. Our learning
model lets us make predictions of what would happen in experiments with a longer time
horizon than those in our data set. This gives us some sense of which properties of observed

20There are more initial histories than DC and CD histories, and the evaluation of non-initial histories may depend
on outcomes in prior rounds. Also, given the path dependence of play, our prior is that the initial decision is the most
important.
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lab play may carry over to repeated games that are played more times than is practical in
the lab.21

A. Extrapolating within observed sessions

Before exploring the implications of the learning model for long-run play, we want to test
how well it can extrapolate to longer sessions than it is trained on. To do this, we use the
same cross-validation folds as earlier, so that data from a given session is either in a training
fold or a test fold but not both. We then use the first halves of the training sessions to
estimate the parameters, and use the estimated model to predict the second half of the
sessions in each test set. This is a way of approximating how accurate our predictions would
be for experiments that are twice as long as the ones in the sample.

We estimate the parameters of the different models in the first half of the session, and use
them to predict average cooperation in the second half. To do this, we first predict the time
path and calculate the resulting average cooperation. We do this for both the IRL-SG and
ML algorithms. Table 8 displays the cross-validated MSE for selected models; the full table
is in Appendix C.

Model Average C MSE Average C S.E.
Constant 0.0695 (0.0055)

OLS on ∆RD 0.0281 (0.0032)
Best ML method 0.0254 (0.0027)

IRL-SG 0.0220 (0.0026)

Table 8—: Prediction loss (MSE) estimating on 1st half and evaluating on 2nd half. Best
ML method is GBT.

The table shows that the learning model is better at extrapolating to longer supergames
than our model-free Machine Learning algorithms or simple OLS. Appendix E confirms that
this difference is significant using pairwise tests. This might be due to our particular ML
implementations, but it is also true that model-free prediction algorithms can have trouble
extrapolating to slightly different settings, something we saw when considering predictions
across treatments. A more structured model that encodes some intuition or knowledge
about the problem domain can sometimes better extrapolate to related prediction problems,
and we suspect that this is the case here. The prediction losses are higher here than in our
main results as reported in Table 2, at least in part because the between-session variance
in cooperation is larger in the later supergames: the within-treatment variance in average
cooperation is 0.0145 in the first halves of the sessions and 0.0196 in the second halves. 22

B. Extrapolating to hypothetical session lengths

We generate predictions for the treatments in Dal Bó and Fréchette (2011), since these
capture a nice range of behavior. For each of the treatments, 1,000 populations with

21The median number of supergames played in our data is 21 and in 90% of sessions participants play between 6
and 65 supergames.

22To calculate these variances we restrict to treatments with at least 2 sessions.
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14 participants (which was the average in the original paper) were simulated for 10,000
supergames, with randomly drawn supergame lengths. We then simulated the learning
model with the average (across folds) parameters estimated on the time path in table 4.
Using these simulations we can compute the median level of average cooperation and its
90% confidence interval.

∆RD δ Q05 Median Q95
-0.32 0.50 0.00 0.01 0.04
-0.11 0.50 0.00 0.01 0.05
0.11 0.50 0.00 0.40 0.79
-0.07 0.75 0.00 0.06 0.38
0.14 0.75 0.18 0.51 0.83
0.36 0.75 0.54 0.80 1.00

Table 9—: Simulated cooperation after 10,000 supergames, 14 participants per session

∆RD δ Q05 Median Q95
-0.32 0.50 0.00 0.01 0.02
-0.11 0.50 0.00 0.01 0.02
0.11 0.50 0.15 0.43 0.64
-0.07 0.75 0.00 0.05 0.28
0.14 0.75 0.35 0.52 0.68
0.36 0.75 0.68 0.79 0.88

Table 10—: Simulated cooperation after 10,000 supergames, 100 participants per session

Tables 9 and 10 show quite wide 90% intervals for intermediate values of ∆RD. This seems
due to the effect of the randomness on experience and learning, which is more pronounced
when the population is small. In the treatment ∆RD = 0.11, even after 10,000 supergames,
the 90% interval goes from 0% to 79%. (With populations of 100 participants, the 90%
interval is smaller but still substantial; it goes from 15% to 64%.) This randomness comes
in part from random initial play in a finite population and in part from the randomness in
the realized supergame lengths. Even if we increase the population size to 1,000, the 90%
interval is still from 24% to 60%. However, if we also let all the simulated supergames have
the expected number of rounds, the 90% interval is only 44% to 49%.

Figure 5 displays the actual data and our confidence intervals for the time paths of
cooperation in these treatments.23

The intervals are smaller in treatments where ∆RD has a more extreme value in either
direction. For ∆RD < 0, we predict less than 50% cooperation, and for ∆RD = −0.32
cooperation is almost certain to decrease. For ∆RD = 0.14 we see a slow increase in initial
round cooperation to 51%, and for ∆RD = 0.36 we predict relatively fast and certain
convergence to a high cooperation rate.

23Dal Bó and Fréchette (2011) use their pure-strategy belief learning model to produce similar plots for initial-round
cooperation. Visual inspection suggests that our simpler model fits the data about as well.
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Figure 5. : Predictions and actual behavior for six different treatments. The solid black
line corresponds to the data, the red lines depict average cooperation and the middle 90%
interval in 1,000 simulated populations.

We get a broader picture of the long-run predictions by replicating this exercise for all 28
treatments in the data. In figure 6 we see the average cooperation after 10,000 supergames,
predicted by simulating 1,000 populations of size 16 for each treatment. We see that for
∆RD between 0 and 0.3, even after 10,000 supergames, the learning model does not predict
either very high or very low rates of cooperation.

VI. Conclusion

The IRL-SG is simple and portable, with only 6 parameters and only one type of agent.
The model lets us capture the effect of playing more supergames on average cooperation, so
that we can predict what average cooperation rates would be with longer lab sessions. The
IRL-SG model is also better at extrapolating and predicting cooperation in new treatments
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Figure 6. : Predicted average cooperation after 10,000 supergames

than model-free algorithms such as ML. All the model-free algorithms we considered are
worse both at across treatments and at extrapolating the effect of longer sessions, and each
is significantly worse in at least one of these tasks.

Our analysis shows that average cooperation rates and time path of average cooperation
can be predicted well without modelling variation in non-initial play, because the primary
determinant of cooperation rates is whether players cooperate or defect at the start of a
new relationship. Moreover, the main way ∆RD influences cooperation rates is through its
effect on the probability of cooperation in the initial round of a match. Initial cooperation
is positively reinforced when ∆RD > .15, so in these games the probability of cooperating
in the initial round increases over the course of a session. Initial cooperation is negatively
reinforced when ∆RD < 0, so here initial cooperation rates drift down. For intermediate
values of ∆RD, a participant’s overall payoff is about the same regardless of how they play in
the initial round, which is why in these games initial cooperation rates stay roughly constant
throughout a session.

In addition to explaining the influence of ∆RD, the IRL-SG captures the influence of
additional determinants of cooperation, such as the composition of ∆RD: It matters how a
given ∆RD is achieved. In particular, different values of (g − l) have different implications
for the same ∆RD, and moreover the sign of the effect depends on the magnitude of ∆RD.
While there is not enough data to directly test these effects, it is a likely explanation to why
the IRL-SG predicts cooperation better than just OLS on ∆RD.

We choose to focus on the IRL-SG model since it is the simplest model among those that
performed the best. However, as can be seen in Table 6, generalizing the model to flexible
behavior, and even learning, at non-initial histories does not help predictions.

The analysis in our paper requires data from a great many sessions and treatments, and
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it was only made possible by the work of the researchers whose data we used. For this
reason it only considers the prisoner’s dilemma with perfect monitoring. In repeated games
with implementation errors or imperfect monitoring, people seem to use more complex
strategies with longer memory Fudenberg, Rand and Dreber (2012). There are not yet
enough experimental studies of these games to see if ∆RD plays a significant role there, let
alone to support the sort of analysis we do here. Once there are, it would be useful to extend
our analysis of average cooperation rates to this case.
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Appendices

Appendix A: Numerical Estimation of Learning Models

To simulate a decision, a number r ∼ Uniform(0, 1) is drawn, and if that number is lower
than the probability of cooperation for the simulated individual, she cooperates, otherwise
defects. Similarly, the type of each individual is decided by a random draw. We then
simulate a full session of individuals in this fashion and calculate the average cooperation
(or time path) and the corresponding MSE. By fixing all the draws of these values r, we get
a deterministic error function.

The resulting function is locally flat, which means that finding an optimum is difficult.
To address this problem we first generate 30 candidate points using the following global
differential evolution24 optimization in parallel, using 100 individuals with a common set of
random numbers.

1) First a population is initialized: For each agent x, we pick 3 new agents a, b, c from
the population of candidates and generate a new candidate x′. Each parameter xi of x
is updated with some probability CR (the cross-over probability), and if it is updated
the new value is given by x′

i = ai + F ∗ (bi − ci). Once this is done, we compare the
new value f(x′) with the old f(x). If the this results in a lower loss, the new candidate
replaces the old in the population, and otherwise it is thrown away.

2) After a fixed amount of time, the best candidate from this algorithm is used as
a starting point for a Nelder-Mead algorithm that performs a local, gradient-free,
optimization, using a different fixed realization of the random variables. The output
of this local optimization is then returned as a candidate solution.

Once these 30 candidate points are found, they are each evaluated using a population size
of 3,000, with a new fixed realization of the random draws r for all 30 candidates. The best
of these parameters are then returned as the solution.

Appendix B: Alternative models

Here we describe variations of the IRL-SG model that did not improve predictions.
IRL-SG with a recency effect. To allow more recent supergames to have a larger

impact on behavior, we consider a model with experience weighted by recency. In that
model, experience is updated according to

ei(s) = λ · ai(s − 1) · Vi(s − 1) + ρ · ei(s − 1),

where ρ ∈ [0, 1] discounts previous experiences.
Flexible reinforcement threshold. In the baseline IRL-SG, an initial action that leads

to a positive payoff is reinforced. Here we add a parameter τ to relax this, so that experience
is updated according to

ei(s) = λ · ai(s − 1) · (Vi(s − 1) − τ) + ·ei(s − 1).

24From the package BlackBoxOptim.jl.
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In other words, initial round actions are reinforced with respect to the difference with the
threshold τ and not 0.25

The IRL-SG and AllD This model, which is inspired by the Dal Bó and Fréchette
(2018) finding that a non-trivial fraction of experimental participants plays D in almost
every period, adds a type that plays AllD with a fixed error ε. This increases the number of
parameters to 8.

The IRL-SG with flexible share AllD Similar to the previous model, but the share of
AllD is a function of ∆RD instead of being fixed, increasing the number of parameters to 9.

Learning with flexible memory-1 In the next model, we allow these memory-1 behaviors
to depend on ∆RD. In this case we have

σh = 1
1 + exp(−(αh + βh · ∆RD))

In total this model has 11 parameters.

Appendix C: Results

Table C1—: Out-of-sample prediction loss (MSE) for per-session average cooperation

Model Average C MSE S.E. Improvement
Constant 0.0517 (0.0040) -
OLS on (δ, g, l) 0.0196 (0.0024) 62.1%
OLS on ∆RD 0.0189 (0.0020) 63.4%
OLS 0.0153 (0.0017) 70.4%
SVR 0.0149 (0.0016) 71.2%
GBT 0.0147 (0.0016) 71.5%
Lasso 0.0143 (0.0016) 72.3%
Pure strategy belief learning w/o trembles 0.0229 (0.0025) 55.7%
Pure strategy belief learning w/ trembles 0.0191 (0.0020) 63.0%
Pure strategy reinf. learning w/ trembles 0.0175 (0.0020) 66.1%
IRL-SG and AllD 0.0143 (0.0015) 72.3%
IRL-SG with recency 0.0143 (0.0016) 72.3%
IRL-SG with flexible threshold 0.0141 (0.0015) 72.7%
Learning at all memory-1, two rates 0.0140 (0.0016) 72.9%
Learning with flexible memory-1 0.0140 (0.0016) 72.9%
Learning with memory-1 0.0140 (0.0016) 72.9%
IRL-SG with flexible AllD 0.0139 (0.0015) 73.1%
Learning at all memory-1 0.0139 (0.0016) 73.1%
IRL-SG 0.0138 (0.0015) 73.3%
IRL-SG, two types 0.0136 (0.0015) 73.7%

25We considered several other variations where the threshold depended on for example the expected length of the
supergame or ∆RD; none of these did better than this simple threshold model.
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Table C2—: Out-of-sample prediction loss (MSE) for the time path of cooperation

Model Time-path MSE S.E. Improvement
Constant 0.0775 (0.0050) -
OLS on (δ, g, l) 0.0403 (0.0023) 48.0%
OLS on ∆RD 0.0398 (0.0025) 48.6%
OLS 0.0324 (0.0019) 58.2%
Lasso 0.0323 (0.0019) 58.3%
SVR 0.03223 (0.0020) 58.3%
GBT 0.0316 (0.0020) 59.2%
Pure strategy belief learning w/o trembles 0.0435 (0.0030) 43.9%
Pure strategy reinf. learning w/ trembles 0.0394 (0.0026) 49.1%
Pure strategy belief learning w/ trembles 0.0378 (0.0025) 51.2%
Learning at all memory-1 two rates 0.0322 (0.0021) 58.4%
IRL-SG with recency 0.0319 (0.0020) 58.8%
Learning at all memory-1 0.0317 (0.0022) 59.1%
IRL-SG with threshold 0.0313 (0.0020) 59.6%
Learning with flexible memory-1 0.0312 (0.0020) 59.7%
IRL-SG with flexible AllD 0.0311 (0.0021) 59.9%
IRL-SG and AllD 0.0311 (0.0020) 59.9%
Learning with memory-1 0.0310 (0.0021) 60.0%
IRL-SG 0.0309 (0.0020) 60.1%
IRL-SG, two types 0.0302 (0.0019) 61.0%

Model Average C MSE S.E. Relative Improvement
Constant 0.0885 (0.0057) -
GBT 0.0454 (0.0039) 48.7%
OLS on (δ, g, l) 0.0344 (0.0028) 61.1%
Lasso 0.0267 (0.0032) 69.8%
OLS on ∆RD 0.0255 (0.0028) 71.2%
SVR 0.0235 (0.0027) 73.4%
IRL-SG 0.0177 (0.0019) 80.0%

Table C3—: Across-treatment out-of-sample prediction MSE for average cooperation

Appendix D: Game parameters and learning

Our learning model assumes that game parameters and experience influence initial round
cooperation through the sum α + β · ∆RD + ei(s). We can thus interpret α + β · ∆RD as the
direct effect of the game parameters and ei(s) as the direct effect of learning. We here try
to answer how much of the behavior is directly driven by learning and how much is driven
by the game parameters, according to our learning model. Since these two values enter the
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Model Average C MSE S.E.
Constant 0.0695 (0.0055)

Lasso 0.0284 (0.0030)
SVR 0.0282 (0.0029)

OLS on ∆RD 0.0281 (0.0032)
GBT 0.0254 (0.0027)

IRL-SG 0.0220 (0.0026)

Table C4—: Prediction loss (MSE) estimating on 1st half and evaluating on 2nd half

expression in the same way, they are directly comparable.
We consider the last supergame of each experimental session. We consider the actual data

and a simulated data set with 16 participants in each session. When we consider the actual
data for an individual, we look at the initial round actions they took and their observed
realized, and calculate the corresponding value for ei(s) in the last supergame. For the
simulated data, we instead simulate the whole sequence of play, and use the simulated values
to calculate ei(s).

To get a numerical estimate of the relative importance we can look at how much of the
variation in predicted initial round cooperation is driven by the two effects. The total average
variance in initial round cooperation is given by

Var(p|e, ∆RD) =
∑
i∈I

( 1
1 − exp (−(α + β∆RD + ei(s)) − p

)2
/|I|

where I is the set of all individuals, and p is the average predicted initial round cooperation.
We can compare this to the variation in predicted cooperation from the direct learning effect
and the direct game parameter effect respectively.

Var(p|∆RD) =
∑
i∈I

( 1
1 − exp (−(α + β∆RD)) − p(∆RD)

)2
/|I|

Var(p|e) =
∑
i∈I

( 1
1 − exp (−ei(s)) − p(e)

)2
/|I|.

To calculate the relative importance of ∆RD we compare the incremental variance intro-
duced by ∆RD to the fraction of the variance introduced by ei(s), averaged over which term
we add first, and dived by the total variance

Relative Importance(∆RD) =
Var(p|∆RD) +

(
Var(p|e, ∆RD) − Var(p|e)

)
2 /Var(p|e, ∆RD)

Relative Importance(e) =
Var(p|e) +

(
Var(p|e, ∆RD) − Var(p|∆RD)

)
2 /Var(p|e, ∆RD).
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This is the relative Shapley value of the two effects.26 It can be calculated on either the
individual or treatment level, where the probabilities pi(s) are first averaged for each session.

Data Var(p|e, ∆RD) Var(p|e) Var(p|∆RD) Rel Imp ei(s) Rel Imp ∆RD

Simulated individual 0.195 0.188 0.006 96.8% 3.2%
Actual individual 0.185 0.180 0.005 97.2% 2.8%
Simulated treatment 0.059 0.052 0.005 89.5% 10.5%
Actual treatment 0.055 0.046 0.004 87.7% 12.3%

Table D1—: Relative importance measures

The table shows that in our model experience drives most of the variation initial round
cooperation: In both the simulated and actual data, ei(s) is responsible for roughly 97% of
the variation in predicted individual behavior, and roughly 88% of the variation in predicted
initial round cooperation between treatments.

Appendix E: Pairwise tests

Here we consider paired differences between the IRL-SG and the different alternatives
considered. With the 10 different 10-fold cross validation splits, each session is predicted 10
times. This way we capture the randomness that comes from having a particular assignment
to different folds.

Since the same 10 folds are used for all the models, we can bootstrap from these 1610
differences to produce more reliable estimates of the differences between models. The tables
below show bootstrapped standard errors and bootstrapped 95% confidence intervals for the
paired differences between IRL-SG and alternatives.

Table E1 shows that learning with semi-grim is significantly better than OLS on ∆RD

and all pure strategy learning models. Furthermore, we see that the differences for the
generalizations are in general not significant and neither are the differences with the ML
predictions.

Table E3 shows that the picture is similar for the time-path prediction problem.
Table E4 shows that the IRL-SG is significantly better than the model-free prediction

algorithms at extrapolating from short to long sessions for all models but the GBT, which is
narrowly insignificant.

26Kruskal (1987) and Mishra (2016) use the Shapley value to analyze regressions, Lipovetsky (2006) uses them for
logistic regressions, and Lundberg and Lee (2017); Molnar (2019) for general machine learning algorithms.
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Model Difference S.E. C.I.
OLS on ∆RD -0.005< (0.0014) [-0.0079, -0.0023]
SVR -0.00010 (0.0010) [-0.0034, 0.0004]
GBT -0.0008 (0.0012) [-0.0032, 0.0014]
Lasso -0.0005 (0.0009) [-0.0022, 0.0012]
Pure strategy belief learning w/o trembles -0.0091 (0.0021) [-0.0132, -0.0051]
Pure strategy belief learning w/ trembles -0.0053 (0.0016) [-0.0086, -0.0022]
Pure strategy reinf. learning w/ trembles -0.0036 (0.0014) [-0.0065, -0.0009]
IRL-SG and AllD -0.0005 (0.0005) [-0.0015, 0.0005]
IRL-SG with recency -0.0005 (0.0005) [-0.0015, 0.0006]
IRL-SG with threshold -0.0003 (0.0003) [-0.0010, 0.0004]
Learning at all memory-1, two rates -0.0003 (0.0006) [-0.0015, 0.0010]
Learning with flexible memory-1 -0.0002 (0.0006) [-0.0013, 0.0009]
Learning with memory-1 -0.0001 (0.0004) [-0.0008, 0.0006]
IRL-SG with flexible AllD -0.0001 (0.0004) [-0.0008, 0.0007]
Learning at all memory-1 -0.0001 (0.0006) [-0.0013, 0.0011]
IRL-SG, two types 0.0002 (0.0005) [-0.0008, 0.0012]

Table E1—: Paired differences and 95% confidence intervals with the IRL-SG for the average
cooperation prediction task; negative values indicate that the IRL-SG has lower MSE.

Model Difference S.E. C.I.
GBT -0.0277 (0.0042) [-0.0361, -0.0196]
OLS on (δ, g, l) -0.0167 (0.0033) [-0.0232, -0.0103]
Lasso -0.0090 (0.0037) [-0.0164, -0.0019]
OLS on ∆RD -0.0078 (0.0032) [-0.0143, -0.0016]
SVR -0.0059 (0.0032) [-0.0122, 0.0003]

Table E2—: Paired differences and 95% confidence intervals with the IRL-SG for the across-
treatment average cooperation prediction task; negative values indicate that the IRL-SG
has lower MSE.
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Model Difference S.E. C.I.
OLS on ∆RD -0.0089 (0.002) [-0.0130, -0.0049]
Lasso -0.0014 (0.0012) [-0.0038, 0.0010]
SVR -0.0014 (0.0012) [-0.0038, 0.0011]
GBT -0.0007 (0.0013) [-0.0033, 0.0019]
Pure strategy belief learning without trembles -0.0126 (0.0023) [-0.0174, -0.0082]
Pure strategy reinf. learning with trembles -0.0085 (0.0018) [-0.0122, -0.0050]
Pure strategy belief learning with trembles -0.0069 (0.0021) [-0.0111, -0.0029]
Learning at all memory-1 two rates -0.0013 (0.0008) [-0.0029, 0.0003]
IRL-SG with recency -0.0010 (0.0007) [-0.0025, 0.0005]
Learning at all memory-1 -0.0008 (0.0008) [-0.0024, 0.0008]
IRL-SG with threshold -0.0004 (0.0005) [-0.0013, 0.0006]
Learning with flexible memory-1 -0.0003 (0.0007) [-0.0018, 0.0011]
IRL-SG with flexible AllD -0.0002 (0.0005) [-0.0013, 0.0008]
Learning with memory-1 -0.0001 (0.0004) [-0.0010, 0.0007]
IRL-SG and AllD -0.0002 (0.0006) [-0.0013, 0.0009]
IRL-SG, two types 0.0007 (0.0007) [-0.0007, 0.0021]

Table E3—: Paired differences and 95% confidence intervals with the IRL-SG for the time-
path prediction task; negative values indicate that the IRL-SG has lower MSE

Model Difference S.E. C.I.
Constant -0.0475 (0.0054) [-0.0583, -0.0371]
Lasso -0.0064 (0.0028) [-0.0121, -0.0010]
SVR -0.0061 (0.0022) [-0.0114, -0.0011]
OLS on ∆RD -0.0061 (0.0022) [-0.0106, -0.0018]
GBT -0.0034 (0.0021) [-0.0076, 0.0007]

Table E4—: Paired differences and 95% confidence intervals with the IRL-SG when estimating
on 1st half and evaluating on 2nd half; negative values indicate that the IRL-SG has lower
MSE
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