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We provide a price theory for incomplete markets that extends the traditional Walrasian
analysis. We derive formulas expressing the consumption response to current and future
changes in interest rates and income. Our analysis provides a natural decomposition of
these responses into substitution and income effects with structural interpretation, em-
phasizing statistics such as the marginal propensity to save and local measures of pru-
dence in utility. We handle general uncertainty in a compact and intuitive manner by ad-
justing probability distributions: a risk-adjusted probability, commonly used in finance,
and a novel prudence-adjusted probability, specifically useful for incomplete markets.
Our formulas reveal various cross-restrictions implied by the theory on consumer behav-
ior. Numerical explorations show that the new statistics we identify matter significantly
to understand aggregate demand in incomplete markets, beyond the impact of heteroge-
neous marginal propensities to consume or binding borrowing constraints.

*First full draft April 2020, this version May 2022. We thank conference participants at the 2016
NYU/Banque de France/PSE conference on Monetary Policy in Models with Heterogeneous Agents, the
NBER Behavioral Macroeconomics Summer Institute, the ECB Annual Research Conference, and seminar
participants at MIT, Minnesota and LSE. This paper began as a unification of two separate studies: the
discrete time analysis in Farhi and Werning (“Price Theory for Incomplete Markets”) and the continuous
time analysis in Alan Olivi (“Sufficient Statistics for Heterogeneous Agent Models”); the present paper
subsumes and expands both previous analysis.
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Dear Prudence, won’t you come out to play? —The Beatles, The Beatles

1 Introduction

Demand theory provides the framework to understand behavior stemming from ratio-
nal consumers operating within classical Walrasian Price Theory settings. The central
Slutsky equation explains agents’ responses to price changes by decomposing them into
income and substitution effects. Other well-known results such as Slutksy symmetry,
homogeneity, budget exhaustion have been usefully invoked to derive results, limit free
parameters, or impose or test the restrictions implied by rationality. However, outside
classical settings these results do not necessarily hold. A popular class of models features
Walrasian static markets, linked over time by imperfectly and incomplete asset markets,
including borrowing constraints and lack of insurance. The goal of this paper is to gen-
eralize the classical demand theory framework and flesh out the behavioral predictions
and restrictions in such settings.

Our baseline model captures all the essential elements of incomplete market mod-
els. Agents care about the discounted sum of expected utility from a single consumption
good; we make no special assumption on the utility function. Agents face uncertainty
about their future income; we make no special assumption on uncertainty. They can save
and borrow in a single risk-free asset and are subject to a borrowing constraint. Mar-
kets are incomplete for two reasons: agents cannot insure against future realizations of
uncertainty and the borrowing constraint may be binding. Technically, both these fric-
tions imply that the sequence of budget constraints cannot be reduced to a single budget
constraint, as in traditional Walrasian Demand theory. We later discuss an extension that
allows for multiple goods within each period, multiple risky assets, as well as shocks
to the discount factor, the utility function and the borrowing constraint; all our results
generalize to these extensions.

Our first set of results provide expressions for the change in current consumption from
changes in current and future interest rates and income, along with a decomposition into
substitution and an income effects. Naturally, changes in income only produce income
effects, while changes in interest rates induce both income and substitution effects. Our
formulas provide the primitives and sufficient statistics that shape these responses. They
also provide a way to compare the responses to changes in income and interest rates at
different time horizon and across states. For example, one might compare a change in
the interest today versus one two years from now, or a increase in future income in a low
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state versus a high state.
It is useful to first consider a Walrasian scenario without uncertainty. In this case, our

expressions for the income effect are completely standard, equal to the current marginal
propensity to consume times the net present value of income. On the other hand, our
expression for the substitution effect is novel and shows that a change in the interest rate
at some future date T is discounted by the marginal propensity to save from the current
period t = 0 to t = T, that is, the product of the marginal propensities to save in all
intermediate periods. Intuitively, this discounting captures how connected the agent is
to this future date. This, in turn, affects the responsiveness in the present of changes
in interest rates at this future date. An obvious and extreme case is that of a complete
disconnection when the borrowing constraint becomes binds, since then the marginal
propensity to save is zero. Our result shows that even when the borrowing constraint
does not bind, the marginal propensity to save captures the degree of connection and
response to future interest rate changes.

The next challenge is to extend these results to incorporate uncertainty. Our pa-
per show how this can be done in a simple way. Indeed, our expressions are simply
weighted averages of the deterministic ones and can be expressed as the expectation us-
ing reweighed probabilities. Indeed, we introduce two new probability distributions, or
changes of measure, that distort the original objective probability measure to incorporate
the agent’s preference over both risk and prudence. The first probability is a risk-adjusted
one familiar from finance theory: it reweighs states of the world by the marginal utility
of income (i.e. first derivative). We show that this is the appropriate measure to compute
substitution effects. It also is the appropriate measure to compute welfare impacts. The
second probability is a novel prudence-adjusted one that we develop to evaluate income
changes. It captures the precautionary effects inherent to incomplete market settings:
reweighing states of the world by the curvature of utility with respect to income (i.e.
second derivative). Note that this second adjustment is absent in the certainty-equivalent
permanent-income model, that is with quadratic utility and absent borrowing constraints.
In that case, the probability distribution is the original one, without any adjustments.
However, this is a borderline case and we show that an adjustment is generally required
for more standard utility functions and borrowing constraints that induce precautionary
savings motives.

Let us take a step back and discuss our two changes of measure by focusing on the
effects on welfare and consumption of changes in income. In the absence of risk, the
effect of a future income change on welfare and consumption is simply summarized by
its impact on lifetime wealth. Indeed the consumption response is given by the marginal
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Perfect Foresight Complete Markets Incomplete Markets

Consumption ∂ct
∂yt+s

= MPCt × 1
∏s−1

0 Rt+k

∂ct
∂y(θt+s)

= MPCt × Qt(θt+s)

∏s−1
0 Rt+k

∂ct
∂y(θt+s)

= MPCt × QI
t (θt+s)

∏s−1
0 Rt+k

Welfare ∂Vt
∂yt+s

= MVWt × 1
∏s−1

0 Rt+k

∂Vt
∂y(θt+s)

= MVWt × Qt(θt+s)

∏s−1
0 Rt+k

∂Vt
∂y(θt+s)

= MVWt × Qt(θt+s)

∏s−1
0 Rt+k

Table 1: Consumption and welfare responses to future state-dependent income changes.

propensity to consume (MPC) times the net present value (NPV) of the marginal income
change, while the welfare impact is the marginal value of wealth (MVW) times the NPV
of the income change. In this sense, the discount in the NPV can be interpreted as the
price, at initial time, of future income.

This can be easily extended to uncertainty if markets are complete by using the Arrow-
Debreu prices. In each period, we can consider a probability measure that weighs states
in proportion to its price. It is then possible to determine the equivalent wealth change
by the expected present value using Q, or simply Q-NPV for short, and with it the con-
sumption and welfare responses. This discussion is summarized in the first two columns
of Table 1.

What about incomplete markets? As it turns out, we can still construct a risk-adjusted
Q, with the marginal utility (weighted by probability) playing the role of implicit Arrow-
Debreu prices. Once again the Q-NPV of future income changes determines the change
in welfare. However, it no longer determines the consumption response to future income
changes. To see why, imagine an employed agent saving for unemployment. An increase
in unemployment benefits makes the agent richer, the income effect, but also relaxes the
precautionary motive to save. This precautionary effect is not generally captured by the
risk-adjusted Q. This has to do with the fact that prudence and risk aversions are distinct
properties of preferences. Indeed, while risk aversion is related to concavity of utility,
prudence is related to concavity in marginal utility function (Kimball, 1990).

To compute the response to income changes we construct a new prudence-adjusted
probability QI and show that it typically overweighs “bad” states compared to Q. In-
deed, we provide a formal result for transitory shocks, and confirm it in our numerical
explorations for persistent shocks. This implies that an additional dollar in a state where
consumption is low generates a larger consumption response under incomplete markets.

As mentioned, the risk- and prudence-adjusted probabilities are key to developing our
price theory for incomplete markets. In particular, for interest rate changes the substitu-
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tion effect is computed using Q while the income effect of these changes uses QI , just as
it is for income changes. To highlight the role of QI versus Q, we decompose the income
effect into a welfare effect, determined by the Q-NPV of interest and income changes,
and the difference between the QI-NPV and the Q-NPV. This gives a decomposition into
substitution, wealth and what we call a precautionary effect. The latter effect highlights
the impact of incomplete markets.

At the origin of demand theory for Walrasian settings, Slutzky and Hicks provided
two alternative compensation schemes. In particular, Slutzky envisioned providing trans-
fers that would allow a previous consumption plan to remain feasible after price changes;
the budget constraint then pivots through the original consumption choice. Hicks, in-
stead, envisioned a compensation in terms of income designed to keep utility exactly
constant. Although these schemes are different and generally lead to different responses,
to a first-oder both schemes deliver exactly the same consumption responses.

Our substitution effect is a defined following the Slutzky compensation scheme, that
provides income in real time to compensate for interest rate changes; the budget con-
straint pivots through the original consumption plan. For comparison sake, we define
a Hicks-compensated effect by compensating for current and future interest using initial
wealth only. Unlike the Walrasian case, with incomplete markets this compensated effect
does not typically equal the substitution effect.1 Indeed, the compensated effect equals
the Slutzky-substitution effect defined earlier, plus the precautionary effect from the in-
terest rate changes defined earlier, captures the precautionary effect present in incomplete
markets through the difference between QI and Q.

Going beyond the impact on present consumption, we show how to compute the full
impulse response of consumption. We also provide further cross-restrictions on behav-
ioral responses relating the current response of consumption to future income and interest
rates to the future responses to concurrent changes in these variables.

Finally, we revisit the properties of the Slutsky matrix and show that the substitution
effects are symmetric. In this sense, Slutzky symmetry extends to incomplete markets
settings. However, it turns out that the Hicks-compensated effect, which does not always
equal the Slutzky-substitution effect, is not generally symmetric.

Our individual price theory provides a lens to inspect the mechanisms behind aggre-
gate demand responses. We explore this by dissecting the aggregate response of con-
sumption with heterogeneous agents. The literature has stressed the importance of ac-
counting for the heterogeneity in marginal propensities to consume, as well as their in-

1In a Walrasian setting, these two compensation schemes are not identical and they do not have identical
results for discrete changes, but they do have the same effect to a first order.
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teraction with heterogeneous income shifts. First, we show that the heterogeneity in risk
valuation Q and QI matters beyond MPC heterogeneity. Second, in line with our results
for a single agent, the aggregate marginal propensity to save is shown to be crucial to
assess the discounting of future interest rate changes.

Finally, we turn to a quantitative exploration in a standard Bewley-Huggett-Aiyagari
model. We find that the direct effect of borrowing constraints is rather limited, atten-
uating the (partial equilibrium) effects of future interest rate cuts by less than 10%. In
contrast, the impact of the marginal propensities to save is significant, almost halving the
aggregate response to an interest rate cut at a four year horizon. Indeed, because of the
tight borrowing constraints, many agents dissave at the margin which hinders their abil-
ity to transfer funds in the future, even when they are not constrained. This additional
discounting impacts all households and goes largely beyond the direct effect of borrowing
constraints. Similarly, the precautionary effects of interest rate changes largely dampens
the income effect (or “redistribution channel”) of future cuts.

Related Literature. Our work builds on the classical approach to consumer demand.
This is a long and important literature with milestone contributions by Marshall (1890),
Slutsky (1915), Hicks (1939), Hicks and Allen (1934a) and Hicks and Allen (1934b). Deaton
and Muellbauer (1980) provides a thorough review.

While the environment of the classical theory of demand is static, its results can be
directly applied to the canonical dynamic complete market model of Arrow and Debreu
(1954). Our main contribution is to extend these results to incomplete markets.

Models of incomplete markets and their income fluctuations problems were initially
formalized and studied as extensions of Friedman’s permanent income model, by Bew-
ley (1977), Schechtman and Escudero (1977), Chamberlain and Wilson (2000) among oth-
ers. In terms of individual behavior, few properties were obtained beyond existence and
monotonicity of the consumption function. Two important later contributions by Kimball
(1990) and Carroll and Kimball (1996) studied precautionary motives and established the
concavity of the consumption function. Our paper is complementary and continues this
line of work, investigating the theoretical predictions of this important class of models.

A quantitative literature has simulated incomplete market models to study its effects
on growth Aiyagari (1994), asset pricing Huggett (1993), macroeconomic fluctuations
Krusell and Smith (1998), optimal taxation Aiyagari (1995), and may other issues. An
extensive empirical literature also emerged, estimating and testing these models, starting
with Hall (1978); Flavin (1981); Hall and Mishkin (1982) and continuing with Attanasio
and Weber (1995); Carroll (1997); Gourinchas and Parker (2002); Blundell et al. (2008), to
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name a few. Our paper thus complements this line of work by offering a fuller characteri-
zation of the restrictions imposed by the theory and the sufficient statistics involved, also
offering a better understanding of the mechanisms at work in consumer behavior and its
link to the traditional Walrasian Price theory.

Our work is related to Auclert (2015) which studied the transmission of monetary
policy to aggregate demand in heterogeneous agents economies. The main focus in that
paper is on an heterogeneous income effect channel that supplements the substitution
channel. This channel is based on covariance of heterogenous marginal propensities to
consume with asset positions. Auclert (2015) shows that these statistics are sufficient
for contemporaneous transitory change to the interest rate, but are no longer sufficient
to characterize persistent shocks or changes in future interest rates or income. Our pa-
per provides the necessary characterization and statistics shaping these responses. More
broadly, our paper provides a general framework for the growing literature seeking to
identify sufficient statistics for partial equilibrium effects (e.g.Kaplan and Violante, 2014,
Berger et al., 2017), or to derive the aggregate intertemporal MPCs are in Auclert et al.
(2018).

Farhi and Werning (2019) study the response of current consumption to future in-
terest rate changes in an incomplete market setting in general equilibrium. That paper
considers both rational expectations outcomes as well as level-k boundedly rational one.
The level-k concept employed justifies putting more weight on the partial equilibrium
responses, which is precisely the object of study of the present paper. Our paper is also
broadly related to a literature extending standard demand theory to allow for boundedly
rational agents. Gabaix (2014) considers sparse agents who disregard some of their state
variables, Aguiar and Serrano (2017) use Slutsky matrices to characterize deviations from
rationality, Farhi and Gabaix (2020) extend the classical framework to revisit optimal tax-
ation theory with bounded rational agents.

2 The Income Fluctuations Problem

For most of the paper we adopt a baseline model that is sufficiently general to encom-
pass traditional incomplete market models. We consider a standard one-good income-
fluctuation model with exogenous borrowing constraints. The model is later generalized
in Section B to allow for several goods, multiple assets, and shocks to preferences and
borrowing constraints.
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Shocks, interest rates, and income shifters. We denote the shock process by θt, and the
history of shocks up to t by θt = (θ0, θ1, · · · , θt). We denote by P the probability measure
on the history of shocks, by E[·] the expectation with respect to this measure, and by
Et[·] = E[·|θt] the expectation conditional on the realization of θt. The agent’s income in
period t is y(θt). She saves through a short term risk free bond at. We denote the gross
interest rate between t and t + 1 by Rt(θt).

Agent’s problem. The problem of the agent in period t after history θt and with wealth
at is

max
{at(θt),ct(θt)}

E

[
∞

∑
t=0

βtu(ct(θ
t))

]
subject to the sequence of budget constraints

ct(θ
t) +

at+1(θ
t)

Rt(θt)
= at(θ

t−1) + yt(θ
t)

at(θ
t) ≥ Bt(θ

t),

with initial condition a0(θ
0) = a0 given. Here Bt(θt) is an exogenous borrowing limit.

Individual indirect utility and Marshallian demand functions. For given a0, the solu-
tion to the problem gives a sequence for consumption and assets ct(a0, θt; {Rt}, {yt}) and
at+1(θ

t, {Rt}, {yt}) and to denote their dependence on future interest rates processes. Our
goal is to study the comparative statics with respect to these processes.

The agent problem is obviously recursive and can be represented by value and con-
sumption functions that depend on current assets. We denote these functions as

Vt(at, θt; {Rt+s}, {yt+s})

ĉt(at, θt; {Rt+s}, {yt+s})

Note that

ct(θ
t; {Rt}, {yt}) = ĉt(at(θ

t−1, {Rt}, {yt}), θt; {Rt+s}, {yt+s}).

These functions are generalizations to an incomplete-markets setting of the classical
price theory concepts of indirect utility and Marshallian demand functions. To streamline
the notation we sometimes leave the dependence on the arguments implicit.

Two key statistics of our analysis are the marginal propensity to consume (MPC) and
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the marginal propensity to spend (MPS). They are defined as follows:2

∂ac(θt) ≡∂a ĉt(at, θt; {Rt+s}, {yt+s})
MPSt(θ

t) ≡Rt(θ
t)(1− ∂act(θ

t)).

In addition, we define the stopping time τ as the first date, starting from t = 0, at which
the borrowing constraint binds. Note that τ is not generally deterministic and typically
depends on the sequence of realized shocks.

Complete Market Benchmark. We will benchmark the incomplete market model against
a complete markets model. In that case, agents can purchase, at history θt, assets at prices
qt(θt+1) paying Rt in state θt+1. Agents are subject to the same exogenous borrowing
constraint.The budget constraints are then,

ct(θ
t) + ∑

θt+1

qt(θ
t+1)bt+1(θ

t+1) = Rt−1(θ
t−1)bt(θ

t) + yt(θt, Xt)

Rt−1(θ
t−1)bt(θ

t) ≥ Bt(θ
t).

The complete market problem defines additional policy functions, the quantity of as-
sets purchased at θt, that are denoted bt+1(θ

t+1, {Rt}, {yt}) and b̂t+1(at, θt+1; {Rt+s}, {yt+s}).
We then define a state-dependent marginal propensity to save

MPS(θt+1, θt) = Rt(θ
t)∂ab̂t+1(at, θt+1; {Rt+s}, {yt+s}).

We can similarly define a stopping time τ as the first date at which one of the borrowing
constraint binds.

3 Main Results: Response to Interest Rate and Income Changes

In this section, we express the derivatives of the Marshallian demand function with re-
spect to interest rate and income changes. Thus, we are examining the responses of con-
sumption to a contemporaneous announcement of interest rate and income changes. We
later turn to total derivatives that take into account that wealth at t changes due to the
past announcements at t = 0.

2Our marginal propensity to spend is technically a marginal propensity to increase wealth in the next
period.
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3.1 Deterministic Case: Discounting with MPS

For presentation purposes it is useful to first consider the case without uncertainty, which
effectively puts us in a Walrasian setting. We seek an expression for

dc0 =
∞

∑
t=0

(
∂c0

∂y(θt)
dy(θt) +

∂c0

∂R(θt)
dR(θt)

)
.

We then have the following result.

Proposition 1. The response of consumption to a change in the sequence of prices and income
{dRt} and {dyt} is given by

dc0

c0
=− ε(c0)

τ

∑
t=0

(
t

∏
s=0

MPSs

Rs

)
dRt

Rt
+

1
c0

∂c0

∂a0

τ

∑
t=0

(
t−1

∏
s=0

1
Rs

)(
at+1

Rt

dRt

Rt
+ dyt

)
,

where ε(c0) = −c0u′′(c0)/u′(c0) is the local elasticity of intertemporal substitution.

Note that there is no reaction to changes beyond τ, the date at which the borrowing
constraint binds. This is intuitive, as the borrowing constraint interrupts the connection
across periods, segmenting decisions. The first term on the left hand side is the substi-
tution effect, involving the local elasticity of substitution. The second term is an income
effect, involving the marginal propensity to consume.

The first term in the expression above is the substitution effects and contains some
standard elements and some new elements. As usual, this effect is mediated by the elas-
ticity of substitution. The more novel element is that the expression shows that the sub-
stitution effect depends on the sum of discounted price changes, discounting using the
agent’s marginal propensity to save. The product ∏t

s=0 MPSs/Rs represents the marginal
propensity to save from the current period to t. Intuitively, this captures how connected
the agent is to this future date. This, in turn, affects the responsiveness in the present
of changes in interest rates at this future date. Overall, the expression clarifies that the
sensitivity of consumption to future change in interest rates may be low for two reasons.
First, the planning horizon of the agent may be interrupted at τ, so the agent does not re-
spond to changes in interest rate that happens after τ. Second, the consumption response
is further lowered through the product of marginal propensities to save as the MPSs typ-
ically fall towards zero as the agent get closer to the borrowing constraint. Note that the
first situation can also be thought of as a special case of the second: when the borrowing
constraint binds the MPS is equal to zero.

The second term in the expression above is the income effect, which requires little
comment, as it is the standard demand theory expression. In period t the income ef-
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fect is comprised of the change in income and the impact of the change in the interest
rate on the budget constraint, which is proportional to the asset position. The impact on
consumption is then simply the present value of these income effects times the marginal
propensity to consume. The income effect term will become more interesting in the case
with uncertainty, to which we not turn.

3.2 Adding Uncertainty: Precautionary Effects

We now consider the case with uncertainty and consider the impact of a change in the
path of interest rates and income. The two sequences can be state dependent and are
announced at t = 0. We now seek an expression for

dc0 =
∞

∑
t=0

∑
θt

(
∂c0

∂y(θt)
dy(θt) +

∂c0

∂R(θt)
dR(θt)

)
.

We can also interpret these responses as the partial derivatives of the Marshallian con-
sumption function.

Our next result is one of the main results in the paper and expresses the substitution
and income effects as simple weighted averages of the deterministic expression. The
weights define probability distributions that can be thought of as risk- and prudence-
adjusted probabilities.

Proposition 2. The response of consumption to a change in the sequence of prices and income
{dRs} and {dys} is given by:

dc0

c0
=− ε(c0)E

Q
0

τ

∑
t=0

(
t

∏
s=0

MPSs

Rs

)
dRt

Rt
+

1
c0

∂c0

∂a0
E

QI

0

τ

∑
t=0

(
t−1

∏
s=0

1
Rs

) (
at+1

Rt

dRt

Rt
+ dyt

)
(1)

for probability distributions Q and QI defined by

dQ
dP

(θt+1 | θt) ≡ V′(at+1, θt+1)

E (V′(at+1, θt+1) | θt)
=

u′(c(at+1, θt+1))

E (u′(c(at+1, θt+1)) | θt)
, (2)

dQI

dP
(θt+1 | θt) ≡ V′′(at+1, θt+1)

E (V′′(at+1, θt+1) | θt)
=

u′′∂ac(at+1, θt+1)

E (u′′∂ac(at+1, θt+1) | θt)
. (3)

The probability measure Q is a marginal-utility reweighing of the objective proba-
bilities. This is a standard risk-adjustment that is commonly used in finance and other
areas of economics. As we show later, this probability also enters the picture under
complete markets, since risk adjustment occurs under complete market by way of the
Arrow-Debreu prices which are equated to marginal utilities. The probability measure
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QI is, in contrast, novel and represents a second derivative reweighing of the objective
probabilities. Intuitively, this reweighing captures precautionary effects. Indeed, under
quadratic utility we have that V′′ is constant and so QI = P. More generally, the lo-
cal sensitivity of V′′, related to V′′′, has been insightfully defined as a measure of local
prudence related to precautionary savings by Kimball (1990). Thus, we can interpret QI

as a prudence-adjusted probability. We later provide an important result comparing our
prudence-adjusted probability QI to the standard risk-adjusted Q.

The first term captures the substitution effect allowing for uncertainty. As we can see,
future changes in interest rates are valued just as in deterministic case, discounting by
the marginal propensity to save, but now taking the expectation using the risk adjusted
probabilities Q. Everything else equal, an agent will react more to a change in interest
rate in a state with high marginal utility.

The second line in equation (1) shows that income effects are averaged using the
prudence-adjusted probability QI . Intuitively, under incomplete markets income changes
are valued in a risk-adjusted manner, but they affect consumption through precautionary
motives. For example, if future income is raised in a low consumption, low income state,
then this may affect the desire to “save for a rainy day”.

Another intuition is that changes in income affect consumption and this in turn affects
the risk-adjustment. The measure QI

t takes this change in valuation into account. The sub-
stitution effects do not directly incorporate this change in valuation because compensated
price effects do not generate any such changes.

The response of consumption to income changes is therefore determined by the po-
tentially binding borrowing constraint—which cuts the planning horizon at τ—and by
the prudence-adjustment QI .

Note that even when future changes in interest rate or income are deterministic the
risk- and prudence-adjustment probabilities can come into play. To see this in a simple
case, suppose the path of interest rates is deterministic. First consider a change in future
income at some date t that is constant across all states of nature. Then

dc0

dyt
= ∂ac0

1

∏t−1
s=0 Rs

E
QI

0 (1((τ > t)) = ∂ac0
QI(τ > t)

∏t−1
s=0 Rs

.

We see that what matters is the prudence-adjusted probability of the borrowing constraint
not binding QI(τ > t), which is generally different from the objective probability P(τ >

t). In particular, as we show below for most cases of interest the probability QI will
overweigh bad states of the world, leading one to expect QI(τ > t) > P(τ > t). Next
consider a future interest rate change at t that is constant across all states of nature. Let
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us focus on the substitution effect,

−ε(c0)
dRt

Rt

(
t

∏
s=0

1
Rs

)
E

Q
0

[
t

∏
s=0

MPSs

]

Note that even though Rs is deterministic, the MPSs are not if the agent faces (idiosyn-
cratic) income uncertainty between 0 and t. Thus, the discounting by ∏t

s=0 MPSs is
stochastic and the formula uses the expectation with the risk-adjusted probability Q.

Complete Markets. When markets are complete we obtain a similar result

dc0

c0
=− ε(c0)E

Q
0

τ

∑
t=0

(
t

∏
s=0

MPSs(θs+1, θs)

Rs

)
dRt

Rt

+
1
c0

∂c0

∂a0
E

Q
0

τ

∑
t=0

(
t−1

∏
s=0

1
Rs

) (
at+1

Rt

dRt

Rt
+ dyt

)
.

(4)

The expression is very similar to incomplete markets. However, now the income effects
are evaluated using Q instead of QI . In addition, the MPS is defined across states. Intu-
itively, there is no precautionary effect, so the appropriate response to changes in income
is entirely through the risk-adjusted valuation.

Change in Risk. Our framework can accommodate “risk shocks”, for example an in-
crease in uncertainty captured by an increase in the variance of shocks, in a simple manner
by changing locally the underlying transition kernel π defined by the physical measure
P. Changes in the underlying distribution can also be interpreted as ”news shocks” or
changes in beliefs. We consider absolutely continuous changes with respect to π such
that Et (dπt+1/πt+1) = 0. The consumption response is then given by

dc0

c0
= −ε(c0)E

Q
0

(
τ

∑
t=1

t−1

∏
s=1

MPSs

Rs

dπt

πt

)

The formula makes clear that changes in risk are equivalent to price changes for consump-
tion responses: an increase in the probability of state θs+1 acts as an increase in the virtual
Arrow-Debreu price of the state. Since, in partial equilibrium, they do not affect directly
the monetary returns of assets, agents respond to ”risk shocks” through a substitution
channel.
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3.3 Risk- and Prudence-Adjusted Probabilities: Origins, Intuition and

Results

Our characterization of the derivatives of the Marshallian demand function relies on the
probabilities Q and QI . Here we discuss the origin of Q and QI , provide further intuition
and, finally, provide some results comparing them. In particular, we provide conditions
ensuring that QI overweighs bad state relative to Q.

First, where do these adjusted probabilities come from? They are defined by two mar-
tingale conditions, both stemming from the Euler optimality condition equation. The
optimal consumption plan satisfies (when the constraint does not bind at t):

u′(ct) = βRtEt
(
u′(ct+1)

)
, (5)

This in turn implies by the Envelope theorem

V′(at, θt) = βRtEt

(
V′(at+1, θt+1)

)
differentiating we obtain

V′′(at, θt) = βRtMPStEt

(
V′′(at+1, θt+1)

)
. (6)

This implies that discounted version of V′ and −V′′ are positive martingales,3 which we
can use to define the adjusted probabilities.

Next, we provide more intuition for the two adjustments. The first adjusted probabil-
ity Q, is familiar and related to the standard stochastic discount factor βu′(ct+1)/u′(ct). It
defines the prices of the shadow Arrow-Debreu securities that would make the consump-
tion plan of the agent optimal in a complete market setting. The prices associated with Q
give the valuation, in terms of welfare at time 0 of one more dollar of wealth in the future
(when the constraint is not binding on the path). As in the complete market setting, the
Arrow-Debreu price PAD(θt+1 | θt) at θt of one dollar at θt+1 is given by Q(θt+1 | θt)/Rt.

In contrast, the second adjusted probability QI gives the compensating variation for
consumption at time 0 of one more dollar of wealth in the future. The probability Q
allows to compute the standard compensating variation: an additional dollar in state θt

can be compensated by Q(θt) dollars to keep welfare constant. QI allows to perform the
same exercise for consumption: an additional dollar in state θt has to be compensated
by QI(θt) dollars to keep consumption constant at time 0. With incomplete markets, the
two probabilities Q and QI differ since the valuation of future states changes as the agent

3More precisely,V′ and −V′′ appropriately discounted and stopped at τare martingales.
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gets richer. The agent consumption plan changes not only because she is richer – in terms
of the virtual Arrow-Debreu prices – but also because the Arrow-Debreu prices change
with wealth. QI incorporates this change and, in this sense, is intimately related to the
presence of a precautionary motive.

We formalize this intuition in the following Proposition which relates the twist in val-
uation introduced by QIto the degree of prudence (Kimball (1990), Carroll and Kimball
(1996)) exhibited in the agent’s utility function.

Proposition 3. We characterize the change in valuation introduced by QI as follows.
a. Assume that u′′′u′/(u′′)2 ≥ 1 and βR < 1, then:

∂

∂at+1

{
QI(θt+1|θt)

Q(θt+1|θt)

}
≤ 0.

In particular, if the process y(θt) is i.i.d., we have

QI(θt+1, θt|θt)

Q(θt+1, θt|θt)
≤

QI(θ′t+1, θt|θt)

Q(θ′t+1, θt|θt)
,

for any θ′t+1 such that y(θ′t+1) ≤ y(θt+1).
b. In the limiting case where u′′′u′/(u′′)2 = 1 utility is exponential u(c) = −e−γc. Then if

borrowing constraints never bind we have QI = Q.
c. When utility is quadratic u(c) = c− bc2 so that u′′′u′/(u′′)2 = 0. Then in the absence of

borrowing constraints or if they do not bind we have QI = P

QI(θt+1, θt|θt)

Q(θt+1, θt|θt)
≥

QI(θ′t+1, θt|θt)

Q(θ′t+1, θt|θt)
,

for any θ′t+1 such that c(θ′t+1, θt) ≤ c(θt+1, θt).

The proposition shows that with non-increasing absolute risk aversion, additional
wealth in the future reduces the gap between the measure Q and QI . This implies in
particular that the measure QIis more volatile than Q with respect to the transitory com-
ponent of income shocks: the measure QI puts relatively more weight on the bad realiza-
tion of income than the measure Q. Indeed, an increase income in a “bad” state provides
more insurance than in a “good” state and this additional benefit is captured by QI . In
this sense, the measure QI is the measure P adjusted for prudence. When the agent is
risk averse, the measure Q already puts more weight on states “bad” states compared to
the physical measure P, so that the measure QI

t amplifies the overweighting of bad states.
Note that the QIoverweighting of bad state is also true for some simple persistent income
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changes. Consider for example an AR(1) income process with persistence ρ and suppose
that the borrowing constraint is never binding. In that case, a positive realization of the
income shock corresponds to an increase in wealth of 1/(1 − (ρ/R)): the overweight-
ing of bad realization of the income process by QI is even stronger than with transitory
shocks.

The CARA utility function works as a limiting case. It is well known that, in that
case, the degree of precautionary savings does not vary with agents’ wealth. Since the
precautionary motive is constant, the Q valuation of future states is independent of the
agent’s initial assets and the measure Q and QI coincides.

Finally, the last item in the proposition shows that QI is less volatile than Q in the
quadratic case. This makes clear that the overweighting of “bad” stated via the prudence-
risk adjustment dQI/dQ is related to non-increasing absolute risk aversion. Indeed, with
quadratic preferences, an increase in the variance of future income reduces welfare (the Q-
NPV of the income change is negative) but does not affect consumption. With an increase
in variance, the prudence-risk adjustment (through dQI/dQ) is positive and exactly offset
the negative risk effect (through dQ/dP) and we have QI = P.

The measure QI is specific to the incomplete market setting and has no additional in-
formational content when markets are complete: both welfare and consumption remains
constant when an additional dollar in state θt is compensated by Q(θt) dollars at 0. In-
deed the valuation of future states is then given by exchangeable Arrow-Debreu securities
whose prices do not depend on the agent’s wealth.

Remark. When markets are complete, the probabilities Q and QI are identical:

Q(θt+1 | θt) = QI(θt+1 | θt),

in every state θt where the constraint is not binding between θt and θt+1.

When markets are complete, we can again define the measure Q with the stochastic
discount factor as dQ/dP(θt+1 | θt) = βtRtu′(c(at+1, θt+1))/u′(c(at, θt)). However, since
it is possible for the agent to purchase an asset at price qt(θt+1) paying Rt in state θt+1, we
have that dQ/dP(θt+1 | θt) = qt(θt+1) for all asset levels at. It follows that the measure QI

is also equal to qt(θt+1) in all states and at all histories.

3.4 Welfare impacts and Slutzky versus Hicks Compensation

We now investigate the welfare impacts from changes in future interest rates and income
and discuss their connection to the substitution effect. In particular, we ask: is the sub-
stitution effect is related to a welfare compensated response? Our answer is that, unlike
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in complete market Walrasian setups, with incomplete markets it depends on how the
compensation is carried out.

In particular, it will become apparent that our substitution effect is equal to the re-
sponse one obtains if compensation is carried out in real time, at each future date and state
providing additional income to cancel out the income effects from interest rate changes.
This type of compensation ensures that the previously chosen consumption path is still
feasible. This is akin to the way Slutzky defined compensation, since it also pivoted the
budget set through the original chosen consumption basket. As it turns out, just as in a
Walrasian setup this compensation increases welfare for large changes, but the first order
effect on welfare is zero.

Another compensation scheme is that of Hicks, who envisioned providing extra in-
come to keep utility unchanged. Here we explore this type of compensation using changes
in initial wealth. In a complete market Walrasian setting the Slutzky and Hicks compen-
sation are not the same and produce different results for arbitrary changes, but they lead
to the same responses to a first order. We show that in our incomplete market setting this
is no longer the case.

Roy’s Identity. Let us first consider the welfare impact of changes in income and interest
rates. Since shock that occurs beyond the horizon at which the constraint binds have an
impact on welfare, we extend the definition of the measure Q to all histories, Q(θs) =

∏s−1
k=k βRku′(cs)/u′(c0)P(θs). Note however that Q is not a probability measure and that∫
dQ(θs) ≤ 1, with equality if and only if no constraint binds between t and s.

Proposition 4. The welfare of an agent with wealth at in state θt at t is given by V(at, θt, t). The
change in welfare in response to a change in assets da0, interest rates {dRs} and income {dys} is

dV0 = ∂aV0

(
da0 + E

Q
0

(
∞

∑
t=0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt

}))
, (7)

where ∂aV0 = u′(c0).

Since consumption does not react to shocks occurring beyond τ, we will focus on the
welfare impact of a change {dRs}0≤s≤τ and {dys}0≤s≤τ,

dV0 = ∂aV0

(
da0 + E

Q
0

(
τ

∑
t=0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt

}))
. (8)

This result is an extension of Roy’s identity to the incomplete market setting. Future
changes in income and prices are evaluated according to the measure Q since it gives the
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Arrow-Debreu prices of future states. Indeed, one dollar in state θs is valued at Q(θs)/

∏s−1
s′=0 Rs′ of time t dollars and this therefore also gives the welfare equivalent change in

wealth at t. Similarly, an increase in the interest rate at s is equivalent to a decrease in the
price of consumption at s′ > s. In the static Roy’s identity, we have that dV

dpi
= − dV

da ci: the
decrease in welfare resulting of an increase in the price of good i is proportional to the
quantity of good i consumed. Here, the quantity of goods consumed after s is given by
as+1
Rs

which explains the welfare impact of a change in interest rates.
The formula also allows us to determine the full set of welfare-compensated changes

with dV0 = 0 satisfying

0 = da0 + E
Q
0

(
∞

∑
t=0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt

})
.

Once again, however, consumption does not react to changes that occur beyond τ. Thus,
we consider only shocks that occur before τ. Their welfare effect is given by equation 8
and so we consider compensated changes to be those satisfying

0 = da0 + E
Q
0

(
τ

∑
t=0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt

})
.

Slutzky Compensation. One simple compensated change is one that happens in “real
time” as changes occur. In particular, setting da0 = 0 and suppose

0 =
at+1

Rt

dRt

Rt
+ dyt

at all dates and states of the world. This compensation scheme is in the spirit of the
original Slutzky one because it ensures that the agent can maintain the same consumption
path {ct} after the change, i.e. dct = 0 at all dates and states is budget feasible. Of course,
it will generally not be optimal to maintain the same consumption path. Indeed, applying
Proposition 2, we see that a Slutzky-compensated change will only leave the substitution
effect as the predicted change in consumption. This justifies interpreting our substitution
effect as a Slutzky-compensated response.

Hicks Compensation. We now explore an alternative compensation scheme. There are
two reasons to do so. First, one might argue that the Slutzky-compensation is some-
what at odds with the incompleteness of markets since the implied income transfers are
generally state contingent. But then, if such transfers are available, why not use them to
improve welfare and complete markets? A counterargument is that the substitution effect
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is conceptual exercise, even in a Walrasian setting, not a normative one. A second reason
for exploring an alternative, however, is that Hicks offered a different form of compensa-
tion using income to maintain utility constant. In our context, one can think of this as a
transfer of wealth in period 0.

We thus explore the consequences of this simple compensation scheme. To distin-
guish it from the previously labeled substitution effect (equal to a Slutzky-compensated
response) we will denote this response simply as “compensated”. As we show next, this
response equals the substitution effect plus a term that captures the precautionary effect,
present due to the fact that Q 6= QI .

Proposition 5. Consider a change in interest rate at t, dRt. The consumption response when the
agent is compensated at initial time is:

dch
0 =−ε(c0)c0E

Q
0

(
t

∏
s=0

MPSs

Rs

dRt∧τ

Rt

)
︸ ︷︷ ︸

substitution effect

+
∂c0

∂a0
CovQ

0

(
QI

Q
,

t−1

∏
s=0

1
Rs

at+1

Rt

dRt∧τ

Rt

)
︸ ︷︷ ︸

precautionary effect

.

(9)

Similarly, a (state-dependent) change in income at t gives the following compensated response:

dch
0 =

∂c0

∂a0
CovQ

0

(
QI

Q
,

t−1

∏
s=0

1
Rs

dyt∧τ

)
︸ ︷︷ ︸

precautionary effect

. (10)

For comparison, the compensated response in complete markets is:

dch
0 = −ε(c0)c0E

Q
0

(
t

∏
s=0

MPSs(θs+1, θs)

Rs

dRt∧τ

Rt

)
︸ ︷︷ ︸

substitution effect

, (11)

for a change in interest rate and simply 0 for a change in income.

The first term of the compensated response is simply the substitution effect. As in the
complete market setting, substitution effects generate no change in welfare. The second
term is specific to incomplete markets. As we mentioned before a change in income in
state θs has two effects: first a wealth effect at the initial (pre income change) valuation of
the state Q(θs) and second a change in the valuation of the state given by QI(θs)−Q(θs).
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This second effect is due to the impossibility to make state dependent transfers and is
precisely the precautionary motive. Compensating the agent takes care of the first effect
and the derivative of Hicksian demand function in incomplete markets is the sum of a
substitution effect and a precautionary effect. The precautionary effect is higher when the
income change occurs in the states where the prices Q increase relatively more, that is
the states where QI/Q is higher. Indeed these correspond to sates where prices increase
more with wealth, or equivalently states towards which the agent would transfer more
funds if it was feasible to have state dependent savings (at rate Rs). An income change
with zero present value according to Q but skewed towards higher QI/Q does not change
welfare but reduces the need to precautionary save and increases consumption at t. As
shown in Proposition 3, when income is i.i.d. and that utility is in the DARA class, the
precautionary effects of income change is positive when income increases in a low income
state and negative otherwise.

4 Additional Results

This section contains some additional results. First, we discuss the impact of announcing
future changes on consumption in subsequent periods. Our previous results described
the effect on impact. Here we show that similar formulas and statistics explain the ef-
fect on the entire consumption path. Second, we present a result extending the classical
Slutzky symmetry to incomplete markets. Third, we show that we can express the cross-
relations across elasticities as a Martingale condition. Finally, we draw out some conclu-
sions for aggregate consumption, showing that the heterogeneity in risk- and prudence-
adjusted probabilities can affect the aggregate.

4.1 Impulse Response Function

So far, we have considered the consumption responses of agents at the time of the an-
nounced changes in current and future interest rates and income. This corresponds to
differentiating the Marshallian demand with respect to these variables keeping initial as-
sets fixed. We now characterize the reaction in other periods, after the announcement,
sometimes called the impulse response function (IRF).

From a mechanical perspective one can proceed as follows. Our previous character-
ization tells us how c0 reacts. We can then use the budget constraint to infer assets for
t = 1. Once this is done, we can compute consumption at t = 1 using this new asset
position just as before. Continuing in this way we can compute the entire path. To see
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this more formally, denote by dct the response of expenditure at history θt, with t > 0, for
a change in interest rate and income. Formally we consider the total differential

dct = ∑
s≥t,θs

(
∂ĉt

∂y(θs)
dy(θs) +

∂ĉt

∂R(θs)
dR(θs)

)
+

∂ct

∂at
dat,

dat+1 = Rt(dyt − dct + dat) +
dRt

Rt
at.

To study income and interest rate changes we simply set da0 = 0 and iterate on these
equations; our previous analysis provides the determinants of ∂ĉt

∂y(θs)
and ∂ĉt

∂R(θs)
. The term

∂ct
∂at

dat captures new effect due to the response of assets that was not present for t = 0.
The second equation allows us to compute the asset response recursively.

Next, we derive an insightful condition on the response dct+1 in terms of the past re-
sponse dct and other determinants. Our first observation is that, as long as the borrowing
constraint is not binding, the log response of consumption along the path, adjusted for
the changes in the interest rate, is a martingale under the risk-adjusted probability Qt,

E
Q
t

[
1

εt+1

dct+1

ct+1

]
=

1
εt

dct

ct
+

dRt

Rt
. (12)

Although this condition is simply a log-linearization of the agent’s Euler equation, it can
be viewed as formalizing the “random walk” concept introduced by Hall (1978). How-
ever, our martingale condition is obtained for a comparative static and is satisfied by the
resulting first-order (log) response around an arbitrary baseline stochastic consumption
path.4

To interpret the martingale condition let us consider the CRRA case with CRRA case
with εt = εt+1 = ε constant and suppose there is no current change in the interest rate
dRt = 0 (there are possibly future changes dRt+s for s ≥ 1). Then the martingale condi-
tion says that the log response at t + 1 is an average of that at t (using the risk-adjusted
probabilities). More generally, changes in the response of consumption along the path
must be responses to either (i) changes in the interest rates along the path; (ii) changes in
the elasticity; (iii) or the arrival of new information.

Our next result goes further and provide an expression for the realized dct+1, not just
its expectation. In other words, for the “error” in the “random walk” above. It helps spell
out what arrival of information is relevant.

4Indeed, consumption {ct} itself is not a martingale. Our expression is also distinct from standard log-
approximation carried out in many models, performed around a deterministic steady-state. Instead, we
are studying the first-order response process {dct} around the original {ct} without approximating {ct}
around a steady state. This is why the relevant expectation is EQ and not E.
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Proposition 6. Consider a change in the sequence of income {dyt} and interest rates {dRt}. If
the borrowing constraint does not bind at t, then the response of consumption at t + 1 is given by

dct+1

εt+1ct+1
=

dct

εtct
+

dRt

Rt
+ εt+1 (13)

where E
Q
t [εt+1] = 0 and

εt+1 =
∂act+1

εt+1ct+1

(
E

QI

t+1 (wt+1)−E
QI

t (wt+1)
)

︸ ︷︷ ︸
Revaluation of Wealth

−E
Q
t+1

(
R̃t+1

)
−E

Q
t
(

R̃t+1
)︸ ︷︷ ︸

Revaluation of Interest Rate

+

(
QI

t
Qt
− 1
)(

dct

εtct
+

dRt

Rt
+ E

Q
t
(

R̃t+1
))

︸ ︷︷ ︸
Revaluation of State Prices

,

where wt+1 = ∑τ
s=t+1 ∏s−1

k=t+1
1

Rk

(
as+1
Rs

dRs
Rs

+ dys

)
and R̃t+1 = ∑τ

s=t+1 ∏s
k=t+1

MPSk
Rk

dRs
Rs

.

It is worth noting that one can verify that for t = −1 this formula replicates Proposi-
tion 2 if we were to set dc−1 = E

Q
−1(·) = E

QI

−1(·) = 0.
To understand the economics in this formula, let us first discuss the case where there

are only changes in income. First note that when wealth at s increases, consumption at θt

increases by ∂ct/∂as = ∂ct/∂at ∏t−1
k=s MPSk. Developing and slightly rewriting equation

(13), we get:

dct =
∂ct

∂a0
E

QI
0 (w0)︸ ︷︷ ︸

Change in wealth at 0

+
t

∑
s=1

∂ct

∂as

{
E

QI
s (ws)−E

QI
s−1(ws)

}
︸ ︷︷ ︸

Revaluation o f wealth

.

The response at t is the sum of two terms. First, there is the initial perceived change in
human wealth upon announcement given by the QI-NPV of the income change. Second,
over time the agent as the history of shocks θs unfolds the agent gets information and
reevaluates the change in human wealth. Note that the reevaluation of wealth may occur
because the changes in income are stochastic or because τ is stochastic. The consump-
tion change dct may also be stochastic even without any wealth revaluations, due to the
fact that ∂ct

∂a0
depends on the history of shocks θt. Returning to equation (13), these two

possibilities must be captured by uncertainty in QI
t /Qt or εt along the path.

Note that the revaluation term is specific to incomplete markets, as the agent cannot
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freely transfer income across states. By contrast, with complete markets, the agent can
freely reallocate the initial wealth change across states. The revaluation term cancels and
the response is given by:5

dct =
∂ct

∂a0
E

Q
0 (w0).

It is worth noting that the consumption response to a positive income shock is (weakly)
positive at all dates in complete markets. Because of the revaluation of wealth, this not
necessarily the case in incomplete market, even on average.

Finally, if the income change happens at 0, then there is no revaluation effect and the
average consumption response at t takes a simple form:

dct/dy0 = ∂actΠt−1
k=0MPSk.

It is easy to see that the discounted sum of the responses is exactly one, and that the
stronger the marginal propensities to consume, the more front loaded the response is.

Turning to changes in interest rates, we have a similar revaluation of perceived interest
rate changes along the IRF path. It should be noted that, even if the change is determin-
istic, the revaluation may occur due to the stochasticity of τ and the MPSs. Intuitively, as
the agent moves closer to a borrowing constraint she becomes more disconnected from
the future and less sensible to future interest rate changes. In this sense, the perceived
interest rate change becomes larger after a “good” shock (e.g. higher income) and smaller
after a “bad” one (e.g. lower income), even if the actual interest change is deterministic.

Why is it that even without revaluation of perceived interest rate or human wealth
changes, the consumption response dct/(εtct) may still be disturbed along the path? This
is related to precautionary effects in that it requires shocks to QI

t /Qt. Once again we
can also link this to a revaluation of the implicit Arrow-Debreu state prices under incom-
plete markets. To see this, consider first the complete market case where there is no such
revaluation. Assuming that state prices remain constant and considering an interest rate
change far in the future, we would have:

dct+1

εt+1ct+1
=

dct

εtct
.

Along the IRF path, in complete markets, consumption responds proportionally more
in states where the value of consumption is more elastic. Note that this requires state

5The formula is only true if the constraint does not bind between 0 and t on the history θt. If it does
the formula becomes dct =

∂ct
∂aτ0

E
Q
τ0

(
∑T∧τ

k=τ0
∏k−1

k′=τ0

1
Rk′

dyk

)
, where τ0 is the last date at which the constraint

binds between 0 and t.
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dependent transfers. When the agent transfers funds only through a risk free asset, a
dollar of saving at t instead translates to an increase in consumption at t + 1 of ∂act+1 6=
εt+1ct+1. Note that the ratio ∂act+1/(εt+1ct+1) is exactly proportional to QI/Q: when she
saves more, the agent unexpectedly becomes richer, in “bad” states where the MPC is
large or consumption low (compared to the complete market benchmark). Equivalently,
this means that a decrease in the shadow Arrow-Debreu price at t+ 1 would be needed in
states where the agent values wealth more to maintain the complete market relationship.
Denoting by qt(θt+1) the price of θt+1 (at θt) the revaluation of the state price is:

dqt

qt
=

dct

εtct
− dct+1

εt+1ct+1
∝ 1− QI

t
Qt

.

The relationship translates once again the fact that shadow Arrow-Debreu prices depend
on the agent’s wealth (when the curvature of the marginal value of wealth is not constant)
in incomplete markets.

4.2 Slutsky Symmetry

A central result of price theory is that the price derivatives of the compensated demand
function are symmetric. With our definition of the compensated responses in incomplete
market, the symmetry breaks because of the precautionary effect. Indeed, a change in
price at the initial time t creates no precautionary response since Qt = QI

t = 1: there is no
risk in contemporaneous changes and therefore no precautionary effects and no response
of consumption (besides the substitution effect) at future dates. However a change in
price at s > t creates a precautionary effect at t: the precautionary effect is inherently
asymmetric. We focus here on the substitution effect and show that a modified version of
Slutsky symmetry exists with incomplete markets. To formally introduce changes in the
price of consumption at history θt+s, we modify the budget constraint of the agent to:

at+1(θ
t+1)

Rt(θt)
= at(θ

t)− pt(θ
t)(ct(θ

t)− yt(θt)).

In that case the compensated response to a price change dpt1(θ
t1) is defined as:

dcS
t0
(θt0)

dpt1(θ
t1)

=
dct0(θ

t0)

dpt1(θ
t1)

+
dct0(θ

t0)

dyt1(θ
t1)

(c(θt1)− yt1(θt1))

In words, the pure substitution effect is the total effect, including the implied change in
wealth at t0, of a price change at t1, where the price change is compensated for at t1, so
that the precautionary effects are canceled.
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Proposition 7. The substitution effects satisfy for any s, s′ ≥ 0:

Qt(θt)

∏t−1
k=0 Rk(θk)

dcS
t (θ

t)

dpt′(θt′)
=

Qt(θt′)

∏t′−1
k=0 Rk(θk)

dcS
t′(θ

t′)

dpt(θt)
, (14)

In particular we have:

E
Q
0

(
1

∏t−1
k=0 Rk(θk)

dcS
t

dpt′

)
= E

Q
0

(
1

∏t′−1
k=0 Rk(θk)

dcS
t′

dpt

)
. (15)

As mentioned before, the measure Q is related to the price of the fictitious Arrow-
Debreu securities that would make the consumption plan of the agent optimal in a com-
plete market setting. More precisely, we have that PAD(θt) = pt(θt)Q(θt)/ ∏t−1

k=0 Rk, with
PAD(θt) the Arrow-Debreu price of state θt in complete markets. In complete markets,
we can rewrite the equation as :

dcS
t (θ

t)

dPAD(θt′)
=

pt′(θ
t′)

PAD(θt′)

dcS
t (θ

t)

dpt′(θt′)
=

pt(θt)

PAD(θt)

dcS
t′(θ

t′)

dpt(θt)
=

dcS
t′(θ

t′)

dPAD(θt)

And we obtain the standard symmetry. This implies, in particular, that in incomplete
market, we would recover the standard slutsky symmetry if we were to use the shadow
Arrow-Debreu prices defined by pt(θt)Qt(θt)/ ∏t−1

0 R(θk). In incomplete market, the re-
lation expresses the fact that consumption reacts too much to changes in prices in states
that are overpriced (PAD(θt) < pt(θt)Pt(θt)/ ∏t−1

0 R(θk)) and too little in states that are
underpriced. This comes from the fact that the agent cannot make state dependent trans-
fers: in response to an increase in price at 0 for example, the agent would like to substitute
towards states with higher Q but cannot do so because she only has access to a risk free
bond.

4.3 Cross-Restrictions on Elasticities

Our previous formulas and decomposition were expressed in terms of the present value
of price and income changes. As we now show, one can alternatively the consumption
responses recursively in terms of the sensitivity of income to contemporaneous changes
in prices and income. The following result characterizes the sensitivities of consumption
to future income and interest rate changes.

Proposition 8. For all t ≥ 0, the sensitivities of consumption at t with respect to income and
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interest rate changes at T are given by

y(θt)
c0

∂ĉ0
∂y(θt)

1
c0

∂ĉ0
∂a

= E
QI

0

1(t ≤ τ)

∏t−1
s=0 Rs

y(θt)
ct

∂ĉt(θ
t)

∂y(θt)

1
c(θt)

∂ĉt(θt)
∂a

 , (16)

−Rt(θ
t)

c0

∂ĉ0
∂Rt(θt)

1
c0

∂ĉ0
∂a

= E
QI

0

1(t ≤ τ)

∏t−1
s=t Rs

−Rt(θ
t)

ct(θt)
∂ĉt(θ

t)
∂Rt(θt)

1
ct(θt)

∂ĉt(θt)
∂a

 , (17)

Proposition 8 relates the sensitivity of consumption to future changes in income or in-
terest rates at 0 to the contemporaneous sensitivity of consumption at t to income and in-
terest rates at t. In this way it characterizes a cross-restriction implied by the theory on dif-
ferent elasticities. It establishes the property that [(y(θt)/cs)∂ĉs/∂y(θt)]/[(1/cs)(∂ĉs/∂a)]
and [−(Rt/cs)(∂ĉs/∂Rt)]/[(1/cs)(∂ĉs/∂a)] are discounted (at the prevailing interest rates)
martingales under the probability measure QI , as long as no borrowing constraints binds,
otherwise they become sub-martingales.

The response to interest rate change is here written in terms of QI while Proposition 2
expressed the response in terms of both Q and QI . In our setting, the two probabilities are
related: for a an arbitrary dRt(θt), we have

E
Q
0

(
t−1

∏
0

MPSs

Rs

dRt

Rt
1t≤τ

)
= E

QI

0

(
t−1

∏
0

1
Rs

∂ac0

∂act

εtct

ε0c0

dRt

Rt
1t≤τ

)
.

This means in particular that in a deterministic setting, the time 0 response to a change in
Rt can be written Rtdc0/dRt = −∂ac0/∂act(ctεtMPSt − ∂actat+1)/ ∏t

0 Rs.6

Equations (16) and (17) can be understood as Euler equations for behavior. Just like
the standard Euler equation, these are optimality conditions involving endogenous ob-
jects which characterize the objective that the agent is trying to achieve (smoothing his
consumption). They cannot directly be used to solve exactly for the path of consump-
tion, but they provide a unified framework and set of intuitions for the different effects at
work.

4.4 Extensions

In the appendix, we generalize our benchmark model by allowing the agent to purchase
multiple goods and assets in every period. This can be done in a straightforward man-
ner: intertemporal decisions are fully determined by the per period expenditure function

6This formula is consistent with results for a deterministic setting in the working paper version of
Auclert (2015), where the MPS discounting is implicitly contained in the MPC and consumption at t.
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and the static indirect utility function. We can therefore characterize the probabilities Q
and QI in terms of the per period indirect utility function and the marginal propensities
to spend which replace the per period utility function and the marginal propensities to
consume in the simple model. Having defined the relevant adjusted probabilities Q and
QI , we can decompose the spending response in terms of income, substitution and pre-
cautionary effects, evaluate the welfare impact of income and price changes and explore
the properties of the response, in particular the symmetry of the substitution matrix. The
response of good demand is then characterized by the total spending response and the
static elasticities: the price elasticities derived from the static Hicksian demand function
and the static Engel curves.

We focus in particular on the comparative statics of expenditure with respect to good
price changes. It can be summarized, as for interest rate changes, by an income, precau-
tionary and substitution channels. As in the static Slutsky equation, the income effect
of a change in the price of good i is proportional to expenditure share (at the time of the
change) of good i. It is weighted by the state price Q for pure income effects while precau-
tionary effects depend on the distance between Q and QI . To characterize the substitution
effects, we show that a change in the vector of commodity prices at t, {dpi

t} generates a
change in the price index at t given by ∂ct/∂et · dpt , where ∂ct/∂et are the static Engel
curves. Intuitively, a price matters more for the price index if agents consume more of
it at the margin. Since an increase in the price index at t is equivalent to increasing the
interest rate at t and lowering it at t− 1, we obtain the same characterization for the sub-
stitution effects of commodity prices as for the interest rate.

In parallel, we show how a richer asset structure can improve agents’ insurance. In
particular, we show, on the one hand, how it can extend the planning horizon of the agent
by bypassing the state where the constraint binds and, on the other mute, the precaution-
ary effects, by characterizing the subspace on which the measure Q and QI coincide.
Finally we derive the response of asset demand to changes in the sequence of price and
income which allows us to characterize the full impulse response of expenditure.

In a more technical appendix, we explain how to extend our result to a continuous
time environment.

4.5 Implications for Aggregate Consumption

So far, we have focused on individual consumption functions and characterized their
sensitivities to income and interest rate changes. These individual consumption functions
can be combined into an aggregate consumption function and our results can then be used
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to compute the sensitivity of the aggregate consumption function to income and interest
rate changes.

To do so, assume that the initial joint distribution of assets at and productivity histories
θt at date t is given by Ψt. The aggregate consumption function is given by :

Ct(Ψt; {Rt}, {Xt}) =
∫

ĉt(at, θt; {Rt}, {Xt})dΨt(at, θt).

To simplify exposition, we focus on the standard case were risk – captured by the process
θt – is idiosyncratic. In that case the interest rate is deterministic. To streamline notation,
we drop the stopping time τ which is implicitly captured, for example in QI , since by
definition QI(θt) = 0 for t > τ.

Corollary 1. When shocks are idiosyncratic, the aggregate sensitivity to aggregate income changes
is given by:

∂C0

∂Xt
= ∂aC0

QI
t

∏t−1
k=0 Rk

∂Yt

∂Xt

{
1 + CovΨ

0

(
dQI/dP
QI

t
,

∂yt/∂Xt

∂Yt/∂Xt

)
+ CovΨ

t

(
∂ac0

∂aC0
,

E
QI

0 (∂yt/∂Xt)

QI
t ∂Yt/∂Xt

)}

where ∂aC0 = EΨ
0 (∂ac0) is the average marginal propensity to consume, ∂Yt/∂Xt = EΨ

0 (∂yt/∂Xt))

is the impact on aggregate income and QI
t = EΨ(QI(t ≤ τ)) is the average QI probability that

the constraint does not binds at horizon t.

The formula expresses the aggregate sensitivity to income changes by isolating three
channels. When MPCs are constant across the distribution and that the impact of the X
shifter is state independent7 and constant across the distribution Ψ, the formula reduces to
∂aC0 QI

t / ∏ Rk ∂Yt/∂Xt. This term corresponds to a quasi representative agent response.
However compared to the perfect foresight/representative agent case, the aggregate in-
come change is discounted byQI

t . In a perfect foresight environment, the response would
be given by ∂aC0 1/ ∏ Rk ∂Yt/∂Xt and the income change is simply discounted by the
gross interest rate Rt. Risk and binding borrowing constraints introduce an additional
discountingQI

t which captures the average probability, taken with the probability QI , that
agents’ horizon is cut off before t. As discussed in Proposition 2, this discounting is larger
than the average physical probability that the constraint binds: QI

t ≤ EΨ
t (1(s ≤ τ)).

When the constraint never binds, we have QI
t = 1 and we recover the perfect foresight

response.
The second term in the formula, CovΨ

0
(
dQI/dP/QI

t , ∂Xyt/∂XYt
)
, introduces the first

distributional impact of the aggregate shifter Xt. Keeping the marginal propensities to

7That is ∂ys/∂Xs = ∂Ys/∂Xs in all states θs.
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consume constant, the aggregate response deviates from the quasi representative agent
one when the impact of X varies across states or the income/wealth distribution. The QI

value of the change then differs from PQI
t since on the one hand, QI varies across states

and on the other, agents value differently future states across the distribution Ψ. Incom-
plete markets therefore generate a new form of cross-sectional heterogeneity, through the
risk valuation QI , that matters to understand aggregate demand beyond heterogeneous
marginal propensities to consume. When the effect of X is state independent, but not
constant across the distribution, this covariance term is positive when ∂Xyt is positively
correlated with initial wealth and income. Indeed, income/wealth poor households have
a higher chance to be constrained and value future income less. The impact is however
more ambiguous when the incidence of X is state dependent. If the constraint never
binds, QI is larger in ”bad” states and heterogeneity in QI further dampens the response
to the shifter Xt when the individual shocks are higher in good states. For example, for
a ”wage” shock given by ∂Xyt = yt, the covariance CovΨ

0
(
dQI/dP, ∂Xyt

)
would be neg-

ative when the constraint never binds. When the constraint binds however, this not as
clear since the probability that the agent is constrained in a ”bad” state is larger, in which
case QI is zero. In our quantitative analysis of a wage shock, we see that the impact of
QI is strongest in the middle of the distribution. At median income, agents are not con-
strained but face the highest variance of future income, so that the first effect dominates:
heterogeneous risk valuations dampen the aggregate response.

Finally the third term introduces heterogeneity in marginal propensities to consume.
For contemporaneous shocks, this is the only form of heterogeneity which matters and
our formula reduces to:

∂C0

∂X0
= ∂aC0

∂Y0

∂X0

{
1 + CovΨ

t

(
∂ac0

∂aC0
,

∂y0/∂X0

∂Y0/∂X0

)}
,

which has been extensively used in the literature. For contemporaneous changes, hetero-
geneous MPCs amplifies the aggregate consumption response when income changes are
largest at the bottom of the income/wealth distribution where the MPCs are largest. The
impact of heterogeneous MPCs is however different for future income changes for the
same reasons highlighted above. High MPCs agents are typically constrained and have
therefore a low QI value of future income changes. The QI valuation of future states can
therefore be anti correlated with the marginal propensities to consume. We now turn to
the aggregate response to interest rate changes.

Corollary 2. When shocks are idiosyncratic, the aggregate sensitivity to interest rate changes is
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given by:

Rt
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MPSt

0
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+ CovΨ
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QtMPS t
0
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,

where At = EΨ
0 (at) denotes aggregate wealth, ε̄0 = EΨ

0 (ε0c0/C0)) is the average elasticity
of intertemporal substitution and MPS t

0 = EΨ
t (∏

t
k=0 Rk(1− ∂ack)) is the average marginal

propensity to save between 0 and t.

As in Proposition 2, the wealth effect of interest rate changes corresponds to an income
change of ∂Xyt = at+1/Rt. The impact of heterogeneous QI valuation is again ambigu-
ous: across the distribution, higher income households have higher future wealth and
higher average QI valuation of future states, but across states, QI is higher in “bad” states
where wealth is lower. In our simulation, the second effect dominates and heterogeneous
valuations overall mute the aggregate response. Note that in the case where there is no
aggregate liquidity, the wealth response is purely explained by distributional effects.

We now turn to substitution effects. The quasi representative agent response is now
given by −ε̄0Qt/ ∏t

0 RkMPS t
0. In the perfect foresight case, the marginal propensities

to save are uniformly equal to 1 – agents only consume the capital gains generated by
an additional dollar of wealth – and the substitution effect is given by −ε̄01/ ∏t

0 Rk. In-
complete markets therefore introduce two forms of discounting. As for income effect
an effective fraction Qt of agents are constrained between t and s and do not respond
to interest rate changes. Second, the quasi representative agent has a lower marginal
propensity to save. This second discounting largely dominates the first. Indeed, being
constrained depends on agents’ wealth which is quite persistent: notwithstanding a se-
quence of particularly bad shocks, agents move on average slowly to the constraint. The
effective fraction of constrained household at horizon t, Qt, is then typically almost con-
stant. By contrast, risk affects all agents: it increases the average MPC and lowers the
average marginal propensities to save. In the extreme case where MPCs are constant, we
would haveMPS t

0 = (R(1− ∂aC))t+1, the discounting by the marginal propensities to
save would at least be exponential. For an average annual MPC of 0.2 and an interest rate
R = 1.05, the substitution effect at a 4 years horizon is at least halved compared to the
perfect foresight case, simply through the MPS discounting.

The two distributional effects are similar to the wealth effect ones. Note however
that when the elasticity of intertemporal substitution is constant across the distribution,
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the second distributional effect is given by CovΨ
0

(
c0/C0, E

Q
0 (MPSs

0)/QtMPS t
0

)
. Since

current consumption is correlated with marginal propensities to save, this second distri-
butional effect amplifies the quasi representative agent response.

5 Illustrative Examples

We now present some simple examples to illustrate the different forces at work. In the
interest of space, we focus on sensitivities to interest rates. We imagine that there is a
one-time unanticipated announcement at t of a change in interest rate at t + s ≥ t, and we
characterize the response of consumption at t.

5.1 Borrowing Constraints Without Uncertainty

We first consider the case with no idiosyncratic risk. To simplify we consider a constant
interest rate equal to the inverse of the discount factor Rt = R = β−1. We also assume
that utility is iso-elastic so that u(c) = (c1−γ − 1)/(1− γ) if γ 6= 1 and u(c) = log(c)
otherwise. We denote by ε = 1/γ = −u′(c)/(cu′′(c)) the intertemporal elasticity of
substitution, which is the inverse of the coefficient of relative risk aversion. We assume
a binding borrowing constraint between τ and τ + 1. Our course, without uncertainty
the change of measure is trivial Q = QI = P. The point of this first example is therefore
illustrates the impact of binding borrowing constraints while abstracting away from the
risk- and prudential-adjustment effects.

Consumption is constant only up to τ with

ct = c =
1− R−1

1− R−1−τ

(
a0 +

τ

∑
s=0

R−sys

)

for t ≤ τ while assets are not constant in general before τ and depend on the income
path.8 In this example the marginal propensities to consume can be shown to equal

∂ct

∂at
=

1− R−1

1− R−1−τ+t

which is increasing in t and decreasing in τ (only depending on the difference τ − t).
For t > τ, we trivially have −Rt

c0

∂c0
∂Rt

= 0, because the horizon is interrupted at τ.

8Indeed at = (1− 1/Rτ+1−t)/(1− 1/Rτ+1)[a0 + ∑τ
k=0 yk/Rk]−∑τ−t

k=0 yt+k/Rk.
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Focusing on t < τ we have

−Rt

c0

∂c0

∂Rt
=

1
Rt+1

(
Rτ+1 − Rt+1

Rτ+1 − 1
ε− at+1

)
Without the borrowing constraint, the substitution effect at horizon t would be ε/Rt+1.
With the borrowing constraint, the agent becomes more disconnected with the future: the
MPCs increases over time as the borrowing constraint is approached; by implication, the
MPSs fall over time towards zero. This introduces an additional discount in the substitu-
tion term given by

Rτ+1 − Rt+1

Rτ+1 − 1
< 1

which is decreasing in t and reaches 0 at t = τ. Thus, the substitution response decreases
towards 0 as the horizon of the interest change t approaches the borrowing constraint. At
a given horizon t, the discount is stronger as the distance to the constraint τ− t decreases.
Conversely, note that as τ → ∞ this discount converges to 1.

The income effect from the interest rate change is standard. The impact of an interest
rate change at t depends on whether the agent is a net borrower or a net saver at t (at +

yt − c ≤ 0 or at + yt − c ≥ 0), which depends on the particular sequence of yt.
Regarding income changes, for t > τ, we have ∂c0

∂yt
= 0 and ∂c0

∂yt
= 1

Rt for t ≤ τ. The
difference is simply that the horizon relevant for the computation of permanent income
stops at τ when the borrowing constraint binds, as is well understood.

5.2 CARA utility: Uncertainty Without Borrowing Constraints

We consider here a simple stochastic environment. Agents have Constant Absolute Risk
Aversion utility over consumption u(ct) = −1/γe−γct and income yt is iid with mean
0. Consumption is linear in wealth and income ct = (1− 1/R)(at + yt) + RΓ, with Γ =

−1/γ(R− 1) [ln(βRE(exp(−γ(1− 1/R)y))]. We choose R such that the distribution of
wealth is stationary, which gives Γ = 0.

As in the deterministic environment, marginal propensities to consume are constant
∂act = (1 − 1/R) and marginal propensities to save are 1 everywhere. However the
change of measure is non trivial, Q(yt) = QI(yt) = exp(−γ(1− 1/R)∑t

k=1 yk)/E(exp(−γ(1−
1/R)∑t

k=1 yk). This fundamentally changes the response to state dependent income shocks.
For example with ∂yt/∂Xt = yt, we have E(∂yt/∂Xt) = 0, that is permanent income is
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unaffected, but:

∂c0

∂Xt
=

∂ac0

Rt EQI
(

∂yt

∂Xt

)
=

∂ac0

Rt E

(
exp(−γ(1− 1/R)y)

E(exp(−γ(1− 1/R)y)
y
)

The change of measure overweighs bad realizations (y<0) and underweights good ones
so the response of consumption is negative. When y ∼ N (0, σ), this simplifies to:

∂c0

∂Xt
= − 1

Rt γ[(1− 1/R)σ]2

Consumption decreases with risk aversion and with the variance of the income process.
From the budget constraint, asset after an history yt is given by at = a0 + ∑s−1

0 yk:
shocks are directly passed to assets. We can then easily specialize our formula for interest
rate changes to get:

R
∂c0

∂Rt
= −ε(c0)c0E

Q
0

(
t

∏
s=0

MPSs

Rs

)
+

∂c0

∂a0
E

QI

0

( at+1

Rt+1

)
= − 1

γ

1
Rt+1 +

1− 1/R
Rt+1

[
a0 + y0 + tE

(
exp(−γ(1− 1/R)y)

E(exp(−γ(1− 1/R)y)
y
)]

The change of measure dampens the income effects of interest rate changes compared
to the perfect foresight case. It can be seen more clearly when shocks are normally dis-
tributed, the expression is then simplified to:

R
∂c0

∂Rt
= − 1

Rt+1

(
1
γ
− (1− 1/R)(a0 + y0) + sγ[(1− 1/R)σ]2

)
Since shocks have a full pass-through to assets and assets is a random walk shocks accu-
mulate quickly over time (hence the multiplication of the risk term by t). Therefore, even
though the change in permanent income is given by (1− 1/R)(a0 + y0) , the change of
measure makes the response negative at long horizons t for all levels of risk aversion and
initial asset.

5.3 CRRA with Precautionary Effects

We consider here a simple stochastic environment. In period 0, agents have an income of
ȳ. In period 1, a shock ε is realized and the agent receives yh = ȳ + εh for all remaining
periods with probability πh and yl = ȳ + εl with with complementary probability. We
note by εi the deviations from average income ȳ so that E(ε) = 0. The agent starts with
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wealth a ≥ ȳ in period 0 to insure that the borrowing constraint set at at ≥ 0 never binds.
Utility is logarithmic in consumption. We take β = 1/R so that ct = (1− 1/R)(at + yt)

for all t ≥ 1. To simplify the formulas, we take εl = −εh – so that πh = πl = 1/2.
Consumption in period 0 is then given by:9

c0 =
R− 1

R
yp −

κ

R
with κ =

yp

2

(√
1 +

4R
R− 1

Var(ε)
y2

p
− 1

)

The first term gives the perfect foresight consumption, where the agent consumes a frac-
tion 1− 1/R of permanent income yp = a + R/(R− 1)ȳ. Perfect foresight consumption
is dampened by the term κ which increases with the variance of shocks and decreases
with permanent income. The marginal propensities to consume and save are given in
0 by ∂ac0 = 1− 1/R + λ and MPS0 = 1− λ/R. The perfect foresight MPC and MPS
(given by 1− 1/R and 1) are increased and decreased respectively by λ = 1/2(1− 1/√

1 + 4R/(R− 1) Var(ε)/y2
p), where λ is larger the larger the variance of the shocks is.10

In all future periods, since uncertainty is resolved, the MPCs and MPSs are the same as in
the perfect foresight case and wealth is constant given by at = a + κ. Because of this, the
probabilities Q and QI do not play a role for the response to interest rate which is given
by:

− R
c0

∂c0

∂Rt
=

1
Rt+1

(
σ(1− λ

R
)− (1 +

R
R− 1

λ)
a + κ

yp − κ
R−1

)
.

When Var(ε) = 0, we have λ = κ = 0 and we recover the formulas of 5. The first
term is the substitution effect and shows how risk affects the discounted by the marginal
propensities to save highlighted in Proposition 2: as risk increases, MPS0 decreases and
the substitution effect is dampened. Since risk increases savings and MPC while decreas-
ing consumption at time 0, the income effect is increased which overall decreases the
consumption response.11 While the probabilities Q and QI do not matter, in this exam-
ple, for interest rate changes, they do for state dependent income changes. They are given

9Without the additional assumption, we have κ =
yp
2

(√[
1 + R(εh+εl)

(R−1)yp

]2
+ 4 R−1

R
Var(ε)

y2
p
−
[
1 + R(εh+εl)

(R−1)yp

])
.

10Additionally, λ decreases with permanent income.
11The income effect enters negatively in the consumption response.
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by:

dQ
dP

(εi,t) =
yp − κ

R−1
yp + κ + ε̃i

dQI

dP
(εi,t) =

1− λ
R

1 + R
R−1 λ

( yp − κ
R−1

yp + κ + ε̃i

)2

.

Where to simplify notation we note ε̃ = R/(R− 1)ε. The measure Q overweighs the low
state εl: we have Q(εl)/Q(εh) = (yp + κ + ε̃h)/(yp + κ + ε̃l)P(εl)/P(εh). In terms of Q,
the odds of ε̃l happening increase with ε̃h − ε̃l

12 and decrease with permanent income.
Similarly we have QI(εl)/QI(εh) = (yp + κ + ε̃h)/(yp + κ + εl)Q(εl)/Q(εh) and QI fur-
ther increases the odds of εl compared to Q. The consumption response to a increase in
income in the low state is then given by:

R
∂c0

∂yl
=

(1− R−1 + λ)

πl + (1− πl)
(

yp+κ+ε̃l
yp+κ+ε̃h

)2 πl.

Where 1− R−1 + λ is the initial MPC. By comparison a sate independent increase in in-
come dy = πl which has the same present value as the yl increase gives:

R
∂c0

∂yl
= (1− R−1 + λ)πl.

The impact of risk is twofold. First compared to 5, the MPC is increased by λ. Second the
measure QI further increases the response by overweighting the odds of εl by ((yp + κ +

ε̃h)/(yp + κ + ε̃l))
2 compared to the physical measure. We can use the decomposition of

Corollary 5 to explicit the channels of the response. First the income effect is given by:

(1− R−1 + λ)

πl + (1− πl)
(

yp+κ+ε̃l
yp+κ+ε̃h

)πl.

The pure income effect is lower than the full response: the discrepancy between the two
is due to a precautionary effect. Agents save in period 0 to increase consumption in the
low state but since they can only do so with a safe bond, some of it is wasted in the high
state. An income increase in the low state therefore increases consumption beyond the

12Both directly and through κ which increases with the variance of ε.
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income effect. The ratio of the precautionary effect and the income effect is given by:

|ε̃l |
cl

1 + 2 πl
1−πl

|ε̃l |
cl

+ πl
(1−πl)2

[
|ε̃l |
cl

]2 with cl = yp + κ + ε̃l

In the relevant range, the ratio of the precautionary effect to the income effect increases
with ε̃l/cl: when ε̃l contributes more to cl, the consumption in the low state, the amplifi-
cation of the consumption response through the precautionary effect is larger.

6 Quantitative Illustration

In this section, we consider a standard Bewley-Aiyagari-Huggett model of incomplete
markets. This model features not only occasionally binding borrowing constraints but
also precautionary savings. As a result, individual consumption functions are no longer
linear but are instead concave so that marginal propensities to consume depend on the
position in the asset distribution. Moreover, precautionary savings activates the change
of measure terms in our formulas. We explore the responses of aggregate and individ-
ual consumption to change in interest rates and to several types of income shocks. We
perform two exercises: first we quantify the contribution of substitution, income and
precautionary effects using the results of Proposition 2 and Corollary 5. Second, we com-
pare the responses to the standard perfect foresight responses. In particular we examine
how the borrowing constraint and the adjusted probabilities Q and QI contributes to the
dampening of the perfect foresight responses.

6.1 Calibration

There is a unit mass of infinitely-lived agents. Time is discrete with a period taken to be a
quarter. Agents have logarithmic utility σ = 1 and discount factor β.

There is a unit supply of Lucas trees capitalizing the flow of dividends δYt, where Yt

is aggregate output. Agents face idiosyncratic non-financial income risk yt(1− δ)Yt. The
idiosyncratic income process is log(yt) = ρθ log(yt−1) + θt, where θt is i.i.d. over time,
independent across agents and follows a normal distribution with variance σ2

θ and mean
E[θt] = −σ2

θ /2 so that E[eθt ] = 1.
Agents can borrow and lend subject to borrowing constraints. We assume that the bor-

rowing contracts take the same form as the Lucas trees. We also assume that the borrow-
ing constraints take a simple form, namely that agents cannot have a negative position.
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We denote by Ψt the wealth distribution.
This model cannot be solved analytically, and so we rely on simulations instead. We

consider a steady state {Y, R, Ψ} of the model with a 2% annual interest rate and a cor-
responding quarterly interest rate of R = 1.005. We take ρθ = 0.966, and σ2

θ = 0.017 for
the idiosyncratic income process as in McKay et al. (2015) and Guerrieri and Lorenzoni
(2015). For our baseline economy, we take V

Y = 1.44 for the fraction of outside liquidity
to output, exactly as in McKay et al. (2015).13 The values of β = 0.988 and δ = 0.035
are calibrated to deliver these values of R and V

Y . The fraction of borrowing-constrained
agents in the steady state is then 14.7%.

6.2 Interest Rate Responses

We first focus on the aggregate effects of interest rates. The total response of an interest
rate shock at t at the time of the announcement is given, as in Proposition 2 and Corollary
5 by:

R
c0

dc0

dRt
= −ε(c0)E

Q
0

(
t

∏
0

MPSs

R
1τ>t

)
︸ ︷︷ ︸

substitution effect

+
1
c0

∂c0

∂a0
E

Q
0

(
1τ>t

at+1

Rt+1

)
︸ ︷︷ ︸

welfare effect

+
1
c0

∂c0

∂a0
CovQ

0

(
QI

Q
, 1τ>t

at+1

Rt+1

)
︸ ︷︷ ︸

precautionary effect

We aggregate these individual consumption responses as in Section 4.5, according to
the steady state distribution of income and assets Ψ. For example the aggregate substitu-
tion effect is simply given by:

−EΨ
0

(
ε(c0)c0E

Q
0

(
t

∏
0

MPSs

R
1τ>t

R

))
.

We plot in Figure 1 the aggregate consumption response at time 0 of an interest rate
change at different time horizons t, and examine the contribution of the substitution,
income and precautionary effect to the total response of consumption.

Due to our logarithmic specification, the substitutions effects (in red) largely domi-
nate. The wealth effect (in yellow) slightly counterbalances the substitution effects. The
precautionary effects (in purple) while small compared to the full response, significantly

13This value for the fraction of outside liquidity to output V
Y = 1.44 is meant to capture the value of

liquid (as opposed to illiquid) wealth in the data.
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dampens the income effects (by approximately 15% at long horizons). In the next subsec-
tions, we explore how the borrowing constraints and the risk adjusted probabilities Q and
QI contributes to the substitution and income/precautionary effects and we will see that
borrowing constraints and risk significantly dampens the standard risk-less response.

6.2.1 Attenuation of Substitution Effects

We first explore how market incompleteness and borrowing constraints affect the sub-
stitution effects. As explained in Proposition 2, the substitution effects are given by the
elasticity of substitution at time t (here equals to 1) times the present value of the change
in prices. For a change dRt at t, the effect is given by:[

dc0

dRt

]
subs

=− ε(c0)c0E
Q
0

(
t

∏
0

MPSs

R
1τ>t

R

)

We benchmark our simulated response against the standard risk-less response. As
described in Section 5, the standard response is characterized by Q = QI = P – the
agent valuations Q and QI are given by the physical measure precisely because there is
no risk –, by constant marginal propensities to save R(1− ∂ac) = 1, and by never binding
borrowing constraints τ = ∞:[

dc0

dRt

]
riskless

=− ε(c0)c0

t

∏
0

1
Rs

1
Rt

The difference between the riskless response and the simulated one, is explained by three
elements that we introduce sequentially: the binding borrowing constraints summarized
by the stopping time τ, the discounting introduced by the marginal propensities to save

∏t
0 MPSs/Rs and finally the risk valuation Q. We introduce each of these elements to

understand how they contribute to the dampening of the risk-less response.
We first consider the direct effect of borrowing constraints, namely that the agent does

not respond to shocks occurring after the constraint binds. Future state are still valued
according to the physical measure P and we keep the marginal propensities to save equal
to 1 but cut the planning horizon of the agent at τ[

dc0

dRt

]
constraint

=− ε(c0)c0E0

(
1

Rt+1
1τ>t

R

)
= −ε(c0)c0

1
Rt+1

P(τ > t)
R

The ratio of the riskless response and the constrained response [dc0/dRt]constraint directly
gives the probability that the agent is constrained before t and provides the first source of
attenuation.
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Second we account for the stochastic discounting encompassed in the MPSs which
allows us to quantify more precisely the dampening of the riskless response generated by
the agent’s inability to perfectly transfer funds across states. Formally, future states are
still valued according to P, but the planning horizon of the agent is cut at τ and the future
is discounted according to ∏t

0 MPSs/Rs.[
dc0

dRt

]
discount

=− ε(c0)c0E0

(
t

∏
0

MPSs

R
1τ>t

R

)

Finally, we consider the full response:[
dc0

dRt

]
subs

=− ε(c0)c0E
Q
0

(
t

∏
0

MPSs

R
1τ>t

R

)

The ratio of the full response to the discounted response [dc0/dRt]discount allows us to
quantify how much of the attenuation is due to the risk measure Q. Again, the measure
Q gives the agents’ ”shadow” valuation of future states and translates, when it differs
from P their lack of insurance.

Figure 2 pictures the aggregate substitution effects at time t depending on the horizon
at which the change in interest rate happens. The direct effect of the borrowing constraints
is rather limited, attenuating the substitution effects by less than 10%. This is due to two
facts: first, agents who are initially constrained have lower consumption and second,
agents who are unconstrained move, on average, rather slowly to the constraint. Indeed,
note that the slope of the [dc0/dRt]constraint curve barely differs from the [dc0/dRt]riskless

slope, indicating that if agent are not initially constrained, the probability that they will
be constrained at a future date increases slowly. In contrast, the impact of the marginal
propensities to save is significant, almost halving the aggregate response to an interest
rate change at a four year horizon. Because of the tight borrowing constraints, agents
dissave at the margin which hinders their ability to transfer funds in the future, even
when they are not constrained. This additional discounting impact all households and
goes largely beyond the direct effect of borrowing constraints. Finally, the measure Q in-
troduce relatively little discounting. Quantitatively, the variance of the Radon-Nikodym
dderivative dQ/dP is small, which indicates that agents are relatively well insured, on
average, conditional on their initial state.

To get a better understanding of these aggregate effects, we examine in Figures 3, 4 and
5, the individual responses at different level of income. At the disaggregated level, the
direct effect of the borrowing constraint is strongest at the bottom of the asset distribution
for low income agents. However, even at the lowest income level, agents with median

39



asset holdings are not be constrained at a 4 years horizon and still barely respond to
interest rate changes. This is again due to their low marginal propensities to save, as they
are below their future expected income but cannot consume at their permanent income
level. The same patterns are present at medium and high income levels. The risk measure
Q plays a slightly more important role at medium income level since the variance of their
future income is larger, but its role in attenuating consumption responses remains very
limited.

6.2.2 Attenuation of Income Effects

We now turn to wealth and precautionary effects. As in Proposition 2, those effects are
given by the marginal propensity to consume at time t (here equals to 1) times the present
value of the change in income valued according to QI . For a change dRt at t, the response
is given by: [

dc0

dRt

]
income

=∂ac0E
QI

0

(
1

Rt+1 1τ>T
at+1

R

)
We then again quantify the effects of the borrowing constraints and of the effect of the
adjusted probabilities Q and QI . To do this, we benchmark the simulated response against
a ”virtual” riskless response. The standard riskless response is given as in Section 5 by
Rdc0/dRt = ∂ac0a0/Rt+1: since the agent does not save or dissave, assets remain constant
at their initial value a0. In the simulated response however, assets of course fluctuate so
that the flow of income changes generated by a change in the path of interest rate {at+1/
RdRt/R}risky differs from the true riskless response. To better quantify the effect of the
change of valuation and of the borrowing constraint, we therefore define a virtual riskless
response where the fluctuating flow of income change {dyR

t } = {at+1/RdRt/Rt}risky is
valued according to the measure P and where the borrowing constraint does not bind,
that is: [

dc0

dRt

]
riskless

=∂ac0E0

(
1

Rt+1
at+1

R

)
[dc0/dRt]riskless gives the consumption response of a fictitious agent with the same marginal
propensity to consume and flow of assets as the simulated Bewley-Aiyagari-Huggett
agent but who is risk neutral and values the future according to the physical measure
P.
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Second we introduce the borrowing constraints:[
dc0

dRt

]
constraint

=∂ac0E0

(
1

Rt+1 1τ>t
at+1

Rt

)
[dc0/dRt]constraint only incorporates the direct effect of the borrowing constraint, that is
the the flow of income changes {dyR

t } = {at+1/RdRt/R}risky is cut at the first time the
borrowing constraint binds given by the stopping time τ. The ratio of [dc0/dRt]constraint

to [dc0/dRt]riskless therefore gives the fraction of the total income change that can be trans-
ferred at time t without violating the borrowing constraint.

Third, we consider the change of measure Q:[
dc0

dRt

]
wealth

=∂ac0E
Q
0

(
1

Rt+1 1τ>t
at+1

R

)
[dc0/dRt]wealth represent the consumption response when future states are valued ac-
cording to their Arrow-Debreu prices. It represents the wealth effect of the interest rate
change. In addition, E

Q
0

(
1

Rt+1
at+1

R

)
is exactly the compensating variation for the shock

arising at the planning horizon of the agent, that is 1τ>tdRt. The ratio of [dc0/dRt]wealth to
[dc0/dRt]constraint is then the ratio of the wealth value to the physical value of the income
change.

Finally, we consider the complete response in which the future is valued according to
the measure QI : [

dc0

dRt

]
income

=∂ac0E
QI

0

(
1

Rt+1 1τ>t
at+1

Rt

)
As explained in section 3.4, the difference between [dc0/dRt]income and [dc0/dRt]wealth

gives the precautionary effect of the interest rate change.
Figure 6 pictures the aggregate wealth and precautionary effects at time t depending

on the horizon at which the change in interest rate happens. The welalth and precaution-
ary effects are small compared to the substitution effects since, with our log specification
of utility, agents have a high elasticity of intertemporal substitution. The first term of our
decomposition, the riskless response [dc0]riskless, is upward slopping as agent with low
initial wealth have higher wealth, on average, in the future and high marginal propen-
sities to consume – and vice versa for agents with high initial wealth. The presence of
borrowing constraints cancels this shifting of expected wealth to high MPCs agents. Note
again that the slope of [dc0/dRt]constraint is small as agent become constrained at a very
slow rate. The change of measure Q plays a very limited role initially, as with substitution
effects, but becomes more significant at longer horizon. Indeed future wealth is very anti
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correlated with the valuation of future states. Finally, the precautionary effect plays a sig-
nificant role in explaining the attenuation of the interest rate change, especially at horizon
shorter than two years, where the effect of the borrowing constraints and the change of
measure Q are negligible.

At the disaggregated level (Figures 7, 8 and 9), the channels through which the inter-
est rate change is attenuated are very different depending on the initial income level of
the agent. At low income levels, virtually all of the attenuation is due to the presence of
borrowing constraint. Agents without assets would still respond to a future change in in-
terest rate when we shut down the constraint, since they have positive wealth in expecta-
tion at future dates. For medium and high income households, most of the attenuation is
due to a precautionary effect. This is particularly strong for agents with medium income.
Even though the wealth effect is close to the riskless effect in the bottom two quartiles of
the asset distribution, the precautionary effect completely cancels it.

6.3 Aggregate Income Changes

We focus here on the aggregate response of consumption to income shocks. The total
response of an interest rate shock at t + s at the time of the announcement is given, as in
Proposition 2 and Corollary 5 by:

dc0

dXt
=

∂c0

∂a0
E

Q
0

(
1τ>t

∂yt/∂Xt

Rt

)
︸ ︷︷ ︸

wealth effect

+
∂c0

∂a0
CovQ

0

(
QI

Q
, 1τ>t

∂yt/∂Xt

Rt

)
︸ ︷︷ ︸

precautionary effect

We consider three types of of income shocks. The first one is state independent: all agents
will receive one more dollar at a future date and ∂yt/∂Xt = 1. The second is a wage
increase: the income change is proportional to agents’ income: ∂yt/∂Xt = yt . The third
one is a transitory increase in the productivity of high types: ∂yt/∂Xt = 1 for yt = max y′t
and 0 otherwise. We then aggregate the responses linearly according to the steady state
distribution of wealth Ψ. To make the shocks comparable, we normalize their size so that
the aggregate contemporaneous response is 1. The results are plotted in Figure 10.

As in the previous section, we benchmark the responses against the standard perfect
foresight response where the borrowing constraint never binds given by:[

dc0

dXt

]
riskless

=∂ac0E0

(
1
Rt

∂yt

∂Xt

)
As before, [dc0/dXt]riskless gives the consumption response of a risk neutral agent who
values the future according to the physical measure P.
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We then consider the change of measure Q:[
dc0

dXt

]
wealth

=∂ac0E
Q
0

(
1
Rt 1τ>t

∂yt

∂Xt

)
,

which gives the first term of our decomposition, the wealth effect.
Finally, we consider the complete response in which the future is valued according to

the measure QI : [
dc0

dXt

]
income

=∂ac0E
QI

0

(
1
Rt 1τ>t

∂yt

∂Xt

)
.

The difference between [dc0/dXt]income and [dc0/dXt]wealth gives the second term of our
decomposition, the precautionary effect.

The blue line represents the “riskless response”: each agent is given at t0 the present
discounted value of their future income change. The response incorporates the hetero-
geneity in marginal propensities to consume but not the heterogeneity in risk valuation.
When future change are valued with respect to Q, we get the wealth effect. The aggregate
wealth effect is one fifth the riskless response for a state independent shock. Finally the
total response is given when future income is valued with QI . The shaded area between
the wealth effect and the total response gives the precautionary effects. Precautionary
effects are strongest for shocks that occur in good states, that is when agents are highly
productive and earn yh. Indeed, if we consider a median agent, she should consume more
initially in expectation of a shock arising in a good state. This would however decrease
consumption in bad states which explains the large precautionary effect.

Finally, we examine more precisely how the precautionary effect contributes to the
dampening of income shocks. Formally, in Figure 11 we consider the ratio 1− [dC0]income /
[dC0]wealth, which expresses the precautionary effect as a percentage of the wealth effect.
While precautionary are negligible at an horizon of one or two quarters they rapidly be-
come large: at a two year horizon, they reduce wealth effects by 10% to 35% depending
on the nature of the shock.

6.4 Taking Stock

As in the representative agent model, with logarithmic utility, the aggregate response to
interest rate changes is mostly explained by substitution effects. However, the effect is
quite muted compared to the complete market-representative agent case: in our standard
Bewley-Aiyagari-Huggett specification, the substitution effects are 10% lower for a con-
temporaneous change and 50% lower at a 4 years horizon. This dampening is mostly
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explained by the MPS discounting highlighted in Proposition 2. Indeed, because of the
tight borrowing constraints, agents dissave at the margin which hinders their ability to
transfer funds in the future, even when they are not constrained. The discounting af-
fects all households responses and goes largely beyond the direct effect of borrowing
constraints. By contrast the measure Q plays a limited role: examining the disaggregated
responses, this stems from the fact that the marginal propensities to save are quite per-
sistent so that the average marginal propensities to save according to the measure Q or
P are almost identical. Similarly, the adjusted probabilities Q and QI are almost irrele-
vant for state independent income change. This indicates that the probability of being
constrained taken with the physical measure P or the measure Q and QI are quasi iden-
tical. However they are fundamental to understand state dependent income changes,
stemming for example from interest changes or wage changes. In these cases, the income
change is lower in ”bad” states which triggers a precautionary effect through the measure
QI . The aggregate consumption response is largely dampened, an effect that goes well
beyond the impact of heterogeneous marginal propensities to consume. The strength of
the precautionary effect across the distribution is in fact uncorrelated with the marginal
propensities to consume and is in this sense an independent channel to understand ag-
gregate responses. Indeed, precautionary effects are small at the bottom and top of the
asset and income distribution because income/wealth poor agents are constrained while
income/wealth rich agents are sufficiently insured. They are strongest in the middle of
the distributions where the MPCs are close to the average. This is because household
in the middle of the distribution have the highest variance of future income and wealth.
Therefore, changes correlated with future income and wealth such as changes in interest
rate or wage creates a large precautionary effect for these agents.

7 Conclusion

We have characterized the sensitivity of consumption to income and price changes in
incomplete markets. In the presence of uncertainty, our characterization relied on two
adjusted probabilities. These probabilities, together with contemporaneous elasticities,
elasticity of intertemporal substitution, marginal propensity to spend and the static elas-
ticity of substitution and Engel curves, provide sufficient statistics to characterize con-
sumption responses. The probability Q captures the welfare value of wealth shock and
allows us to explicit the income and substitution channel of price changes thereby extend-
ing their complete market definition to an incomplete market setting. The probability Q
therefore provides a direct link between agents’ consumption responses and the welfare
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impact of shocks. The probability QI is specific to incomplete markets and determines
the precautionary effect of shocks. The difference between the probabilities encapsulates
the effect of market incompleteness and has an economics interpretation as the maximal
strength of the precautionary effects of shocks.

Quantitatively, our simulations show that the probability Q and QI matter well be-
yond the heterogeneity in marginal propensities to consume or the direct impact of bor-
rowing constraint. Since contemporaneous elasticities (e.g. marginal propensities to con-
sume, elasticity of intertemporal substitution) do not provide enough information to eval-
uate the impact of policies, it is important for future research to incorporate in their analy-
sis estimates of households’ risk valuations. Our framework provides the tools to recover
these valuations from reduced form consumption responses and to connect them struc-
turally to the agent’s decision problem.
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Figure 1: Response to interest rate change and decomposition.
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Figure 2: Aggregate substitution effects and its decomposition.
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Figure 3: Substitution effects for low income agents.
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Figure 4: Substitution effects for medium income agents.
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Figure 5: Substitution effects for high income agents.
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Figure 6: Aggregate income effect of interest rate changes and its decomposition.
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Figure 7: Income effects for low income agents.
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Figure 8: Income effects for medium income agents.
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Figure 9: Income effects for high income agents.
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Figure 11: Precautionary effects relative to welfare effect.
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Figure 12: Three Assets Model.
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B General Model

We generalize the model of the main text by allowing for multiple goods and multiple
assets in every period.

B.1 Model and State-Price Densities

In each state θt, the agent can purchase N goods {c1, ..., cN} at prices {p1
t (θ

t), ..., pN
t (θ

t)}.
We denote by ct and pt the vectors of goods and prices and by v(et, pt, θt) the within
period value function as which depends on net expenditures et, prices pt, and can also
depend on the state θt:

v(et, pt, θt) = max
ct

u(ct, θt)

s.t.
pt · ct = et.

We denote by c(et, pt, θt) the corresponding static consumption function.

Let us first consider a simple portfolio choice. The agent has access to M assets b1, ..., bM.
One unit of bi pays Rt(θt) in state θt+1 ∈ Θi

t+1 where {Θi
t+1}1≤i≤M are a partition of

Θt+1, the state space at t = 1. Asset prices are denoted by q1
t (θ

t), ..., qM
t (θt). bi, with

q1
t + ... + qM

t = 1.

The problem of the agent can then be written as

max
{at(θt),et(θt)}

E0

[
∞

∑
t=0

t−1

∏
k=0

β(θk)v(et(θ
t), pt, θt)

]

subject to the sequence of budget constraints

N

∑
k=0

qk
t (θ

t)bk
t+1(θ

t) = at(θ
t) + yt(θt)− et(θ

t) ∀t ≥ 0,

at+1(θ
t+1)

Rt(θt)
= bk

t+1(θ
t) θt+1 ∈ Θk

t+1,

at ≥ Bt ∀t ≥ 0,

with initial condition
at(θ

0) = a0,
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where Bt+s is an exogenous borrowing limit. The optimal expenditure plan is character-

ized by the M Euler equations associated with each of the assets bk:{
qk

t ve(et) = βtRtEk (ve(et+1))

qk
t ve(et) > βtRtEk (ve(et+1)) and Rtbk

t+1 = Bt+1

with Ek( · ) = E( · | θt+1 ∈ Θk
t+1)P(Θk

t+1|θt). Because agents have access to a larger set of
assets, a binding borrowing constraint in state θt+1 ∈ Θk

t+1 does not hamper their ability
to transfer funds from states θt+1 ∈ Θ−k

t+1. The planning horizon is then only partially
interrupted in state θt and we modify our definition of the stopping time τ accordingly.

Definition 1. The hitting time τ at a given initial date t, level of asset at and state θt is
defined for any continuation history tθ = {θt+k}k≥1 as;

τ(t, at, θt, tθ) = inf{s > t | qk
s−1ve(e(as−1, θs−1) > βsRs(θ

s)Es−1,k
(
ve(e(as, θ′s)

)
with k s.t. θs ∈ Θk

s},

with τ(t, at, θt, tθ) = ∞ if the constraint does not bind on the path tθ. We denote by k(τ)
the index of the constrained asset at history tθ.

By contrast, the hitting time defined in the previous section corresponds to the first
date at which the risk free asset is constrained. We now denote it by τr f . Note that
τr f ≤ τ and it more precisely relates to τ as:

τr f (θt+s) = t + s⇔ ∃ θt+s+1 s.t. θt+s+1 = {θt+s, θt+s+1} and τ(θt+s+1) = t + s + 1

In words, the hitting time of the previous section stops at the first date any of the assets
is constrained. In that sense, since agents have access to a richer class of assets to transfer
funds from future states, their planning horizon is expanded.

With the two hitting times in hand, we can rederive the two Euler equations of Propo-
sition ??. The equations for consumption ct now apply to expenditure et, with the marginal
utility of consumption u′(ct) replaced by the marginal utility of income ve(et, pt, θt).

Proposition 9. The optimal expenditure plan satisfies between any date t and T the two Euler
equation stopped at the first time the risk free asset is constrained:

ve(et) = Et

(
T∧τr f−1

∏
s=t

{βsRs} ve(eT∧τr f )

)
(18)
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and

vee(et) ∂et/∂at = Et

(
T∧τr f−1

∏
s=t

{βsRsMPSs(Θk
s+1, θs)} vee(eT∧τr f ) ∂eT∧τr f /∂aT∧τr f

)
, (19)

with ∂es/∂as the marginal propensity to spend at s and MPSs(Θk
s+1, θs) = Rs∂abk(θs) for

θs+1 ∈ Θk
s+1,the marginal propensity to transfer funds in states Θk

s+1 at s.

In addition, the two Euler equations can be extended using the hitting time τ in the following
way:

ve(et) =Et

(
1T≤τ−1

T−1

∏
s=t
{βsRs} ve(eT)

)

+Et

(
1T>τ−1

τ−2

∏
s=t
{βsRs} qτ−1

k(τ)ve(eτ−1)

) (20)

and

vee(et) ∂et/∂at =Et

(
1T≤τ−1

T−1

∏
s=t
{βsRsMPSs(Θk

s+1, θs)} vee(eT) ∂eT/∂aT

)

+Et

(
1T>τ−1

τ−2

∏
s=t
{βsRsMPSs(Θk

s+1, θs)} qτ−1
k(τ) vee(eτ−1) ∂eτ−1/∂aτ−1

)
(21)

Since utility is additively separable in time, the intratemporal allocation in state θt only
depends on good prices and the total amount spent at θt, et. As a result, the indirect utility
v is sufficient to determine the allocation of income across states and the intertemporal
problem is characterized as in Proposition ??: the first equation constrains the discounted
flow of marginal value of income to be constant while the second constrains the marginal
propensities to spend across states.

The first set of equations shows that, as in the previous section, the stopped processes
ve,t∧τr f and vee,t∧τr f ∂aet∧τr f discounted by βtRt and βtRtMPSt are martingales. However
only part of the agent portfolio might be constrained at θt. We denote by q̃t the indicator
that takes the value one if no constraint binds at θt and ∑ qτ−1

k(τ) – the sum of the prices
of the constrained assets – otherwise. The second set of equation shows that [q̃ve]t∧τ−1

and [q̃vee∂ae]t∧τ−1 are also martingales, where q̃ serves to indicate which fraction of the
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portfolio is constrained at θt. We use this fact to extend the definition of the adjusted
probabilities Q and QI associated with this martingales on the space {θt+s | τ(θt+s) >

t + s}.

Definition 2. The probabilities Q and QI are given by their Radon-Nikodym derivatives
at each point θt+1 of the state space, with θt+1 ∈ Θk

t+1 where the constraint does not bind:

dQ
dP

(θt+1 | θt) =
βtRt ve(et+1(at+1, θt+1))

ve(et(at, θt))
= qk

t
ve(et+1(at+1, θt+1))

Ek,t (ve(et+1(at+1, θt+1)))
, (22)

and

dQI

dP
(θt+1 | θt) =

βtRtMPSt(Θk
t+1, θt)vee∂ae(at+1, θt+1)

vee∂ae(at, θt)
= qk

t
vee∂ae(at+1, θt+1)

Ek,t (vee∂ae(at+1, θt+1))
. (23)

The interpretation of the two probabilities remains the same: Qt+s/ ∏t+s−1
t Rk is the

price of the virtual Arrow-Debreu security of state θt+s while QI is the time 0 consumption
value of future wealth and incorporates the change in Arrow-Debreu prices as the agent
gets richer. Note that Q(· | θt) and QI(· | θt) coincide on Θk

t+1: we have Q({θt, Θk
t+1} | θt) =

QI({θt, Θk
t+1} | θt) = qk

t . Indeed one additional dollar in Θk
t+1 is equivalent to one addi-

tional unit of the kth asset at θt and its price is fixed at qk
t independently of the agent’s

wealth. Since the M assets are available, funds in Θk
t+1 and θt are fungible: this neu-

tralizes the corresponding wealth effects on Arrow-Debreu prices and makes the price
densities Q and QI equivalent on {Θk

t+1}k. The logic can be extended to the payoffs of
any feasible investment as shown in the following lemma.

Lemma 1. An investment consistent with the stopping time τ is given by the sequences {bk
s+1(θ

s}0≤s≤T−1

and {ds(θs}0≤s≤T, with T potentially equal to infinity, such that:
∑ qk

sbk
s+1(θ

s) = bs(θs)− ds(θs)

bs+1(θ
s) = Rsbk

s+1(θ
s) f or θs+1 ∈ Θk

s+1

bs+1(θ
s) = 0 i f τ ≤ s + 1

dT(θ
T) = bT(θ

T).

We then have:

EQ

(
T

∑
0

ds

∏s−1
0 Rk

)
=EQI

(
T

∑
0

ds

∏s−1
0 Rk

)

=E

(
T

∑
0

s−1

∏
0

qk
Rk

ds

)
= b0
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B.2 Uncompensated Responses

We start by deriving the expenditure responses to contemporaneous changes in income,
interest rate and good prices, we then extend this derivation to future changes in prices
and income.

Proposition 10. The sensitivities of expenditure at t with respect to contemporaneous income,
interest rate changes and good prices at t are given by

y0

e0

∂e0

∂y0
=

y0

e0

∂e0

∂a0
, (24)

−R0

e0

∂e0

∂R0
= ε(e0)

MPS0

R0
− 1

e0

∂e0

∂a0

a1

R0
, (25)

−
pi

0
e0

∂e0

∂pi
0
+

pi
0ci

0
e0

= ε(e0)
MPS0

R0

∂ci
0

∂e0
pi

0 +
1
e0

∂e0

∂a0
pi

0ci
0, (26)

where all the functions are evaluated at the optimum and ε(e0) = −ve(e0)/e0vee(e0) denotes the
elasticity of intertemporal substitution, and MPS0 = R0 ∑ qk

0∂abk
1 = R0 (1− ∂ae0) denotes here

the total marginal propensity to save.

Proposition 10 translates the results of Proposition ?? in terms of expenditure. The
sensitivity of expenditures to present income changes (y0/e0)(∂e0/∂y0) is the product
of the marginal propensity to spend ∂e0/∂a0 and the ratio of income to total spending
at 0, y0/e0. The sensitivity of contemporaneous interest rate changes is the sum of a
substitution effect ε(e0)

MPS0
R0

– where ε(e0) denotes again the inverse of the curvature of
indirect utility – and an income effect which depends on wealth at 1. Note that the effect
of binding borrowing constraints on the agent’s ability to substitute between periods is
implicit in MPS0: when the kth asset is constrained we have ∂abk

1 = 0 which reduces
the marginal propensity to save and therefore the substitution effect. The definition of
MPS0 = R0 ∑ qk

0∂abk
1 makes clear that with multiple assets, the substitution effect is only

zero when all the assets are constrained, as the remaining free assets can still be used to
transfer future funds following an interest rate decrease.

The sensitivity to current good price changes is the sum of three terms. The first one,
pi

0ci
0

e0
, is the mechanical effect of an increase in price i: if the agent does not change her

consumption of good i, expenditure increases proportionally to the share of good i in

total spending. The behavioral responses correspond to an income effect − ∂e0
∂a0

pi
0ci

0
e0

, which
is the product of the marginal propensity to spend times the effective loss of income given

by the share of good i consumption, and a substitution effect given by −ε(e0)
MPS0

R0

∂ci
0

∂e0
pi

0.

The term ∂ci
0

∂e0
pi

0 is the change in price index in response to an increase in the price of good i.
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To see this more clearly, let us consider the case of a CES aggregator, where the aggregate
good consumption C, the price index P and good i demand ci are given by:

C =

(
N

∑
1

ω
1
σ
i c

σ−1
σ

i

) σ
σ−1

P =

(
N

∑
1

ωi p1−σ
i

) 1
1−σ

ci = e
ωi p−σ

i

∑ ωi p1−σ
i

.

We then directly have d ln P
d ln pi

=
ωi p1−σ

i
∑ ωi p1−σ

i
= ∂ci

∂e pi. The substitution effect can then be inter-

preted as −ε(e0)
MPS0

R0

d ln P0
d ln pi

0
where the change in the price index is given by the marginal

propensity to spend on good i. Since the real interest rate is given P0R0
P1

, a change in the
price index P0 is equivalent to a change in R0 which explains the form taken by the sub-
stitution effect generated by an increase in price pi

0.

We now consider the impact of a change in the path of interest rates {dRs}0≤s, income
{dys}0≤s and good prices {dps}0≤s announced at time 0, on expenditure at 0. Formally
we again have

de0 = ∑
θt, 0≤t

(
∂e0

∂y(θt)
dy(θt) +

∂e0

∂R(θt)
dR(θt) +

∂e0

∂p(θt)
dp(θt)

)
,

so that we can still interpret these responses as the partial derivatives – according to the
announced change {dRs}0≤s, {dys}0≤s and {dps}0≤s – of the Marshallian expenditure
function keeping assets constant.

Proposition 11. The response of expenditure to a change in the sequence of prices and income
{dRs}0≤s, {dys}0≤s, {dps}0≤s is given by:

de0

e0
− c0

e0
dp0 = −ε(e0)E

Q
0

(
(τ−1)

∑
t=0

t

∏
s=0

MPSs(Θk
s+1, θs)

Rs

{
dRt

Rt
+

∂ct

∂et
dpt −

∂ct+1

∂et+1
dpt+1

})

+
1
e0

∂e0

∂a0
E

QI

0

(
(τ−1)

∑
s=0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt − ctdpt

})
,

(27)
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where ε(e0) = −ve(e0)/e0vee(e0) is the elasticity of intertemporal substitution and at+1(θ
s)/

Rt = ∑ qi
tb

i
t+1 is wealth at t + 1 from t perspective.

As in Proposition 2, the first line of the decomposition defines the substitution effects,
where future interest rate changes are valuated with the virtual Arrow-Debreu price den-
sity Q and discounted by the product of marginal propensities to save, while the second
defines the income effects, valuated according to the measure QI which takes into ac-
count the wealth effect on the implied prices of future states. The insurance provided by
the M assets is implicit in the formula. First, the horizon of the agent is determined by
the new stopping time τ. Given an expenditure plan {et+s}s≥0, the horizon of the agent,
when she only has access to a risk free asset to readjust her spending following a change
in prices and income, is characterized by the stopping time τr f ≤ τ. As explained in the
previous subsection, τr f stops at the first date at which any of the M assets is constrained,
and, in that, sense, the planning horizon of the agent is expanded. Second, the agent’s
ability to transfer funds across states is now characterized by the marginal propensity to
save MPSs(Θk

s+1, θs′). When the agent can only saves with a risk free asset, the marginal
propensity to saves is constrained to be equal across the Θk

s subspaces. The richer asset
structure allows the agent to access funds from the ”good” states bypassing the ”bad”
ones: the finer the partition {Θk}k, the more flexibility the agent has to transfer wealth
and the stronger the substitution effects. Third and finally, income changes which cor-
respond to the payoffs of feasible investments, as described in lemma 1, have the same
valuation under the measure Q and QI and the insurance effects of these income changes
are muted. To see this, consider an income change in 1, the expenditure response at 0 is
then given by:

de0

e0
=

1
e0

∂e0

∂a0

{
E

Q
0

(
dy1

R1

)
+ E

QI

0

(
dy1

R1
− dȳ1

R1

)}
with dȳ1 = E

Q
0

(
dy1 | θ1 ∈ Θk

1

)
.

The valuation QI only matters for the fraction of the income change that deviates from
the average change on Θk

1. More generally, using Lemma 1, we can rewrite the income
effects, for an income shock at t, as:
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de0 =
∂e0

∂a0
E

Q
0

(
dyt

∏t−1
0 Rk

)

+
∂e0

∂a0
E

QI

0

 t

∑
s=1

E
Q
s

(
dyt

∏t−1
s Rk

)
−E

Q
s−1

(
dyt

∏t−1
s Rk

| θs ∈ Θk
s

)
∏s−1

0 Rk



The finer the partition {Θk}k, the less the measure QI matters, as income changes can
approximately be insured against through the available assets. In the limit, we recover
the complete market response where future changes are valued according to Q.

In terms of good prices, the expenditure response differs for contemporaneous and
future changes. First, since the expenditure function et = ∑ pi

tc
i
t directly depends on cur-

rent prices only, there is obviously no ”mechanical” effect of future price changes. Second
since the real interest rate at 0 is P0R0/P1, and that d ln Pt/d lnpi

t = ∂eci
t pi

t, a price change
at t is equivalent to an increase in interest rate at t and an equal decrease at t − 1, for
t > 0. Since there is clearly no substitution towards past consumption at 0, only the
equivalent increase in interest rate is present for contemporaneous changes, which ex-
plains the somewhat different response to present and future price changes.

Equivalently, we can characterize the sensitivities of expenditure to future prices, in-
terest rate changes and income recursively:

Corollary 3. For all t ≥ 1, the sensitivities of expenditure at 0 with respect to prices and interest
rate changes at t are given by

∂e0
∂pt

∂e0
∂a0

= E
QI

0

 1− ∂et
∂at

Πt−1
k=0Rk

∂et
∂pt

∂et
∂at

1(τ > t)

 , (28)

∂e0
∂Rt
∂e0
∂a0

= E
QI

0

[
1

Πt−1
k=0Rk

∂et
∂Rt
∂et
∂at

1(τ > t)

]
, (29)

∂e0
∂yt

∂e0
∂a0

= E
QI

0

 1
Πt−1

k=0Rt+u

∂et
∂yt

∂et
∂at

1(τ > t)

 , (30)

where all functions are evaluated at the optimum.

As before, the Corollary states that ∂et
∂Rt

/ ∂et
∂at

1 (τ > T) and ∂et
∂yt

/ ∂et
∂at

1 (τ > T) discounted
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by 1/ ∏t−1
0 Rs are martingales with respect to the measure QI . Note however that it is not

the case for the sensitivity of expenditure to prices change. This is due to the discrepancy
between the response to present and future price changes described above and the term
1− ∂et

∂at
in 28 precisely corrects for it. In other words, because of the discontinuity in the ex-

penditure response the discounted sensitivity to future price changes is a submartingale
rather than martingale, we have:

∂e0
∂pt

∂e0
∂a0

= E
QI

0

 1
Πt′−1

k=0 Rk

∂et′
∂pt

∂et′
∂at′

1(τ > t′)

 f or t′ < t,

∂e0
∂pt

∂e0
∂a0

≤ E
QI

0

 1
Πt−1

k=0Rk

∂et
∂pt

∂et
∂at

1(τ > t)



From the expenditure response, we can easily express the individual good response at
t using the intratemporal hicksian demand function.

Corollary 4. The response of good consumption to a change in the sequence of prices and income
{dRs}0≤s, {dys}0≤s, {dps}0≤s is given b

dci
0 = ∑

j

∂ci,h
0

∂pj
0

dpj
0 +

∂ci
0

∂e0
{de0 − c0dp0}

where ∂ci,h
0

∂pj
0

is the price derivative of the static hicksian demand for good i.

The corollary simply generalizes the standard Slutsky equation. The change in good i
demand works through an intratemporal substitution channel, which is exactly the same
as in the static case, and an income channel, which incorporates all intertemporal effects
through the change in total expenditure de0 derived in Proposition 12.

Responses to Past Announcements

We now derive the expenditure response when the announcement of the price and income
was made in the past. We denote by dt0et the response of expenditure at history θt, for
a change in interest rate {dRs}0≤s, income {dys}0≤s and prices {dps}0≤s announced at 0
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Formally we have:

det = ∑
θs, t≤s

(
∂et

∂y(θs)
dy(θs) +

∂et

∂R(θs)
dR(θs) +

∂et

∂p(θs)
dp(θs)

)
+

∂et

∂at
∑

θs, 0≤s

(
dat

dy(θs)
dy(θs) +

dat

dR(θs)
dR(θs) +

dat

dp(θs)
dp(θs)

)
,

Past changes in prices and income affect spending indirectly, via a change in asset position
at t, while contemporaneous and future changes have a direct and indirect impact.

Corollary 5. The expenditure response at history θt for a change in the sequence of income
{dys}t0≤s≤T announced in t0 < t is given by:

det =
∂et

∂at

t

∑
s=0

MPSs(θ
t)
{

Es (ws)−Es−1

(
ws |Θks

s

)}
,

with ws = ∑
(τ−1)
k=s ∏k−1

s′=s
1

Rs′
dykand ks+1 = k if θs+1 ∈ Θk

s+1 along the history θt. For a change
in in the sequence of interest rates {dRs}0≤s ,

det =
∂et

∂at

t

∑
s=0

MPSs(θ
t)
{

Es (ws)−Es−1

(
ws |Θks

s

)}
− ε(et)et

t

∑
s=0

{
QI

s(θ
t)

Qs(θt)
E

Q
s (R̃s)−

QI
s−1(θ

t)

Qs−1(θt)
E

Q
s−1

(
Rs−1

MPSs−1(Θ
ks
s , θs−1)

R̃s−1 |Θks
s

)}

With ws = ∑
(τ−1)
k=s ∏k−1

s′=k
1

Rs′
ak+1
Rk

dRk
Rk

and R̃s = ∑
(τ−1)
k=s ∏k

s′=s
MPSs′ (θ

s′+1,θs′ )
Rs′

dRk
k .Where to sim-

plify notation, we denote by MPSs(θt)/Rt
s = ∏t−1

s MPSk(θ
k+1, θk)/Rk the total discounted

marginal propensity to save in state θt from θs state and use Q−1 = QI
−1 = 0 and MPSs(θs)/

Rs
s = 1.

Remark 1. To simplify the formula, we did not include the stopping times τs. Note how-
ever that the formulas are still consistent with the stopping times: if the constraint binds
between θt and θs, then MPSs(θt) = 0. Similarly, from the definition of QI , QI

s(θ
t′
y ) = 0 if

the constraint binds between θs and θt′
y .

The Corollary shows that the responses to past announcements feature the same mis-
allocation terms as in the one asset case. However, as the agent can more freely relocate
funds across states, the effect is subdued. Indeed suppose that income increases in state
θt+1 ∈ Θk

t+1. If the agent can save only through a risk free bond, the misallocation term
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1− QI
t (θt+1) in state θt+1 and −QI

t (θt+1) otherwise. By contrast here the terms is 0 on
Θl

t+1 for l 6= k , and 1− QI
t (θt+1)/QI

t (Θ
l
t+1) at θt+1. As the partition {Θk

t+1}k becomes
finer, the agent can more freely allocate wealth across states and and the misallocation
terms becomes smaller. In the limit we obtain the complete market responses where there
is no misallocation.

General Asset Structure

We now briefly show how to generalize our results with a more general portfolio choice
problem. The agent has access to M independent assets b1, ..., bM. One unit of bi pays
Ri

t+1 = Rt(θt)ri
t(θt+1) in state θt+1, where Rt is a component of returns common to all

assets , and ri
t is asset and state specific. Asset prices are denoted by q1

t (θt), ..., qM
t (θt),

with q1
t + ... + qM

t = 1.
When the constraint binds at history θt, the set of feasible local change in portfolio is
restricted in the following way: we denote by Ct(θt) = {θt+1 | Rt ∑i ri

t(θt+1)bi
t+1(θ

t) =

Bt+1} the set of states for which the constraint binds at θt+1, and the set of feasible local
change to the agent portfolio by Bt(θt) = {(db1, ..., dbM) | Rt ∑i ri

t(θt+1)dbi = 0 f or θt+1 ∈
Ct(θt)}. From Bt we can define the set unconstrained states Ut = {θt+1 | ∃(db1, ..., dbM) ∈
Bt with ∑i ri

t(θt+1)dbi 6= 0} and the set of constrained stated as the complementary Ct =

U c
t . Note that Ct ⊂ Ct, but that the reverse is not true: if the asset returns are proportional

in two states, for example, even if the constraint binds in only one of them, the agent
will be unable to transfer funds from the other. With these notations, we can redefine the
stopping time τ:

Definition 3. The hitting time τ at a given date t, level of asset at and state θt is defined
for any continuation history tθ = {θt+k}k≥1 as:

τ(t, at, θt, tθ) = inf{s > t | θt+1 ∈ Ct(θ
t)},

with τ(t, at, θt, tθ) = ∞ if the constraint does not bind on the path tθ.

To simplify exposition, we redefine the asset structure. We denote by b̃1, ..., b̃M the
modified assets – with prices q̃1, ..., q̃M and returns R̃1, ..., R̃M – that satisfy the following
properties. First, the M assets are divided in two subgroup: b̃1

t , ..., b̃ıt
t form a basis of

Bt, where ıt is its dimension, while b̃ıt
t , ..., b̃M

t spans its complimentary. Therefore, at any
history, the first ıt assets can be freely purchased and the remaining M − ıt are binding.
Second, the new basis satisfies Et(vee∂aetR̃i

t+1R̃j
t+1) = 0 for all 1 ≤ i, j ≤ ıt. This can

simply be obtained via Gram-Schmidt orthogonalization and allows us to recover the
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simple asset structure of the previous section. Finally, we rescale the prices and returns
of the assets. The price of the ith asset is scaled according to its share in the marginal

portfolio, so that the new price is q̃i
t

∂a b̃i
t+1

1−∂aet
. This scaling is valid at any history where Bt

is non empty and the corresponding return in state θt+1 is R̃i
t

∂a b̃i
t+1

1−∂aet
. To avoid adding in

notations, q̃i
t and R̃i

t+1 refer to the rescaled prices and returns from now on. The advantage
of the rescaling is that prices sum to one and that the total return in state θt+1, R̃t+1 =

∑k R̃k
t+1 =

∑k Rk
t+1∂abk

t+1
1−∂aet

does not depend on the construction of the basis b̃1, ..., b̃M. The
measures Qt and QI

t are then defined as before with R̃t+1 replacing Rt.

Definition 4. The measures Qt and QI
t are given by their Radon-Nikodym derivatives in

each state θt+1 /∈ Ct(θt):

dQ
dP

(θt+1 | θt) =
βtR̃t+1 ve(e(at+1, θt+1))

R̃t+1ve(e(at, θt))
=

R̃t+1ve(θt+1)

E
(

R̃t+1ve(e(at+1, θt+1)) | θt
) ,

and

dQI

dP
(θt+1 | θt) =

βtR̃t+1MPSt(θt+1, θt)vee∂ae(at+1, θt+1)

vee∂ae(at, θt)

=
R̃t+1MPStvee∂ae(at+1, θt+1)

E
(

R̃t+1MPStvee∂ae(at+1, θt+1) | θt
) .

with MPSt(θt+1, θt) = ∑i R̃t+1∂ab̃i
t+1 = ∑i Rt+1∂abi

t+1

Since neither our definition of the marginal propensities to save nor the total return
R̃t+1 depend on the way we redefine b̃1, ..., b̃M, the measure Q and QI are also indepen-
dent of the choice of the basis. We can then rederive the expenditure response to a contem-
poraneous announcement of a change in prices and income as in the previous sections.14

Proposition 12. The response of expenditure to a change in the sequence of prices and income
{dRs}0≤s, {dys}0≤s, {dps}0≤s annouced at t is given by:

de0

e0
− c0

e0
dp0 = −ε(e0)E

Q
0

(
(τ−1)

∑
t=0

t

∏
s=0

MPSs(θs+1, θs)

R̃s+1

{
dRt

Rt
+

∂ct

∂et
dpt −

∂ct+1

∂et+1
dpt+1

})

+
1
e0

∂e0

∂a0
E

QI

0

(
(τ−1)

∑
s=0

t−1

∏
s=0

1
R̃s+1

{
at+1

R̃t+1

dRt

Rt
+ dyt − ctdpt

})
,

(31)
14The response to past announcements can be derived in a similar fashion.
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The formulas are essentially identical to the simpler case, but the risk free return Rt

is replaced by R̃t. Indeed, if the risk free asset is constrained at t but not the risky one,
wealth is tranferred at t + 1 through the later. The effective return between t and t + 1
would then given by the risky returns. R̃t generalizes this idea by taking the return of the
marginal portfolio.

Finally we restate the result of Lemma 1 with this general asset structure. The payoffs
of any investment, where the investment is cashed out before the borrowing constraint
binds, has the same present value under the measures Q and QI and is the initial wealth
needed to invest. The Lemma will be useful when we discuss the compensated responses.

Lemma 2. An investment consistent with the stopping time τ is given by the sequences {bk
s+1(θ

s)}t≤s≤T−1

and {ds(θs)}t≤s≤T, with T potentially equal to infinity, such that:
∑ qk

sbk
s+1(θ

s) = bs(θs)− ds(θs)

bs+1(θ
s+1) = ∑k Rk

sbk
s+1(θ

s)

bs+1(θ
s+1) = 0 i f θs+1 ∈ Bt(θt)

dT(θ
T) = bT(θ

T).

We then have:

EQ

(
T

∑
0

ds

∏s−1
0 R̃k+1

)
=EQI

(
T

∑
0

ds

∏s−1
0 R̃k+1

)
=b0

B.3 Compensated Responses

We now consider the welfare impact of income and price changes and re-derive the com-
pensated expenditure responses. We keep the notations of the simple asset structure, but
the results are also true in the general case.

Proposition 13. The welfare of an agent with wealth a0 in state θ0 at t is given by V0(a0, θ0).
The change in welfare in response to a change in the sequence of prices and income {dRs}0≤s,
{dps}0≤s and {dys}0≤s is given by

dV0 = E

(
∞

∑
0

βtve(et)

{
at+1

Rt

dRt

Rt
+ dyt −∑ ci

t dpi
t

})

If we only consider changes that happen at the planning horizon of the agent, that is {dRs}0≤s≤(τ−1),
{dps}0≤s≤(τ−1) and {dys}0≤s≤(τ−1), the welfare impact is given by:
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dV0 = ∂aV0E
Q
0

(
(τ−1)

∑
t=0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt −∑ ci

t dpi
t

})

= ve(e0)E
Q
0

(
(τ−1)

∑
t=0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt −∑ ci

t dpi
t

})
,

(32)

at the horizon τ at which the agent responds to the change.

Remark 2. If we extend the definition of the measure Q to all histories, Q(θs) = ∏s−1
0 βRkve(es)/

ve(et), we have:

dV0 = ve(e0)E
Q

(
∞

∑
0

t−1

∏
s=0

1
Rs

{
at+1

Rt

dRt

Rt
+ dyt −∑ ci

t dpi
t

})

Note however that Q is not a probability measure and that
∫

dQ(θt) ≤ 1, with equality if
and only if no constraint binds before t.

The formula extends our dynamic Roy’s identity to settings with multiple goods and
assets. In the static formula, the welfare impact of change in price is given by pi∂V/∂pi =

∂IV pici, where ∂IV is the derivative of indirect utility to income. In the dynamic setting,
the price of good i at history θs is t pi

s(θ
s) = Q(θs)/ ∏s−1

t Rk pi
s from time t perspective. The

dynamic formula is essentially the same as the static one with t pi
s∂V/∂ t pi

s = ∂aV t pi
sci

s and
the marginal value of wealth replacing the marginal value of income.

As before, the formula gives the equivalent change in wealth at t, in terms of welfare,
of a change in prices and income. For changes arising at the planning horizon of the agent
(that is {dRs}t≤s<τ, {dps}t≤s<τ and {dys}t≤s<τ), the equivalent change in wealth is

W0 = EQ

(
T∧(τ−1)

∑
t

s−1

∏
s′=t

1
Rs′

{
as+1

Rs

dRs

Rs
+ dys −∑ ci

s dpi
s

})

and any transfers {ts(θs)}0≤s, with present value EQ
(

∑T
0 ts/ ∏s−1

s′=t Rs′
)

equal to W0 ex-
actly compensate agents for these shocks. To be consistent with the market incomplete-
ness defined by the asset structure and the borrowing constraints, we consider transfers
that satisfy the description of lemma 1 and 2. More precisely, the transfers satisfy:

b0 = W0

∑ qk
sbk

s+1(θ
s) = bs(θs)− ts(θs)

bs+1(θ
s+1) = Rsbk

s+1(θ
s) f or θs+1 ∈ Θk

s+1

bs+1(θ
s+1) = 0 i f τ ≤ s + 1.
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In words, the transfers are made through the assets available to the agents and do not
bypass the borrowing constraints. If transfers were unrestricted, a social planner could
replicate the complete market allocation without borrowing constraints, which would be
at odds with our setting. Note that the cost of those transfer is precisely b0 = W0 and
that there discounted value with respect to the measure Q is also W0 by lemma 1 and 2.
They therefore compensate agents for shocks emerging at the planning horizon of agents,
which are the only ones they respond to. We can now define the change in hicksian (or
compensated) demand eh

t as:

deh
0 = ∑

θt+s, 0≤t≤T

(
∂e0

∂y(θt)

(
dy(θt)− tt(θ

t)
)
+

∂e0

∂R(θt)
dR(θt) +

∂e0

∂p(θt)
dp(θt)

)
,

This hicksian demand derivative is well defined as it does not depend on the precise
timing of the transfers (as long as they satisfy our above description).

Corollary 6. Consider a change in interest rate at t, dRt. The compensated response of consump-
tion at 0 where the compensation is done through transfers satisfy lemma 1 and 2 with present
value b0 = W0 – so that the change is welfare neutral – is given by:

deh
0 =− ε(e0)e0E

Q
0

(
t

∏
s=0

MPSs

Rs

dRt∧τ−1

Rt

)

+
∂e0

∂a0
CovQ

0

(
QI

Q
,

t−1

∏
s=0

1
Rs

at+1

Rt

dRt∧τ

Rt

)
.

(33)

A (state-dependent) change in income at t gives the following compensated response:

deh
0 =

∂e0

∂a0
CovQ

0

(
QI

Q
,

t−1

∏
s=0

1
Rs

dyt∧τ

)
. (34)

Finally, a (state-dependent) change in the price of good i at t > 0 gives:

deh
0 =ε(e0)e0E

Q
0

(
t−1

∏
s=0

MPSs

Rs

∂ci
t

∂et
dpt∧τ −

t

∏
s=0

MPSs

Rs

∂ci
t

∂et
dpi

t∧τ

)

+
∂e0

∂a0
CovQ

0

(
QI

Q
,

t−1

∏
s=0

1
Rs

ci
t dpi

t∧τ

)
.

(35)

The terms CovQ
0 (

QI

Q , ·) again represent the precautionary effect of shocks. They are
also well defined and do not depends on the precise timing of transfers as long as there
present value is W0 and that they are consistent with the asset structure and the borrowing
constraints Note that if the income change can themselves be replicated through some
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asset investment consistent with lemma 1 and 2, this precautionary effects are nil. This
is natural since the precautionary effect is precisely generated by income changes that
cannot be insured through the assets available to the agent.

We only wrote the compensated effect of price changes for t > 0 since at 0 the expres-
sion is slightly different and given by:

deh
0

dpi
0
= −ε(e0)e0(1− ∂ae0)

∂ci
0

∂e0
+ ci

0

The first term is the substitution effect while the second is the mechanical effect. In the
static decision problem, the compensated effect of a price change is exactly equal to the
mechanical effect. In this dynamic environment, a price change at t also corresponds to
a decrease in future prices, since it is equivalent to an increase in real interest rate, the
substitution effect is therefore added to the mechanical effect. For goods consumption,
the mechanical effect disappears and the response is:

dci,h
0

dpj
0

=
∂ci,h

0

∂pj
0

−
∂ci

0
∂e0

{
ε(e0)e0(1− ∂ae0)

∂cj
0

∂e0

}

where the first term is the static price derivative of hicksian demand. Note that the re-

sponse is symmetric: we have dci,h
0

dpj
0

=
dcj,h

0
dpi

0
. This is because the price effect at t do not have

a precautionary component. As in the previous section, this result extends to all substitu-
tion effects. We finish this section by restating the Slutsky symmetry result in the general
case. First let us redefine formally the substitution effects:

dci,S
t0
(θt0)

dpj
t1
(θt1)

=
dci

t0
(θt0)

dpj
t1
(θt1)

+
dci

t0
(θt0)

dyt1(θ
t1)

cj(θt1)

In words, the pure substitution effect is the total effect, including the implied change in
wealth at t0, of a price change at t1, where the price change is compensate for at t1, so that
the precautionary effects are canceled.

Proposition 14. The substitution effects satisfy for any dates t0, t1 and any goods i, j:

Q(θt0)

∏t0−1
0 Rk

dci,S(θt0)

dpj(θt1)
=

Q(θt1)

∏t1−1
0 Rk

dscj,S(θt1)

dpi(θt0)
. (36)

where we use the extended definition of Q.
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C Continuous Time Derivation

In this appendix, we recast the simple model in continuous time and show how to obtain
our main results in that case. The multidimensional stochastic state is given by θt. It
is assumed to be Markov and follows a general jump-diffusion process defined by the
infinitesimal operator At. The agent problem at t is given by:

max
{ct}t≥0

Et

∫ ∞

t
e−ρtu(ct, θt, t)dt

s.t. ȧt = yt(θt) + rtat − ct

at ≥ a.

Both income yt and utility are stochastic and depend on the state θt. u is a strictly
increasing and concave utility function that can be time (and state) dependent, ct is con-
sumption, ρ > 0 is the discount factor, at are bond holdings, {rt}t≥0 is the exogenous
time path of interest rates. To streamline notations we sometime drop the dependency
on θ and t. When we write u′ and u′′, we mean the derivatives of utility with respect to
consumption ∂cu and ∂ccu.
From the sequential problem, we derive the standard Hamilton-Jacobi-Bellman equation:

ρV(a, y, θ, t) = max
c

u(c, θ, t) + ∂aV(a, y, θ, t)(y + rta− c) +AtV(a, y, θ, t) + ∂tV(a, y, θ, t)

with a state constraint a ≥ a.The first order condition gives u′(c) = ∂aV and the boundary
condition when the constraint is binding imposes c(a, θ, t) = rta + y(θ, t)

As before, we define by τ the stopping time at which the agent hits the borrowing
constraint, we can then rederive our two Euler equations:

Lemma 3. Marginal utility and its derivative satisfy, for any initial time t, state θ and asset level
a at which the constraint does not bind and final time T, the following Euler equations :

u′(c) = Et

(
e−
∫ T∧τ

t (ρ−rt′)dt′u′T∧τ

)
(37)

(∂ac)u′′(c) = Et

(
e−
∫ T∧τ

t (ρ−2rt′+∂ac)dt′(∂ac)u′′T∧τ

)
(38)

The stochastic discount factors e−
∫ T∧τ

t (ρ−rt′)dt′ and e−
∫ T∧τ

t (ρ−2rt′+∂ac)dt′ are the contin-
uous time analogs of ∏T∧τ

t βRk and ∏T∧τ
t βRk MPSk
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Proof. Differentiating the HJB equation and using the first order condition we get :

(ρ− rt)Va = ∂aVas(a, y, c, t) +AtVa + ∂tVa, (39)

where s(a, y, c, t) = ȧt = rta + y− c is the instantaneous saving. A second differentiation
gives :

(ρ− 2rt + ∂ac)Vaa = ∂aVaas(a) +AtVa + ∂tVa (40)

T∧ τ is a finite stopping time, the first exit time from a bounded set, we can then apply
Dynkin’s formula to e−

∫ s
t (ρ−rt)u′s and e−

∫ s
t (ρ−2rt+∂bc)(∂ac)u′′s , which give respectively :

Et

(
e−
∫ T∧τ

t (ρ−rt)dtu′T∧τ

)
− u′(ct)

= Et

(∫ T∧τ

t
e−
∫ s

t (ρ−2rt′+∂ac)dt′ (∂aVaas(a, ) +AtVaa + ∂tVaa − (ρ− 2rt + ∂ac)Vaa) ds
)

= 0

and

Et

(
e−
∫ T∧τ

t (ρ−2rt+∂ac)dt(∂ac)u′′T∧τ

)
− (∂ac)u′′(c)

= Et

(∫ T∧τ

t
e−
∫ s

t (ρ−rt′)dt′ (∂aVas(a) +AsVa + ∂tVa − (ρ− rs)Va) ds
)

= 0

Where the third line makes use of (39) and (40) respectively.

The two discount rates e−
∫ T∧τ

t (ρ−rt′)dt′ and e−
∫ T∧τ

t (ρ−2rt′+∂ac)dt′ makes the stopped pro-
cesses u′t∧τ and u′′t∧τ∂act∧τ martingales. We can redefine the associated measures Q and
QI by their Radon-Nykodim derivatives with respect to the physical measure P:

dQ
dP

=
e−
∫ τ

t (ρ−r)dt′u′t∧τ

Et

(
e−
∫ τ

t (ρ−r)dt′u′t∧τ

)
dQI

dP
=

e−
∫ τ

t (ρ−2r+∂ac)dt′u′′t∧τ∂act∧τ

Et

(
e−
∫ τ

t (ρ−2r+∂ac)dt′u′′t∧τ∂act∧τ

)
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We rederive the response of consumption to a local change in the path of interest rate
and income {drt}t>0 and {dyt}t>0. As a preliminary step,we show how marginal value
of wealth respond to these changes.

Lemma 4. Consider a perturbation of the path of interest rate and income {drt}t>0 and {dyt,i}t>0.
The change in the marginal value of wealth ∂aV is given by :

dVa(a, θt, t) = Et

(∫ τ

t
e−
∫ s

t (ρ−rt′+∂ac)dt′ {drsVa + ∂aVa (drsa + dys)} ds
)

(41)

Proof. Differentiating (39) at an arbitrary point in the interior of the state space, we have :

(ρ− rt) dVa = ∂adVas(a) +AtdVa + ∂tdVb

+ drtVa + ∂aVa (drta + dyt − dc)

Noting that ∂aVadc = (∂bc)dVb, we can rewrite it as :

(ρ− rt + ∂ac) dVa = ∂adVas(a) +AtdVa + ∂tdVa

+ drtVa + ∂aVa (drta + dyt)
(42)

An application of Feynman-Kac then directly gives (41). To verify that this constitutes a
solution of the agent problem, we need to verify that the constraint is satisfied and it’s
enough to verify this when a is close to be hit.

Near a, given that the constraint is hit in finite time, we have :

dVa(a, θt, t) ' −∂ac(a− a)
s(a)

u′′ (drta + dyt) + o
(√

a− a
)

Lasry provides the Taylor expansion of ∂ac and s(a) near the constraint. We then have :

dc(a, θ, t) −→ (drta + dyt)

So that the constraint is satisfied.

We now have all the ingredients to rederive the results of Proposition 10 :
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Proposition 15. Consider a perturbation of the path of interest rate and income {drs}t≤s≤T and
{dys}t≤s≤T. The response of consumption at the time of the change is given by:

dc(at, θt, t) = −εtct E
Q
t

(∫ T∧τ

0
e−
∫ s

t ∂ac dt′drsds
)

+ ∂act E
QI

t

(∫ T∧τ

0
e−
∫ s

t rt′dt′ (drsa + dys) ds
)

with εt =
u′

u′′c the elasticity of intertemporal substitution.

Proof. Consider the 2 auxiliary random variables :

Ms
t Va(as, θs, s)

Ns
t Vaa(as, θs, s)

Where Ms
t and Ns

t are predictable processes defined by :

Ms
t =e−

∫ s
t (ρ−rt′)dt′

∫ s

t
e−
∫ s′

t ∂ac dt′drs′ds′

Ns
t =e−

∫ s
t (ρ−2rt′+∂ac)dt′

∫ s

t
e−
∫ s′

t rt′dt′ (drs′a + dys′) ds′

Noting that Mt
t = 0 and applying Dynkin’s formula between t and T ∧ τ for an arbi-

trary T, we have :

Et

(
MT∧τ

t Va

)
= Et

(
e−
∫ T∧τ

t (ρ−rt′)dt′Va

∫ T∧τ

t
e−
∫ s

t ∂ac dt′drsds
)

= Et

(∫ T∧τ

t
e−
∫ s

t (ρ−rt′+∂ac)dt′drsVa

)
+ Et

(∫ T∧τ

t
Ms

t {∂aVas(a) +AsVa + ∂tVa − (ρ− rs)Va} ds
)

= Et

(∫ T∧τ

t
e−
∫ s

t (ρ−rt′+∂ac)dt′drsVads
)
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We canceled the third line making use of (39) again.

Similarly :

Et

(
e−
∫ T∧τ

t (ρ−2rt′+∂ac)dt′Vbb

∫ T∧τ

t
e−
∫ s

t rt′dt′ (drsa + dys) ds
)

= Et

(∫ T∧τ

t
e−
∫ s

t (ρ−rt′+∂ac)dt′ {∂aVa (drsa + dys)} ds
)

+ Et

(∫ T∧τ

t
Ns

t {∂aVaas(a) +AsVaa + ∂tVaa − (ρ− 2rt + ∂ac)Vaa} ds
)

= Et

(∫ T∧τ

t
e−
∫ s

t (ρ−rt′+∂ac)dt′ {∂aVa (drsa + dys)} ds
)

Using our second lemma, we then have :

dVa = Et

(∫ τ∧T

t
e−
∫ s

t (ρ−rt′+∂ac)dt′ {drsVa + ∂aVa (drsa + dys)} ds
)

= Et

(
e−
∫ τ∧T

t (ρ−rt′)dt′Va

∫ τ∧T

t
e−
∫ s

t ∂ac dt′drsds
)

+ Et

(
e−
∫ τ∧T

t (ρ−2rt′+∂ac)dt′Vaa

∫ τ∧T

t
e−
∫ s

t rt′dt′ (drsa + dys) ds
)

Since dVa = u′′dc using (37) and (38) gives us the first formula.

We now derive the welfare cost of shocks that occur before τ.

Proposition 16. The welfare cost of shocks occurring at the planing horizon is given by :

dV(at, θt, t) = ∂aV E
Q
t

(∫ T∧τ

0
e−
∫ s

t rt′dt′ (drsa + dys) ds
)

= u′ EQ
0

(∫ T∧τ

0
e−
∫ s

t rt′dt′ (drsa + dys) ds
)
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Proof. Differentiating the HJB equation at an arbitrary point in the interior of the state
space :

ρdV = ∂adVs(a) +AtdV + ∂tdV

+ ∂aV (drta + dyt)

Applying Feynman-Kac under the assumption that shocks past τ are compensated for at
τ, we have :

dV(at, θt, t) = Et

(∫ T∧τ

t
e−
∫ s

t ρdt′ (drsa + dys)Vads
)

Applying Dynkin’s formula between t and T ∧ τ to M̃s
t Va with

M̃s
t = e−

∫ s
t (ρ−rt′)dt′

∫ s

t
e−
∫ s′

t rt′dt′ (drs′a + dys′) ds′

we have

Et

(
e−
∫ T∧τ

t (ρ−rt′)dt′Va

∫ T∧τ

t
e−
∫ s

t rt′dt′ (drsa + dys) ds
)

= Et

(∫ T∧τ

t
e−
∫ s

t ρdt′ (drsa + dys,)Vads
)

= dV(at, θt, t)

Using (37) then gives us the result.

We need Wt = E
Q
t

(∫ T∧τ
0 e−

∫ s
t rt′dt′ (drsa + dys) ds

)
to compensate the agent for the

change in interest rate and income. We can then decompose the consumption response
as:
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dc(at, θt, t) = εtc E
Q
t

(∫ T∧τ

t
e−
∫ s

t ∂ac dt′drsds
)

︸ ︷︷ ︸
substitution effect

+ ∂ac E
Q
t

(∫ T∧τ

t
e−
∫ s

t rdt′ (drsa + dys) ds
)

︸ ︷︷ ︸
wealth effect

+ ∂ac CovQ
t

(
dQI

T∧τ

dQT∧τ
,
∫ T∧τ

t
e−
∫ s

t rdt′ (drsa + dys) ds

)
︸ ︷︷ ︸

precautionary effect

Where the precautionary effect does not depend on the precise timing of the transfers
{ts}s≥t as long as they satisfy 1.wt = Wt, 2.ẇs = rsws − ts 3.wτ = 0. That is as long as the
transfer are done through the risk free bond.
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