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           T
he medical profession has long recog-

nized the importance of randomized 

evaluations; such designs are com-

monly used to evaluate the safety and 

efficacy of medical innovations such 

as drugs and devices. Unfortunately, 

innovations in how health care is delivered 

(e.g., health insurance structures, interven-

tions to encourage the use of appropriate 

care, and care coordination approaches) are 

rarely evaluated using randomization. We 

consider barriers to conducting 

randomized trials in this setting 

and suggest ways for overcoming 

them. Randomized evaluations of fundamen-

tal issues in health care policy and delivery 

should be—and can be—closer to the norm 

than the exception.

There is particular interest in improving 

delivery of health care in the United States, 

where the health care sector accounts for 

almost one-fifth of the economy. The newly 

created Patient-Centered Outcomes Re-

search Institute is providing an estimated 

$3.5 billion in research grants, and the lat-

est round of Center for Medicare and Med-

icaid Innovation Health Care Innovation 

Awards provides about $1 billion in research 

grants—much of it aimed at improving the 

delivery of U.S. health care.

Studies of U.S. health care delivery typi-

cally rely on a range of observational and 

quasi-experimental methods. These can be 

extremely valuable for learning as much as 

possible from existing historical data and for 

studying questions that are not amenable to 

randomized designs. For prospective evalua-

tion of new interventions, however, it is often 

possible to use a randomized design without 

adding substantially to the cost or difficulty 

Randomize 
evaluations 
to improve 
health care 
delivery

HEALTH CARE POLICY

By Amy Finkelstein 1, 2, 3 * 

and Sarah Taubman 2

POLICY

Administrative data and 
experimental designs lead 
the way

dicting enantioselectivities based on simple 

molecular descriptors (such as vibrational 

frequencies and dipole moments) that char-

acterize the reactants ( 7). These data are 

easily obtained, obviating the need to com-

pute all possible transition states for each 

catalyst-substrate combination. Moreover, 

they showed that classical physical organic 

techniques can be effectively combined 

with modern data analysis tools to yield 

insights into the mechanisms of catalyzed 

reactions and the role of noncovalent inter-

actions in enantioselectivity.

To demonstrate the power of their ap-

proach, Milo et al. tackled a particular ex-

ample of chiral anion catalysis, in which 

enantioselectivity is induced by 

the noncovalent association of 

a cationic intermediate with a 

chiral, anionic catalyst (see the 

figure) ( 8,  9). To understand 

these reactions, they synthe-

sized and tested a library of cat-

alysts exhibiting a broad range 

of enantioselectivities. These 

experiments provided a wealth 

of data regarding the impact of 

steric and electronic factors on 

enantioselectivity, which was 

then distilled into predictive 

mathematical models through multivariate 

regressions. These models unveiled subtle 

factors that control the enantioselectivity 

of these reactions and, ultimately, lead to 

the design of better catalysts.

By embracing modern data analysis tech-

niques to enhance the more traditional 

tools of physical organic chemistry, Milo 

et al. have provided a way to harness the 

power of noncovalent interactions for the 

design of enantioselective catalysts. Impor-

tantly, their approach is general and should 

be applicable to a wide range of catalytic 

reactions. This expands the power of the 

simple linear free-energy relations that 

have long been the workhorse of physical 

organic chemistry, and provides a key step 

toward a future in which big data can be 

used to design small catalysts.            ■
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desired pathways ( 3). The benefit of such 

an approach, which is typical of enzyme 

catalysts, is that it should lead to greater 

overall catalytic activity while retaining se-

lectivity. Moreover, recent advances in our 

understanding of noncovalent interactions, 

including π-stacking and cation-π interac-

tions, appear to have laid the groundwork 

for the exploitation of these interactions in 

rational catalyst design ( 4).

However, harnessing the power of non-

covalent interactions for enantioselective 

catalysis has proved difficult. Chief among 

the reasons is the relatively weak, nondi-

rectional nature of these interactions, ne-

cessitating the introduction of numerous 

interactions that must operate in concert 

to effectively stabilize the desired reaction 

pathway ( 3). Rationally designing cata-

lysts that achieve such coordinated effects 

is fraught with difficulties. Indeed, even 

identifying the noncovalent interactions re-

sponsible for selectivity in existing catalytic 

reactions, which is a prerequisite for ratio-

nal catalyst design, is often not straightfor-

ward based only on experimental data.

Computational quantum chemistry, in 

which quantum mechanics is used to pre-

dict molecular properties by describing the 

electronic motion, has proved invaluable for 

understanding chemical reactions and even 

designing catalysts ( 5,  6). It is routinely used 

to understand enantioselectivities by pre-

dicting the structures and energies of the 

operative transition states, while also quan-

tifying the impact of noncovalent interac-

tions on these structures. Unfortunately, for 

many catalytic reactions, there are simply 

too many potential transition-state struc-

tures (possibly hundreds) for such analyses 

to be practical. For example, in noncovalent 

catalysis, the catalyst and substrate can in-

teract in a myriad of ways, and many such 

transformations are not amenable to com-

putational study with this direct approach.

Milo et al. have effectively circumvented 

this problem by providing a means of pre-

“To demonstrate the power of their 
approach, Milo et al. tackled a 
particular example of chiral anion 
catalysis, in which enantioselectivity 
is induced by the noncovalent 
association of a cationic intermediate 
with a chiral, anionic catalyst.”
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of the study. When feasible, randomized 

designs have an unparalleled ability to pro-

vide credible evidence on an intervention’s 

impact. This can be seen in the outsized 

and enduring influence of the 1970s RAND 

Health Insurance Experiment, a randomized 

evaluation of the impact of health insurance 

in the United States ( 1,  2). More recently, the 

attention paid to the 2008 Oregon Health In-

surance Experiment (OHIE), a randomized 

evaluation of the impact of Medicaid ( 3– 6), 

underscores the continued power and influ-

ence of such randomized evaluations in both 

the academy and public discourse.

To explore how commonly randomization 

is used in health care delivery studies, we 

examined papers published in a limited set 

of top journals in medicine, economics, and 

health services between 2009 and 2013 [see 

( 7) for details on data and methods]. We 

included papers designed to study causal 

effects of an intervention (using either ran-

domized or other methods). We focused on 

a handful of top journals to capture an illus-

trative set of high-profile studies; the pic-

ture may be different across all published 

(and unpublished) studies. We did, how-

ever, observe similar patterns in reviews of 

trials registered with clinicaltrials.gov and 

of reports from major contract research 

organizations ( 7).

On average, 18% of studies of U.S. health 

care delivery interventions used randomiza-

tion (see the table). By comparison, 79% of 

studies of U.S. medical interventions were 

randomized (P-value for comparison < 

0.001). Medical studies involving drugs were 

very likely to be randomized (86%), but ran-

domization was also common in nondrug 

medical studies (66%).

Of course, regulatory and funding environ-

ments in medicine are quite different from 

those in the social sciences. However, we 

found several areas of social science where 

randomization is used far more than in 

health care delivery. In U.S. education stud-

ies in top economics journals, 36% were ran-

domized (P-value for comparison = 0.028). 

More notably, 46% of international develop-

ment studies in top economics journals were 

randomized (P < 0.001). Even within health 

care delivery, there appears to be more use of 

randomization internationally than within 

the United States. Looking across the same 

journals in medicine, economics, and health 

services as above, 41% of health care deliv-

ery studies conducted outside of the United 

States were randomized, compared with 18% 

in the United States (P < 0.001).

DATA AND DESIGN. To understand why ran-

domized trials in U.S. health care delivery 

have been rare, we turn to some of the chal-

lenges in conducting such studies. We then 

propose practical approaches to managing 

these challenges.

We begin with potential ethical consider-

ations. For medical innovations, randomized 

trials are considered essential in determin-

ing both safety and efficacy. In health care 

delivery, safety concerns tend to be less 

strong. However, there is often equipoise 

regarding effectiveness. Moreover, it is com-

mon in health care delivery for promising 

programs to reach only a small fraction of 

the individuals who might benefit. Where 

there are capacity constraints, random as-

signment can be the most equitable way to 

allocate limited slots. Indeed, the random 

selection used in the OHIE was designed by 

the state in conjunction with stakeholders 

specifically to address fairness concerns ( 8).

Another common concern is that ran-

domized evaluations are prohibitively 

costly, but this does not have to be the case. 

It is true that the typical model for ran-

domized controlled trials in medicine is 

expensive and time-consuming. Screening, 

recruiting, and obtaining informed consent 

from individual patients before randomiza-

tion and then collecting follow-up data for 

the purposes of the study is labor-intensive 

and difficult. Historically, most random-

ized trials of health care delivery innova-

tions have followed this model. Our review 

of randomized studies of U.S. health care 

delivery published between 2009 and 2013 

in top medical journals ( 7) found that 80% 

recruited and requested consent from indi-

viduals and 85% collected primary data.

A corollary of this labor-intensive approach 

is that randomized evaluations frequently 

focus on very specific patient populations. 

Of the 31 randomized health care delivery 

studies from top medical journals included 

in the table, 77% were convenience samples 

(for example, patients at a single hospital). 

This raises important concerns about their 

generalizability.

This expensive, time-consuming, and 

convenience-sample approach may be nec-

essary in most medical trials, where there 

are often real risks to participants. However, 

in most health care delivery interventions, 

there is usually only minimal risk of harm to 

participants. As a result, an alternative ap-

proach to randomization can produce valid 

causal estimates at substantially reduced 

cost. Randomization is done, with a waiver of 

informed consent, on a set of potentially eli-

gible individuals, and those who are random-

ized into the treatment group are offered the 

intervention. All individuals included in the 

random assignment—including those who do 

not accept the offer of the intervention—are 

followed. Low take-up of the program (adher-

ence to the assigned protocol) does not inter-

fere with obtaining consistent estimates of 

the program’s causal effects ( 9). This type of 

randomization design was used in the OHIE; 

those randomly selected were offered Medic-

aid applications, which allowed us to study 

the impact of Medicaid coverage.

Although this approach reduces the sta-

tistical power of the study, it is compatible 

with running large trials and trials with more 

representative samples, because it does not 

require individual recruitment, and individu-

als can be followed passively in administra-

tive data. Data collected, used, and stored for 

1Department of Economics, Massachusetts Institute of 
Technology, Cambridge, MA 02139, USA.    2J-PAL North 
America, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA. 3National Bureau of Economic Research, 
Cambridge, MA 02138, USA. *E-mail: af nk@mit.eduP

H
O

T
O

: 
T

O
N

G
R

O
 I

M
A

G
E

S
/

T
H

IN
K

S
T

O
C

K

Published by AAAS

on A
pril 13, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


INSIGHTS   |   PERSPECTIVES

722    13 FEBRUARY 2015 • VOL 347 ISSUE 6223 sciencemag.org  SCIENCE

reasons other than the study—such as from 

insurance claims, hospital discharges, elec-

tronic medical records, employment records, 

and mortality records—often include a vir-

tual census of the relevant individuals. These 

data allow researchers to examine a wide 

range of impacts at substantially lower cost 

than primary data collection.

Compared with surveys, such administra-

tive data offer several additional advantages 

besides lower cost. They are less likely to suf-

fer from bias due to differential nonresponse 

or attrition. They can provide close-to-real- 

time results on the impact of an intervention. 

They can also be used for following up on 

long-term outcomes of the intervention [e.g., 

the impact of kindergarten classes on adult 

earnings in the Project STAR study ( 10)]. By 

combining the alternative randomization 

approach with follow-up in administrative 

data, randomized evaluations can be made 

no more costly than the prospective observa-

tional evaluations that are commonly done in 

U.S. health care delivery.

A final set of challenges revolves around 

the ways individuals and systems interact. 

Some of the most promising ideas for U.S. 

health care delivery interventions involve 

reforms to entire systems of care. Cluster-

randomized designs can be a useful tool 

here. Some system-level or comprehensive 

interventions may even be amenable to pa-

tient-level randomization. For example, inno-

vations such as including bundling payments 

for episodes of care and creating shared 

saving contracts—major themes in current 

health policy discussions—are often held 

up as examples of something hard to study 

through randomized evaluation. Yet as these 

payment mechanisms expand to take on new 

groups of patients, randomizing which indi-

viduals are included may be possible.

Of course, some interventions—including 

individual-level interventions—can have sys-

tem-wide effects if implemented on a large 

scale. Consider the expansion of insurance 

coverage. A randomized study like the OHIE 

allows us to detect effects of covering a given 

individual with insurance, while holding the 

general health care environment constant. 

However, capacity constraints in the health 

care system may limit effects of market-

wide expansions, particularly in the short 

run; alternatively, as suggested by quasi-

experimental work ( 11), provider responses 

to a market-wide insurance expansion—such 

as adoption of new medical technology and 

changes in practice style—may amplify ef-

fects of market-wide expansions. In some 

cases, it is possible to design studies that look 

at these broader effects, by randomizing the 

proportion of individuals within the relevant 

unit who are assigned the treatment, as well 

as randomizing which individuals within the 

unit are assigned the treatment ( 12). In other 

cases, however, such approaches are not 

practical or feasible, and we need to draw on 

other methods.

More generally, this discussion highlights 

the value of experiments that are actively 

designed by researchers to shed light on 

specific mechanisms. The OHIE was not pro-

spectively designed by researchers ( 8) and, as 

a result, leaves much to be debated, such as 

whether an alternatively designed Medicaid 

program could achieve most of the benefits 

but at lower cost [see, e.g., ( 13)]. By contrast, 

the RAND Health Insurance Experiment 

was prospectively designed by researchers 

to shed light on tradeoffs involved in cost-

sharing. It used multiple arms to randomly 

vary cost-sharing features of health insur-

ance that individuals received. It has been 

widely used in policy and academic discus-

sions of optimal cost-sharing designs.

Governments, insurers, employers, and 

health care providers are experimenting with 

a wide variety of innovations intended to 

improve health and reduce costs. Increased 

use of randomized evaluations offers a fea-

sible way to more rigorously measure their 

efficacy and accelerate the pace at which we 

improve the health care delivery system.             ■
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Not as many randomized studies as there could be

Top medical journals (subsample) 62 31 50

Top economics journals 13 2 15

Top health services journals 405 13 3

Adjusted average*   18

TOPIC NUMBER OF NUMBER PERCENT

 STUDIES RANDOMIZED       RANDOMIZED

U.S. health care delivery

Medical treatment (U.S. based) 176 139 79

Medical treatment (international) 177 136 77

Comparison to medical innovations in top medical journals

All other U.S.-based 192 14 7

   Public fnance 50 4 8

   Industrial organization 48 0 0

   Labor 31 2 6

   Education 22 8 36

   Other 57 4 7

International development 37 17 46

Comparison to other topics in top economics journals**

Top medical journals (subsample) 30 19 63

Top economics journals 4 1 25

Top health services journals 53 2 4

Adjusted average*   41

Health care delivery studies conducted outside of the U.S.A.

Use of randomization by study topic. The table includes all empirical papers designed to study causal effects of an 

intervention and published in top journals in three fields. Medical: four randomly selected months per year 2009–2013 

for New England Journal of Medicine, Journal of the American Medical Association, Annals of Internal Medicine, and PLOS 

Medicine. We excluded BMJ and Lancet after a preliminary investigation of 4 months of publications found no studies of 

U.S. health care delivery in either journal. Economics: 2009–2013 in the American Economic Review, Quarterly Journal of 

Economics, Journal of Political Economy, and Econometrica. Health services: 2009–2013 in Health Affairs, Medical Care, 

and Milbank Quarterly. *The average adjusts for the fact that we reviewed only 20 out of 60 months of medical journals but 

all issues of economics and health services journals. Medical journals typically published more frequently and provided 

ample articles to provide a good estimate, which was then upweighted in the total. **Economics papers may be coded as 

having more than one topic and would contribute to each. See ( 7) for details.
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