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Many models of learning in games implicitly or explicitly assume there are many agents 
in the role of each player. In principle this allows different agents in the same player role 
to have different beliefs and play differently, and this is known to occur in laboratory 
experiments. To explore the impact of this heterogeneity, along with the idea that subjects 
use their information about other players’ payoffs, we define rationalizable partition-
confirmed equilibrium (RPCE). We provide several examples to highlight the impact of 
heterogeneous beliefs, and show how mixed strategies can correspond to heterogeneous 
play in a large population. We also show that every heterogeneous-belief RPCE can be 
approximated by a RPCE in a model where every agent in a large pool is a separate player.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Fudenberg and Levine (1993b) and Fudenberg and Kreps (1995) showed how learning from repeated observation of the 
realized terminal nodes in each play of a game can allow the long run outcome to approximate a self-confirming equilibrium 
(Fudenberg and Levine, 1993a), in which the strategies used are best responses to possibly incorrect beliefs about play that 
are not disconfirmed by the players’ observations. This paper defines and analyzes a solution concept that makes three 
modifications to the self-confirming concept, inspired by the following three considerations. First, the set of beliefs that is 
consistent with the players’ observations depends on what they observe when the game is played, and in some cases of 
interest players do not observe the exact terminal node, but only a coarser terminal node partition, such as when bidders in 
an auction do not observe the losing bids. Second, both in the lab and in the field, there are often many agents in each 
player role, so that different agents in a given player role can have different beliefs and play differently, and experimental 
data frequently suggests that subjects’ beliefs and play are indeed heterogeneous.1 Third, experimental data shows that 
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Fig. 1. The broker, seller, and buyer are denoted players 1, 2, and 3, respectively.

subjects play differently when they are informed of opponents’ payoff functions than when they are not.2 To model these 
three facts, we develop and analyze heterogeneous rationalizable partition-confirmed equilibrium (heterogeneous RPCE).

We do not develop an explicit learning theory here, but the model we develop is motivated by the idea that there is 
a large number of ex-ante identical agents in each player role, who are rematched each period to play an extensive form 
game and interact anonymously, so that they are strategically myopic and do not try to influence play in future matches. 
Such random matching is implicit in many learning models, and is explicitly modeled in the Bayesian learning models of 
Fudenberg and Levine (1993b) and Fudenberg and He (2016).

The long-run implications of learning with random matching depend on what information is revealed at the end of each 
round of play. In the information-sharing model, all agents in the same player role pool their information about what they 
observe after each round of play, which leads to rationalizable partition-confirmed equilibrium with unitary beliefs, which 
we studied in Fudenberg and Kamada (2015) (hereafter “FK”).3 In the personal-information model, each agent observes and 
learns only the play in her own match, and no information sharing takes place. This is the treatment most frequently used 
in game theory experiments. It allows different agents in the same player role to maintain different beliefs, even after many 
iterations of the game, and even when the agents are identical ex ante.

The large-population learning models described above assume personal information, and so their steady states can have 
heterogeneous beliefs, which is why Fudenberg and Levine (1993a) defined and analyzed heterogeneous self-confirming 
equilibrium. Dekel et al. (2004) argue that in Bayesian games it may be appropriate to allow different types of the same 
player to have different beliefs, and Battigalli et al. (2015) allow heterogeneous beliefs in their extension of self-confirming 
equilibrium to cases of “model uncertainty.” Their model also allows for players to observe a “message” that is generated 
by a “feedback function” at the end of each play as opposed to the realized terminal node. In Section 2 we say more about 
the relationship between feedback functions and terminal node partitions.

1.1. Illustrative examples

To motivate our extension of RPCE to heterogeneous beliefs, we will give informal descriptions of RSCE and its extension 
to unitary RPCE, and then discuss a few examples to show how allowing for heterogeneous beliefs can make a difference. 
We will return to these examples later after we have introduced our formal definitions.

Roughly speaking, RSCE (Dekel et al., 1999) combines the idea that there is a commonly known equilibrium outcome 
with that of “rationalizability at reachable nodes,” which means that any strategy of player i that some other player j thinks 
i might be playing maximizes player i’s payoff at information sets where player i has not yet been observed to deviate from 
the equilibrium path, and that each player believes that other players believe this, and so on. As Dekel et al. (1999) show, 
the combination of these two considerations leads to stronger conclusions than the intersection of the implications of each 
alone.

Unitary RPCE relaxes RSCE by replacing the assumption of a commonly known distribution on terminal nodes with the 
assumption of a commonly known partition structure. Both of these concepts are “unitary” in the sense that it is common 
knowledge that there is only a single strategy and belief that is really held by any agent in the role of player i. However, 
both solution concepts allow for “hypothetical versions” of each player’s strategy and belief, which correspond not to what 
that player is doing but to things that other players might reasonably think she is doing. The heterogeneous RPCE studied 
in this paper allows for different agents in the role of a given player to have different beliefs, and moreover for agents to 
believe that other agents in the same player role have different beliefs than they do.

We now informally discuss some of the implications of heterogeneous beliefs. In those examples we claim that some 
outcome is inconsistent with unitary beliefs but is consistent with heterogeneous beliefs, given our background assumption 
that all players have a common belief in rationality and in confirmed beliefs.

Perhaps the most immediate implication is that it allows the play of one or more players to be strictly mixed in cases 
where unitary beliefs require the outcome to be a single terminal node, as in the game in Fig. 1.

2 See for example Prasnikar and Roth (1992).
3 FK extends an earlier literature on equilibrium concepts that combine restrictions based on the agents’ observations with restrictions based in their 

knowledge of opponents’ payoffs, including Rubinstein and Wolinsky (1994), Battigalli and Guaitoli (1997), Dekel et al. (1999), and Esponda (2013).
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Fig. 2. The investor and the entrepreneur are denoted players 1 and 2, respectively.

Here there are potential brokers who facilitate trades between sellers and buyers. Each potential broker decides whether 
she enters the market or stays out; if she stays out, the game ends with no trade. If the broker enters, the involved seller 
and buyer play a coordination game, where the efficient and inefficient outcomes correspond to the possible outcomes of 
an unmodeled process of negotiation. The personal-information model has a steady state in which some potential brokers 
stay out of the market and the others enter, while all of sellers and buyers play efficient negotiations. Although staying 
out is not a best response, the brokers can choose it if they believe the negotiations would be inefficient, and this belief 
will not be falsified by their observations. This is a heterogeneous self-confirming equilibrium, but it is not the outcome 
of a self-confirming equilibrium with unitary beliefs. This is because the aggregate play of the brokers corresponds to a 
mixed distribution, yet if the brokers pooled their information they would not be indifferent between the actions in the 
distribution’s support.

Note that the distribution is a convex combination of the outcomes of subgame perfect equilibria.4 The game in Fig. 2
illustrates another way that heterogeneous beliefs can matter. Consider the following situation: Investors decide whether to 
attend a business event, and entrepreneurs simultaneously decide whether to prepare materials to solicit investments. This 
preparation must be done before the meeting, and any entrepreneur who does prepare will then make a solicitation. Each 
investor derives a positive benefit from coming to the event, but this is outweighed by the cost if she is approached by an 
entrepreneur who solicits money, while entrepreneurs only want to solicit if it is sufficiently likely they can talk with an 
investor. Specifically, entrepreneurs who do not solicit get 0; those who do solicit get 1 if the investor attends, and −1 if 
the investor stays Out. Similarly, entrepreneurs who don’t attend get 0; those who attend get −1 if the entrepreneur solicits 
and 1 if it does not.

Note that the unique Nash equilibrium here is for both players to randomize (1/2, 1/2). The dotted line indicates a 
terminal node partition; it shows that an investor who stays Out does not observe if the entrepreneur solicits, even though 
the entrepreneur’s action is then on the path of play. Here, the profile (Out, Don’t) cannot be supported with unitary beliefs. 
To see this, note that for the investor to play Out, she has to expect a positive probability that the entrepreneur solicits, but 
soliciting is not a best response for the entrepreneur against Out. This contradicts the assumption that the investor knows 
the entrepreneur is rational.

With heterogeneous beliefs, on the other hand, it is not obvious why the outcome (Out, Don’t) should be rejected. 
To see why, note that if all agents in the role of investors think that the overall distribution of play corresponds to the 
Nash equilibrium of the game, these agents will be indifferent, and absent any information to the contrary, all of the 
investors could stay home even though none of the entrepreneurs solicit. In order to rationalize this belief, the investors 
must conjecture that some other agents in the same player role Attend because they believe some entrepreneurs Solicit, and 
Solicit is a best response only if there are investors who Attend. To capture this in our formal model, we will need to allow 
for “hypothetical versions” of the investors who in fact do Attend, so that the investors who stay out can assign positive 
(and sufficiently large) probability to these hypothetical versions.

The effect of heterogeneous beliefs is even starker in the game in Fig. 3.
Here, Nature first chooses Good or Bad. If it chooses Bad, then a tax attorney (player 1) prepares a tax return, which can 

be either Safe or Risky. Risky results in auditing by an IRS agent (player 2), and depending on the agent’s effort level, the 
attorney is either rewarded by the tax evader (player 3) or punished. If the attorney chooses Safe, the return will not be 
audited, and then the tax evader has a choice of staying with the attorney (Stay) or firing him (Fire). Nature’s choice of Good 
represents the situation in which the person who is audited has filed her tax return sincerely. The IRS agent, who does not 
know if the return is good or bad, would like to exert effort (E) in auditing if and only if it faces the evader, and otherwise 
prefers to not exert effort (N). If the file is good, then the attorney does not observe what the IRS agent has chosen, as 
irrespective of the agent’s effort, the auditing would not result in punishment.

With unitary beliefs, it is not possible for the attorney to play Safe with probability 1. To see this, note that the attorney 
knows that the IRS agent observes the exact terminal node reached. This implies that if the attorney played Safe with 
probability 1, then she would know that whenever the IRS agent moves the IRS agent would know that Nature gave him 

4 We believe we could construct a more complicated game where this is not the case, just as Fudenberg and Levine (1993a) give an example of a SCE 
with heterogeneous beliefs whose outcome is not in the convex hull of the Nash equilibrium outcomes.
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Fig. 3. The tax attorney, IRS agent, and tax evader are denoted players 1, 2, and 3, respectively.

the move, which would then imply that the attorney expects that the agent should play N . Thus the attorney should expect 
the payoff of 2 from playing Risky, which dominates Safe.

However, with heterogeneous beliefs the attorney can play Safe with probability 1. Roughly, if each attorney thinks that 
all other attorneys play Risky, she has to infer each IRS agent assigns probability about .5 to each node, and this implies 
that the IRS agent must play E . But then if the evaders Stay, playing Safe is a best response. And an attorney can believe 
that other attorneys think Risky is a best response by supposing these other agents believe all the evaders play Fire.

We first lay out our model, then use it to analyze these and other examples with more rigor. We then show how 
heterogeneous play by a continuum of agents permits the “purification” of mixed strategy equilibria. That is, any outcome 
of a heterogeneous RPCE is the outcome of a heterogeneous RPCE in which all agents use pure strategies and believe that all 
other agents use pure strategies as well. Finally, we relate the heterogeneous RPCE of a given game to the unitary RPCE of a 
larger “anonymous-matching game” in which each of the agents in a given player role is viewed as a distinct player. Because 
we assume that this larger game has a finite number of agents in each role, the result here is not quite an equivalence, but 
involves some approximations which vanish as the number of agents grows large.

2. Model and notation

The game tree consists of a finite set X , with terminal nodes denoted by z ∈ Z ⊆ X . The initial node corresponds to 
Nature’s move, if any. The set of Nature’s actions is AN . The set of players is I = {1, . . . , |I|}. Hi is the collection of player i’s 
information sets, with H = ⋃

i∈I Hi and H−i = H \ Hi . Let A(h) be the set of available actions at h ∈ H .
For each z ∈ Z , player i’s payoff is gi(z). The information each player i observes at the end of each round of play is 

captured by a terminal node partition Pi that is a partition of Z , where we require that gi(z) = gi(z′) if terminal nodes 
z and z′ are in the same cell of Pi . We let P = (Pi)i∈I denote the collection of the partitions.5 The formal definitions and 
assumptions we make below are motivated by the assumption that the structure of the game, including the payoff functions, 
terminal node partitions, and distributions over Nature’s move, are common knowledge in the informal sense.

Player i’s behavioral strategy πi is a map from Hi to probability distributions over actions, satisfying πi(h) ∈ �(A(h)) for 
each h ∈ Hi . The set of all behavioral strategies for i is �i , and the set of behavioral strategy profiles is � = ×i∈I�i . Let 
�−i = × j �=i� j with typical element π−i . For π ∈ � and πi ∈ �i , H(π) and H(πi) denote the information sets reached with 
positive probability given π and (πi, π ′

−i), respectively, where π ′
−i is any completely mixed behavioral strategy.

Let d(π)(z) be the probability of reaching z ∈ Z given π , and let Di(π)(Pl
i) =

∑
z∈Pl

i
d(π)(z) for each cell Pl

i of player 
i’s partition. We assume that the extensive form has perfect recall in the usual sense, and extend perfect recall to terminal 
node partitions by requiring that two terminal nodes must be in different cells of Pi if they correspond to different actions 
by player i. If every terminal node is in a different cell of Pi , the partition Pi is said to be discrete. If Pi depends only on i’s 
actions, the partition is called trivial.

For most of the paper we restrict attention to “generalized one-move games,” in which for any path of pure actions each 
player moves at most once, and for each i, if there exist h ∈ Hi , aN , a′

N ∈ AN with aN �= a′
N , and π̃−i ∈ �−i such that h is 

reached with positive probability under both (aN , π̃−i) and (a′
N , π̃−i), then there does not exist π̂−i ∈ �−i such that, for all 

a′′
N ∈ AN , h is reached with probability zero under (a′′

N , π̂−i).6 This restriction lets us neglect conceptual complications that 

5 Battigalli et al. (2015) model the information that players receive at the end of each play of a dynamic game by assigning each player i a “feedback 
function” f i that maps from the terminal nodes to a finite set of messages Mi . Feedback functions obviously include our terminal node partitions as a 
special case. Conversely, our framework nests feedback functions. To see this, given f i , construct a terminal node partition such that terminal nodes z and 
z′ are in the same cell of the partition if and only if f i(z) = f i(z′).

6 This is a generalization of the “one-move games” defined in FK. It reduces to FK’s definition of one-move games without a move by Nature.
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would arise in specifying assessments at off-path information sets.7 We use a slightly more general class of games to relate 
the heterogeneous and unitary solution concepts, as in those games Nature’s move determines which agents are selected to 
play.

2.1. Heterogeneous rationalizable partition-confirmed equilibrium

Player i’s belief is denoted γi ∈ [×h∈Hi �(h)
] × �, which includes her assessment over nodes at her information sets as 

well as her belief about the overall distribution of strategies. We denote the second element of γi by π(γi), and let π−i(γi)

denote the corresponding strategies of players other than i. Note that we suppose that the belief about strategies is a point 
mass on a single behavior strategy profile, as opposed to a probability distribution over strategy profiles.8

To model the idea that players are reasoning about the beliefs and play of others, we follow Dekel et al. (1999) and FK 
and use versions of player i.9 We let V i denote the set of versions of player i. For simplicity we assume that each V i is finite 
and index the elements of V i with integers k. Each version vk

i of player i consists of a strategy πk
i ∈ �i and a conjecture

qk
i ∈ × j∈I�(V j) about the distribution of versions in the population, where a conjecture qk

i is a point belief over version 
distributions. To lighten notation, we will sometimes suppress the indices of the versions and write πi(vi) for the strategy 
of type vi , and π−i(v−i) for the strategies of the other types v−i .

These versions, and the players’ conjectures about them, serve a similar role as the epistemic type structures used in e.g. 
Dekel and Siniscalchi (2014). We use “version” instead both for ease of comparison with Dekel et al. (1999) and because we 
feel this structure is easier for readers to understand. We believe that we could map heterogeneous RPCE into the language 
of epistemic type structures, and that no new insights would emerge, but as we have not done so this is an open question 
that may be of interest to specialists in epistemic game theory.

Not all of the versions need actually be present in the population. We track the shares of the versions that are objectively 
present with the share function φ = (φi)i∈I , where each φi ∈ �(V i) specifies the fractions of the population of player i that 
are each vk

i ; version vk
i is called an “actual version” if φi(vk

i ) > 0, and a “hypothetical version” otherwise. Hypothetical 
versions are the ones that some players think might be present but are not. Let V := (V 1, . . . , V |I|). We call (V , φ) a belief 
model.

Next, we show how a belief model induces a behavior strategy profile π that describes the aggregate play of the actual 
versions, and also induces, for each version vk

i , the strategy profile that the version thinks describes actual play.
For each player j, define ψ j(φ j) for each φ j by ψ j(φ j)(π̂ j) = ∑

k:πk
j =π̂ j

φ j(vk
j) for each π̂ j ; this is the share of agents 

who play π̂ j under the belief model (V , φ). Note that ψ j(φ j) has finite support.

Definition H1. A belief model (V , φ) induces actual play π̂ j if for all h j ∈ H j and a j ∈ A(h j),

π̂ j(h j)(a j) =
∑

π ′
j∈supp(ψ j(φ j))

ψ j(φ j)(π
′
j) · π ′

j(h j)(a j).

We say that (V , φ) induces π̂ j for version vk
i ∈ V i if π̂ j is constructed by replacing φ j above by the j’th coordinate of qk

i .

Definition H2. Given a belief model (V , φ), we say vk
i is self-confirming with respect to π∗ if there exists π̃−i ∈ �−i such 

that (i) for each j �= i, (V , φ) induces π̃ j for version vk
i and (ii) Di(π

k
i , π̃−i) = Di(π

k
i , π∗

−i).

Note that πk
i can be different from π∗

i . This is because an agent in player role i does not get to observe what other 
agents in the same role play.

Definition H3. Given a belief model (V , φ), vk
i is observationally consistent if (qk

i ) j
(

ṽ j
)

> 0 implies that there exists 
π̂− j ∈ �− j such that (i) for each l �= j, (V , φ) induces π̂l for vk

i and (ii) ṽ j is self-confirming with respect to (π j(ṽ j), π̂− j).

Intuitively, the self-confirming condition requires that the agent’s belief is not rejected by her observations. Observational 
consistency requires that, if agent A thinks agent B exists, then A should expect B ’s belief not to be rejected by B ’s 
observations.

7 For example, suppose that Nature chooses L or R and then player 1 chooses between U and D without knowing Nature’s action. U ends the game, 
and D leads to a single information set h2 of player 2, so if 1 plays U , then Bayes rule does not pin down 2’s assessment at h2. Note that this is not a 
generalized one-move game as h2 groups together the two moves by Nature. One issue that could come up on in such general games is whether to require 
that a player’s deviations cannot convey information about things they do not know.

8 We allowed for beliefs to be possibly correlated probability distributions on �−i in FK. Here we restrict to a single strategy profile to focus on some of 
the issues that arise with heterogeneity. This also lets us avoid the need to impose an analog of FK’s “accordance” condition.

9 Note that versions are not used in the definition of self-confirming equilibrium, because that concept does not model reasoning about the beliefs of 
other players.



D. Fudenberg, Y. Kamada / Games and Economic Behavior 109 (2018) 364–381 369
It is important here to note that the observational consistency condition defined above restricts vk
i ’s belief about i’s 

strategies as well as her beliefs about the strategies of the other players. This is needed because other agents in the same 
player role may play differently from vk

i .
We say that πi ∈ �i is a best response to γi at h ∈ Hi if the restriction of πi to the subtree starting at h maximizes 

player i’s expected payoff given the assessment at h given by γi and the continuation strategy of the opponents given by 
π−i(γi) in that subtree.

Definition H4. π∗ is a heterogeneous rationalizable partition-confirmed equilibrium, or a heterogeneous RPCE, if there 
exists a heterogeneous belief model (V , φ) such that the following four conditions hold for each i:

1. (V , φ) induces actual play π∗
i ;

2. For all vk
i , there exists γi such that (i) (V , φ) induces π j(γi) for vk

i for each j �= i and (ii) πk
i is a best response to γi at 

all h ∈ Hi ;
3. For all vk

i , φi(vk
i ) > 0 implies vk

i is self-confirming with respect to π∗;
4. Each vk

i ∈ V i is observationally consistent.

One significant change from the definition of unitary RPCE is in the self-confirming condition: In the unitary case, the 
self-confirming condition is imposed for those versions who have share 1 according to φ. In our current context, multiple 
versions may exist with strictly positive shares, and in such a case we require that all such versions are self-confirming.

2.2. Brief review of unitary RPCE

Here we briefly review the definition of unitary RPCE. In this solution concept, a belief is μi ∈ [×h∈Hi �(�(h) × �−i)] ×
�(�−i). The coordinate for information set h is denoted (μi)h which is assumed to have finite support. The second coordi-
nate describes the strategy distribution of the opponents player i believes she is facing and is denoted b(μi). Note that the 
belief μi in the unitary model is in a different space than that for the belief γi for the heterogeneous model. In particular, 
μi specifies an element in �−i for each information set, which means that what i thinks about the continuation play can 
vary with the information set. Each μi is required to satisfy accordance, meaning the following:

Definition U0. A belief μi satisfies accordance if (i) (μi)h is derived by Bayes rule if there exists π−i in the support of 
b(μi) such that h is reachable under π−i and (ii) for all h ∈ Hi , if (μi)h assigns positive probability to π̂−i , then there exists 
π̃−i ∈ supp(b(μi)) such that π̂−i(h′) = π̃−i(h′) for each h′ after h.

As Claim 1 of Appendix A explains, we do not need to assume accordance in heterogeneous RPCE because we have 
assumed each player’s belief about the opponents’ continuation strategies is the same at every information set. We say 
that πi ∈ �i is a best response to μi at h ∈ Hi if the restriction of πi to the subtree starting at h is optimal against the 
probability distribution over assessments and continuation strategies given by μi .10

A belief model U := (U j) j∈I is a profile of finite sets, where U j = {u1
j , . . . , u

K j

j } with K j being the number of elements 
in U j . Each element in U j is called a version. For each j ∈ I and k ∈ {1, . . . , K j} associate to uk

j a pair (πk
j , p

k
j), where 

πk
j ∈ � j and pk

j ∈ �(× j′ �= j U j′ ), and write uk
j = (πk

j , p
k
j). When there is no room for confusion, we omit superscripts that 

distinguish different versions in the same player role.
There are two main differences in the definitions of versions in the unitary and heterogeneous belief models. First, 

in unitary belief models, conjectures do not specify a probability measure over the player’s own versions. Second, in the 
unitary model players are sure that only one actual version exists for each player role, but unsure which one is actual. 
In the heterogeneous model they assign probability one to a single version distribution for each player role. Thus, in the 
heterogeneous model, a conjecture of ( 1

2 vk
2 + 1

2 vl
2, 

1
2 vk

3 + 1
2 vl

3) means that 1/2 of the player 2’s are vk
2 and not that there is 

probability 1/2 that all of them are vk
2, which is allowed in the unitary model.11

Definition U1.

(a) Given a belief model U , π∗ is generated by a version profile (πi, pi)i∈I ∈ ×i∈I Ui if for each i, πi = π∗
i .

(b) A belief μi is coherent with a conjecture pi if b(μi) assigns probability 
∑

u−i∈× j �=i U j :π−i(u−i)=π̃−i
pi(u−i) to each π̃−i ∈

�−i .

10 This is essentially the same definition as above, the only difference is that the domain of the best responses has been changed.
11 Similarly, 1/2 of the player 3’s are vk

3.
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Definition U2. Given a belief model U , version ui = (πi, pi) is self-confirming with respect to π∗ if Di(πi, π−i(u−i)) =
Di(πi, π∗

−i) for all u−i in the support of pi .

Definition U3. Given a belief model U , version ui = (πi, pi) is observationally consistent if pi(ũ−i) > 0 implies, for each 
j �= i, ũ j is self-confirming with respect to π(ui, ̃u−i).

Using these notions, we define unitary rationalizable partition-confirmed equilibrium as follows:

Definition U4. π∗ is a unitary rationalizable partition-confirmed equilibrium if there exist a belief model U and an actual 
version profile u∗ such that the following conditions hold:

1. π∗ is generated by u∗ .
2. For each i and ui = (πi, pi), there exists μi such that (i) μi is coherent with pi and (ii) πi is a best response to μi at 

all h ∈ Hi .
3. For all i, u∗

i is self-confirming with respect to π∗ .
4. For all i and ui , ui is observationally consistent.

3. Examples

In this section we illustrate heterogeneous RPCE with several examples. We first revisit Examples 1–3 to formalize the 
arguments provided there.

Example 1 (Mixed equilibrium and heterogeneous beliefs). We revisit the game of Fig. 1 to explain why 
(
( 1

2 In1,
1
2 Out1), U2, U3

)
is not a unitary RPCE but is a heterogeneous RPCE.

To see that it is not a unitary RPCE, note that if it were, then by the self-confirming condition the actual version of 
player 1 must believe that player 2 and player 3 play (U2, U3) with probability one. But given this belief the only best 
response is to play action In1 with probability one, so 1’s strategy contradicts the best response condition.

However the profile is a heterogeneous RPCE. To see this, consider the following belief model12:

V 1 = {v1
1, v2

1} with v1
1 = (Out1, (v1

1, v2
2, v2

3)), v2
1 = (In1, (

1

2
v1

1 + 1

2
v2

1, v1
2, v1

3));

V 2 = {v1
2, v2

2} with v1
2 = (U2, (

1

2
v1

1 + 1

2
v2

1, v1
2, v1

3)), v2
2 = (D2, (v1

1, v2
2, v2

3));

V 3 = {v1
3, v2

3} with v1
3 = (U3, (

1

2
v1

1 + 1

2
v2

1, v1
2, v1

3)), v2
3 = (D3, (v1

1, v2
2, v2

3));

φ1(v1
1) = φ1(v2

1) = 1

2
, φ2(v1

2) = 1, φ3(v1
3) = 1.

It is easy to check that the RPCE conditions hold (note that v2
2 and v2

3 must believe that all player 1’s play Out1, because 
otherwise v1

1’s observational consistency would be violated).

Example 2 (Investor-entrepreneur). Here we revisit the investor-entrepreneur game of Fig. 2. We first show that (Out, Don′t)
cannot be a unitary RPCE. To see this, suppose the contrary. Note that the best response condition implies that the actual 
version of player 1 has to assign a strictly positive probability to a version v ′

2 of player 2 that plays Solicit with strictly 
positive probability. But then observational consistency applied to the actual version of player 1 implies that the belief of 
v ′

2 assigns probability 1 to Out, which would make Solicit strictly suboptimal.
To show that (Out, Don’t) is a heterogeneous RPCE, consider the following belief model:

V 1 = {v1
1, v2

1} with v1
1 = (Out, (

1

2
v1

1 + 1

2
v2

1,
1

2
v2

2 + 1

2
v3

2)), v2
1 = (Attend, (

1

2
v1

1 + 1

2
v2

1,
1

2
v2

2 + 1

2
v3

2));
V 2 = {v1

2, v2
2, v3

2} with v1
2 = (Don’t, (v1

1, v1
2))

v2
2 = (Don’t, (

1

2
v1

1 + 1

2
v2

1,
1

2
v2

2 + 1

2
v3

2)), v3
2 = (Solicit, (

1

2
v1

1 + 1

2
v2

1,
1

2
v2

2 + 1

2
v3

2));
φ1(v1

1) = 1, φ2(v1
2) = 1.

12 As in Fudenberg and Kamada (2015), the notation that we use when presenting belief models in examples involves a slight abuse of notation. In 
particular, when a player’s conjecture is a point mass on a particular version profile v−i we write that profile in place of the Dirac measure concentrated 
on v−i .
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Fudenberg and Levine (1993a) show by example that there are heterogeneous self-confirming equilibria that are not 
unitary self-confirming equilibrium. The profile they construct uses mixed strategies, and the mixing is necessary: If a 
strategy profile is a heterogeneous self-confirming equilibrium but is not a unitary self-confirming equilibrium, then it uses 
mixed strategies.

In contrast, in this example there is a heterogeneous RPCE in which the distribution of strategies generated by φ is pure, 
yet the observed play cannot be the outcome of a unitary RPCE.13

Example 3 (Heterogeneous RPCE with pure strategies). Here we revisit the tax evasion example of Fig. 3. To see that the profile 
(Safe, N, Stay) cannot be a unitary RPCE, suppose the contrary. Then the actual version of the attorney (player 1) must play 
Safe, so by observational consistency her conjecture assigns probability 1 to versions of the IRS agent (player 2) whose 
assessment assigns probability 1 to the left node in 2’s information set. By the best response condition these versions must 
play N . Then the coherent belief condition implies that the actual version of player 1 believes that 2 plays N , and by the 
best response condition she has to play Risky instead of Safe irrespective of her belief about the play by the tax evader 
(player 3).

To see that the profile is a heterogeneous RPCE, consider the following belief model:

V 1 = {v1
1, v2

1} with v1
1 = (Safe, (v2

1, v2
2, v2

3)), v2
1 = (Risky, (v2

1, v2
2, v3

3));
V 2 = {v1

2, v2
2} with v1

2 = (N, (v1
1, v1

2, v1
3)), v2

2 = (E, (v2
1, v2

2, v3
3));

V 3 = {v1
3, v2

3, v3
3} with v1

3 = (Stay, (v1
1, v1

2, v1
3)), v2

3 = (Stay, (v2
1, v2

2, v2
3)), v3

3 = (Fire, (v2
1, v2

2, v3
3));

φ1(v1
1) = 1, φ2(v1

2) = 1, φ3(v1
3) = 1.

Notice that in this belief model, version v2
1 has share 0, but each agent of version v1

1 thinks that all other agents in his 
player role are version v2

1.14 This is possible, because if version v2
1 was an actual version, he could not observe 3’s play, so 

his belief about 3’s play can be arbitrary. Given that all other agents are playing Risky, v1
1 infers 2 should be playing E , and 

such a belief is “self-confirming” because v1
1 does not observe 2’s choice due to the terminal node partition.15

Note that players 1 and 2 have strict incentives to play the equilibrium actions, unlike in the heterogeneous RPCE in 
Example 2. Player 3 is indifferent, but one can replace his move with a simultaneous-move game by two players to avoid 
ties.

Note also that the construction here is different from that of Example 1, where each agent thinks that all other agents in 
the same role are playing in the same way as she does, while here each agent thinks that other agents in the same player 
role behave differently than herself. Example 7 in the Online Supplementary Appendix extends this idea to show that a 
heterogeneous RPCE can be different from a unitary RPCE because an actual version of one player role can conjecture that 
different versions in another player role play differently.

Example 4 (Inferring the play of other agents in the same role). Here we show how knowledge of the payoff functions and the 
observation structure can rule out heterogeneous beliefs when neither of these forces would do so on its own, as agents in a 
given player role may be able to use their observations to make inferences about the play of other agents in their own role. 
In the game in Fig. 4, the terminal node partitions are discrete. One might conjecture that some player 2’s can play Out2
while some play In2 and some player 1’s play In1, as Out2 prevents player 2 from observing 3 and 4’s play. However, we 
claim that whenever a heterogeneous RPCE assigns strictly positive probability to In1, player 2 plays In2 with probability 1.

To see this, consider a heterogeneous RPCE such that 1 plays In1 with a strictly positive probability. Fix a belief model 
that rationalizes this heterogeneous RPCE and fix an actual version v2 of player 2. We show that v2 must play In2 with 
probability 1 in this heterogeneous RPCE.

First, by the self-confirming condition, v2’s conjecture assigns positive probability to a version v̄1 of player 1 that plays 
In1 with positive probability. Suppose that v2’s conjecture assigns probability zero to versions of player 2 that play In2 with 
positive probability. Then, by observational consistency applied to v2, v̄1 believes 2 plays Out2 with probability 1. But this 
contradicts the best response condition for v̄1. Hence v2’s conjecture must assign positive probability to versions who play 
In2 with positive probability. Pick one such version who plays In2, and call it v̄2.

Since v̄2 must satisfy the best response condition, she must assign probability at least 5
6 to (L3, L4). This in particular 

implies that v̄2’s belief must assign probability at least 5
6 to L3. But L4 is the unique best response to a strategy that plays 

L3 with probability at least 5
6 (given that player 4 is on the path), so observational consistency applied to v̄2 and the best 

response condition for player 4 imply that v̄2’s belief must assign probability 1 to L4, and by a symmetric argument it must 

13 Note that in a simultaneous-move game with a discrete terminal node partition, each agent’s belief must be correct, so every heterogeneous RPCE is a 
Nash equilibrium.
14 Hence each agent in v1

1 thinks that he has measure zero. This is not necessary here: the same conclusion applies if v1
1 believes the share of v1

1’s is 
strictly less than 1/2. In Example 5, which has a weakly dominated strategy, it does matter that a version can think it has share 0.
15 Player 3 has three versions although she has two actions because we need two versions who play Stay: the actual version who observes Safe, and a 

hypothetical version who observes Risky, which is needed so that v1
1 is observationally consistent.
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Fig. 4.

assign 1 to L3. But since v̄2 observes play by players 3 and 4, observational consistency applied to v2 implies that v2 assigns 
probability 1 to (L3, L4), and so the best response condition for v2 implies that she must play In2 with probability 1.

Note that extensive-form rationalizability alone does not preclude heterogeneity, as all actions of all players are extensive-
form rationalizable. Now we show that common knowledge of the observation structure alone does not rule out hetero-
geneity either.

Consider requiring conditions 1 and 3 in the definition of heterogeneous RPCE and a weaker version of condition 2 
where we require optimality only at the on-path information sets (all h ∈ H(πk

i , π−i) for all π−i is in the support of γ k
i ). 

This concept would correspond to relaxing the unitary assumption of partition-confirmed equilibrium defined in FK. With 
this definition, player 2 is not assumed to know the payoff function of player 1, so he can believe that 3 and 4 play (R3, R4). 
Specifically, it is easy to check by inspection that all the above conditions are satisfied in the following belief model:

V 1 = {v1
1} with v1

1 = (In1, (v1
1,

1

2
v1

2 + 1

2
v2

2, v1
3, v1

4));

V 2 = {v1
2, v2

2} with v1
2 = (In2, (v1

1,
1

2
v1

2 + 1

2
v2

2, v1
3, v1

4)), v2
2 = (Out2, (v1

1,
1

2
v1

2 + 1

2
v2

2, v1
3, v1

4);

V 3 = {v1
3} with v1

3 = (L3, (v1
1,

1

2
v1

2 + 1

2
v2

2, v1
3, v1

4)),

V 4 = {v1
4} with v1

4 = (L4, (v1
1,

1

2
v1

2 + 1

2
v2

2, v1
3, v1

4)),

φ1(v1
1) = 1, φ2(v1

2) = φ2(v2
2) = 1

2
, φ3(v1

3) = 1, φ4(v1
4) = 1.

4. A “purification” result

In the heterogeneous model, the aggregate play of agents in each player role can correspond to a mixed (behavior) 
strategy. One standard interpretation of mixed strategies in equilibrium is that the mixing describes the aggregate play of 
a large population, with different agents in the same player role using different pure strategies. Here we show that this 
interpretation of mixed-strategy equilibrium also applies to heterogeneous RPCE with a continuum of agents in each player 
role, so that there exists a belief model with the share functions φi that describe the mass of each population i whose play 
and conjectures are generated by various versions that use pure strategies. The continuum of agents allows φi to take on 
any value between 0 and 1. In the next section we relate this continuum model to one with a large but finite population.

We say that a belief model (V , φ) rationalizes a heterogeneous RPCE π∗ if, given π∗ , the four conditions in Definition H4
hold for (V , φ) for each i.

Remark 1. Any heterogeneous RPCE can be rationalized with a belief model in which all versions use pure strategies.

The proof of this remark is provided in the appendix.
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5. Anonymous-matching games in large finite populations

The interpretation of heterogeneous beliefs and play is that there are many agents in each player role. An alternative 
way of thinking of such situations is that every agent is a “player,” but each period only a subset of the agents get to 
actually play; the agents who are not playing do not receive any feedback on what happened that period. In this way, we 
can identify an anonymous-matching game with any given extensive form. To do this, we view each of the agent k’s in the 
role of player i as distinct players, so the anonymous-matching game has as many players as the original model has agents. 
Each period Nature picks |I| players to anonymously participate in the game, where |I| is the number of player roles in the 
original extensive form, and only one player is picked from each of the respective groups.

We will show that each heterogeneous RPCE of a given extensive-form game is an “approximate” unitary RPCE in the 
corresponding anonymous-matching game, where the approximation becomes arbitrarily close as the population of the 
anonymous-matching game becomes large.

5.1. Anonymous-matching games

Formally, given an extensive-form game � with a set of players I = {1, ..., |I|} and the terminal node partitions P =
(P1, . . . , P|I|), we define an anonymous-matching game of � parameterized by a positive integer T defined below, denoted 
Y (�, T ), as follows16:

1. The set of players is J := ⋃
i∈I J i , with J i := {(i, 1), . . . , (i, T )}, where T is a positive integer.

2. Nature N moves at the initial node, choosing |I| players who will move at subsequent nodes. For each i ∈ I , a unique 
player is chosen from J i independently, according to the uniform distribution over J i . Let the chosen player for each 
i ∈ I be (i, ri).

3. The chosen players, ((1, r1), (2, r2), . . . , (n, rn)), play �, without knowing the identity of the opponents. Unchosen players 
receive the constant payoffs of 0. Formally,
(a) Each node of Y (�, T ) is denoted (x, (i, wi)i∈I ), where x is an element of X of � and wi is the index of the agent in 

player role i who “plays” in the game that contains the node.17

(b) For each player (i, wi) ∈ J i , nodes (x, ( j, w j) j∈I ) and (x′, ((i, wi), ( j, w ′
j) j �=i)) are in the same information set if and 

only if x and x′ are in the same information set of player i in �. (This formalizes the idea that the identity of the 
matched agents cannot be observed.)

(c) For any (i, wi)i∈I , actions available at an information set that includes (x, (i, wi)i∈I ) are the same as the actions 
available at an information set that includes x in �.

(d) The payoff function is such that if a player in J i is chosen and an action profile a of the chosen players (which lies 
in A) is realized, she receives a payoff identical to gi(z) where the action profile a leads to the terminal node z
in �. If a player is not chosen, she receives the payoff of 0.

(e) The terminal node partition is such that if a player is not chosen then she does not observe anything (except the 
fact that she was not chosen). If a player (i, ri) ∈ J i is chosen and a terminal node (z, ( j, r j) j∈I ) is reached, all she 
knows is that some node (z′, ((i, ri), ( j, w ′

j) j �=i)) for some z′ and w ′
−i ∈ × j �=i J j is reached, where z′ and z are in 

the same partition cell of Pi in �. (In particular, she does not know the identity of the opponents.)

5.2. Motivating ε-unitary RPCE

Here we use two examples to motivate our use of an approximate version of unitary RPCE in the equivalence result.

Example 5 (Heterogeneous RPCE with dominated strategies). Our definition allows each version to believe that the aggregate 
play of her player role does not assign positive mass to her own strategy. For example, even if vk

i plays Li , her belief may 
assign probability 1 to Ri . This reflects the premise that there is a continuum of agents in each player role and no one agent 
can change the aggregate distribution of play. This continuum model is meant to be an approximation of a large but finite 
population model. In Section 5, we formalize this idea of approximation by using ε-self-confirming and ε-observational 
consistency conditions, as opposed to the exact self-confirming and the observational consistency conditions. This example 
shows why some sort of approximate equilibrium notion is needed.

The game in Fig. 5 has the same extensive form as in the game in Example 3, with a different payoff function for 
player 2. Notice that R2 is weakly dominated.

We first show that 1 can play R1 in a heterogeneous RPCE. To see this, consider the following belief model:

V 1 = {v1
1, v2

1} with v1
1 = (R1, (v2

1, v2
2, v2

3)), v2
1 = (L1, (v2

1, v2
2, v3

3));

16 We assume there is the same number of players in each player role; none of our results hinges on this assumption.
17 In this section, we use (i, wi) to denote a generic agent in the role of player i.
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Fig. 5.

Fig. 6. Terminal node partitions are not depicted in the figure but are described in the text.

V 2 = {v1
2, v2

2} with v1
2 = (L2, (v1

1, v1
2, v1

3)), v2
2 = (R2, (v2

1, v2
2, v2

3));
V 3 = {v1

3, v2
3} with v1

3 = (L3, (v1
1, v1

2, v1
3)), v2

3 = (L3, (v2
1, v2

2, v2
3)), v3

3 = (R3, (v2
1, v2

2, v3
3));

φ1(v1
1) = 1, φ2(v1

2) = 1, φ3(v1
3) = 1.

Notice that in this belief model, the actual version v1
1 of player 1 conjectures that version v2

1 has share 1, which justifies 
his belief that player 2 is indifferent between two actions so can play a weakly dominated action R2 . One can check by 
inspection that all conditions in the definition of heterogeneous RPCE are met.

However, player 1 cannot play R1 if we require that each version’s belief has to assign a positive weight to her own 
strategy. To see this, notice that if this condition were imposed, observational consistency and Bayes rule would imply that 
each version vk

1 of player 1 assigns probability 1 to versions of player 2 whose assessments assign probability strictly less 
than 1

2 to the node that follows L1. By the best response condition, these versions must play L2. But then from condition 
2(i) of Definition H4 vk

1 would need to believe that 2 will play L2 with probability 1, so that R1 would give her a strictly 
smaller payoff than the maximal possible payoff from L1, which contradicts the best response condition.

The point is that in a finite population model an agent’s own actions can give her information about an opponent’s belief 
and hence about their strategy, but such an inference is not captured by heterogeneous RPCE.

Example 6 (Heterogeneous RPCE with irrational-valued beliefs). Another reason that approximation is needed is that the num-
ber of agents in our anonymous-matching games are integers, so all agents have rational probabilities of being chosen to 
play, but payoffs and the probability distribution over Nature’s move need not take only rational values.18 In the extensive-
form game in Fig. 6, each player only observes their own payoffs, except that player 1 observes the exact terminal node 
reached. One can check by inspection that 

(
M1,

1√
2

L2 +
(

1 − 1√
2

)
R2, L3, L4

)
is a heterogeneous RPCE by verifying that the 

following belief model meets the necessary conditions:

18 The point we make here would disappear if payoffs and the probabilities of Nature’s moves are restricted to rational numbers.
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V 1 = {v1
1, v2

1, v3
1} with v1

1 = (
L1,

(
v1

1, v1
2, v1

3, v1
4

))
, v2

1 =
(

R1, (v2
1, v2

2, v2
3, v2

4)
)

,

v3
1 =

(
M1,

(
v3

1,
1√
2

v1
2 +

(
1 − 1√

2

)
v2

2, v1
3, v1

4

))
;

V 2 = {v1
2, v2

2} with v1
2 = (L2, (v1

1, v1
2, v1

3, v1
4)), v2

2 = (R2, (v2
1, v2

2, v2
3, v2

4));
V 3 = {v1

3, v2
3} with v1

3 = (L3, (v1
1, v1

2, v1
3, v1

4)), v2
3 = (R3, (v2

1, v2
2, v2

3, v2
4));

V 4 = {v1
4, v2

4} with v1
4 = (L4, (v1

1, v1
2, v1

3, v1
4)), v2

4 = (R4, (v2
1, v2

2, v2
3, v2

4));
φ1(v3

1) = 1, φ2(v1
2) = 1√

2
, φ3(v1

3) = 1, φ4(v1
4) = 1.

In this belief model, all (actual and hypothetical) versions of players 2, 3, and 4 think that either it is common knowledge 
that everyone plays left, or it is common knowledge that everyone plays right.

Now consider generating this outcome using an anonymous-matching game. First, notice that M1 is a best response for 
player 1 only if she believes L2 is chosen with probability 1√

2
. Second, if an agent represented by version u2 of player 2 is 

indifferent between L2 and R2, then his belief has to assign probability 1
2 to the profile (L3, L4). At the same time, since 

players 3 and 4 play a symmetric coordination game, u2’s belief can assign probability either 0, 1
4 , or 1 to (L3, L4).19 None of 

these probabilities are even close to 1
2 , which is a contradiction. Hence, u2 cannot be indifferent between L2 and R2. Since 

the agent we chose in player role 2 was arbitrary, we conclude that no agent of player 2, whether actual or hypothetical, is 
indifferent between L2 and R2. This has two implications.

First, if an agent of player 1 plays M1, then she cannot assign probability 1 to a single realization of the version profiles 
of the agents. To see this, note that every agent of player 1 can only assign positive probability to agents playing a pure 
strategy. Hence, if an agent of player 1 assigns probability 1 to a single realization of the version profiles of agents, con-
jectures that each agent of player 2 is chosen with equal probability, and the number of agents is finite, then coherency 
implies that it is impossible for the agent of player 1 to believe that the probability of L2 is 1√

2
.

The second implication is again about the need for an approximation. To see this, consider the agents corresponding to 
actual versions of player 1. These agents observe the true distribution of the play by the agents of player 2, which must 
take rational values since all agents of player 2 play pure strategies. The self-confirming condition then implies that it is 
impossible for the actual agents in player role 1 to believe that the probability of L2 is 1√

2
. However, the belief can become 

arbitrarily close to 1√
2

when the number of agents becomes large.

5.3. Unitary ε-RPCE

Before Section 5, we have restricted attention to generalized one-move games. Anonymous-matching games do not fall 
into this class, because they allow two different actions of nature to lead to the same information set under some strategy 
profiles but not under others. For this reason, we will now need to impose a more general form of accordance.

Hereafter, we assume that any belief μi ∈ [×h∈Hi �(�(h) ×�−i)] ×�−i in the unitary belief model satisfies the following 
condition:

Definition U5. A belief μi satisfies convex structurally-consistent accordance if it satisfies the following two conditions:

1. μi satisfies accordance.
2. For each h ∈ Hi and each (αi, π−i) ∈ supp((μi)h), there exists a probability distribution γ ∈ �(�−i) such that (i) there 

exists π̂−i ∈ supp(γ ) such that h is reachable under π̂−i , and (ii) αi at h is derived by Bayes rule under γ .

In anonymous-matching games, Nature’s move determines which agents get to play. The second condition in the defini-
tion imposes a restriction on the assessment regarding the probability distribution over the agents chosen by Nature at each 
off-path information set h: we require that this probability distribution does not change even after a deviation that leads 
to h (note that the deviator does not move at h because we still assume that each player moves only once at each path of 
the extensive form). The reason we allow for a distribution γ of strategies here is analogous to the argument for convex 
structural consistency in Kreps and Ramey (1987): the stronger condition that one single profile generates the beliefs is not 
compatible with Kreps-Wilson’s (1982) consistency. Note that the second condition is moot in the generalized one-move 
games we have considered before Section 5.

To allow an approximation motivated by Examples 5 and 6 in a model with a finite number of agents, we relax the 
definitions of “self-confirming” and “observationally consistent.”

19 In this game, observation of their own payoff is sufficient for players 3 and 4 to coordinate on a Nash equilibrium in any RPCE.
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Let ‖ · ‖ denote the supremum norm. We say that πi represents (π(i,1), . . . , π(i,T )) if, for each hi ∈ Hi and a ∈ A(hi), 
π(hi)(ai) = 1

T

∑T
j=1 π(i, j)(hi)(ai). We say that πi ε-represents (π(i,1), . . . , π(i,T )) if there is π ′

i such that π ′
i represents 

(π(i,1), . . . , π(i,T )) and ‖πi − π ′
i ‖ < ε .20

Definition U2(ε). Given a belief model U , version ui = (πi, pi) is ε-self-confirming with respect to π∗ if ‖Di(πi, π−i(u−i)) −
Di(πi, π∗

−i)‖ < ε for all u−i in the support of pi .

Definition U3(ε). Given a belief model U , version ui = (πi, pi) is ε-observationally consistent if pi(ũ−i) > 0 implies, for 
each j �= i, ũ j is ε-self-confirming with respect to π(ui, ̃u−i).

Using these notions, we define unitary ε-rationalizable partition-confirmed equilibrium.

Definition U4(ε). π∗ is a unitary ε-rationalizable partition-confirmed equilibrium (unitary ε-RPCE) if there exist a belief 
model U and an actual version profile u∗ such that the following conditions hold:

1. π∗ is generated by u∗ .
2. For each i and ui = (πi, pi), there exists μi such that (i) μi is coherent with pi and (ii) πi is a best response to μi at 

all h ∈ Hi .
3. For all i, u∗

i is ε-self-confirming with respect to π∗ .
4. For all i and ui , ui is ε-observationally consistent.

5.4. The equivalence theorem

Theorem 1. For any ε > 0, �, and a heterogeneous RPCE π∗ of �, there exist T and a pure unitary ε-RPCE π∗∗ of Y (�, T ) such that 
for each i ∈ I , π∗

i ε-represents (π∗∗
(i,1)

, . . . , π∗∗
(i,T )

).

The proof is provided in the appendix. In outline, the way the proof handles heterogeneous RPCE with irrational prob-
abilities is as follows. Let ũ3

(1, j) be the version in the constructed unitary belief model who corresponds to v3
1 in the 

heterogeneous belief model in Example 6. We have to construct a conjecture and an associated belief so that coherency 
holds and the strategy of ũ3

(1, j) is an exact best response. To do so, we suppose that ũ3
(1, j) is not certain about what the 

share functions are. For example, if T = 100 then we let the conjecture of ũ3
(1, j) assign probability 1 to the event that 

70 agents are the versions who play L2 and 29 agents are the versions who play R2, assign probability 1√
2

− 70
100 to the 

event that the remaining one agent is the version who plays L2, and assign the remaining probability to the event that the 
remaining one agent is the version who plays R2.21 With this construction any point in the support of the belief of ũ3

(1, j) is 
close to the corresponding point in the support of v3

1 (because 99 agents play deterministically) and the belief is essentially 
unchanged so playing M1 is still a best response (because we allow the remaining one agent to be either one of the two 
possible versions with the probability computed from the original mixing probability of player 2). There is more subtlety in 
making sure the best-response condition holds also at zero-probability information sets, which we will detail in the proof.

Theorem 1 relaxes the self-confirming and observational consistency conditions to approximate heterogeneous RPCE with 
unitary RPCE played by a finite number of agents. The conclusion of the theorem holds with the exact (e.g. ε = 0) versions 
of self-confirming and observational consistency if instead we specify that the probability distribution over agents in the 
anonymous-matching game depends on the unitary RPCE that is being replicated. We do not state this version of the result 
formally, as we do not find it satisfactory to vary the probability distribution over agents to match the target equilibrium.

In the Online Appendix, we discuss our choice of approximation criterion used in defining ε-observational consistency, 
and explain the implications of an alternative.

6. Conclusion

This paper has developed an extension of RPCE to allow for heterogeneous beliefs, both on the part of the agents who 
are objectively present, and also in the “versions” that represent mental states agents think other agents can have. This 
extension allows the model to fit the heterogeneity that naturally arises when there are many agents in the role of each 
player, as implicitly assumed by most learning theories and implemented in the random-matching protocols of most game 
theory experiments. It also permits RPCE to be restricted to pure strategies without loss of generality. The paper explored 

20 When ‖ · ‖ applies to the distance between two behavioral strategies πi and π ′
i , it is given by ‖πi − π ′

i ‖ = maxh∈Hi ,a∈A(h) |πi(h)(a) − π ′
i (h)(a)|.

21 If ũ3
(1, j) conjectures that each agent of player 2 plays either L2 or R2 with probabilities 1√

2
and 1 − 1√

2
, respectively, then the ε-self-confirming 

condition would be violated because this conjecture would assign strictly positive probability to the event that no agent of player 2 plays L2.
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the impact of heterogeneous beliefs in various examples. It also showed how heterogeneous RPCE relates to the unitary 
RPCE of a larger anonymous-matching game with many agents in each player role.

This paper is only the first look at the new issues posed by heterogeneous beliefs. It would be interesting to explore some 
of the complications that we have avoided here, such as the possibility of a player’s beliefs being a correlated distribution 
over the opponents’ strategies, defining heterogeneous RPCE for a class of games larger than generalized one-move games, 
and a full dynamic model of learning. It would also be interesting to know more about the relationship between unitary 
and heterogeneous RPCE. The examples that we provided in this paper are only a first step in this direction.

Appendix A. Independence and accordance

Recall that unitary RPCE is only defined for 1-move games. In that solution concept, a belief μi belongs to the space 
[×h∈Hi �(�(h) ×�−i)] ×�(�−i). We denote (μi)h the coordinate of μi that corresponds to h, and b(μi) the last coordinate 
that does not correspond to any particular information sets.

Although we do not use it in the next claim, keep in mind that the space of the beliefs in the heterogeneous model is 
[×h∈Hi �(h)] × �(�).

Claim 1. Suppose that under a belief μi , b(μi) assigns probability one to a single strategy profile for i’s opponents, π∗
−i . Suppose also 

that for every h ∈ Hi , (μi)h assigns probability one to a single assessment-strategy profile pair such that the strategy profile to which 
probability one is assigned is π∗

−i . Then, accordance holds.

Proof. Accordance requires two conditions. We check them one by one.
The first condition of accordance requires that (μi)h is derived by Bayes rule if there exists π−i in the support of b(μi)

such that h is reachable under π−i . Since b(μi) and (μi)h for each h assigns probability 1 to the same strategy profile for 
−i, this part holds.

The second condition requires that for each h ∈ Hi , if (μi)h assigns positive probability to π̂−i , then there exists π̃−i ∈
supp(b(μi)) such that π̂−i(h′) = π̃−i(h′) for all h′ after h.

Now, (μi)h assigns positive probability only to π∗
−i . Also, π∗

−i is in the support of b(μi). Thus we can always take 
π̃−i = π∗

−i to satisfy the equality. �
Appendix B. Proof of Remark 1

Proof. Fix a heterogeneous RPCE π∗ and a belief model (V , φ) that rationalizes it. Pick any version vk
i = (πk

i , qk
i ) in V , let 

σ k
i be a mixed strategy that induces πk

i ,22 and suppose that σi assigns positive probability to K distinct pure strategies. We 
construct copies of version vk

i , each playing a distinct pure strategy in the support of σ k
i . The copy corresponding to pure 

strategy si , denoted vk
i (si), plays si and has the same belief as vk

i .
To construct the conjectures in the new belief model from the conjectures in the old one, we suppose that all of the 

copies corresponding to vk
i have the same conjecture q̄k

i , where q̄k
i (vl

j(s j)) = (qk
i ) j(vl

j) · σ l
j(s j) for all vl

j ∈ V j and all s j ∈
supp(σ l

j).23 Finally, denoting the share function in the new belief model by φ̄ , we let φ̄i(vk
i (si)) = φi(vk

i ) · σ k
i (si) for each 

si ∈ supp(σ k
i ).

It is straightforward to check that with this construction the new belief model rationalizes the original heterogeneous 
RPCE. �
Appendix C. Proof of Theorem 1

Proof. Fix ε > 0 and a heterogeneous RPCE of �, π∗ . By Remark 1 there exists a belief model (V , φ) that rationalizes 
π∗ such that all versions in the belief model use pure strategies. Fix one such belief model. For each i and k, let γ k

i =
(α[i,k]

i , π [i,k]) be the belief of vk
i used in condition 2 of the definition of heterogeneous RPCE. Pick an integer T such that 

T > max{ 2(maxi∈I |V i |)(#A)2

ε , 1
G }, where

G = min
i∈I

⎛
⎝ min

k∈{1,...,|V i |}

⎛
⎝ max

πi∈�i

min
z∈Z(πi ,π

[i,k]
−i )

p(πi,π
[i,k]
−i )(z)

⎞
⎠

⎞
⎠ ,

p(π)(z) is the probability that z ∈ Z is reached under π , and Z(π) is the set of terminal nodes z such that p(π)(z) > 0. 
To prove the claim we need to construct a belief model U and an actual version profile u∗ for the game Y (�, T ) such that 
there is a pure unitary ε-RPCE π∗∗ of Y (�, T ) where for each i ∈ I , π∗

i ε-represents (π∗∗
(i,1)

, . . . , π∗∗
(i,T )

).

22 This mixed strategy exists from Kuhn’s theorem; see for example the proof of Theorem 4 in Fudenberg and Levine (1993a).
23 With a slight abuse of notation, we denote by qk

i (vl
j) the weight on vl

j of the j’th coordinate of qk
i .
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a) Constructing the belief model
For each i ∈ I and each (i, j) ∈ J i , define U (i, j) = {ũ(i, j)(vk

i )|vk
i ∈ V i}, where ũ(i, j)(vk

i ) = (π̃k
(i, j), p̃

k
(i, j)) and we define π̃k

(i, j)

and p̃k
(i, j) in what follows. Below we simply denote ũ(i, j)(vk

i ) by uk
(i, j) .

First, π̃k
(i, j) = πk

i
24; note this is a pure strategy.

Second, we let p̃k
(i, j) be independent, and abuse notation to denote by p̃k

(i, j)(u(n,m)) the probability assigned to u(n,m)

by the conjecture of vk
(i, j) . That is, p̃k

(i, j)((ū(n,m))(n,m)�=(i, j)) = ∏
(n,m)�=(i, j) p̃k

(i, j)(ū(n,m)) for each (ū(n,m))(n,m)�=(i, j) ∈ U−(i, j) . 
Similarly, we abuse notation to write qk

i (vm
n ) (recall that qk

i is necessarily independent by definition).
Below we specify p̃k

(i, j) in the way we described in the example of 100 agents before this proof. In that method, there 
are 70 agents for whom p̃3

(i, j) assigns probability one to a version who plays action L2, 29 agents for whom it assigns 
probability zero to such a version, and 1 agent for whom the probability is in (0, 1). The cases (i), (ii), and (iii) below 
correspond to these three cases, respectively. The way we specify probabilities for case (iii) is clarified in (iii)-(a), (iii)-(b), 
and (iii)-(c).

For all (n, m) ∈ (⋃
n′∈I Jn′

) \ {(i, j)} and all l ∈ {1, . . . , |Vn|}, we set

(i) p̃k
(i, j)(ul

(n,m)) = 1 if
∑
l′<l

⌊
T · qk

i (vl′
n)

⌋
< m ≤

∑
l′≤l

⌊
T · qk

i (vl′
n)

⌋
,

(ii) p̃k
(i, j)(ul

(n,m)) = 0 if m ≤
∑
l′<l

⌊
T · qk

i (vl′
n)

⌋

or
∑
l′≤l

⌊
T · qk

i (vl′
n)

⌋
< m ≤

∑
l′≤|Vn|

⌊
T · qk

i (vl′
n)

⌋
,

(iii) p̃k
(i, j)(ul

(n,m)) ∈ [0,1] if
∑

l′≤|Vn|

⌊
T · qk

i (vl′
n)

⌋
< m ≤ T .

To define p̃k
(i, j) for case (iii) concretely, for each n ∈ I and l′ ∈ {1, . . . , |Vn|}, let

f (l′;n,qk
i ) = T · qk

i (vl′
n) −

⌊
T · qk

i (vl′
n)

⌋
.

That is, f (l′; n, qk
i ) is the error that the approximation in (i) and (ii) above miss out. More specifically, (i) and (ii) assign 

too small a weight for each possible version in the support of the conjecture, and f (l′; n, qk
i ) is the probability that needs 

to be added to make the conjecture exactly in line with the original conjecture qk
i . Now we allocate these probabilities to 

remaining agents considered in (iii). To do this, we define l(w; n, qk
i ) for each w ∈N with w ≤ ∑

l′≤|Vn| f (l′; n, qk
i ) as follows:∑

l′<l(w;n,qk
i )

f (l′;n,qk
i ) < w ≤

∑
l′≤l(w;n,qk

i )

f (l′;n,qk
i ).

That is, l(w; n, qk
i ) is the maximum number of versions such that the sum of the error probabilities can be no more than 

w , when we add these errors in the order of the indices of the versions.
Then we define

(iii)-(a) p̃k
(i, j)(ul

(n,m)) =
(∑

l′≤l

f (l′;n,qk
i )

)
− (w − 1)

if m =
∑

l′≤|Vn|

⌊
T · qk

i (vl′
n)

⌋
+ w and l = l(w − 1;n,qk

i ),

(iii)-(b) p̃k
(i, j)(ul

(n,m)) = f (l;n,qk
i )

if m =
∑

l′≤|Vn|

⌊
T · qk

i (vl′
n)

⌋
+ w and l(w − 1;n,qk

i ) < l < l(w;n,qk
i ),

(iii)-(c) p̃k
(i, j)(ul

(n,m)) = w −
(∑

l′<l

f (l′;n,qk
i )

)

if m =
∑

l′≤|Vn|

⌊
T · qk

i (vl′
n)

⌋
+ w and l = l(w;n,qk

i ).

24 Recall that each player ji in Y (�, T ) has the same number of information sets as player i in �; here we abuse notation to use the same notation for 
an information set h in � and the information set in Y (�, T ) of player ji that includes the nodes corresponding to the nodes included in h.
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Note that (i, j) has only T − 1 opponents in player role i, so the above specification of the belief may not give rise to 
the conjecture that exactly corresponds to the one in the heterogeneous model. However it will not lead to violation of best 
response condition, as beliefs about the strategy of agents of player i do not affect the expected payoff of an agent in player 
role i.

Last, we construct a belief of uk
(i, j) , denoted μ̃k

(i, j) , that is used to satisfy the best response condition. We let μ̃k
(i, j) to be 

defined by the following rule. First,

b(i, j)(μ̃
k
(i, j))(π−(i, j)) =

∑
u−(i. j)∈×(n,m) �=(i, j)U(n,m):
π−(i, j)=π−(i, j)(u−(i, j))

p̃k
(i, j)(u−(i, j)).

Second, 
(
μ̃k

(i, j)

)
h

is computed by Bayes rule under b(i, j)(μ̃
k
(i, j)) if h ∈ H(π̂−i) (note that Bayes rule induces a well-defined 

probability distribution at such h under b(i, j) because T > 1
G ). For h /∈ H(π̂−i), we set

(
μ̃k

(i, j)

)
h

( ˆ̂αi(h), ( ˆ̂π(n,m))(n,m)∈⋃
w �=i J w

)
= 1

where ˆ̂π(n,m)(h′) = π̂n(h′) holds for all h′ ∈ Hn for all n ∈ I and

ˆ̂αi(h)(x, ((i, j), (n, rn)n �=i)) = 1

T |I|−1 α̂i(h)(x)

for each (n, rn)n �=i ∈ ×n �=i Jn and (x, ((i, j), (n, rn)n �=i)) ∈ h.

b) Constructing the actual versions
We specify the actual versions u∗ as follows: For each i ∈ I and each (i, j), we set

u∗
(i, j) = uk

(i, j) if
∑
k′<k

⌊
T · φi(vk′

i )
⌋

< m ≤
∑
k′≤k

⌊
T · φi(vk′

i )
⌋

,

u∗
(i, j) = ul

(i, j) if
∑

k′≤|V i |

⌊
T · φi(vk′

i )
⌋

< m ≤ T , φi(vl
i) > 0 and φi(vl′

i ) = 0 for all l′ < l.

Let π∗∗ = π(u∗).

c) Checking that the conditions of unitary ε-RPCE hold

Since 
T −∑

k′∈N,k′≤|Vi |
⌊

T ·φi(vk′
i )

⌋
T ≤ |V i |

T < ε , it is straightforward that π∗
i

1
T -represents (π∗∗

(i,1)
, . . . , π∗∗

(i,T )
) for each i. Also, 

by definition π∗∗ is generated by u∗ . Coherency holds for each i ∈ I , each (i, j) ∈ J i and each k ∈ {1, . . . , |V i|} by the 
construction of μ̃k

(i, j) . Accordance holds by construction. Moreover, the best response condition holds by construction (recall 
that randomization is conducted independently across players in the construction of p̃k

(i, j)). Thus it remains to check the 
self-confirming condition and the observational consistency condition. To this end, we first note that, for any � and T , D(i, j)

in the model Y (�, T ) can be seen as an element in the same space as Di in the model � by the construction of the terminal 
node partitions in Y (�, T ). Henceforth, we abuse notation to write Di = D(i, j) .

The self-confirming condition is satisfied in the original heterogeneous RPCE, so for each vk
i in the support of φi , there 

exists π̃−i ∈ �−i such that (i) (V , φ) induces π̃ j for version vk
i for each j �= i and (ii) Di(π

k
i , π̃−i) = Di(π

k
i , π∗

−i).

First, by the construction of π̃k
(i, j) and p̃k

(i, j) and Claim 2 that we present below (i) implies:

‖Di(π̃
k
(i, j),π−(i, j)(u−(i, j))) − Di(π

k
i , π̃−i)‖ ≤ (#A)2‖(π̃k

(i, j), π̂−i) − (πk
i , π̃−i)‖ ≤ (#A)2 maxn �=i |Vn|

T
<

ε

2

for each u−(i, j) in the support of p̃k
(i, j) , where π̂n represents (π−(i, j)(u−(i, j)))(n,m)∈ Jn for each n �= i, where A =

×i∈I
⋃

h∈Hi
A(h).

Second, by the construction of the actual versions u∗ and Claim 2, we have that

‖Di(π
k
i ,π∗

−i) − Di(π
k
(i, j),π

∗∗
−(i, j))‖ ≤ (#A)2‖(πk

i ,π∗
−i) − (πk

(i, j),
ˆ̂π−i)‖ ≤ (#A)2 maxn �=i |Vn|

T
<

ε

2
,

where ˆ̂πn represents (π∗ )(n,m)∈ Jn for each n �= i.
−(i, j)
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Thus, by the triangle inequality,

‖Di(π
k
(i, j),π−(i, j)(u−(i, j))) − Di(π

k
(i, j),π

∗∗
−(i, j))‖

≤ ‖Di(π
k
(i, j),π−(i, j)(u−(i, j))) − Di(π

k
i , π̃−i)‖ + ‖Di(π

k
i , π̃−i) − Di(π

k
i ,π∗

−i)‖
+ ‖Di(π

k
i ,π∗

−i) − Di(π
k
(i, j),π

∗∗
−(i, j))‖ <

ε

2
+ 0 + ε

2
= ε

for each u−(i, j) in the support of p̃k
(i, j) .

Thus, vi = (πi, pi) is ε-self-confirming with respect to π∗ .
The observational consistency condition is satisfied in the original heterogeneous RPCE, so for each vk

i , qk
i

(
vl

n

)
> 0 implies 

that there exists π̂−n ∈ �−n such that (i′) (V , φ) induces π̂w for vk
i for each w �= n and (ii′) there exists π̌−n ∈ �−n such 

that (ii′)–(i) (V , φ) induces π̌w for version vl
n for each w �= n and (ii)–(ii) Dn(πn(vl

n), π̌−n) = Dn(πn(vl
n), π̂−n).

First, by the construction of π̃ l
(n,m) and p̃l

(n,m) and Claim 2, we have that (ii′)–(i) implies:

‖Dn(π(n,m)(ul
(n,m)),π−(n,m)(u−(n,m))) − Dn(πn(vl

n), π̌−n)‖
≤ (#A)2‖(π(n,m)(ul

(n,m)), π̇−n) − (πn(vl
n), π̌−n)‖ ≤ (#A)2 maxw �=n |V w |

T
<

ε

2

for each u−(n,m) in the support of p̃l
(n,m)

, where π̇w represents (π−(n,m)(u−(n,m)))(w,r)∈ J w for each w �= n.

Second, by the construction of p̃k
ji

and Claim 2, we have that (i′) implies:

‖Dn(πn(vl
n), π̂−n) − Dn(π(n,m)(ul

(n,m)),
(
π(v(i, j), ṽ−(i, j))

)
−(n,m)

)‖

≤ (#A)2‖(πn(vl
n), π̂−n) − (π(n,m)(ul

(n,m)), π̈−n)‖ ≤ (#A)2 maxw �=n |V w |
T

<
ε

2

where π̈w represents (π(u(i, j), ̃u−(i, j)))(w,r)∈ J w for each w �= n.
Thus, by the triangle inequality, for all ũ(n,m) in the support of p̃k

(i, j) , it must be the case that for all u−(n,m) in the 
support of the conjecture of ũ(n,m) ,

‖Dn(π(n,m)(ũ(n,m)),π−(n,m)(u−(n,m))) − Dn(π(n,m)(ũ(n,m)),
(
π(u(i, j), ũ−(i, j))

)
−(n,m)

)‖
≤ ‖Dn(π(n,m)(ũ(n,m)),π−(n,m)(u−(n,m))) − Dn(πn(vl

n), π̌−n)‖
+ ‖Dn(πn(vl

n), π̌−n) − Dn(πn(vl
n), π̂−n)‖

+ ‖Dn(πn(vl
n), π̂−n) − Dn(π(n,m)(ũ(n,m)),

(
π(u(i, j), ũ−(i, j))

)
−(n,m)

)‖
<

ε

2
+ 0 + ε

2
= ε.

Thus, u ji is ε-observationally consistent. �
Finally, we provide the statement and the proof of the claim in the above proof.

Claim 2. For all π, π ′ ∈ � and i ∈ I , ‖Di(π) − Di(π
′)‖ ≤ (#A)2 · ‖π − π ′‖ holds.

Proof. First we show that ‖d(π) −d(π ′)‖ ≤ |A| · ‖π −π ′‖ for any π, π ′ ∈ �. To see this, fix π and π ′ , and let ‖π −π ′‖ = ε . 
Let Ã(z) be the set of actions that are taken to reach z ∈ Z , h(a j) be the information set such that action a j can be taken, 
and j(a j) be the player such that h(a j) ∈ H j(a j) . Note that Ã(z) is finite for each z ∈ Z . For any z ∈ Z ,

|d(π)(z) − d(π ′)(z)| =

∣∣∣∣∣∣∣
∏

a j∈ Ã(z)

π j(a j)(h(a j))(a j) −
∏

a j∈ Ã(z)

π ′
j(a j)

(h(a j))(a j)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣
∏

a j∈ Ã(z)

max{π j(a j)(h(a j))(a j),π
′
j(a j)

(h(a j))(a j)}

−
∏

a ∈ Ã(z)

min{π j(a j)(h(a j))(a j),π
′
j(a j)

(h(a j))(a j)}
∣∣∣∣∣
j
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≤
∣∣∣∣∣

∏
a j∈ Ã(z)

max{π j(a j)(h(a j))(a j),π
′
j(a j)

(h(a j))(a j)}

−
∏

a j∈ Ã(z)

(max{π j(a j)(h(a j))(a j),π
′
j(a j)

(h(a j))(a j)} − ε)

∣∣∣∣∣
≤ 1 − (1 − ε)#A ≤ #A · ε = #A

∥∥π − π ′∥∥ .

Hence,

‖d(π) − d(π ′)‖ ≤ #A · ‖π − π ′‖. (1)

Next, for any i ∈ I ,

‖Di(π) − Di(π
′)‖ = max

Pl
i∈Pi

|Di(π)(Pl
i) − Di(π

′)(Pl
i)| = max

Pl
i∈Pi

∣∣∣∣∣∣∣
∑
z∈Pl

i

(d(π)(z) − d(π ′)(z))

∣∣∣∣∣∣∣
≤ max

Pl
i∈Pi

∑
z∈Pl

i

|d(π)(z) − d(π ′)(z)| ≤
∑
z∈Z

|d(π)(z) − d(π ′)(z)|

≤ #Z · max
z∈Z

|d(π)(z) − d(π ′)(z)| ≤ #A · ‖d(π) − d(π ′)‖. (2)

Combining equations (1) and (2), we have that ‖Di(π) − Di(π
′)‖ ≤ (#A)2 · ‖π − π ′‖. �

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.geb.2017.12.021.
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