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Many school and college admission sys-
tems use centralized mechanisms to allo-
cate seats in a manner that reflects appli-
cant preferences and school priorities. Ab-
dulkadiroglu et al. (2015) show how lottery-
based tie-breaking creates a stratified ran-
domized trial, where the strata are prefer-
ences and priorities and the tie-breaker is
the randomizer. In many settings, how-
ever, tie-breaking uses non-randomly as-
signed criteria like distance or a test score.
Under non-lottery tie-breaking, applicants
with the same preferences and priorities are
no longer comparable.

Although non-lottery tie-breaking pro-
duces assignments that are correlated with
applicants’ potential outcomes, the non-
lottery scenario induces a kind of local
random assignment. This opens the door
to quasi-experimental regression disconti-
nuity (RD) designs to measure school ef-
fects.  This paper introduces a hybrid
RD/propensity score empirical strategy
that exploits the experiments embedded
in serial dictatorship (SD), a mechanism
widely used for college and selective K-12
school admissions. The key to our analysis
is an RD-SD propensity score that controls
for the local probability of school assign-
ment. We use the RD-SD propensity score
to estimate achievement effects of Chicago’s
exam schools.
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I. Characterizing Serial Dictatorship

Serial dictatorship with exam-score tie-
breaking assigns applicants one at a time in
the order of their exam scores to their most
preferred schools with available seats. We
assume (without loss of generality) that SD
processes applicants in ascending order of
exam scores, referred to here as the running
variable and denoted by R; for applicant 7.
SD assignments are characterized by a set
of admissions cutoffs. Let ¢ = (e¢y,...,c5)
denote admissions cutoffs, where ¢, is the
cutoff at school s € {1,...,S}. SD assigns
applicant ¢ her most preferred school for
which R; < c¢,. With a continuum of ap-
plicants and school seats, these cutoffs are
known to be constant, that is, fixed in re-
peated draws of the tie-breaker.

As in Abdulkadiroglu et al. (2015), our
goal is to learn about school effects us-
ing offers of school seats as instrumental
variables for school attendance. Appli-
cant type or preference order (denoted by
6;) is a source of omitted variables bias
(OVB) in such comparisons because ap-
plicants who rank schools differently tend
to have different socioeconomic characteris-
tics and therefore different outcomes. Type
conditioning eliminates this source of OVB,
but is unattractive when there are many
types (5,776 applicants with non-trivial risk
of an offer from Chicago’s nine exam schools
includes 4,580 types). Our framework ex-
ploits the fact that the OVB induced by the
correlation between type and offers is con-
trolled by conditioning on a scalar function
of type, the propensity score (Rosenbaum
and Rubin, 1983). This function is the con-
ditional probability of assignment,

ps(0) = E[Dis|9i = 9]7

where D,, indicates the SD-generated offer
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of a seat at school s to applicant .

In general, p,(#) is an unrestricted func-
tion of type, so score conditioning would
appear to have little advantage over full
type conditioning. But the asymptotic ap-
proximation developed in Abdulkadiroglu
et al. (2015) yields a large market score
for markets with lottery tie-breaking that
is determined by only two statistics. Here,
we derive a large market propensity score
for SD mechanisms with non-random tie-
breakers. In contrast with the lottery-based
score, the large market approximation for
SD with running variable tie-breaking is not
necessarily coarser than type. Therefore,
after deriving the global RD-SD propen-
sity score, we derive a local propensity score
that equalizes assignment risk across types
while also controlling bias from the running
variable.

II. The RD-SD Propensity Score

We model assignment risk as generated
by draws from the running variable distri-
bution, fixing the number of applicants and
their preferences. Assume that R; is dis-
tributed over [0, 1], with cumulative distri-
bution function F%. Running variables R;
and R; for applicants ¢ and j are indepen-
dent, but, in contrast with the lottery case,
not necessarily identically distributed.

The large market RD-SD propensity
score depends on at most two cutoffs.
The first is the cutoff at s. The second,
called the most informative disqualification
and denoted by M1ID,,, varies with type.
M1IDy, equals zero when s is type 0’s first
choice, but is otherwise the most forgiv-
ing (i.e. the maximum) cutoff among the
schools type 0 ranks ahead of s. MIDy,
captures the effect of truncation induced by
qualification at schools preferred to s on as-
signment risk at s: students who qualify at
a school they prefer to s are never offered
seats at s.

By the law of iterated expectations, the
probability a type 6 applicant has a running
variable below any value rq is

Fr(rol0) = E[Fp(ro)|6: = 6],

where Fj(rg) is F}, evaluated at ry. Our
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first result, implied by a more general re-
sult in Abdulkadiroglu et al. (2017), uses
Fr(ro|f) to derive the RD-SD propensity
score by plugging cutoffs and MID values
in for ry:

PROPOSITION 1:  For all s and 0 in any
continuum economy, we have:

ps(0) = (1 — Fr(MIDy0)) x

m 0 FR(CS|9) — FR(MID93‘9>
’ 1 — Fr(M1Dy,|0) ’

where we set ps(0) =0 when MIDy, = 1.

This proposition reflects the forces of
qualification and disqualification that de-
termine SD-generated assignment risk. Ap-
plicant i of type 6 is assigned a school she
prefers to s when r; < M1D,,. Therefore,
fraction 1 — Fr(M1Dy,|0) of type 6 appli-
cants are considered for s. The second line
is the probability of being assigned s, an
event that occurs if and only if MID,, <
r; < cg, conditional on not being assigned
a more preferred choice. Finally, applicants
for whom M 1Dy, > c, are never seated at s
because those who fail to clear MID,, are
surely disqualified at s as well. This result
generalizes Corollary 1 of Abdulkadiroglu
et al. (2015), which gives the large market
score for SD with lottery tie-breaking, to
cover arbitrary distributions of R;. When
Fr(.|0) is standard uniform, Proposition 1
implies the corollary.

Control for the RD-SD propensity score
in Proposition 1 eliminates OVB due to
the association between type and potential
outcomes. But Proposition 1 raises three
empirical challenges not encountered under
lottery tie-breaking. First, because Fr(.|0)
depends on # in an unrestricted manner,
the score in Proposition 1 need not have
coarser support than #. This is in spite
of the fact applicants with different val-
ues of ¢ have the same MID,,. Second,
the conditional running variable distribu-
tion, Fr(.|0), is unknown and must be esti-
mated for each 6. Third, while control for
the propensity score eliminates confounding
from type, conditional on p,(6), assignment
is still correlated with potential outcomes
because D, is a function of R;.
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We tackle these three problems by focus-
ing on applicants with running variable val-
ues in a d—neighborhood of admissions cut-
offs. Specifically, define the probability of
an offer from school s for applicants in a
neighborhood of 7y as
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cutoff is indicated with the right vertical
line; applicants with running variable val-
ues above this are likewise never seated at
King. Applicant with values between the
King and Brooks cutoffs are offered seats
at King. Dots in the figure identify av-
erage offer rates as a function of the run-

Ps(0570,0) = E[Dys|0; = 0, R; € (1o — 6,79 + 0)|ning variable. An important consequence

for 6 > 0. For small enough 4, the restric-
tion to applicants with admissions scores in
(ro—6,r9+9) eliminates OVB from the run-
ning variable, while conditioning on values
of ps(0;7,0) eliminates confounding from
applicant preferences.

Our second theoretical result character-
izes the local RD-SD propensity score as
the limit of py(6;ro,d) as & goes to 0.

PROPOSITION 2:  Suppose Fg(ro|d) is
differentiable everywhere and that ¢, # cy
for any s # s'. Then for all s, 0 in a con-
tinuum economy,

o [0 ife,< MIDy,
lim ps (6570, 0) = { 0.5 if MIDy, < c,

for rq = MIDy,,c,, and

. . _ 1 Z'fro S (MIDasacs)a
(lslg(lJps(e’To’é) o { 0 otherwise

for rqg £ MIDg,,c,.

The local propensity score in Proposition
2 is constant for applicants with non-trivial
assignment risk, obviating the need to es-
timate Fr(rq|0). Proposition 2 also reveals
the school-level RD-style experiments em-
bedded in SD. In particular, consider type
f applicants to s with exam scores in non-
overlapping intervals around the cutoff ¢,
and MIDgy,. Proposition 2 says that of-
fers to applicants in this group are approx-
imately determined by a coin toss.

Figure 1 depicts the cutoffs for 373 ap-
plicants to King College Prep High School
for whom M 1Dy, is the cutoff at (more se-
lective) Brooks. The Brooks cutoff is in-
dicated with a left vertical line; applicants
with MID at King equal to the Brooks cut-
off are never seated at King when they qual-
ify at more highly ranked Brooks. The King

of Proposition 2 is that marginal appli-
cants at King include two groups: appli-
cants with running variable values near the
King cutoff, and a group well away from
the King cutoff, near the Brook’s cutoff in-
stead. Exam school effects might differ for
these two groups, a possibility we’re explor-
ing in ongoing work.

The fact that offers are randomized while
enrollment remains a choice motivates our
two-stage least squares (2SLS) estimation
strategy using offer dummies to instrument
enrollment. Many King offers are declined;
this can be seen in the enrollment rates
plotted with triangles in Figure 1. No one
not offered a seat at King enrolls there,
while the King first-stage, or offer take-up
rate, averages around 0.35.

We're often interested in an overall school
sector effect, rather than the effect of en-
rollment at specific schools. For exam-
ple, Abdulkadiroglu, Angrist and Pathak
(2014) looks at the effects of any exam
school enrollment in Boston and New York.
It’s therefore natural to look at any-exam-
school effects in Chicago as well.

Under SD, the risk of receiving any exam
school offer somewhere is determining by
the cutoff at the least selective school an
applicant ranks. Formally, let Sy be the
set of exam schools that type 6 ranks and
define the qualifying cutoff to be the most
forgiving cutoff among schools in Sy:

QCy = maxc,.
SESy

An indicator for any exam school offer can
then be coded as

D, =1[r; < QCy,] = ZDisa

where the second equality reminds us that,
because SD is a single-offer system, the any
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offer dummy equals the sum of all single
offer dummies.

As for Proposition 2, the any-offer
propensity score is derived after first defin-
ing a local assignment probability around
value rq:

qs(ﬁ;ro,é) = E[D2|91 = O,Rl & (7“0—6, T0+5)]

Using this notation, we have:

PROPOSITION 3: If Fy is differentiable
everywhere and ¢, # cg for any s # &,
then for all 0 in a continuum economy and
for any ry € [0,1],

0 if 1o > QC,
lim q(0;79,0) =< 0.5 if ro = QCly,
=0 1 ifrg < QC,.

Proposition 3 reflects the simplified na-
ture of the risk behind D;: applicants with
a running variable value above their qual-
ifying cutoff are sure to get an offer some-
where, though they may do better than the
school that determines qualification. The
limiting score treats qualification as ran-
dom for those with values near the cutoff;
this local risk is again a coin toss.

ITI. Empirical Strategies and Estimates

Proposition 2 and 3 provide a foundation
for identification strategies that capture the
causal effect of enrollment at Chicago’s
exam schools on achievement, as measured
by 10th grade PLAN and 11th grade ACT
tests. Chicago students apply for seats in
8th grade, hoping to enroll in 9th grade.

In our sample period (2011-12), Chicago
Public Schools (CPS) operates nine exam
schools. Applicants rank up to six schools.
Exam schools prioritize applicants using a
common composite index formed from an
admissions test, GPA, and grade 7 stan-
dardized test scores. This composite is the
running variable.

The CPS exam school assignment mech-
anism incorporates place-based affirmative
action, in which applicant addresses are
classified into one of four tiers by the so-
cioeconomic status of the census tract in
which they live. Schools divide 70% of their
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seats equally between applicants from each
of the four tiers, with each quarter treated
as a sub-school that assigns priority to one
tier. The remaining 30%, said to be merit
seats, are assigned without priorities.

In practice, applicants from a given tier
are almost always offered either a merit seat
or one of the seats prioritizing for their
tier. We can therefore analyze Chicago’s
assignment system as a serial dictatorship
in which each school is split into five sub-
schools. Applicants to school s are then
treated as if they apply to both the sub-
school containing merit seats and the sub-
school containing seats reserved for their
tier.!  Our notation for empirical models
below ignores tiers; empirically, each school
indexed by s is a school-tier combination.

We use Propositions 2 and 3 to classify
applicants by risk for school-specific and
any-school offers, and to find students in
the neighborhood of each school’s cutoff.
The realized CPS allocation for school year
2011-12 is used to compute these cutoffs.
These in turn determine M Dy, .

Individual school offer dummies, D, in-
dicate r; € [MIDy,,,cs]. Given a cutoff-
specific bandwidth d,, the estimated local
RD-SD propensity score for each school-
specific offer, p;,, is computed as follows:

0.5 it MIDy,, < ¢, and
i € (cs — O, Cs + d5) O

it MIDy,s < cs and

ri € (MIDy, s + 65, cs — d5),
0 if MIDy,;s > cs or

ri & (MIDgy. s — s, Cs + d5).

ﬁis = 1

Similarly, the any offer score for any offer,

ISpecifically, each school is split into five sub-schools
as follows: 30% merit, and four equal-sized tier schools,
each with size 17.5% of seats. An applicant from a given
tier ranks the merit school, followed by the school cor-
responding to their tier. This procedure matches 99.7%
of CPS assignments. Dur, Pathak and Sénmez (2016)
give a detailed account of the CPS assignment scheme.

T € (MID&S - 6S7MID9is + 5s)>
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D;, denoted g;, is computed as:

0.5 if r;, € [ch - 537 QCZ + 58]7
qi: 1 if T; <QCi_5sa

Because each school offer potentially has
a different effect on any-exam enrollment,
we use the offers individually to construct
over-identified 2SLS estimates of the effects
of any exam school enrollment, indicated by
C;. For outcome variable Y;, the 2SLS first
and second stages can be written:

(1)
C; = Z Y1sDis

- Z Z Mips 1{Pis = p} + h(r;) + v

s p=0,0.5,1

Y = 7.C;
+Z Z n2psl{ﬁis :p} —|—h(7"1) +€ia

s p=0,0.5,1

where h(r;) is a running variable control de-
scribed below. The 7, and 7, terms con-
trol for the propensity score associated with
each offer dummy in the first and second
stages. The sample consists of applicants
for whom p;, = 0.5 for at least one s.

Using a single any-offer instrument and
the propensity controls suggested by Propo-
sition 3 generates the following just-
identified 2SLS setup:

(2) Ci = 1 D;
+ Zalsl{s = Sg} + h(?"z) + Vi,

Y =10
+ Z g, 1{s = sj} + h(r;) + €,

where sj identifies the school that deter-
mines the qualifying cutoff for type 8. This
model omits score controls because the esti-
mation sample is limited to applicants with
g; = 0.5. These applicants are in the band-
width around their qualifying cutoff.

We report 2SLS estimates using two spec-
ifications of the running variable control
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function, h(r):

hi(r) = ¢or + Z ¢smax{0,r — c,},

4
ha(r) = Z opr”.
k=0

The first, hy(r), specifies a piecewise linear
function of the running variable, with slope
changes at each cutoff (in practice, these are
school and tier specific). This control func-
tion is motivated by commonly employed
RD implementations using local linear con-
trol for the running with slope changes at
the cutoff. The second function, hs(r),
specifies a quartic polynomial with common
polynomial coefficients throughout the sup-
port of the running variables.

All models are estimated in a sample of
applicants with running variable values in
a set of cutoff-specific bandwidths. This is
motivated by the limiting argument behind
Propositions 2 and 3. Within these band-
widths, propensity scores are fixed at 0.5 for
applicants with non-trivial risk of assign-
ment; no further controls should therefore
be necessary. Not surprisingly, however,
and as in other RD applications, band-
widths are large enough to require con-
trol for running variable effects; this is ac-
complished here by including the control
function, h(r). We also add a set of four
tier dummies to the running variable con-
trols. These improve both precision and
covariate balance for parsimonious speci-
fications of h(r). Finally, because band-
widths are cutoff-specific, the risk of any
exam school offer varies (in our finite sam-
ple) with the identity of the qualifying cut-
off. Just-identified models therefore include
qualifying-cutoff fixed effects (s and awy).

Almost all applicants with D; = 1 ob-
tain an offer; the any-offer first stage is
0.90. This value is less than one because
while our offer dummy codes the offers pro-
duced by SD, the CPS assignment mecha-
nism isn’t quite SD. Also, a few applicants
receive offers outside the mechanism. Con-
sistent with the take-up rates plotted in
Figure 1, the overall first stage for enroll-
ment is about 0.38. First stages for indi-
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vidual school offers range from 0.26-0.69.
2SLS estimates from both over-identified
and just-identified models, and for differ-
ent choices of the running variable control,
each suggest exam schools have no effect on
student achievement. These results can be
seen in Panel A of Table 1, which reports
over-identified estimates based on Proposi-
tion 2 in the first two rows for two choices
of h(r). Exam school effects on math range
from —0.11 to —0.16, while effects on read-
ing are very close to zero. Just-identified
estimates using a single any-offer instru-
ment, reported in the third row of the ta-
ble, are similar though less precise. For ex-
ample, the ACT math standard error in-
creases from 0.087 to 0.133 between row 1
and row 3.2 These findings echo those for
Boston and New York exam schools (Ab-
dulkadiroglu, Angrist and Pathak (2014)),
and in other analyses of CPS exam schools
(Barrow, Sartain and de la Torre (2016)).
The advantage of propensity score con-
trol for applicant risk can be seen in Panel
B of Table 1. This panel reports estimates
of models (1) and (2) that include a full set
of controls for applicant type. The Panel A
sample is already limited to applicants with
non-trivial assignment risk, that is, with lo-
cal propensity score of 0.5. Yet, full type
control eliminates many of these applicants
because within-type there is no treatment
variation, resulting in a two-third reduc-
tion in the estimation sample size. Conse-
quently, the results are far less conclusive.
We see, for example, large positive and neg-
ative effects. None of these are significantly
different from zero, since the standard er-
rors are more than twice those in Panel A.

IV. Summary

Large urban districts increasingly use
centralized assignment schemes, which gen-
erate a wealth of data that can be used to
answer questions about school effectiveness.
We show here that this opportunity for im-
pact evaluation is not limited to systems

2Estimates in this table were computed using the
Imbens and Kalyanaraman (2011) procedure to com-
pute bandwidths. Specification (1) uses a uniform ker-
nel while specification (2) uses the edge kernel.
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using lotteries. The methods and models
needed for efficient and informative evalua-
tion using RD tie-breaking differ from the
lottery setting. Application of the former to
an analysis of Chicago exam schools yields
precisely estimated effects showing little ev-
idence of an exam school advantage.

FIGURE 1: OFFERS AND ENROLLMENT AT KING

«— King cutoff

ALAA A
AN
Ll .
. Brooks cutoff —

o ALALLLLL VNNV V.V V.V.V.V.N
T T T T T
1 15 2 25 3

o offer A enrollment

Notes: Offers and enrollment for 373 applicants to King with MID
given by the Brooks cutoff.

TABLE 1: 2SLS ESTIMATES EXAM SCHOOL EFFECTS

PLAN PLAN ACT ACT
Math Reading Math Reading
(0] 2) 3) Q)]
A. Propensity Score Conditioning
School-Specific Offers  -0.137 -0.003 -0.114 0.058
(0.096)  (0.096)  (0.087)  (0.093)
School-Specific Offers  -0.163 -0.022 -0.151 0.036

(Polynomial controls)  (0.095)  (0.094)  (0.085)  (0.088)
N 5387 4969 5275 4624

Instrument

Any Offer -0.035 -0.094 -0.220 0.050
0131)  (0.133)  (0.133)  (0.137)
N 4815 4301 4639 3816
B. Full Type Conditioning
School-Specific Offers  -0.053 0.108 -0.018 0.301
(0216)  (0.228)  (0.202)  (0.218)

N 1747 1532 1657 1489
Any Offer 0109 0275 -0.194 0511
0260)  (0271)  (0277)  (0.295)
N 1406 1162 1269 1056

Note: This table reports 2SLS estimates of exam school enrollment
effects for four outcomes. Panel A shows estimates using propensity
score controls; Panel B reports 2SLS estimates controlling for prefer-
ences and tier. Models using school-specific offers are over-identified.
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