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Abstract

We present a recursive first-order approach that may be useful in
studying repeated principal-agent relationships where the agent can
trade intertemporally behind the principal’s back. The method has the
virtue of being analytical simple and computationally tractable. Rel-
ative to Spear and Srivastava’s (1987) method, the recursive structure
here is obtained by adding an additional state variable: the agent’s
marginal utility. The agent’s intertemporal Euler condition is then
added as a constraint in the principal’s cost minimization problem.

1 Introduction

This paper presents a recursive first-order approach that may be useful for
studying repeated principal-agent relationships where the agent can trade
intertemporally behind the principal’s back. The method has the virtue of
being analytical simple and computationally tractable. This is important
because conventional formulations of such problems quickly become unman-
ageable.
The study of these problems has remained elusive because, relative to the

case where the agent cannot save nor borrow, the hidden-action space for
the agent is greater and deviations are in a sense more permanent. This
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requires imposing a great number of incentive-constraints to rule out all
deviations from the suggested action. Due to the large number of constraints
the problem becomes very intractable.
The method proposed in this paper relies on using the agent’s first-order

conditions to characterize the agent’s optimal decisions — the incentive com-
patibility constraints. The use of first-order conditions allows the problem
to be posed in a recursive manner, simplifying it analysis and computation
significantly.
As is well known, imposing first-order conditions may not be sufficient

to ensure incentive compatibility. Thus, this method may not solve the true
agency problem of interest [Mirrlees (1999), Rogerson (1985)]. Fortunately,
because the generated allocation is recursive in the appropriate state vari-
ables, it is, in principal, straightforward to check whether the solution satisfies
incentive compatibility.
Moreover, even if the first-order approach is invalid for solving the optimal

incentive-constrained allocation it may still be useful as an upper bound on
the Pareto frontier. Because the first-order constraints employed are weaker
than the true incentive constraints, the utility frontier between the principal
and the agent derived with this method provides an upper bound of the
actual incentive-compatible utility frontier. Of course, it is hoped that in
many interesting cases the upper bound actually coincides with the frontier
and this indeed appears to be the case for many cases of interest that the
author has implemented.
The main idea of this paper can be understood by relating the method to

that of Spear and Srivastava’s (1987). Their work has proven pivotal for re-
peated principal-agent problems where agents cannot trade intertemporally.
They showed how to summarize history dependence in a single, intuitive
variable: the remaining lifetime-utility promised to the agent: w. The cost
to the principal of delivering w, C(w), can then be found by iterating on a
Bellman operator.
Relative to this framework we add an additional state variable: the

marginal utility of the agent: λ. When the agent can save this variable must
be added to keep track of the agent’s intertemporal Euler condition. The
cost to the principal as a function of λ and w, C(λ,w), can then be found
by iterating on a related Bellman operator.
We apply our method to the optimal design of unemployment insurance

in a separate paper. Using Spear and Srivastava’s (1987) recursive approach
the existing literature has focused on the case where agents cannot save nor
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borrow, or equivalently where the agent’s wealth is observable to the prin-
cipal, so that unemployment transfers are essentially equal to consumption.
With this assumption, interesting results have been obtained. In particu-
lar, Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997) show that
unemployment payments fall with the duration of unemployment. Little is
known about the more realistic case where agents can save (and perhaps
borrow) and the government cannot monitor their savings (or borrowings).

1.1 Related Literature

Doepke and Townsend (2000) examine a similar private-information problem
where the agent has a hidden storage technology and provide alternative
methods to those presented here. Using lotteries over discrete grids they first
consider the large number of incentive-compatibility constraints required for
all combinations of deviations. Even for small grids the numbers become
completely unmanageable with this straightforward approach. They then
show how to significantly reduce the number of constraints by re-writing
the problem in various ingenious ways. Although their methods reduce the
number of constraints to manageable levels it remains quite large. Lotteries
are thus an essential part of the method since linear programs can handle
relatively large number of constraints.
In contrast, the method proposed in this paper uses the agent’s first-order

conditions to reduce the number of incentive-constraints required to a bare
minimum. As a consequence, lotteries are not necessarily part of the solu-
tion method. However, given that the first-order approach used here cannot
always be justified, both methods should clearly be seen as complements.
Chiappori, Macho, Rey and Salanié (1994) review several issues related to

the repeated moral hazard problems with agent access to credit. Fudenberg,
Holmstrom and Milgrom (1990) examine a repeated agency problem where
the agent can save and borrow. They restrict the analysis to the case where
the agent and principal have the same interest rate, equal to the reciprocal of
the agent’s subjective discount factor. Their emphasis is not on characteriz-
ing the contract, rather they are concerned with the renegotiation-proofness
of the contract: whether the contract is ex-post efficient. They show that in
general strong conditions are required for this to be the case, although they
provide an interesting example that does.
The method used in this paper is related to the work of Kydland and

Prescott (1980), Chang (1998) and Phelan and Stachetti (1999). They study
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government tax policies in competitive economies. Kydland and Prescott
(1980) study optimal dynamic tax policy under full commitment. They were
the first to show that the introduction of the marginal utility as a state
variable can be used to obtain recursive formulations of this problem. Chang
(1998) and Phelan and Stachetti (1999) apply this idea to the study of all
time-consistent linear tax policies in the absence of commitment using the
set-operator methods of Abreu, Pearce and Stachetti (1990).
All these papers study different forms of linear taxation in a competive

environment, so that agent’s problem is convex. In contrast, here the set of
instruments controled by the principal can introduce non-convexities. Indeed,
our setup can be interpeted as an optimal tax problem with full committ-
ment, as Kydland and Prescott’s, but with non-linear income taxation. A
complication of introducing these non-linearities is that the agent’s first order
conditions are no longer sufficient to characterize the agent’s maximization.

1.2 Organization

The paper is organized as follows. Section 2 introduces the economic envi-
ronment. Section 3 states the maximization problem faced by agents for an
arbitrary mechanism and derives the necessary first-order conditions. Sec-
tion 4 then presents the principal’s problem and some properties that serve
to simplify it. In section 5 we show the recursive structure of set of all
incentive-compatible contracts. Section 6 then shows how the frontier of this
set, and thus the optimal contract, can be obtained by iterating on a Bellman
equation.

2 Environment

Let st ∈ S denote the state of nature at time t, the set S is assumed fi-
nite for simplicity. Let St = S × S × ...S be the t set product of S,
st = (s−1, s0, s1, ..., st) ∈ St+2 denotes the history of states up to time t.
The state and all its history are public information.
Output at time t is a function of the current period shock: y(st). At

the beginning of each period, before the current state st is realized, the
agent exerts an effort level, at(s

t−1), that affects the distribution of current
and future states. We assume a Markov process for st : the probability of
a st conditional on st−1 and at is given by π(st|st−1,at). Effort is private
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information leading to the classical moral-hazard problem.
Lifetime utility is given by,

E

( ∞X
t=0

βt
£
u(ct(s

t)− v(at(s
t−1))

¤)
or given our assumption on uncertainty:

∞X
t=0

X
st∈St

βt
£
u(ct(s

t)− v(at(s
t−1))

¤
Π
¡
st|s−1, at(·)

¢
,

where Π(st|s−1, at(st−1)) =
Qt

j=0 π(sj|sj−1, aj(sj−1)) and
at
¡
st−1

¢ ≡ ¡a0 (s−1) , a1 (s−1, s0) , a2 ¡s1¢ , ..., at ¡st−1¢¢ .
The principal selects a sequence of state contingent transfers, τ ≡ {τ t (st)}

which the agent takes as given. The agent may save and borrow at a gross
interest rate R. For now we assume that “saving” and “borrowing” occurs
through the use of a linear private-storage technology with rate of return R.
This leads to the following budget constraints,

kt+1(s
t) + ct(s

t) = y(st) + τ t(s
t) + kt(s

t−1)R,

for all t and st ∈ St. We assume the initial value of capital, k0, to be public
information and normalize it, without loss in generality to be zero. On the
other hand, consumption and capital from period 1 onwards are unobserv-
able. We make use of the compact notation: c ≡ {ct (st)}, k = {kt+1 (st)}
and a ≡ {at (st−1)} . Thus, a triple (c, a, k) full describes an agents allocation.
We work with two alternative assumptions on the feasible values for

kt(s
t−1). In the first case we do not impose a constraint, so that kt(st−1) ∈ R.

In the second case, we impose a non-negativity constraint, so that kt(s
t−1) ∈

R+. This latter case can be interpreted as
The principal’s utility over transfer sequences, τ , is the negative of the

expected present value of transfers using

E

(
−

∞X
t=0

R̄−tτ t
¡
st
¢)

or simply:

−
∞X
t=0

X
st∈St

R̄−tτ t
¡
st
¢
Π
¡
st|s−1, at(·)

¢
,
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One interpretation for this specification of the principal’s preferences, is that
she has access to a linear storage technology with rate of return R̄ and in-
sures an infinite amount of agents with independent shocks, thus pooling
risk perfectly. We allow R 6= R̄ to be able to examine how the possibility of
insurance depends on the relative returns of the agent and principal.

3 Agent Optimization

Before setting up the optimal contract problem in terms of allocations we
need to define the agent’s problem given a contract. This will define the
incentive compatibility constraints on the allocations.
Given initial condition s−1 and the contract τ , the agent solves,

max
c,a,k

∞X
t=0

X
st∈St+2

βt
©
u(ct(s

t)− v(at(s
t−1))

ª
Π(st|s−1, a(·)),

subject to,
kt+1(s

t) + ct(s
t) = y(st) + τ t(s

t) + kt(s
t−1)R, (1)

for all t and st ∈ St. Let the set of (c, a, k)’s that achieve the above maxi-
mization given τ and s−1 be denoted by MAX (τ , s−1)
Letting λt(s

t) be the multiplier on (1), then the first order conditions for
this problem are the budget constraints in (1) for all t and st ∈ St and:

u0(ct(st))− λt(s
t) = 0 (2)

λt−1(st−1)− βR
X
st

λt(s
t−1, s)π

¡
st|st−1, at(st−1)

¢ ≥ 0 (3)

X
st

©
u(ct(s

t) + βwt+1(s
t)
ª ∂π

∂ [at(st−1)]

¡
st|s−1, at(st−1)

¢
= v0[at(st−1)] (4)

where:

wt+1(s
t) ≡

∞X
j=1

X
st+jt

βj−1
©
u(ct+j(s

t+j)− v(at+j(s
t+j−1))

ª
Π
¡
st+jt+1|st, at+jt (·)¢

represents the remaining expected (conditional on st) lifetime utility from
time t + 1 on as. Condition (3) must hold with equality if borrowing con-
straints are not imposed or if kt+1(s

t) > 0. Let the set of (c, a, k)’s that satisfy
the above f.o.c.s for given τ and s−1 be denoted by FOC (τ , s−1) .
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Clearly, MAX (τ , s−1) ⊆ FOC (τ , s−1) for all (τ , s−1) . In the analysis
that follows we will be using the set FOC (τ , s−1) instead of MAX (τ , s−1)
this is the sense in which we are using a first-order approach to the agent’s
maximization problem. This is the approach widely used in static principal-
agent problems where sufficient conditions have been studied that ensure
that it indeed characterize the problem [see Rogerson (1986)].

4 Pareto Problem

4.1 Statement

We wish to study the optimal incentive-compatible contracts and the result-
ing utility frontier between the principal and the agent. Consider the optimal
contract for the principal for any given promised utility for the agent, w.
Problem 1:

C (w, s−1) ≡ min
τ,c,a,k

∞X
t=0

X
st∈St+2

R̄−tτ t(st)Π
¡
st|s−1, at

¡
st−1

¢¢
∞X
t=0

X
st∈St+2

βt
©
u(ct(s

t)− v(at(s
t−1))

ª
Π(st|s−1, a

¡
st−1

¢
) = w

(c, a, k) ∈MAX (τ , s−1)

This problem is made quite intractable by the set MAX (τ , s−1) which
is in general a complicated object. We thus study the related problem that
replaces MAX (τ , s−1) with FOC (τ , s−1).
Problem 2:

C∗ (w, s−1) ≡ min
τ,c,a,k

∞X
t=0

X
st∈St+2

R̄−tτ t(st)Π
¡
st|s−1, at

¡
st−1

¢¢
∞X
t=0

X
st∈St

βt
©
u(ct(s

t)− v(at(s
t−1))

ª
Π(st|s−1, a

¡
st−1

¢
) = w

(c, a, k) ∈ FOC (τ , s−1)

4.2 Properties

We now derive some simple properties which help simplify the problems fur-
ther. Solving the consumer’s budget constraint for τ t(s

t) yields the following
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present value:

∞X
t=0

X
st∈St+2

R̄−t
£
ct(s

t) + (R̄−R)kt(s
t)
¤
Π
¡
st|s−1, at(st−1)

¢
This provides an alternative representation of the principal’s expected dis-
counted costs and will allows us to simplify Problem 1. Using this represen-
tation and forming the Lagrangian for Problem 2 the following results are
immediate.

Proposition 1 At the optimum for Problem 2,

1. the capital accumulation constraints given by (1) are not binding; that
is their related Lagrange multipliers are zero

2. without borrowing constraints if R 6= R̄ the problem is not well defined

3. with borrowing constraints if R < R̄ then k∗t+1(s
t) ≡ 0

4. if R = R̄ then kt+1(s
t) is undetermined

The intuition for these results is straightforward: the principal can always do
any intertemporal transfers through the agent and vice versa, thus the only
difference in returns that is allowed is R < R̄ when the agent is constrained.
In what follows we therefore that R ≤ R̄. In view of this proposition we

may safely ignore the constraints given by (1) leaving {kt+1(st)} out of the
maximization. Problem 2 is thus equivalent to:
Problem 3:

C∗ (w, s−1) ≡ min
τ,c,a

∞X
t=0

X
st∈St+2

R̄−tτ t(st)Π
¡
st|s−1, at

¡
st−1

¢¢
∞X
t=0

X
st∈St

βt
©
u(ct(s

t)− v(at(s
t−1))

ª
Π(st|s−1, a

¡
st−1

¢
) = w

(c, a, 0) ∈ FOC (τ , s−1)
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5 Recursive Contracts

Define the set of incentive compatible allocations as:

IC ≡ { (s−1, w, C, τ , c, a) | (c, a, 0) ∈MAX (τ , s−1)

C ≤
∞X
t=0

X
st∈St

R̄−tτ t(st)Π
¡
st|s−1, a

¡
st−1

¢¢
w ≥

∞X
t=0

X
st∈St

βt
©
u(ct(s

t)− v(at(s
t−1))

ª
Π(st|s−1, a

¡
st−1

¢
)

and analogously for those that are incentive compatible with the first-order
approach:

IC∗ ≡ { (s−1, w, C, τ , c, a) | (c, a, 0) ∈ FOC (τ , s−1)

C ≤
∞X
t=0

X
st∈St

R̄−tτ t(st)Π
¡
st|s−1, a

¡
st−1

¢¢
w ≥

∞X
t=0

X
st∈St

βt
©
u(ct(s

t)− v(at(s
t−1))

ª
Π(st|s−1, a

¡
st−1

¢
)

We shall exploit the fact that all contracts have a recursive structure: Φ
must satisfy a self-generating operator defined by:Now define the sets:

Φ ≡
(
(s, λ, w,C) ∈ R4|∃ (s−1, w, C, τ , c, a) ∈ IC :

X
s0

u0(c0(s0))π(s0|s−1, a0(s−1)) ≤ λ

)

Φ∗ ≡
(
(s, λ, w,C) ∈ R4| ∃ (s−1, w, C, τ , c, a) ∈ IC∗ :

X
s0

u0(c0(s0))π(s0|s−1, a0(s−1)) ≤ λ

)
Once again, although one is really interested in Φ, for tractability we study
the simpler Φ∗.
To show the recursive structure inherent in optimal contracts we define

the following set operator, which takes subsets, Q, of R4 into subsets, B(Q),of
R4 :

B(Q) ≡ ©
(s, λ, w, C) ∈ R4| ∃ (a, λ0(s0), w0(s0), C 0(s0)) :
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(s0, λ0(s0), w0(s0), C 0(s0)) ∈ Q ∀s0 ∈ S (5)X
s0

£
y(s0)− c(s0) + R̄−1C 0 (s0)

¤
π[s0|s, a] = C (6)

X
s0
[u(c(s0))− v(a) + βw0 (s0)]π[s0|s, a] = w (7)

u0(c(s0))− λ0(s0) = 0 (8)

λ− βR
X
s0

λ0(s0)π[s0|s, a] ≥ 0 (9)

X
s0
[u(c(s0)) + βw0 (s0)]

∂π[s0|s, a]
∂a

− v0(a) = 0 (10)

To interpret B notice that s, λ, w and C represent, respectively, the pre-
vious period’s state and marginal utility of consumption and the current
expected discounted utility (e.d.u.), for the agent and cost for the principal.
The operator B takes next period’s feasible set for these variables, Q, and im-
poses temporary incentive compatibility∗ constraints for the current period
to find the current feasible set.
We seek to write the optimal contract so that s, λ and w are the natural

state variables for the principal.
The sense in which B reveals the recursive structure of Φ∗, and thus of

contracts, will be now made apparent. The following propositions are simple
applications of the ideas in Abreu, Pearce and Stacchetti (1990).

Proposition 2 The operator B(Q) satisfies:

(a) (self-generation) if Q ⊆ B(Q) then B(Q) ⊆ Φ

(b) (factorization) Φ = B(Φ)

With any initial set Q0 such that Φ ⊆ Q0 we can construct a sequence
recursively Qn ≡ B(Qn−1). If Φ ⊆ B (Q0) ⊆ Q0, then Qn ⊆ Qn−1 for all
n ≥ 1. Define the limit set:

Q∞ ≡ limQn = ∩∞n=0Qn (11)

Proposition 3 Φ = Q∞
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6 Recursive Optimal Contracts

The set Φ is completely characterized by the frontier in terms of C, that is
define the minimum cost function,

C∗ [s, λ, w] = inf {C : (s, λ, w,C) ∈ Φ} , (12)

and its domain φ,

φ∗ = {(s, λ, w) : ∃C s.t. (s, λ, w, C) ∈ Φ}. (13)

Clearly, φ∗ and its related operator, B̃, satisfy self-generation and factoriza-
tion.
The set Φ is completely characterized by φ and C∗ : φ→ R as follows:

Φ = {(s, λ, w,C) : (s, λ, w) ∈ φ and C ≥ C∗(s, λ, w)} (14)

Consider now the following operator to obtain C∗ and φ :

T [{φ,C}] ≡
n
φ̃, C̃

o
(15)

where, and for all (s, λ, w) ∈ φ we define:

C̃(s, λ, w) ≡ inf
(X

s0

©
c(s0)− y(s0) + R̄−1C [s0, λ0(s0), w0(s0)]

ª
π[s0|s, a]

)
(16)

where the infimum is over a, c(s0), (λ0(s0), w0(s0)) ∈ φ(s) subject to (7),
(8), (9), and (10). Once again, the weak inequality in condition (10) must
be replaced with equality if we are considering the case without borrowing
constraints.
In essence the T operator is the an alternative representation of the set-

operator B. If we iterate on T starting from a pair {φ,C} such that φ∗ ⊆ φ
and C(s, λ, w) ≥ C∗(s, λ, w) for all (s, λ, w) ∈ φ∗, we are implementing an
alternative representation of the iteration on B. Thus, by proposition 3, we
will converge to {φ∗, C∗} and characterize the set Φ. This leads us to the
definition of problem 4.
Problem 4: starting from {φ0, C0} such that φ∗ ⊆ φ0 and C0(s, λ, w) ≥
C∗(s, λ, w) for all (s, λ, w) ∈ φ∗, iterate on T for convergence.
It is also possible to iterate on the domain set φ till convergence and then

separately iterate on the Bellman equation for C∗(s, λ, w).
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