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1 Introduction

Many economic actors have reputations for keeping or breaking their promises. For example,

firms make non-binding promises to their employees about bonuses and promotions, with

the option to renege on them. However, failing to honor promises may make employees

feel aggrieved and undermine workplace morale. Similarly, advertising can set customers’

expectations, and if those expectations are not aligned with the actual customer experience,

the firm’s brand and business will suffer.

This paper examines when and whether a reputation for honesty might facilitate commit-

ment. Compared to reputations for taking specific actions, a reputation for honesty allows

decisions to better adapt to current circumstances, which is valuable when the environment

changes over time. We focus on reputations for honestly announcing intended actions rather

than reputations for honestly announcing payoff-relevant states. This is because in some

applications, states could be difficult to verify ex post, and it seems unrealistic to make

commitments based on future contingencies that are hard to describe in advance. Making

promises about their intended actions may be simpler.

However, building a reputation for honesty can be challenging when some actions might

turn out to be infeasible and the reputation-building player has imperfect information about

the actions they will be able to take. As a result, players may renege on promises they had

intended to keep, as happened to Lincoln Electric in 1992. It promised to share its domestic

profits with its workers, but by the end of the year, its surplus in domestic business was

unexpectedly wiped out by losses in recently acquired foreign operations, making it hard to

pay high bonuses to its workers.

In our model, a patient player (e.g., a firm) faces a sequence of myopic opponents (e.g.,

consumers). Each period, the patient player observes a private payoff shock (e.g., their

production cost), as well as some information about which of their actions are currently

feasible. Then the patient player announces the action they intend to play, after which players

act. The myopic players cannot observe the patient player’s feasible actions or the payoff

shocks, but can observe the patient player’s announcement in the current period and whether

1



the patient player has kept their word in the past.1

The patient player is either an honest type, who strategically chooses their announce-

ments but keeps their word whenever their announced action is feasible, or an opportunis-

tic type, who strategically chooses both the announcements and the actions. Note that the

honest type is not a “pure commitment” type, as it is not committed to any particular action-

announcement pair. Instead, the honest type optimizes its announcements, but unlike the

opportunistic type it is constrained to implement them whenever that is possible.

Our main result shows that if (1) the distribution over feasible action sets has full sup-

port, and (2) the patient player knows their feasible action set with high probability when

they announce their intended action, then each type of the patient player receives at least

their optimal commitment payoff in every equilibrium. This does not follow from Fuden-

berg and Levine (1989), since the honest type may not announce the opportunistic type’s

optimal commitment action. As a result, the opportunistic type cannot guarantee their opti-

mal commitment payoff by playing the honest type’s equilibrium strategy.

To explain this result, first consider situations where the patient player knows which of

their actions are feasible at the announcement stage. In this case, every type can guarantee

their optimal commitment payoff by announcing their optimal commitment action in every

period and keeping their word. Intuitively, when a myopic player fails to best respond to

any announced action, their belief puts a significant probability on the event that the patient

player is opportunistic and will break their word. Hence, observing the patient player keep

their word increases the posterior probability of the honest type. Thus, the event that the

patient player is opportunistic and breaks their word with high probability can happen in at

most a bounded number of periods, regardless of the equilibrium.

When the patient player makes their announcements without being certain about about

which actions will be feasible, their reputation may deteriorate in expectation even if they

announce their optimal commitment action and keep their promise when their announced

1In Section 5, we show that Theorem 1 generalizes to situations where player 2 observes a bounded history
of player 1’s past actions and announcements in addition to whether player 1 has kept their word. We also
provide an example showing that when player 2 can observe the entire history of player 1’s past actions and
announcements, there is an equilibrium in which player 1’s payoff is strictly less than his commitment payoff.
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action is feasible, because the probability they will be forced to renege may differ under

the honest type’s announcement strategy and under the optimal commitment announcement.

This feature is not present in Fudenberg and Levine (1989, 1992) and subsequent work that

provides lower bounds for the value of a reputation. This is because in those models, when

the long-run player plays a fixed commitment action, the probability that they are the corre-

sponding commitment type weakly increases on average in every period.

Our methodological contribution is to analyze reputation with concentration inequalities.

Consider either type of patient player’s payoff from a deviation that (1) announces their

optimal commitment action in “good” periods where the short-run player best replies to any

announcement, and plays the announced action whenever it is feasible, and (2) in the other

“bad” periods, plays the honest type’s equilibrium strategy. Since the short-run players do

not best reply to all announced actions in bad periods, and the distribution of feasible action

sets has full support, the opportunistic type must be breaking their word with significant

probability in equilibrium. This yields a lower bound on the expected increase in the log

likelihood ratio between the honest type and the opportunistic type. When the patient player

knows their feasible action set with high probability, the honest type keeps their word with

high probability in every good period. Although the log likelihood ratio may decrease in

expectation, the magnitude of this decrease is bounded from above.

Based on these observations, we establish an upper bound on the undiscounted frequency

of bad periods using the Azuma-Hoeffding inequality (Azuma, 1967) and then derive an

upper bound on the discounted frequency of bad periods using summation by parts. The

expected number of bad periods is unbounded, unlike in Fudenberg and Levine (1992), but

the discounted frequency of the bad periods goes to zero as the patient player’s information

about feasible actions becomes arbitrarily precise. This yields the lower bound on the pa-

tient player’s payoff from the deviation we proposed. Since such a deviation is feasible for

both types, both the opportunistic and the honest type can obtain their respective optimal

commitment payoffs in every equilibrium.

Section 2 sets up the baseline model and presents an example motivating the study of

reputation for honesty and issues related to action feasibility. Sections 3 and 4 state and
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prove the main result. Section 5 presents extensions and discusses our assumptions on the

monitoring structure. Section 6 explains our contributions to the reputation literature and

Section 7 concludes.

2 Baseline Model

Time is discrete, indexed by t = 0,1.... A long-lived player 1 (e.g., a seller) with discount

factor δ ∈ (0,1) interacts with an infinite sequence of short-lived player 2s (e.g., consumers),

with 2t denoting the short-lived player in period t.

Let A be the potentially feasible set of actions for player 1, with A ≡ 2A\{∅} the

collection of all non-empty subsets of A. Each player 2’s action set is B. In period t,

(θt ,At) ∈ Θ×A is drawn according to p ∈ ∆(Θ×A ), where θt ∈ Θ affects player 1’s

stage-game payoff (e.g., their cost of supplying high quality), and At ⊂ A is the set of feasi-

ble actions for player 1. We assume that A, B, and Θ are finite sets. We also assume that for

every s 6= t, θt is independent of θs, At is independent of As, and θt is independent of As.2

Each period consists of an announcement stage and an action stage. In the announcement

stage, player 1 privately observes θt and a signal Ãt of their feasible actions, where At ⊆

Ãt ⊆ A and Ãt is drawn according to G(·|At). Then player 1 announces to player 2t that

they intend to play action mt ∈ A. In the action stage, player 1 observes At , and then players

simultaneously choose their actions at ∈ At and bt ∈ B. Intuitively, player 1 learns at the

announcement stage that some of their actions are infeasible, but at the action stage they

may learn that other actions are infeasible as well.

Player 1 has persistent private information about their type γ ∈ {γh,γo}, where γh stands

for an honest type and γo stands for an opportunistic type. The honest type is restricted (i) to

announce an action that might be feasible, i.e., mt ∈ Ãt , and (ii) to take an action that matches

their announced action if it is feasible, i.e., at = mt if mt ∈ At . The opportunistic type can

announce any action, including ones that do not belong to Ãt , and can take any action in At

2Theorem 1 extends when the distribution of (θt ,At) varies over time, although the statement of the result
becomes more involved. We do not know whether the result extends when (θt ,At) is correlated over time.
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regardless of their announcement. Our baseline model focuses on the case of two types in

order to simplify the exposition. We generalize our main result (Theorem 1) to any finite

number of honest and opportunistic types in Section 5.

Let π0 ∈ (0,1) be the common prior probability the short-run players assign to the honest

type. Player 2t observes {y0, ...,yt−1} in addition to mt before choosing bt , where the record

ys ≡ 1{as = ms} tracks whether player 1 has kept their word but does not track their actions

played or their announcements.

For every t ∈N, player 2t’s history is ht
2 ≡ {y0,y1, ...,yt−1,mt}. Let H t

2 ≡ {0,1}t×A be

the set of player 2t’s histories. Player 2t’s strategy is σ t
2 : H t

2 → ∆(B), with σ2 ≡ (σ t
2)t∈N.

Player 1’s history in the announcement stage of period t is

h̃t
1 ≡ {γ,θ0, ...,θt , Ã0, ..., Ãt ,A0, ...,At−1,m0, ...,mt−1,a0, ...,at−1,b0, ...,bt−1}.

For every t ∈N, let H̃ t
1 be the set of h̃t

1. Let H̃1 ≡
⋃

∞
t=0 H̃ t

1 be the set of player 1’s histories

at the announcement stage. Player 1’s history in the action stage of period t is

ht
1 ≡ {γ,θ0, ...,θt , Ã0, ..., Ãt ,A0, ...,At ,m0, ...,mt ,a0, ...,at−1,b0, ...,bt−1}.

For every t ∈N, let H t
1 be the set of ht

1. Let H1 ≡
⋃

∞
t=0 H t

1 be the set of player 1’s histories

at the action stage. Type γ’s strategy is (σ̃γ ,σγ), with σ̃γ : H̃1→ ∆(A) and σγ : H1→ ∆(A).

At each t, type γo can only take actions that belong to At . Type γh faces this constraint as

well as the requirements that the support of σ̃γh(h̃
t
1) is a subset of Ãt , and that σγh(h

t
1) = mt

whenever mt ∈ At .

Type γ’s stage-game payoff is u1(γ,θt ,at ,bt) and player 2t’s is u2(at ,bt). Note that the

stage-game payoffs of type γo and type γh can differ, and that player 2t’s payoff does not

depend on γ and θt .

A Nash equilibrium is a strategy profile ({σ̃γ ,σγ}γ∈Γ,σ2), in which σ t
2 maximizes player

2t’s stage-game payoff, and for each γ ∈ {γh,γo}, (σ̃γ ,σγ) maximizes type γ’s discounted

average payoff ∑
∞
t=0(1−δ )δ tu1(γ,θt ,at ,bt) subject to the constraints that type γ faces. Be-
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cause the stage game and set of types are both finite and payoffs are discounted, the game is

continuous at infinity in the sense of Fudenberg and Levine (1983), and it is straightforward

to adapt their arguments to show that a Nash equilibrium exists.3

Example: Product Choice Game Player 1 is a firm and player 2s are consumers. Every

period, the firm privately observes their cost of production θt ∈ {θg,θb}. We assume that

θt = θg with probability 1
2 for every t ∈ N, and θt is independent of θs for every s 6= t. In

this example, the honest and opportunistic types have the same payoff function, given by the

matrices below.

θt = θg T N

H 1,2 −1,0

L 2,−3 0,0

θt = θb T N

H −1,2 −3,0

L 2,−3 0,0

Since the firm’s optimal (pure) commitment action is H when θt = θg and is L when

θt = θb, they have an incentive to build a reputation for keeping their word by announcing

their intended action in every period. This is better than a reputation for always playing H,

since it lets the firm avoid the cost of choosing H when θt = θb.

Suppose that the firm can make an announcement mt about its intended action at to

the period-t consumer after observing θt but before taking actions. The period-t consumer

observes mt , as well as whether the firm’s announcement matched its action in previous

periods. With positive probability, the firm is an honest type who strategically chooses their

announcements but commits to keep their word. With complementary probability, the firm is

an opportunistic type who can freely choose their announcements and actions. The period-t

consumer observes mt , as well as whether the firm’s announcement matched its action in

previous periods.

In this model, there are equilibria in which both types of the firm receive their minmax

value 0.4 This low-payoff equilibrium hinges on the assumption that all of the firm’s actions

3Specifically the set of strategies is compact in the product topology and payoff functions are continuous in that
topology, so any sequence of Nash equilibria of the finite-horizon truncation of the game has an accumulation
point, and any accumulation point is a Nash equilibrium of the infinite horizon game.

4See the working paper version Fudenberg, Gao, and Pei (2020) for an explicit construction.
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are feasible in every period. It does not fit a number of applications of interest, where with

positive probability some of the firm’s actions might be infeasible. For example, when the

firm is an individual contractor, they can occasionally be sick, and so unable to provide

high-quality service. The firm may also face occasional regulatory inspections during which

playing L can lead to a risk of fines and being shut down. In this situation, the firm will

always choose to supply high quality.5

Another practical concern is that firms may not know their feasible action set when mak-

ing announcements, and might be forced to renege on promises they intended to keep. For

example, the patient player might be a contractor who believes that they can provide high-

quality service with high probability, and promises to do that, but later realize that they

cannot deliver on their promise due to technical difficulties or other priorities on their sched-

ule.

Motivated by these observations, we assume that the firm’s feasible action set At is drawn

according to a full support distribution over {{H},{L},{H,L}}. At the announcement stage,

the firm observes Ãt ⊃ At . That is, the firm knows that action H is infeasible when Ãt = {L}

and vice versa, and when Ãt = {H,L}, the firm recognizes the possibility that either H or

L may turn out to be infeasible. The honest type announces an action in Ãt and keeps their

word whenever feasible. The opportunistic type only faces a feasibility constraint that the

action they take belongs to At .

Our result shows that each type of the patient firm can secure their optimal pure-strategy

commitment payoff in every equilibrium when (1) at the announcement stage, the firm knows

their feasible action set with sufficiently high probability, and (2) the ratio between the prob-

ability with which H is infeasible when Ãt = {H,L} and the probability with which L is

infeasible when Ãt = {H,L} is neither 0 nor infinity.6

5Formally, if the firm chooses L in periods where they are inspected, they face a probability q ∈ (0,1) of
shutting down and a fine f > 0. One can show that there exist f > 0 and q ∈ (0,1) such that when f > f and
q > q, it is a dominant strategy for both types of the firm to choose at = H at the action stage.

6A pure-strategy commitment is a map from (θ ,At ) to At . Our results still hold if there are honest types that can
announce mixed actions, as long as there is an honest type that can only make pure-strategy commitments.
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3 Main Result

Let BR2 : ∆(A)→ 2B\{∅} be player 2’s best reply correspondence. Type γ’s optimal com-

mitment payoff in state θt when the set of feasible actions is At is

U∗(γ,θt ,At)≡max
a∈At

{
min

b∈BR2(a)
u1(γ,θt ,a,b)

}
, (3.1)

and type γ’s optimal commitment actions in At under state θt are the actions that attain this

maximum. Type γ’s (expected) optimal commitment payoff is

U∗(γ)≡ ∑
(θt ,At)∈Θ×A

p(θt ,At)U∗(γ,θt ,At). (3.2)

Let Pr(·|Ãt) ∈ ∆(A ) be player 1’s belief about At after observing Ãt . Since At is distributed

according to p and Ãt is distributed according to G(·|At) conditional on At , Pr(·|Ãt) is derived

from Bayes rule for every Ãt that occurs with positive probability under some on-path At .

Assumption 1.

(i) Every Ãt ∈A occurs with positive probability.

(ii) For every Ãt ∈A , either Pr(At = Ãt |Ãt) = 1, or Pr(a /∈ At |Ãt)> 0 for every a ∈ Ãt .

Assumption 1(i) requires that every non-empty subset of A is the set of feasible actions

with positive probability; it rules out situations in which all of player 1’s actions are feasible

with probability 1. When that is the case, our example in Section 2 implies that the patient

player can receive their minmax value in some equilibria. Assumption 1(ii) requires that

upon observing Ãt , either player 1 knows that At = Ãt , or every action in Ãt is infeasible with

positive probability. A sufficient condition for Assumption 1(ii) is that there exists M > 0

such that G(Ãt |A′t)≥M ·G(Ãt |A′′t ) for every A′t $ Ãt and A′′t $ Ãt .

Theorem 1. Fix an ε > 0. Then there exist δ ∈ (0,1) and η > 0 such that if p and G

satisfy Assumption 1, δ > δ , and G(Ãt = At |At) ≥ 1−η for every At ∈ A , then each type

γ ∈ {γo,γh} receives payoff at least U∗(γ)− ε in every equilibrium.
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Theorem 1 shows that each type of patient player can secure (approximately) their op-

timal commitment payoff when they know their feasible action set with probability above

some cutoff at the announcement stage. Section 5 discusses several extensions, including

situations where player 1 has more than two types, or when player 2t observes {y0, ...,yt−1}

with noise, or when player 2t can also observe a bounded number of signals of player 1’s

past actions and announcements in addition to {y0, ...,yt−1} and mt , or when At " Ãt with

small but positive probability, and more generally, the role of our modeling assumptions.

Section 5 also presents an example where Theorem 1 fails when player 2’s observe the

entire history of player 1’s actions and announcements. Here the opportunistic type cannot

build a reputation for honesty by simply keeping their word, they also need to announce

actions that the honest type announces with high probability. Since the honest type and the

opportunistic type can have different stage-game payoff functions, the opportunistic type

may face a tradeoff between announcing actions that lead to a high payoff and announcing

actions that lead to a better reputation.

For a snapshot of our argument, fix any equilibrium, and consider type γ’s payoff when

they announce an optimal commitment action for Ãt under state θt , that is

a∗(γ,θt , Ãt) ∈ argmax
a∈Ãt

{
min

b∈BR2(a)
u1(γ,θt ,a,b)

}
, (3.3)

and keep their word whenever feasible. We call this the “naive commitment strategy”.

Let us start from the case in which player 1 has perfect information about their feasible

action set At at the announcement stage, i.e. G(Ãt = At |At) = 1 for every At . The naive com-

mitment strategy generates the same distribution over {y0,y1, ...,yt−1} as the honest type’s

equilibrium strategy since the honest type always keeps their word. Because every Ãt oc-

curs with positive probability, the honest type announces each of their actions with positive

probability, so player 2t cannot rule out the honest type regardless of player 1’s period-t an-

nouncement. Thus if player 2t fails to best reply to the announced action, their belief must

assign a significant probability to the event that at 6=mt , which implies that observing at =mt

increases the posterior probability with which player 1 is honest. As a result, the expected
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number of “bad” periods where player 2 does not best reply to all announcements is bounded

from above uniformly in δ , which is why each type of patient player receives at least their

optimal commitment payoff in every equilibrium.

Next, suppose the patient player has imperfect information about which of their actions

are feasible, i.e., G(Ãt = At |At) < 1, and consider type γ’s payoff from the “naive commit-

ment strategy”: announce the optimal commitment action a∗(γ,θt , Ãt), play the announced

action whenever a∗(γ,θt , Ãt) ∈ At , and otherwise play an arbitrary action in At . Because the

announced action may not be feasible, the following issues arise:

1. When type γ deviates to the naive commitment strategy, it can induce a different dis-

tribution of y than that induced by player 1’s equilibrium strategy,7 and the induced

distribution may not be absolutely continuous with respect to the equilibrium distri-

bution. This precludes the direct application of the results in Fudenberg and Levine

(1989, 1992) and Sorin (1999). Moreover, the short-run players observe the long-

run player’s announcement before moving, and announcements and actions are imper-

fectly recalled, which makes the payoff lower bounds provided by Gossner (2011) and

Ekmekci, Gossner, and Wilson (2012) not directly applicable. 8

2. The opportunistic type’s reputation can deteriorate in expectation under the naive com-

mitment strategy.9 This is the case when announcing the optimal commitment action

induces a distribution that is closer to the distribution induced by the opportunistic

type’s equilibrium strategy than to the honest type’s equilibrium strategy. This is not

the case when the deviation is to imitate the play of a positive-probability commitment

7This occurs when type γ’s optimal commitment action is less likely to be feasible than the action announced
by the honest type in equilibrium. In the example in Section 2, suppose Pr(At = {H}|Ãt = {H,L}) = ε and
Pr(At = {L}|Ãt = {H,L}) = 2ε . Type γh announces L in equilibrium when θt = θg and Ãt = {H,L} while
type γ’s optimal commitment action when θt = θg and Ãt = {H,L} is H.

8Ekmekci, Gossner, and Wilson (2012) studies a reputation model in which the patient player’s type changes
over time. The key step in their proof is to bound payoffs by a function of the discounted sum of divergences
between the equilibrium histories seen by player 2n and the histories when player 1 imitates the commitment
type. In the limit when the probability of type change in every period goes to 0, the sum goes to 0 and the
bound approaches the optimal commitment payoff. Appendix B explains why an analogous argument does
not work here.

9The expectation here is taken at the ex-ante stage before player 1 observes θt and Ãt .
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type.

Our proof bounds the patient player’s payoff by examining an auxiliary misspecified

learning problem faced by the short-run players where the true data generating process is the

one induced by the patient player’s deviating strategy, and the data generating processes in

the support of their prior belief are the ones induced by the honest type’s and the opportunis-

tic type’s equilibrium strategies.10

We develop a novel argument using concentration inequalities. For any given equilib-

rium, consider type γ’s payoff from the following deviation: (1) In “good periods” where

player 2t best replies to any announcement, announce a∗(γ,θt , Ãt) and play the announced

action whenever it is in At ; (2) in other “bad periods”, imitate the honest type’s equilibrium

strategy. The opportunistic type’s probability of playing honestly is bounded away from 1 in

every bad period, which leads to a lower bound on the Kullback-Leibler divergence between

its induced distribution over outcomes and that under the honest type’s equilibrium strat-

egy.11 In every good period, the Kullback-Leibler divergence between observed outcomes

under type γ’s deviation and those under the honest type’s equilibrium strategy is bounded

from above by a strictly positive function of η that converges to zero as η → 0.

Applying the Azuma-Hoeffding inequality to the log likelihood ratio between the honest

type and the opportunistic type,12 we provide an upper bound on the fraction of bad periods

from period 0 to T for every large enough T . Intuitively, this is because when η is small,

the honest type keeps their word with high probability conditional on every announcement,

which implies that the myopic players have a strict incentive to best reply to any announce-

ment when the log likelihood ratio is above a certain cutoff. We then translate the upper

bound on the undiscounted frequency of bad periods to an upper bound on the discounted

average frequency of bad periods that converges to 0 as η becomes arbitrarily small. For

10Past work on misspecified learning, e.g. Esponda and Pouzo (2016), Bohren and Hauser (2021), Esponda
and Pouzo (2020), Fudenberg, Lanzani, and Strack (2021), Esponda, Pouzo, and Yamamoto (2021), Bohren
and Hauser (2021), and He (2021) either assumes i.i.d. signals or does not bound the limit frequencies of
actions or beliefs.

11For two distributions P,Q ∈ ∆(X), the Kullback-Leibler divergence between P and Q is ∑x∈X P(x) log P(x)
Q(x) .

12In order to apply the Azuma-Hoeffding inequality, we subtract the expected increment of this process in every
period and construct a martingale process under the proposed deviation for type γ .
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a sufficiently patient player of type γ , this deviation gives a payoff arbitrarily close to their

optimal commitment payoff.

4 Proof of Theorem 1

Fix a Nash equilibrium ({σ̃γ ,σγ}γ∈Γ,σ2), and define νt ∈ {0,1} by

1. νt = 1 if for every a ∈ A, when player 1 announces a in period t, player 2 strictly

prefers one of the actions in BR2(a) to all actions that do not belong to BR2(a),

2. νt = 0 otherwise.

Now define a strategy for type γ , (σ̃ ′γ ,σ
′
γ), by:

1. At histories where νt = 1, type γ announces a∗(γ,θt , Ãt) defined in (3.3) upon observ-

ing (θt , Ãt) and keeps their word if a∗(γ,θt , Ãt) ∈ At , and uniformly mixes between all

actions in At otherwise.

2. At histories where νt = 0, type γ plays the honest type’s equilibrium strategy, that is,

σ̃ ′γ = σ̃γh and σ ′γ = σγh at every such history.

We will bound type γ’s payoff from (σ̃ ′γ ,σ
′
γ) when player 2s uses their equilibrium strat-

egy. As a first step, note that there exists ξ ∈ (0,1) that depends only on u2 such that for

every a ∈ A, all actions outside of BR2(a) are strictly inferior for player 2 when they believe

that player 1 plays a with probability more than ξ . Let p ≡ mina∈A p(Ãt = {a}), which is

strictly positive by Assumption 1. Markov’s inequality implies that in every period where

νt = 0, the probability that mt = at is less than 1− p(1− ξ ) conditional on player 1 being

opportunistic. Since G(Ãt = At |At)≥ 1−η for every At ∈A , the probability that mt = at is

at least 1−η under (σ̃ ′γ ,σ
′
γ).

Let π̃t ∈ (0,1) be the probability player 2t’s belief assigns to the honest type after ob-

serves {y0, ...,yt−1} but not mt . Let πt ∈ (0,1) be the probability of honest type after player
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2t observes {y0, ...,yt−1} and mt . Let l̃t ≡ log π̃t
1−π̃t

and lt ≡ log πt
1−πt

. If νt = 0, then according

to Bayes rule, we have

E
[
l̃t+1− l̃t

∣∣∣σ̃ ′γ ,σ ′γ]≥ D(1−η ||1− p(1−ξ ))≡ α,

where D(x1||x2) stands for the Kullback-Leibler divergence between a distribution that at-

taches probability x1 to yt = 1 and one that attaches probability x2 to yt = 1.

In every period where νt = 1, Assumption 1(ii) and the fact that p has full support to-

gether imply the existence of ρ ∈ (0,1) that is independent of η such that the probability

that mt = at is less than 1−ρη under the equilibrium strategy of the honest type. Since the

probability that mt = at is at least 1−η under (σ̃ ′γ ,σ
′
γ),

E
[
l̃t+1− l̃t

∣∣∣σ̃ ′γ ,σ ′γ]≥−D(1−η ||1−ρη)≡−β .

Therefore, for every L ∈ R+, there exists η > 0 such that α/β > L when η ∈ [0,η ].

Recall that p ≡ mina∈A p(Ãt = {a}) > 0. When η ∈ [0,η ] the honest type announces a

and takes action a with probability at least p(1−η) for every a ∈ A. Therefore, lt − l̃t ≥

log p(1−η). As a result, there exists l∗ ∈ R+ such that l̃t ≥ l∗ implies that νt = 1.

We establish a lower bound for the expected value of ∑
∞
t=0(1−δ )δ tνt when δ is close to

1. Let Zt be a random variable such that for every yt ∈ {0,1},

Zt = log
Pr(yt |σ̃γh,σγh)

Pr(yt |σ̃γo,σγo)
with probability Pr(yt |σ̃ ′γ ,σ ′γ). (4.1)

By definition, E[Zt |σ̃ ′γ ,σ ′γ ] ≥ −β when νt = 1 and E[Zt |σ̃ ′γ ,σ ′γ ] ≥ α when νt = 0. By con-

struction, l̃t+1 = l̃t +Zt for every t ∈ N.

Lemma 1. For every ε > 0, there exists T ∈ N such that for every t ≥ T ,

t−1

∑
s=0

E
[
νs

∣∣∣σ̃ ′γ ,σ ′γ]≥ t
(

α

α +β
− ε

)
. (4.2)

Our proof uses the Azuma-Hoeffding inequality.
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Azuma-Hoeffding Inequality. Let {X0,X1, · · ·} be a martingale such that |Xk−Xk−1| ≤

ck. For every n ∈ N and ε̄ > 0,

Pr
(

Xn−X0 ≥ ε̄

)
≤ exp

(
−ε̄2

2∑
n
k=1 c2

k

)
.

Proof of Lemma 1: Construct a martingale process {l̂t}t∈N recursively from {l̃t}t∈N. Let

l̂0 ≡ l̃0, and for every t ∈N, let l̂t+1 ≡ l̂t +Zt−E[Zt |σ̃ ′γ ,σ ′γ ]. The process {l̂t}t∈N is a martin-

gale. Since l̃t+1 = l̃t +Zt , we have

l̂t = l̃t−
t−1

∑
s=0

E
[
Zs

∣∣∣σ̃ ′γ ,σ ′γ].
If 1

t ∑
t−1
s=0 νs ≤ α

α+β
− ε1 for some ε1 > 0, then

t−1

∑
s=0

E
[
Zs

∣∣∣σ̃ ′γ ,σ ′γ]≥ tε1(α +β ).

This is because E[Zt |σ̃ ′γ ,σ ′γ ]≥−β when νt = 1 and E[Zt |σ̃ ′γ ,σ ′γ ]≥ α when νt = 0.

Applying the Azuma-Hoeffding inequality, we obtain:

Pr(l̃t ≤ l∗|σ̃ ′γ ,σ ′γ)=Pr
(

l̂t− l̂0≤ l∗− l̃0−tε1(α+β )
∣∣∣σ̃ ′γ ,σ ′γ)≤ exp

(
− (l∗− l̃0− tε1(α +β ))2

2tC2

)
,

(4.3)

where C > 0 is the difference between the largest realization of Zt and the smallest realization

of Zt . The right-hand-side of (4.3) vanishes to zero exponentially as t→+∞.

Since νt = 1 when l̃t ≥ l∗, we know that for every ε0 > 0, there exists T0 ∈ N, such that

for every t ≥ T0, if ∑
t−1
s=0 νs ≤ t

(
α

α+β
−ε1

)
, then νt = 1 with probability at least 1−ε0 under

(σ̃ ′γ ,σ
′
γ). By setting ε0 <

β

α+β
, we have E[νt |σ̃ ′γ ,σ ′γ ]≥ 1− ε0 >

α

α+β
. Then for every t > T0,

we have E[∑t−1
s=0 νs|σ̃ ′γ ,σ ′γ ]≥ (t−T0−1)( α

α+β
−ε1). The conclusion of Lemma 1 follows by

choosing any ε > ε1 > 0, and T ≥ α(T0+1)
(ε−ε1)(α+β ) .

14



Since νt is either 0 or 1, we can use summation by parts to obtain:

E
[ ∞

∑
t=0

(1−δ )δ t
νt

∣∣∣σ̃ ′γ ,σ ′γ]= (1−δ )2
+∞

∑
t=0

δ
t

t

∑
s=0

E
[
νs

∣∣∣σ̃ ′γ ,σ ′γ]. (4.4)

Lemma 1 implies that (4.2) applies to every large enough t. Plugging (4.2) into (4.4), we

know that for every ε̂ > 0, there exists δ ∈ (0,1), such that for every δ ∈ (δ ,1), we have

E
[ ∞

∑
t=0

(1−δ )δ t
νt

∣∣∣σ̃ ′γ ,σ ′γ]≥ α

α +β
− ε̂. (4.5)

Since α

β
→ +∞ as η → 0, and type γ’s stage-game payoff is at least U∗(γ) in every period

where νt = 1, we can find η small enough that each type’s payoff from strategy (σ̃ ′γ ,σ
′
γ) can

be an arbitrarily large fraction of U∗(γ).

5 Extensions & Discussion

Multiple Types: Theorem 1 extends to any finite number of honest types and opportunistic

types, who can potentially have different stage-game payoffs. Let Γh be the set of honest

types and let Γo be the set of opportunistic types, with Γh and Γo being finite. Let Γ≡Γh∪Γo.

For every γh ∈ Γh, type γh is restricted to choose mt ∈ Ãt and to choose at = mt if mt ∈ At .

For every γo ∈ Γo, type γo only faces the restriction that at ∈ At . Type γ ∈ Γ’s stage-game

payoff is u1(γ,θt ,at ,bt). Player 2’s payoff does not depend on γ and θ .

If we define U∗(γ,θt ,At) and U∗(γ) in the same way as in (3.1) and (3.2), we can show

that under the conditions in Theorem 1, type γ’s payoff in every equilibrium is at least

U∗(γ)− ε for every γ ∈ Γ. The proof uses a similar argument as that of Theorem 1, ex-

cept for the construction of (σ̃ ′γ ,σ
′
γ) at histories where νt = 0, which is given by

σ̃
′
γ ≡ ∑

γh∈Γh

π̃t(γh)

∑γ ′h∈Γh
π̃t(γ ′h)

σ̃γh
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and

σ
′
γ ≡ ∑

γh∈Γh

πt(γh)

∑γ ′h∈Γh
πt(γ ′h)

σγh

where π̃t ∈ ∆(Γ) is player 2t’s belief after they observe {y0, ...,yt−1} but before they observe

mt , and πt ∈ ∆(Γ) is player 2t’s belief after they observe both {y0, ...,yt−1} and mt . The rest

of the proof follows from the same step as that of Theorem 1.

Noisy Signals of Feasible Actions: In our baseline model, the patient player knows that

actions in A\Ãt will not be feasible in period t. This assumption is not necessary for Theorem

1, which extends to settings where actions in A\Ãt can be feasible at the action stage with

small but positive probability (i.e., G(Ãt = At |At)is close to 1 for every At), provided that the

honest type continues to only announce actions in Ãt .

Noisy Observation of Past Honesty: In many applications of interest, such as retail mar-

kets, information about the seller’s honesty is passed on to future consumers via word-of-

mouth communication, and errors are likely in the process of information transmission.

For this reason it is interesting to note that Theorem 1 extends to settings where yt is

observed with noise. In particular, let xt ∈ X be a noisy signal of yt , distributed according to

F(·|yt) ∈ ∆(X). We assume that X is finite and moreover, F(·|y = 1) 6= F(·|y = 0), that is,

xt can statistically identify yt . Corollary 1 generalizes Theorem 1 when player 2t observes

{x0, ...,xt−1} instead of {y0, ...,yt−1}

Corollary 1. Suppose the distributions p and G satisfy Assumption 1 and xt can statisti-

cally identify yt . For every ε > 0, there exist δ ∈ (0,1) and η > 0 such that when δ > δ and

G(Ãt = At |At)≥ 1−η for every At ∈A , then each type γ receives payoff at least U∗(γ)−ε

in every equilibrium.

The proof resembles that of Theorem 1, so it is omitted. Intuitively, observing a noisy

signal of yt reduces the responsiveness of player 2’s posterior belief with respect to their

observations. In the proof of Theorem 1, the monitoring noise reduces the absolute value of

E[l̃t+1− l̃t ] both in good periods (i.e., periods where νt = 1) and in bad periods (i.e., periods
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where νt = 0). Nevertheless, when η is small enough, the ratio between the expected increase

in l̃t during bad periods and the expected decrease in l̃t during good periods remains large.

The same argument implies that the fraction of bad periods is small and the patient player

can secure their optimal commitment payoff in every equilibrium.

Announcing the State & Observability of the State In some applications, the patient

player also announces the state θt in addition to their intended action at , and the state can be

observed by the future short-run players. The honest type announces the state truthfully and

plays their announced action whenever it is available.

Our main result applies in this setting. Intuitively, suppose type γ uses the deviation we

constructed in the proof of Theorem 1 to announce and to take actions, and to truthfully

report the state in every period. Since truthfully announcing the state can never decrease the

log likelihood ratio between the honest type and the opportunistic type, one can use the same

argument as the proof of Theorem 1 to show that every type of patient player receives at least

their optimal commitment payoff.

Announcing the state is different from announcing an intended action, since the true

state is fixed when player 1 makes their announcement while player 1’s action is not fixed.

As a result, there are multiple ways in which player 1’s announced action matches their

realized action (e.g., announcing any available action and playing it afterward), while there

is only one way in which they can announce the true state. As a result, truthfully announcing

the state cannot lead to a decrease in the patient player’s reputation, while announcing an

intended action and playing the announced action may lead to a decrease in reputation, since

in equilibrium, the honest type may announce that action with lower probability than the

opportunistic type does.

Bounded Observation of Past Actions and Announcements: Our baseline model ex-

cludes the possibility that player 2 observes player 1’s past actions and announcements in

addition to whether they coincide. We extend Theorem 1 so that the player 2s can also ob-

serve a noisy signal zt about at and mt , in addition to yt , as long as each of them can only
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observe the realizations of zt in a bounded number periods.

Formally, let zt ∈ Z, where zt is distributed according to H(·|mt ,at) ∈ ∆(Z), where Z is

a finite set. Suppose for every t ∈ N, player 2t can observe player 1’s announcement mt ,

the history of whether player 1 has kept their word {y0, ...,yt−1} and a (possibly stochastic)

subset of {z0, ...,zt−1} that has at most K elements, with K ∈ N an exogenous parameter.

Our assumption on the asymmetry between player 2s’ observations of yt and zt is mo-

tivated by retail markets in developing economies, or more generally, markets without well

developed recording-keeping institutions. In those markets, detailed information about sell-

ers’ actions and announcements (e.g., the quality of their services, various attributes of their

products, the content of their advertisements, and so on, which correspond to zt) is likely

to get lost over time. By contrast, simple coarse information about sellers’ records, such as

whether they have kept their word (which corresponds to yt), is likely to be more persistent.13

Corollary 2. Suppose Assumption 1 is satisfied, each player 2 observes at most K real-

izations of z, and at least one of the following two conditions is satisfied:

1. H(·|a,m) has full support for every (a,m) ∈ A×A,

2. G(Ãt = At |At) = 1 for every At ∈A ,

then for every ε > 0, there exist δ ∈ (0,1) and η > 0 such that when δ > δ and G(Ãt =

At |At)≥ 1−η for every At ∈A , then each type γ receives payoff at least U∗(γ)−ε in every

equilibrium.

Intuitively, the honest type announces every a∈ A with positive probability. Therefore, if

any type of the patient player adopts the deviation in the proof of Theorem 1, no realization

of z can rule out the honest type, so the decrease in the log likelihood ratio between the

honest type and the opportunistic type is bounded from above for every z ∈ Z.14 If player 2

13This justification only applies to situations in which the patient player’s optimal commitment action is differ-
ent in different states.

14This requires either the distribution of z to have full support, or player 1 to perfectly observe the set of
available actions when making announcements. Intuitively, if G(Ãt =At |At) 6= 1 and the distribution of z does
not have full support, e.g., zt = (at ,mt), then suppose the honest type announces a∗ if and only if Ãt = {a∗},
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observes at most K realizations of z, then the decrease in the log likelihood ratio must also

be bounded from above.

Let l̃t be the log likelihood ratio between the honest type and the opportunistic type after

player 2t observes {y0, ...,yt−1} but before they observe mt and the past realizations of z.

Both m and z being boundedly informative implies the existence of l∗ > 0 such that player 2t

has a strict incentive to best reply to any announcement when l̃t > l∗. The rest of the proof

follows from that of Theorem 1.

Unbounded Observation of Past Actions and Announcements: We show that there are

equilibria where the opportunistic type’s payoff is bounded below their commitment payoff

when player 2’s can observe the entire history of player 1’s past actions and announcements.

The intuition is that the honest type and the opportunistic type can have different stage-game

payoff functions, so the opportunistic type may receive a low payoff when they play the

honest type’s equilibrium strategy. To illustrate, consider an example where Θ is a singleton

and players’ stage-game payoffs are given by:

γ = γh T N

H 2,1 0,0

L 3,0 1,1

γ = γo T N

H 0,1 0,0

L 0,0 0,1

These payoff functions satisfy the assumptions in our paper since player 2’s payoff does

not depend on player 1’s type. We assume that G(Ãt = At |At) = 1 for every At ⊂ {H,L},

that is, player 1 perfectly observes the set of feasible actions before making their announce-

ment. The distribution of At is such that At = {H,L} with probability 1− ε , At = {H} with

probability ε

2 , and At = {L} with probability ε

2 . Throughout, we fix an ε ∈ (0,2/5).

Such a distribution of (At , Ãt) satisfies Assumption 1 in our paper. The opportunistic-type

and the opportunistic type’s optimal commitment action in Ãt = {a∗,a′} is a∗, then under the deviation we
construct, the opportunistic type announces a∗ after observing Ãt = {a∗,a′} and plays a′ when At = {a′}.
If the distribution of zt does not have full support, then some realizations of zt may occur with positive
probability if and only if (at ,mt) = (a′,a∗), which does not occur under the honest type’s equilibrium strategy
so the opportunistic type fully reveals their type with positive probability through z under the deviation we
construct.
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player 1’s commitment payoff equals

ε

2
+(1− ε

2
)2 = 2− ε

2
.

This payoff can be obtained if player 1 commits to play H when H is feasible, and commits

to play L when H is not feasible.

Theorem 2. Suppose player 2s’ prior belief attaches probability no more than 1
2 to the

honest type. There exists δ ∈ (0,1) such that for every δ > δ , there exists an equilibrium

where the opportunistic type’s payoff equals 7
4 .

We provide a constructive proof of Theorem 2 in Appendix A. The comparison between

Theorem 2 and Theorem 1 implies that allowing the short-run players to receive more infor-

mation can hurt the patient player’s incentives to build reputations for honesty.

Short-Run Players’ Payoffs Depending on the State: Our baseline model assumes that

the short-run players’ payoffs do not depend on θ . Our reputation result fails when u2 is a

function of θ . For example, suppose players’ payoffs are given by:

θ1 T N

H 2,2 0,0

L 3,−3 0,0

θ2 T N

H 3,−3 0,0

L 2,2 0,0

The two states θ1 and θ2 are equally likely. In state θ1, the Stackelberg action is H and

the Stackelberg payoff is 2 for both types of the long-run player. In state θ2, the Stackelberg

action is L and the Stackelberg payoff is 2 for both types of the long-run player. The expected

Stackelberg payoff is thus 2.

Suppose At = Ãt with probability 1, i.e., player 1 always knows the set of feasible actions

at the announcement stage. In each period, with probability 1−ε , player 1 chooses from the

set {H,L}, with probability ε/2 they must choose H, and with probability ε/2 they must

choose L. This environment satisfies our other assumptions except that player 2’s payoff

depends on θ . Now consider the following strategy profile:
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• Short-run players play N at every history and never revise beliefs about the long-run

player’s type.

• Both types of the long-run player announce and play L whenever it is feasible, and

announce and play H otherwise.

The short-run players are always playing their myopic best responses, since the long-run

player’s announcements reveal no information about the state, so N is a best response to both

H and L. Since the actions of the two types of the long-run player coincide, the short-run

players never learn anything about the long-run player’s type. Both types of the long-run

player are playing best responses since short-run players always play N. Hence, we have

an equilibrium in which the payoffs of both types of the long-run player are bounded below

their Stackelberg payoffs even when ε → 0 and δ → 1.

6 Related Literature

Our paper contributes to the reputation literature by showing that the patient player can se-

cure their optimal commitment payoff in all Nash equilibria when every type’s behavior is

endogenous. This contrasts to reputation models in which at least one type is committed to

an exogenous strategy (Sobel, 1985; Fudenberg and Levine, 1989; Fudenberg and Levine,

1992; Benabou and Laroque, 1992; Mathevet, Pearce, and Stacchetti, 2019; Gossner, 2011;

Ekmekci, Gossner, and Wilson, 2012), as well as other reputation models without commit-

ment types that focus on Markov equilibria (Schmidt, 1993; Daley and Green, 2012; Board

and Meyer-ter-Vehn, 2013),15 or establishing folk theorems (Pei, 2020; Pei, 2021). Our

model also differs from those that posit that an exogenous value for a reputation, e.g. Ol-

szewski (2004) and Ottaviani and Sørensen (2006).

Our work is related to the literature on repeated communication games e.g. Sobel (1985),

Benabou and Laroque (1992), Best and Quigley (2020), Mathevet, Pearce, and Stacchetti

15Section 3 of Ely and Välimäki (2003) studies reputation models without commitment types and show that
reputation concerns can generate perverse incentives that lead to low-payoff equilibria for the long-run player.
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(2019), and Pei (2020). In those papers, a sender communicates with a receiver about a

payoff-relevant state, which stands in contrast to our model where the sender communicates

their intended action. As we have commented in Section 5, communicating the payoff-

relevant state and allowing the short-run players to observe the state ex post do not affect our

conclusions.

Our model is also related to the literature on reputational bargaining, e.g. Kambe (1999),

Abreu and Gul (2000), Abreu and Pearce (2007), Bagwell (2018), Kim (2009), and Sanktjo-

hanser (2020), in which players announce their bargaining postures in the beginning of the

game and decide when to concede to their opponents’ offers. In contrast to those papers, the

honest type’s announcement in our model is only valid for only one period; they are free to

make any announcement in the future.

The fact that many people prefer to be honest has been established experimentally by

e.g. Gneezy (2005), Charness and Dufwenberg (2006) and Gneezy, Kajackaite, and Sobel

(2018). Kartik, Ottaviani, and Squintani (2007) and Kartik (2009) show how costs of lying

change the equilibrium outcomes of strategic communication games. Instead of positing that

some players have a cost of lying, we follow Chen, Kartik, and Sobel (2008) and Chen (2011)

and assume that the patient player is either an honest type who never lies, or an opportunistic

type who faces no cost of lying. Since Theorem 1 allows for different types to have different

preferences as well as any finite number of types, it extends to cases with strictly positive

and possibly heterogeneous lying costs.

Jullien and Park (2020) studies repeated buyer-seller games in which a seller privately

observes their product quality, which is a noisy signal of their effort, and shows that commu-

nication about quality improves the maximum social welfare if and only if the seller’s cost

of effort is intermediate.16 Our paper examines whether a patient player can guarantee high

payoffs in all equilibria by building reputations for honesty. Successful reputation building

in our model hinges on the patient player’s knowledge about their feasible action set when

16Jullien and Park (2014) shows that communication accelerates consumer learning when product quality is
determined by the seller’s type, and the high type seller is non-strategic and always tells the truth. Awaya
and Krishna (2016) identifies a class of games in which players can achieve perfectly collusive payoffs with
communication, but not without it.
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making announcements, but does not depend on the players’ payoff functions. In a working

paper version (Fudenberg, Gao, and Pei, 2020), we extend our analysis to Jullien and Park

(2020)’s setting where the seller announces a private signal of their effort before buyers act.

We establish a reputation result when the signal has full support and show that reputation

fails when the signal perfectly reveals the agent’s effort.

Our requirement that the feasible action set is stochastic is related to Celentani, Fuden-

berg, Levine, and Pesendorfer (1996), and Atakan and Ekmekci (2015), which show that

full support monitoring can help reputation building when the uninformed player is long-

lived. Their results, unlike ours, require that the informed player cannot perfectly observe

the uninformed player’s actions.

7 Conclusion

This paper provides sufficient conditions under which a patient player can obtain a high

payoff by building a reputation for honestly announcing their intended actions, rather than

for playing particular actions. We establish a reputation result when the uninformed players

can observe whether the reputation-building player has kept their word in the past, and face

uncertainty about which of the reputation-building player’s actions are feasible.

A Proof of Theorem 2

We construct a class of equilibria where the opportunistic type’s payoff equals v∗ ≡ 7
4 , which

is strictly lower than the opportunistic type’s optimal commitment payoff 2− ε

2 when ε is

small enough. As a convention, we say that type γ plays (a,a′) at history ht if he announces

action a and takes action a′ at ht .

State Variables: Our construction keeps track of two state variables:

1. Let l(ht) be the log likelihood ratio between the honest type and the opportunistic type

under player 2’s belief at ht after they observe {a0, ...,at−1,m0, ...,mt−1} but before
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they observe player 1’s period t announcement. Let L(ht) ≡ el(ht) be the likelihood

ratio at ht .

2. Let v(ht) denote the opportunistic type’s continuation value at ht .

The initial values of these state variables are v(h0) = 7
4 and l(h0) = log π0

1−π0
≤ 0.

Let

v≡ 2+δ

1+δ
, (A.1)

which is strictly between 1 and 7
4 when δ is close to 1.

In equilibrium, learning takes place if and only if l(ht) /∈ {−∞,+∞}, and learning stops

if l(ht) ∈ {−∞,+∞}. The set of histories where learning takes place are partitioned into two

classes: histories where v(ht)> v and histories where v(ht)≤ v. We will verify later that at

every history where l(ht) /∈ {−∞,+∞} and v(ht)≤ v, it must be the case that l(ht)≤ 0.

We claim that by our construction, at every history at which active learning takes place,

v−2(1−δ )

δ
≤ v(ht)≤ 2− ε

2
, (A.2)

which implies, when δ > 1− ε

7 , that the opportunistic type’s continuation value is between

v− ε

2 and 2− ε

2 once learning stops. The upper bound holds if, at every history where the

opportunistic type plays (H,L) with positive probability, they are indifferent between playing

(H,L) and playing either (H,H) or (L,L), at least one of which yields a stage-game payoff

less than 2− ε

2 . Since v∗ > v for large enough δ , the lower bound holds if in every active

learning period, either v(ht)≥ v(ht−1), or v(ht−1)≥ v and v(ht)≥ v(ht−1)−2(1−δ )
δ

.

We first describe players’ strategies when lt = −∞ by showing that every payoff v ∈

[1− ε

2 ,2−
ε

2 ] can be attained in some equilibrium of the game where player knows that

player 1 is the opportunistic type. Then we describe players’ strategies when active learning

takes place.

No Reputation Phase: We show that there exists δ ∈ (0,1) such that for every δ > δ and

v ∈ [1− ε,2− ε

2 ], there exists an equilibrium where the opportunistic type’s continuation
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value is v in the repeated complete information game where player 1 is known to be the

opportunistic type and their discount factor is δ .

According to Fudenberg and Maskin, 1991, for every η > 0, there exists δ ∈ (0,1) such

that when δ > δ , there exists a sequence v∗0,v
∗
1, ...,v

∗
n.... ∈ {1− ε

2 ,2−
ε

2} such that

v = (1−δ )
+∞

∑
t=0

δ
tv∗t ,

and for every s ∈ N,

(1−δ )
+∞

∑
t=s

δ
t−sv∗t ∈ (v−η ,v+η).

Next, the opportunistic type’s payoff is 1− ε

2 in the following equilibrium: Player 1 an-

nounces L regardless of the realization of At , player 1 plays L as long as L ∈ At and player 2

plays N. Hence, for every v ∈ [1− ε,2− ε

2 ], player 1’s continuation value is v in an equilib-

rium where:

1. For every t such that v∗t = 2− ε

2 , player 1 announces H when H ∈ At and announces

L otherwise, and takes an action that coincides with their announcement. Player 2

best replies to player 1’s announcement. If player 1 plays an action different from

their announcement, then play the continuation equilibrium where player 1’s payoff is

1− ε

2 .

2. For every t such that v∗t = 1− ε

2 , player 1 announces L no matter what and plays L no

matter what. Player 2 plays N regardless of player 1’s announcement.

In what follows, we assume that δ > max{δ ,1− ε/7}.

Active Learning Phase: High Continuation Values If ht is such that v(ht)> v, then there

are two subcases. If v(ht) is such that

v(ht)− (1−δ )

δ
> 2− ε

2
, (A.3)
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The honest type plays (L,L) with probability 3
4 and plays (H,H) with probability 1

4 . The op-

portunistic type plays (H,L) with probability 1
2 and plays (H,H) with probability 1

2 . Player

2 best replies to player 1’s announced action.

1. After observing (L,L) at ht , the posterior log likelihood ratio is lt+1 =+∞, and starting

from period t +1, player 2 best replies to player 1’s announced action in every future

period until they have observed player 1 not keeping their word (after which they

play N in all future periods). Hence, the opportunistic type’s continuation value after

playing (L,L) is 2− ε

2 . Inequality (A.3) implies that the opportunistic type has no

incentive to play (L,L) at ht .

2. After observing (H,L) at ht , the posterior log likelihood ratio is lt+1 = −∞ and the

opportunistic type’s continuation value in period t + 1 equals v(ht+1) ≡ v(ht)−3(1−δ )
δ

.

Since v(ht) < 2− ε

2 , we have 1 < v(ht+1) < v(ht) < 2− ε

2 , which means that v(ht+1)

can be delivered by some continuation equilibrium after player 2 knows that player 1

is opportunistic.

3. After observing (H,H) at ht , player 1’s continuation value in period t +1 is v(ht+1)≡
v(ht)−2(1−δ )

δ
, which is strictly less than v(ht) since v(ht)< 2− ε

2 . The posterior likeli-

hood ratio after observing (H,H) is l(ht)− log2.

If v(ht) is such that
v(ht)− (1−δ )

δ
≤ 2− ε

2
,

then player 2 best replies to player 1’s announced action. The honest type plays (L,L) with

probability 1− ε

2 and plays (H,H) with probability ε

2 . The opportunistic type plays (H,H)

with probability ε and plays (L,L) with probability 1− ε . Player 1’s continuation value in

period t + 1 is v(ht)−(1−δ )
δ

after playing (L,L) at ht and is v(ht)−2(1−δ )
δ

after playing (H,H)

at ht . The log likelihood ratio is l(ht)+ log 1− ε

2
1−ε

after playing (L,L) and is l(ht)− log2 after

playing (H,H).
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Active Learning Phase: Low Continuation Values If ht is such that v(ht)≤ v, then player

2 plays N when player 1 announces L and plays T with probability v(ht)
2 when player 1

announces H. The honest type plays (L,L) with probability 1− ε

2 and plays (H,H) with

probability ε

2 . The opportunistic type plays (H,H) with probability ε

2 , plays (H,L) with

probability (L(ht)+ 1) ε

2 , and plays (L,L) with complementary probability. One can verify

that as long as l(ht)≤ 0, i.e., L(ht)≤ 1, the above mixed strategy is feasible and player 2 is

indifferent between T and N when player 1 announces H.

By construction, if (H,H) is played at ht , then l(ht+1) = l(ht) and the opportunistic type

stage-game payoff equals their continuation value at ht , and let their continuation value in

period t +1 to equal v(ht). After playing (L,L),

l(ht+1) = l(ht)+ log
1− ε/2

1− (L(ht)+2)ε/2

and the opportunistic type’s continuation value is v(ht)−(1−δ )
δ

.

After playing (H,L), l(ht+1) =−∞ and the opportunistic type’s continuation value is

v(ht)− (1−δ )(2v(ht)+1)
δ

.

The above payoff is between 3
2 − ε and 2− ε when δ > 1− ε

7 , which means that it can be

delivered by an equilibrium when player 2 knows that player 1 is opportunistic. With these

continuation values, the opportunistic type is indifferent between playing (L,L) and playing

(H,L).

Verifying Feasibility of Opportunistic Type’s Equilibrium Strategy: By construction

(A.2) holds at every history where active learning takes place, and since δ > 1− ε

7 , the

opportunistic type’s continuation value is between v− ε

2 and 2− ε

2 once learning stops.

In order to show that player 1’s mixed strategy in the low continuation value phase is

well-defined, we show that l(ht) is less than 0 at every history where l(ht) is finite and

v(ht) ≤ v. This is sufficient for the existence of a mixed strategy for the opportunistic type
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that makes player 2 indifferent between N and T after player 1 announces H.

Learning takes place in the next period only if player 1 plays (H,H) or (L,L) so it is

sufficient to keep track of histories in which either (H,H) or (L,L) is played. In particular,

player 2’s beliefs and the opportunistic type’s continuation value are the same when (H,H)

is played at a low continuation value history, so every history in which (H,H) or (L,L)

is played is equivalent to a shortened history in which all instances of (H,H) played in a

low continuation value period are removed. In such a shortened history, whenever (L,L) is

played, the opportunistic type gets a within-period payoff of 1, while when (H,H) is played,

the payoff is 2.

Let {ξt}t∈N be such that ξt ∈ {H,L}. Let

u(ξt)≡

 2 if ξt = H

1 if ξt = L
(A.4)

be the stage-game payoffs in periods where active learning takes place and H or L are an-

nounced. For a given finite sequence ξ ≡ {ξ0, ...,ξs}, let NL(ξ ) be the number of L in this

sequence and let NH(ξ ) be the number of H in this sequence.

Recall that the opportunistic type’s discounted average payoff is v∗ > v≡ 2+δ

1+δ
. If player

1 receives stage-game payoff u(ξt) in period t for every t ∈ {0,1, ...,s}, then player 1’s

continuation value in period s+1, denoted by vs+1 satisfies

v∗ =
s

∑
t=0

(1−δ )δ tu(ξt)+δ
s+1vs+1,

Lemma 2. Suppose δ is large enough such that (1−δ )2+δv < v∗. For every s ∈N and

every finite sequence {ξ0, ...,ξs}. If

v∗−
s

∑
t=0

(1−δ )δ tu(ξt)≤ δ
s+1v (A.5)

v∗−
k

∑
t=0

(1−δ )δ tu(ξt)> δ
k+1 v−2(1−δ )

δ
for every k ≤ s, (A.6)
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then

NL(ξ )< NH(ξ ). (A.7)

The payoff bound in (A.2) implies that (A.6) must hold at any s at which active learning

is still ongoing, and (A.5) holds at every low continuation value history.

Proof. We show that for every finite sequence ξ satisfying NL(ξ )≥ NH(ξ ), ξ cannot satisfy

both (A.5) and (A.6). We show by strong induction on NL(ξ ). For every ξ such that NL(ξ ) =

1 and NL(ξ )≥ NH(ξ ), inequality (A.5) is violated since (1−δ )2+δv < v∗ and there can be

at most one H in such a sequence given that NL(ξ )≥ NH(ξ ).

Suppose for every ξ such that NL(ξ )≤ N and NL(ξ )≥ NH(ξ ), ξ violates either (A.5) or

(A.6). Suppose by way of contradiction that there exists ξ̂ ≡ {ξ̂0, ..., ξ̂s} such that NL(ξ̂ ) =

N+1, NL(ξ̂ )≥NH(ξ̂ ), and ξ̂ satisfies both (A.5) and (A.6). We consider two cases, depend-

ing on the largest t ∈ {0,1, ...,s} such that ξ̂t = L, which we denote by t̂.

1. Suppose t̂ = s, i.e., L appears in the last period of sequence ξ̂ . Then the presumption

that ξ̂ satisfies (A.6) implies that the continuation value in period s−1 is strictly more

than v−2(1−δ )
δ

, and ξ̂ satisfies (A.5) implies that the continuation value in period s is

weakly less than v. Hence

v−2(1−δ )

δ
< v̂t = (1−δ )u(ξ̂s)+δ v̂t+1 ≤ (1−δ )+δv. (A.8)

Plugging in the expression that v≡ 2+δ

1+δ
, we have

v−2(1−δ )

δ
= (1−δ )+δv.

This leads to a contradiction.

2. Suppose t̂ < s, i.e., L does not appear in the last period of sequence ξ̂ . By definition,

ξ̂t̂+1 = H. Consider another sequence ξ
′ ≡ {ξ ′0, ...,ξ ′s−2} defined as ξ ′t ≡ ξ̂t for every

t ≤ t̂−1, and ξ ′t ≡ ξ̂t+2 for every t ≥ t̂. Since NL(ξ̂ ) = N +1 and NL(ξ̂ )≥ NH(ξ̂ ), we
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have NL(ξ
′) = N and NL(ξ

′)≥ NH(ξ
′). Since ξ̂ satisfies (A.5) and (A.6), we have

v∗ ≤
{ t̂−1

∑
t=0

(1−δ )δ tu(ξ̂t)
}
+(1−δ ){δ t̂ +2δ

t̂+1}+
{ s

∑
t=t̂+2

(1−δ )δ tu(ξ̂t)
}
+δ

s+1v

and for every t̂ +2≤ k ≤ s,

v∗>
{ t̂−1

∑
t=0

(1−δ )δ tu(ξ̂t)
}
+(1−δ ){δ t̂ +2δ

t̂+1}+
{ k

∑
t=t̂+2

(1−δ )δ tu(ξ̂t)
}
+δ

s+1 v−2(1−δ )

δ
.

Additionally, since ξ̂t̂ = L and N = NL(ξ̂1, . . . , ξ̂t̂−1) ≥ NH(ξ̂1, . . . , ξ̂t̂−1), and (A.6)

must hold because t−1 < s,

v∗ >
{ t̂−1

∑
t=0

(1−δ )δ tu(ξ̂t)
}
+δ

t̂+1v,

since otherwise, ξ̂1, . . . , ξ̂t̂−1 would contradict the inductive hypothesis. Since

v−2(1−δ )

δ
=

1+2δ

1+δ
<

2+δ

1+δ
= v,

we have:

v∗ ≤
t̂+1

∑
t=0

(1−δ )δ tu(ξ̂t)+
s−2

∑
t=t̂

(1−δ )δ tu(ξ̂t+2)+δ
s−1v+(1−δ

2)(
1+2δ

1+δ
δ

t̂−δ
s−1v)

− (1−δ
2)

s−2

∑
t=t̂+1

(1−δ )δ tu(ξ̂t+2)

≤
t̂

∑
t=0

(1−δ )δ tu(ξ̂t)+
s−2

∑
t=t̂

(1−δ )δ tu(ξ̂t+2)+δ
s−1v+(1−δ

2)(δ t̂−δ
s−1)v

− (1−δ
2)(δ t̂−δ

s−1)v

≤
{ t̂−1

∑
t=0

(1−δ )δ tu(ξ̂t)
}
+
{ s−2

∑
t=t̂

(1−δ )δ tu(ξ̂t+2)
}
+δ

s−1v.

(A.9)
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Since v(ht̂)> v, by the construction of ξ ′, either ξ ′t = H or ξ ′t = L and the continuation

value is greater than v; therefore, the lower bound on continuation values in (A.2)

continues to hold, and

v∗ >
t̂+1

∑
t=0

(1−δ )δ tu(ξ̂t)+
k−2

∑
t=t̂

(1−δ )δ tu(ξ̂t+2)+δ
k−1.

v−2(1−δ )

δ
(A.10)

That is, ξ
′ satisfies both (A.5) and (A.6). This contradicts our induction hypothesis

since NL(ξ
′) = N and NL(ξ

′)≥ NH(ξ
′).

The two parts together imply that for every ξ such that NL(ξ )≥NH(ξ ), ξ cannot satisfy both

(A.5) and (A.6). So in order for ξ to satisfy both (A.5) and (A.6), we need NL(ξ )< NH(ξ ).

The change in the log-likelihood ratio in each active learning period in which (H,H) is

played is 0 if v(ht) ≤ v and − log(2) if v(ht) > v. In the active-learning periods in which

(L,L) is played, if v(ht)> v it increments by log 1− ε

2
1−ε

, and if v(ht)≤ v, then if L(ht)≤ 1, the

log-likelihood ratio increments by at most log 1− ε

2
1− 3ε

2
. Let

∆(ξt)≡

 − log2 if ξt = H

log 1− ε

2
1− 3ε

2
if ξt = L.

(A.11)

By definition, this is an upper bound on the change in the log likelihood ratio if l(ht) ≤ 0.

Therefore, if lt ≤ 0 for every period t ≤ s in which v(ht) ≤ v, then player 2’s posterior log

likelihood ratio in period s+1, denoted by ls+1 satisfies:

ls+1 ≤ l0 +
s

∑
t=0

∆(ξt).

Indeed, l0 ≤ 0, so by Lemma 2 and by induction on periods in which v(ht)≤ v, we have

l0 +
s

∑
t=0

∆(ξs)≤ 0. (A.12)
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Hence l(ht) ≤ 0 at every history ht such that l(ht) is finite and v(ht) ≤ v. Thus, the con-

structed strategy profile is feasible for all ε < 2/5 and δ > max{δ ,1− ε/7}.

B Comparison with Existing Approaches

Ekmekci, Gossner, and Wilson (2012) (hereafter, EGW) derives a lower bound on the patient

player’s payoff using the entropy approach. Their approach does not apply directly to our

setting, because the short-run players observe the long-run player’s announcement before

moving, and announcements and actions are imperfectly recalled.

To summarize, EGW considers a model where the long-lived player 1 is replaced in every

period with probability ρ > 0 and their type is redrawn after each replacement. They show

that when player 1 is commitment type ω̂ with probability µ(ω̂), the rational type’s payoff

from imitating commitment type ω̂ is at least:

wω̂

(
− (1−δ ) log µ(ω̂)− log(1−ρ)

)
,

where wω̂(x) decreases in x and converges to type ω̂’s optimal commitment payoff when

x→ 0. Their result implies that player 1 can guarantee his commitment payoff when δ is

close to 1 and ρ is close to 0. Their proof uses the following bound on the divergence between

the equilibrium distribution of player 2 histories and that induced by the commitment type. In

particular, let P2,n
σ be the probability measure over player 2n’s histories under equilibrium σ ,

and let P̂2,n
σ ′ be the probability measure over player 2n’s histories when player 1 deviates and

imitates commitment type ω̂ . Let d(·||·) be the KL-divergence between two distributions.

They show that for every n ∈ N,

n−1

∑
t=0

E[d(Prσ (ht+1
2 |h

t
2)||Prω̂(h

t+1
2 |h

t
2))] = d

(
P̂2,n

σ ′

∥∥∥P2,n
σ

)
≤− log µ(ω̂)−n log(1−ρ), (B.1)

i.e., that the chain rule for relative entropy applies to hn and d
(

P̂2,n
σ ′

∥∥∥P2,n
σ

)
is bounded from

above by a linear function of n, with coefficient − log(1−ρ).
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Let dσ ,ω̂
δ

be the expected discounted-average relative entropy between the predictions of

player 2s over their next signal when they rely on the equilibrium distribution and when they

rely on the distribution under player 1’s deviation. EGW shows that

dσ ,ω̂
δ

:= (1−δ )
∞

∑
t=0

δ
tE[d(Prσ (ht+1

2 |h
t
2)||Prω̂(h

t+1
2 |h

t
2))]

≤−(1−δ ) log µ(ω̂)− log(1−ρ).

(B.2)

Following the argument in Gossner (2011), the ex-ante expected payoff of the long-run

player from imitating commitment type ω̂ is bounded by wω̂(d
σ ,ω̂
δ

).

To directly apply EGW’s approach to show that player 1 receives at least their commit-

ment payoff, we need the coefficient in the RHS of (B.1) to converge to 0 in the relevant

limit, and the limit of ε-confirming best response payoffs to approach the commitment pay-

off. However, in our setting the announcements occur prior to the short-run player’s move.

Recall that ht
2 = {y1, . . . ,yt−1,mt}. We cannot apply the chain rule for relative entropy to

conclude that the sum of expected relative entropy under equilibrium and ω̂ is equal to the

ex-ante KL divergence of histories under the two strategy profiles: because mt is imperfectly

recalled, it is part of ht
2 but no other period’s history, so the left-hand side of (B.1) fails to

hold.

Intuitively, the deviating strategy (e.g., the naive commitment strategy) may not coincide

with the equilibrium strategy of any type. The expected discounted entropy approach uses

the chain rule to bound the expected total discounted surprise of the short run player over

histories by a constant term, irrespective of δ , using the fact that the long run player plays

exactly like the positive-probability commitment type ω̂ . In our setting, there is always a

nonzero probability that an honest player makes a sequence of unlikely announcements, but

this event depends on independent draws of Ãt , period by period. Although the decrease

in the long-run player’s reputation (i.e., likelihood ratio between the honest type and the

opportunistic type) after every such announcement is bounded, the sum over all periods may

be unbounded as δ → 1, and so the discounted average does not vanish.

Note that the average expected entropy of outcomes for short run players prior to their
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observation of the announcement, i.e. with respect to histories ĥt
2 = {y1, . . . ,yt−1}, does

vanish. However, it does not yield the desired payoff bound. The reason is that, prior to

knowing the period’s announcement, the distribution of yt does not identify which promises

the long-run player will keep. Indeed, if, under ω̂ the long-run player breaks their promise

with small probability (say, η), then the set of strategies for the long-run player that generate

the same outcome distribution includes a profile in which they announce ω̂ with probability
η

2−3η
; and conditional on doing so, they keep their promise with probability only η , whereas

if they announce a different action, they keep their promise with probability (1−η). This

distribution of play is possible when the long-run player is very likely to be opportunistic

(note that there is no explicit bound on the distribution of the long-run player’s type, only

on the induced distribution of outcomes). The short-run player’s best response to such a

strategy need not yield the long-run player playing ω̂ a payoff approaching what they achieve

when the short-run player best responds to ω̂ . As a result, one cannot directly apply EGW’s

approach to show that player 1 can secure his commitment payoff in the limit where η

approaches 0 and δ approaches 1 by playing as if they were a commitment type.
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