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The dual-self model supposes that decision-making involves a conflict between 
the desire for immediate and safe gratification on the one hand, and riskier long 

term benefits on the other. This conflict is resolved through a decision criterion that 
puts weights on both desires. A key element of the model is that this weighting is 
endogenous, and that changes in constraints that have the same effect on the weights 
are predicted to lead to the same decisions. The model is consistent with “paradoxes” 
such as small stakes risk aversion, the common-consequence and common-ratio ver-
sions of the Allais paradox, and preference reversals for delayed rewards. It also is 
consistent with lesser known experimental puzzles, including the effect of reducing 
the probability of reward on preference reversals induced by delayed rewards, the 
consequence of delaying rewards for Allais-type preference reversals, preferences for 
randomization, and reversals due to cognitive load.

In Fudenberg and Levine (2006) we used evidence about cognitive load1 to argue 
that the cost of self-control is convex and not linear.2 In this paper our first goal is to 

1 The work of Roy F. Baumeister and collaborators (for example, Mark Muraven, Dianne M. Tice, and Roy F. 
Baumeister 1998; Muraven and Baumeister 2000; Matthew T. Gailliot et al. 2007) argues that self-control is a limited 
resource, moreover one that may be measured by blood glucose levels. The stylized fact that people often reward 
themselves in one domain (for example, food) when exerting more self-control in another (for example, work) has 
the same implication. This is backed up by evidence from Baba Shiv and Alexander Fedorikhin (1999) and Andrew 
Ward and Traci Mann (2000) showing that agents under cognitive load exercise less self-control, for example, by eat-
ing more desserts. The first two observations fit naturally with the idea that a common “self-control function” controls 
many nearly simultaneous choices. The third fits naturally with the hypothesis that self-control and some other forms 
of mental activity draw on related mental systems or resources.

2 We also pointed out that convex costs violate the independence axiom of expected utility theory, but did not
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explore the implications of convex control costs and to show that they help explain 
a number of otherwise puzzling experimental “reversals” involving uncertain pay-
offs. These kinds of preference reversals have not previously been examined in the 
self-control literature.3 Our second goal is to explore the quantitative predictions 
of the model. To do this, we extend the simpler “nightclub” dual-self model of the 
earlier paper by introducing an additional choice of consumption commitment. A 
key motivation for the paper is the idea that a model is more useful if its parameters 
can be held constant across a wider range of settings. There are several competing 
explanations for each of the facts that our model fits; our quantitative analysis uses 
a single model with a stable set of parameters to explain many facts.

A central feature of the model is that agents use cash on hand or mental account-
ing as a commitment device, so that on the margin they will consume all of any 
small unexpected winnings. However, when agents win large amounts, they choose 
to exercise self-control and save some of their winnings. The resulting intertemporal 
smoothing makes the agents less risk averse, so that they are less risk averse to large 
gambles than to small ones.

In the first part of the paper, we derive new qualitative predictions using our 
(2006) model. One of these is the interaction of uncertainty and delay: We noted in 
our previous paper that the dual-self model explains the classic time-inconsistent 
preferences that have been used to motivate the assumption of quasi-hyperbolic 
discounting. When there are increasing marginal costs of self-control, there is an 
additional implication: Preference reversal is less likely when the probability of 
rewards is smaller. This prediction is borne out in the data of Gideon Keren and 
Peter Roelsofsma (1995) which we learned about after writing the first paper.

We then explain how a convex cost of self-control can explain both the classic 
Allais paradox (where the independence axiom is violated with respect to mixing 
in a common consequence) and the “common ratio” version of the paradox. In the 
Allais paradox there are two scenarios, each involving two options. Under expected 
utility theory, the same option must be chosen in each scenario, but in practice people 
choose different options in the two scenarios. A key element of the paradox is that 
one of the scenarios involves a much smaller probability of winning a prize. That 
means that there is less temptation to the short-run self. The reason that our model 
predicts the Allais paradox is that the convexity of the cost function leads to a partic-
ular sort of violation of the independence axiom: Agents should be “more rational” 
about choices that are likely to be payoff-irrelevant. This is exactly the nature of the 
violation of the independence axiom in the Allais paradox. Importantly, our theory 
does not explain the other, rarely observed, way that choice in the Allais paradox 
could violate the independence axiom, namely where the choices in each of the two 
scenarios are reversed.

explore what sorts of violations occur. In addition we showed how convex cost could lead to violations of the weak 
axiom of revealed preference, a topic we do not examine here.

3 Jess Benhabib and Alberto Bisin (2005), B. Douglas Bernheim and Antonio Rangel (2004), Isabelle Brocas 
and Juan D. Carrillo (2008), George Loewenstein and Ted O’Donoghue (2004), and Emre Ozdenoren, Steven W. 
Salant, and Dan Silverman (forthcoming) present dual-self models, but they do not discuss risk aversion, cognitive 
load, or the possibility of convex costs of self-control.
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An additional prediction of our model is that the paradoxical choices in Allais 
paradox experiments should disappear when the payoff is outside the time horizon 
of the short-run self. The data is qualitatively consistent with this but less stark: 
increasing delay gradually reduces the fraction of paradoxical choices.4

In the second part of the paper we turn to a quantitative analysis. Our procedure 
is to first find a set of sensible values of the key parameters, namely the subjective 
interest rate, income, the degree of short-term risk aversion, and the time horizon of 
the short-run self. We focus on the model’s ability to fit the behavior of the median 
individual, although we examine to a limited extent other people such as individu-
als who are more risk averse than the median.5 We then investigate how well we 
can explain the paradoxes using the calibrated parameter values and the dual-self 
model. To what extent can the same set of parameter values simultaneously explain 
the behavior of all the median individuals and be consistent with the calibration?

In the quantitative analysis we use an extension of the basic model that lets it bet-
ter conform to the data. Specifically, we adopt a nested CES/logarithmic specifica-
tion that allows a greater level of risk aversion in the laboratory,6 and combine this 
with a consumption commitment technology. We then give a quantitative analysis 
of three different paradoxes. We examine Matthew Rabin (2000) paradox data from 
Charles A. Holt and Susan K. Laury (2002), both the Daniel Kahneman and Amos 
Tversky (1979) and Allais versions of the Allais paradox, and the finding of Daniel 
J. Benjamin, Sebastian A. Brown, and Jesse M. Shapiro (2006) that increased cogni-
tive load increases risk aversion.

We find that we can explain most of the data if we assume an annual subjec-
tive interest rate in the range of 1–7 percent, a short-run coefficient of relative risk 
aversion of about two, and a daily time horizon for the short-run self. We find that the 
Rabin paradox is relatively insensitive to the exact parameters assumed; the Allais 
paradox is sensitive to choosing a plausible level of risk aversion; and the cognitive 
load data is very sensitive to the exact parameter values chosen.

4 See Keren and Roelofsma (1995) and Bethany J. Weber and Gretchen B. Chapman (2005) for the effect of 
delay on the common-consequence Allais paradox and Manel Baucells and Franz H. Heukamp (2010a) for the effect 
of delay on the common-ratio version. In Fudenberg and Levine (2010) we extend the dual-self model to account 
for the gradual effect of delay on both the frequency of paradoxical choices and also on the implicit marginal subjec-
tive interest rate, as in the work surveyed by Shane Frederick, George Loewenstein, and Ted O’Donoghue (2002).

5 Of course there is no a priori theoretical reason for the subject pools in the different experiments to have the 
same preferences. The justifications for our approach are that the theory is more powerful if the parameters are 
consistent across pools, and that there is little point of doing experimental or empirical work if one takes the view 
that each small group of people may have preferences totally unlike those of any other group.

6 Our earlier model can explain the examples in Rabin (2000), but those examples (such as rejecting a bet 
that had equal probability of winning $105 or losing $100) understate the degree of risk aversion in small-stakes 
experiments, and fitting our earlier model to these small gambles requires parameter values that conflict both with 
intuition and with other data. Since the first version of this paper was written, James C. Cox et al. (2007) conducted 
a series of experiments to test various utility theories using relatively high stakes. They also observe that the simple 
logarithmic model is inconsistent with observed risk aversion, and they argue that the simple linear-logarithmic 
self-control model does not plausibly explain their data. We will be interested to see whether their data is consistent 
with the more complex model developed here.
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I.  The Base Model

To begin we review the base model from our 2006 paper. We consider an infinite-
lived consumer making a savings decision. Each period t = 1, 2, … is divided into 
two sub-periods, the “bank” sub-period and the “nightclub” sub-period; the consumer 
discounts utility between periods using discount factor δ ∈ (0, 1), but no discount-
ing occurs between the sub-periods. Wealth at the beginning of the bank sub-period 
is denoted by ​w​t​ . During the “bank” sub-period, consumption is not possible, and 
wealth is divided between savings ​s​t​ , which remains in the bank, pocket cash ​x​t​ , 
which is carried to the nightclub. In the nightclub consumption ​c​t​ ∈ [0, ​x​t​] is deter-
mined, with ​x​t​ − ​c​t​ returned to the bank at the end of the period. Wealth next period is 
just ​w​t + 1​ = R(​s​t​ + ​x​t​ − ​c​t​), where R ≥ 0 is the risk-free interest rate. For simplicity 
money returned to the bank bears the same rate of interest as money left in the bank.

Our underlying rationale is that perfect capital markets are available at the bank, 
so we can capitalize all of the consumer’s future income into her initial wealth ​w​1​ . 
The only constraint at the bank then is that wealth ​w​t​ must be non-negative. By 
way of contrast, capital markets are not available at the nightclub, and no income is 
received there, so the only choice at the nightclub is how much pocket cash to spend.

The utility of the short-run self of consuming ​c​t​ in period t is u(​c​t​). We assume 
this is strictly differentiably concave7 and satisfies the Inada condition that  
​lim​​c​t​→0​ u′(​c​t​) = ∞. The long-run self maximizes the expected discounted present 
value of the utility of the short-run selves, subject to a cost of self-control. This 
self-control cost depends on the resources the short-run self perceives as available 
to himself, which in turn determine a temptation utility for the short-run self, repre-
senting the utility the short-run self perceives as available if no self-control is used. 
Denote this temptation utility by ​​

_ u​​t​ . The actual realized utility that the long-run 
self allows the short-run self is ​u​t​ , and the cost of self-control is g(​​_ u​​t​ − ​u​t​), where 
g(0) = 0 and g is continuously differentiable, non-decreasing, and at least weakly 
convex. One key idea here, as in Faruk Gul and Wolfgang Pesendorfer (2001), is 
that the cost of self-control depends on the difference between the utility by which 
the short-run self is tempted, ​​

_ u​​t​ , and the utility the short-run self is allowed, ​u​t​ . A 
second key idea is that we do not require g to be linear, and several of theoretical 
and empirical findings hinge on the idea that g is typically convex, as we argued in 
Fudenberg and Levine (2006).8

In the bank no consumption is possible, and so there is no temptation for the 
short-run self. In the nightclub the short-run self cannot borrow, and wishes to spend 
all of the available pocket cash ​x​t​ on consumption. Hence ​​

_ u​​t​ = u(​x​t​).
The problem faced by the long-run self is to choose pocket cash and consumption 

to maximize the present value using the discount factor δ of short-run self utility net 
of the cost of self-control. The objective function of the long-run self is

(1)	​U ​RF​  = ​ ∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ [u(​c​t​)  −  g(u(​x​t​)  −  u(​c​t​))]

7 That is, it is twice continuously differentiable on the interior, and the second derivative is strictly negative there.
8 Jawwad Noor and Norio Takeoka (2010a, 2010b) also emphasize the importance of a convex cost of 

self-control.
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which is to be maximized with respect to ​c​t​ ≥ 0, ​x​t​ ≥ 0 subject to ​w​1​ given, ​w​t+1​  
= R(​s​t​ + ​x​t​ − ​c​t​), ​s​t​ + ​x​t​ ≤ ​w​t​ and ​w​t​ ≥ 0. Notice that this is a simple optimization 
problem with no uncertainty and perfect foresight.

A crucial aspect of the model is the “pocket cash” ​x​t​ that serves to ration con-
sumption and thus reduces the temptation to the short-run self. This commitment 
lasts exactly one period. Given the one-period horizon of the short-run self, a longer 
commitment would have no benefits but could reduce flexibility.9 When there is no 
uncertainty a one-period commitment allows the long-run self to attain the same 
optimum as if there was no cost to self-control. The reason for this is that it is opti-
mal to give the short-run self exactly the amount to be spent at the nightclub, and 
so avoid temptation and self-control cost entirely. Underlying this is the assump-
tion that the decision about how much pocket cash to allocate to the short-run self 
is taken when there are no tempting consumption possibilities. For that reason, the 
solution to the perfect-foresight problem is to choose ​c​t​ = ​x​t​ . In other words, cash ​x​t​ 
is chosen to equal the optimal consumption for an agent without self-control costs. 
The agent then spends all pocket cash at the nightclub, and so incurs no self-control 
cost there. Since ​c​t​ = ​x​t​ , the utility of the short-run self is u(​x​t​), and as there is no 
self-control cost, this boils down to maximizing

 	​  ∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ u(​x​t​)

subject to the budget constraint ​w​t+1​ = R(​w​t​ − ​x​t​). Denote the solution to this prob-
lem as ​​  x​​t​ , and the corresponding value function V(​w​t​).

In our earlier paper, the notion of a bank and pocket cash were taken literally. In 
practice there are many strategies that individuals use to reduce the temptation for 
impulsive expenditures. The view we take here is that pocket cash is determined by 
mental accounting of the type discussed by Richard Thaler (1980), and not necessar-
ily by physically isolating money in a bank. In other words, ​x​t​ should not be viewed 
as the literal amount of money the short-run self has in their wallet or the amount 
available including cash cards and so forth, but should be viewed as the amount of 
resources that the short-run self feels entitled to use. The strategies individuals use 
for this type of commitment can be varied. For example some people may choose 
to carry only a limited amount of cash and no credit cards, which would implement 
the consumption commitment but at a cost in terms of trips to the ATM, risk of theft, 
and so forth. Others may be able to use mental commitments and prefer to do so, for 
example with a plan such as “you may spend $100 at the nightclub, but no more.”

The key point is that since many people implement these types of controls on 
impulsive behavior through mental rather than physical rationing we cannot identify 
“pocket cash” ​x​t​ with the physical amount of money carried in an individual’s wal-
let. However, although mental accounting is not directly observable, the theory 
implies that ​x​t​ is the expenditure during the horizon of the short-run self, and so it 

9 If the short-run self is tempted by future consumption as well as by consumption in the current period, as 
in Fudenberg and Levine (2010), Noor (2007; 2011), and Noor and Takeoka (2010b), there is then a trade-off 
involved in determining the optimal commitment length; we hope to explore this in future work.
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is computable directly from the underlying preference parameters. Moreover, since 
the horizon of the short-run self is on the order of a day to a week, there is an exter-
nal check on the plausibility of the computed values. To the extent that the calibrated 
parameters are stable across situations, the implicit pocket cash will be as well.

II.  Risky Drinking: Nightclubs and Lotteries

Suppose in period 1 (only) that when the agent arrives at the nightclub of her 
choice, she has the choice between two lotteries, S and L, with intertemporal 
returns ​​   z ​​ t​ 

S​, ​​   z ​​ t​ 
L​ ​|​ t=1​ 

∞ ​, and with the entire time stream of the lottery’s payout determined 
in period 1. Note that we use tildes in the notation here to indicate random variables: 
we will use ​z​ t​ 

S​ and so forth without tildes for realizations of the random variables. 
We will adopt the convention that when there is a high self-control cost preferences 
for the lottery S are stronger (relative to L) than when there is no self-control cost. 
Intuitively we think of S as better liked by the short-run self and L by the long-run 
self. In our applications the random receipts will be independent between periods. 
Initially we will assume that this choice is completely unanticipated—that is, it has 
prior probability zero. What is the optimal choice of lottery given ​x​1​? For simplicity, 
we assume throughout that the agent does not expect to have more choices between 
lotteries at nightclubs after period 1. We should emphasize that this is for conve-
nience only: the overall savings and utility decision will not change significantly 
provided that the probability of getting future choice opportunities is small.10

The returns ​z​ t​ 
S​, ​z​ t​ 

L​ ​|​ t=1​ 
∞ ​ may be positive or negative, but we suppose that the largest 

possible loss in period 1 is less than the agent’s pocket cash. There are a number of 
different ways that the dual-self model can be applied to this setting, depending on 
the timing and “temptingness” of the choice of lottery and spending of its proceeds. 
In this paper, we assume that in the nightclub the agent simultaneously decides 
which lottery to pick and how to spend in the first period for each possible realiza-
tion of the lottery.

Let V denote the maximized value of LR’s discounted expected payoff, as a func-
tion of wealth. (From the stationarity of the problem this value does not depend on 
t.) Then the decision problem in period 1 is to choose consumption ​​   c​​ 1​ 

j
 ​(​z​ 1​ 

j
 ​) contin-

gent on the realization of the lottery j and either j = S or j = L to maximize

	 Eu(​​   c​​ 1​ 
j
 ​)  −  g(max{Eu(​x​​1​  +​ ​    z ​​ 1​ 

S​ ), Eu(​x​1​  + ​​    z ​​ 1​ 
L​)}  −  Eu(​​   c​​ 1​ 

j
 ​))

	 +  δEV(R(​w​1​  + ​​    z ​​ 1​ 
j
 ​  − ​​    c​​ 1​ 

j
 ​)  + ​ ∑ 

t=2
​ 

∞

 ​ ​R​2−t​​ ​​   z ​​ t​ 
j​ ).

That is, if no self-control is exercised the short-run self will obtain max{Eu(​​x​1​ +​ ​   z ​​ 1​ 
S​),  

Eu(​x​1​ + ​​   z ​​ 1​ 
L​)}, and so this temptation utility is used to determine the cost of self-

control for the long-run self. Note that this formulation applies because the lottery’s 
first period return occurs at the night club and can be spent then and because the lot-
tery and consumption decision are made simultaneously. If the consumption were to 

10 This was demonstrated formally in an earlier working paper version (Fudenberg and Levine 2010).
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occur in a “subsequent” period then it would not be tempting for the short-run self, 
and there would be no temptation in either period.11 Note also that because g need 
not be linear, g(Eu)need not equal E(g(u)); when g is linear the equality holds and 
the objective function is an expected utility.

In what follows, it will be useful to refer to the agent’s wealth following a particu-
lar realization of ​​   z ​​ t​ 

S​, ​​   z ​​ t​ 
L​ ​|​ t=1​ 

∞ ​, which we denote

	​ w​ 2​ 
j
 ​(​c​ 1​ 

j
 ​,​ z​ t​ j​ ​|​ t=1​ 

∞ ​)  ≡  R(​w​1​  + ​ z​ 1​ 
j
 ​  − ​ c​ 1​ 

j
 ​)  + ​ ∑ 

t=2
​ 

∞

 ​ ​R​2−t​​ ​z​ t​ j​ .

From here on, when the ​​   z ​​ t​ 
j​ ​|​ t=1​ 

∞ ​ is clear, we will omit it as an explicit argument.
Consider first the problem of determining the optimal consumption in period 1 as 

a function of the income receipt ​z​ 1​ 
j
 ​. Let ​γ​1​ denote the marginal cost of self-control 

in the first period. We let ​​  c​​ 1​ 
j
 ​(​γ​1​)(​z​ 1​ 

j
 ​) be the solution to the first-order condition for 

a maximum for a fixed marginal cost of self-control ​γ​1​. In this case of linear con-
trol cost, the overall objective function is strictly differentiable concave in the sca-
lar choice variable, ​c​ 1​ 

j
 ​, so this solution exists and is unique. Given a consumption 

derived from ​γ​1​ in this way we can compute a new marginal cost of self-control

	​​   γ​​ 1​ j
 ​(​γ​1​)  =  g′(max{Eu(​x​1​  +​ ​    z ​​ 1​ 

S​ ), Eu(​x​1​  + ​​    z ​​ 1​ 
L​)} 

	 −  Eu(min{​​  c​​ 1​ 
j
 ​(​γ​1​)(​​   z ​​ 1​ 

j
 ​), ​x​1​  + ​​    z ​​ 1​ 

j
 ​})).

Theorem 1 establishes that “the” marginal cost of self-control is the unique fixed 
point of this map.

Theorem 1: For given ​x​1​ and each j ∈ {S, L} there is a unique solution to

	​ γ​ 1​ 
j
 ​  = ​​   γ​​ 1​ j

 ​(​γ​ 1​ 
j
 ​)

�and this solution together with ​​   c​​ 1​ 
j
 ​ = min{​​  c​​ 1​ 

j
 ​(​γ​ 1​ 

j
 ​)(​z​ 1​ 

j
 ​), ​x​1​ + ​z​ 1​ 

j
 ​} and the choice of j 

that maximizes long-run utility is necessary and sufficient for an optimal solution to 
the consumer’s choice between lotteries S and L,

Proof:
See Appendix A.

The “consumption function” is ​​   c​​ 1​ 
j
 ​ = min{​​  c​​ 1​ 

j
 ​(​γ​ 1​ 

j
 ​)(​z​ 1​ 

j
 ​), ​x​1​ + ​z​ 1​ 

j
 ​}. Let ​​   z ​​1​ be the maxi-

mal value of ​z​ 1​ 
j
 ​ such that all the winnings are spent, that is, ​​  c​​ 1​ 

j
 ​(​γ​1​)(​​  z ​​1​) ≥ ​x​1​ + ​​  z ​​1​.

12 
The function ​​  c​​ 1​ 

j
 ​ is sketched in Figure 1. For ​z​ 1​ 

j
 ​ < ​​  z ​​1​ no self-control is used, and all 

winnings are spent. Above this level self-control is used, with only a fraction of 

11 The model here is very stark, with each short-run self-living for a fixed length of time, so every choice is 
either “completely tempting” (when it is in the lifetime of the current short-run self) or not tempting at all. One way 
to relax this dichotomy is to assume that the short-run player has a stochastic lifetime. We pursue this theory in other 
work, showing that the results here are robust to the exact timing of the choices.

12 Note that for arbitrary values of ​x​1​ we may have ​​  z ​​1​ negative, but this will not happen on a perfect-foresight path.
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winnings consumed, and the rest going to savings. The size of ​​  z ​​1​ depends, among 
other things, on the agent’s cost of self-control; if this is very high then the agent 
will have a high propensity to consume even from large winnings, while if it is low 
the agent will exert self-control even over small windfalls. When the agent is very 
patient in the sense of having a subjective discount factor δ close to one, ​​  c​​ 1​ 

j
 ​ is very 

flat, so that only a tiny fraction of the winnings are consumed immediately when 
receipts exceed the critical level. Thus when the agent is patient he is almost risk 
neutral with respect to gambles that are larger than his usual per-period consump-
tion. However the agent is still risk averse to small gambles, as these will not be 
smoothed but will lead to a one for one change in current consumption.13

III.  Qualitative Analysis

We now turn to a qualitative analysis of the choice between lotteries. We consider 
a variety of conceptual experiments involving both one-period and intertemporal 
choices. As in the previous section we suppose that the various “experimentally 
induced” choices the agent faces in the nightclub were completely unforeseen; this 

13 Note that the nondifferentiability of consumption and thus of indirect utility in our model occurs at the self-
control threshold, which is strictly positive and is endogenous to the model (but exogenous to the specific gamble). 
Thus the non-differentiability is different than the kink at zero in loss-aversion models, and also different than kinks 
at “reference points” that vary with the gamble under consideration.

Figure 1. The Consumption Function
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may be a good description of most experimental studies.14 The key fact is that the 
short-run self is less patient than the long-run self and also (because of the pocket 
cash constraint) more risk averse; we show this formally in Theorem 2. However, 
the weight given to the preferences of the current short-run self depends on the mar-
ginal cost of self-control. When temptation is high, the marginal cost of self-control 
is high, and a great deal of weight should be given to the impatient risk-averse pref-
erences of the current short-run self. When the temptation is low, the marginal cost 
of self-control is low and little weight is given to the impatient risk-averse prefer-
ences of the short-run self. Temptation depends on expected payoffs, which in turn 
depend on the stakes, on the discounting of future utilities, and on the probability 
distribution over outcomes. When changes in timing or probability reduce the temp-
tation, the presence of self-control costs can lead to a “reversal” from an alternative 
preferred by the short-run self to one less preferred. As we shall see, these sorts of 
reversals are a fairly common feature in experimental data; our model provides a 
common coherent explanation of them. Noor and Takeoka (2010b) provide an axi-
omatic characterization of a related but different form of nonlinearity, and shows 
how it is connected to Allais-type paradoxes and the interaction of risk and delay.

Risk and Delay.—We noted in our previous paper that the dual-self model 
explains the kind of time-inconsistent preferences that have been used to motivate 
the assumption of quasi-hyperbolic discounting. Here we derive an additional impli-
cation in the case of increasing marginal costs of self-control: Preference reversal 
due to present bias is less likely when the probability of rewards is smaller.

Specifically, suppose that unexpectedly in period 1 the short-run self at the night-
club is offered a choice between an amount ​z​ t​ 

S​ in period t and an amount ​z​ t+1​ 
L
  ​ = θ ​z​ t​ 

S​ 
in period t + 1 where θ > R. If period t is in the future, that is, t > 1, the short-run 
self is indifferent and since θ > R the long-run self strictly prefers to implement the 
choice of option L.15

The situation is different if t = 1. Notice that for small amounts ​z​ 1​ 
S​ < ​​  z ​​1​, if the 

amount today is taken it is consumed immediately. Hence the utility gain from 
choosing S is

	 Δ  =  u(​x​1​  + ​ z​ 1​ 
S​)  +  δEV(​w​2​)  −  u(​x​1​)  +  g(u(​x​1​  + ​ z​ 1​ 

S​)  −  u(​x​1​)) 

	 −  δV(​w​2​  +  θ​z​ 1​ 
S​).

Differentiating this with respect to ​z​ 1​ 
S​ we find

	​  dΔ _ 
d​z​ 1​ 

S​
 ​ ​|​​z​ 1​ 

S​=0​  =  (1  +  g′(0))u′(​x​1​)  −  δθV′(​w​2​).

14 The results of the analysis are robust to the case in which the choices are foreseen but are thought a priori to 
have very low probability. This was demonstrated formally in an earlier working paper version.

15 Because the long-run self has access to a perfect capital market, he acts to maximize lifetime wealth, and the 
subjective discount factor δ is irrelevant. Notice that while borrowing and lending is possible, it is possible only at 
the bank, and so does not pose a temptation for the short-run self.
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The first-order condition for the value function without self-control that defines V 
implies that V′(​w​2​) = (1/Rδ )u′(​x​1​). Thus dΔ/d​z​ 1​ 

S​ = (1 + g′(0) − θ/R)u′(​x​1​), so if 
g′(0) > θ/R − 1 then S is the preferred alternative for small ​z​ 1​ 

S​.
Here is our first example of a “reversal,” in the sense that the willingness to wait in 

period 1 for higher payoff in period 2 is different than willingness to postpone payoffs 
from period t > 1 to t + 1. Notice that this is a first-order reversal in the sense that it 
arises from the reduction of temptation by changing the timing of the consumption, 
and this reduction occurs even with linear control costs.

The fact that some subjects exhibit such a reversal has been used to motivate the 
assumption of quasi-hyperbolic utility. In our model, this reversal arises because at 
the nightclub the short-run self is rationed by the available cash ​x​1​. An extra cash 
payment of ​z​1​ today will cause a temptation to increase spending that is costly for 
the long-run self to control. By contrast there is no temptation associated with future 
payoffs, and so there can be “preference reversal” whenever the cost of resisting the 
short-run temptation is sufficiently high. Data from Keren and Roelofsma (1995) in 
Table 1, in which the “probability of reward” is equal to 1.0, shows how this happens 
in practice.16

Here 82 percent of the population will take the smaller but more immediate 
reward, when the earlier reward is “now” but only 37 percent will do so when the 
earlier reward is not for 26 weeks.

Now we turn to the possibility of a second-order reversal due to the change in the 
marginal cost of self-control when temptation is reduced. Suppose that instead of 
a certain reward ​z​ t​ 

S​, ​z​ t+1​ 
L
  ​ there is only a chance p of getting the reward. When t > 1 

standard expected utility theory applies, and the fact that rewards have probability 
less than 1 makes no difference; here L is still strictly preferred as long as θ > R. 
Consider, however, the utility difference for t = 1. Still assuming ​z​ 1​ 

S​ < ​​  z ​​1​ so that ​c​ 1​ 
S​  

= ​x​1​ + ​z​ 1​ 
S​ we have

	Δ(p)  =  p[u(​c​ 1​ 
S​ )  +  δV(R(​w​1​  + ​ z​ 1​ 

S​  − ​ c​ 1​ 
S​ ))] 

	 −  p[u(​x​1​)  +  δV(R(​w​1​  − ​ c​ 1​ 
L​)  +  θ​z​ 1​ 

S​ )]  +  g(p[u(​x​1​  + ​ z​ 1​ 
S​ )  −  u(​x​1​)]).

16 This experimental result is confirmed by Weber and Chapman (2005), and discussed in Yoram Halevy (2008), 
who proposed an objective function that is consistent with these choices. Note that the experiment was in Dutch 
florins. We converted from Dutch florins to US dollars using an exchange rate typical of the early 1990s of 1.75 flo-
rin per dollar.

Table 1—Dynamic Preference Reversal

Probability of rewarda

Scenario 1.0 (60) 0.5 (100)
  1 S $175 now 	 0.82 0.39

L $192 4 weeks 	 0.18 0.61
  2 S $175 26 weeks 	 0.37 0.33

L $192 30 weeks 	 0.63 0.67

Note: 
a Sample size in parentheses.
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To evaluate Δ(p) for p near 1 we will use Taylor’s theorem so we first compute 
dΔ/dp:

	​  dΔ _ 
dp

 ​ ​|​p=1​  =  Δ(1)  +  g′(u(​x​1​  + ​ z​ 1​ 
S​)  −  u(​x​1​))[u(​x​1​  + ​ z​ 1​ 

S​)  −  u(​x​1​)] 

	 −  g([u(​x​1​  + ​ z​ 1​ 
S​)  −  u(​x​1​)]) 

 	  >  Δ(1),

where the final inequality holds strictly if g′(·) is strictly increasing. In particular, if 
Δ(1) = 0 so there is exact indifference when p = 1, then a small decrease in p will 
imply Δ(p) < 0, so that L will be strictly preferred. By continuity, if Δ(1) is slightly 
positive so that S is preferred, then there will be p < 1 such that L is preferred. Or put 
differently, as p is reduced, behavior at t = 1 comes to resemble that for t > 1. This 
dependence of the choices on the probability of reward is not consistent with quasi-
hyperbolic preferences (as in David Laibson 1997) or with the version of the indepen-
dence axiom (for choices over menus) imposed as an axiom by Gul and Pesendorfer 
(2001) and Eddie Dekel, Barton Lipman, and Aldo Rustichini (2009). It is, however, 
in accord with the Keren and Roelsofsma (1995) data in Table 1, where when p is 
reduced from one to 0.5 in both scenario 1 and scenario 2 the probability of choosing 
the early reward S is quite similar, 0.39 and 0.33 respectively, and also very similar 
to the probability of choosing the early reward when p = 1 and t > 1, which is 0.37.

Risk Aversion in the Short-Run and the Long-Run.—We now wish to focus on 
reversals that arise from risky prospects. To do this we need to establish the sense 
in which the short-run self is more risk averse than the long-run self. We do this by 
establishing a basic relationship between long-run risk aversion as measured by the 
value function and short-term risk aversion as measured by the utility function

Theorem 2: Let ξ ≡ ​sup​​c​1​​(−​c​1​ u″(​c​1​)/u′(​c​1​))/​inf​​c​1​​(−​c​1​ u″(​c​1​)/u′(​c​1​)). Then

	   − ​ 
V″(​w​1​) _ 
V′(​w​1​)

 ​  ≤  −ξ ​ 
​c​1​ _ ​w​1​

 ​ ​ 
u″(​c​1​) _ 
u′(​c​1​)

 ​ .

Proof:
See Appendix I.

This says that the “long-run” absolute risk aversion as measured by the value 
function is much less than “short-run” absolute risk aversion as measured by the 
period utility function provided that the ratio of consumption to wealth is small. 
In this model period length is the time-horizon of the short-run self, which is on 
the order of a day. The ratio of daily consumption to lifetime wealth is quite small. 
This means that consumption that is spread over the lifetime represents many mag-
nitudes less of risk than consumption that is taken in the initial period only. In this 
model, with positive self-control, we have already observed that unanticipated gains 
less than ​​  z ​​1​ are all consumed immediately, so they are evaluated using u. Larger or 
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anticipated gains are spread over the entire lifetime, and are evaluated with the less 
risk-averse utility for lifetime wealth, which explain the discrepancy between the 
very high small-stakes risk aversion in the lab and less risk averse long-run decisions 
that is known as the “Rabin paradox.” For example, using observed absolute risk 
aversion in the laboratory, if we fit a constant relative risk aversion utility function 
with respect to lifetime wealth, the estimated coefficient of relative risk aversion is 
on the order of 30,000,17 while stock market behavior reveals a coefficient of abso-
lute risk aversion corresponding to relative risk aversion of no more than 48,18 while 
macroeconomic studies often take the coefficient of relative risk aversion to be one 
(that is, logarithmic utility). The huge difference between the lab-based numbers 
and the investment-based estimates are what we would expect if the laboratory win-
nings are smaller than ​​  z ​​1​, and stock market gains and losses much larger; we explore 
this quantitatively in later sections. This differential between risk aversion for small  
and large gains also plays a key role in our analysis of reversals such as the Allais 
and common ratio paradoxes.

The Allais and Common-Ratio Paradoxes.—We turn now to the classical rever-
sals of the Allais and Common-Ratio paradoxes. In both cases the reversal involves 
switching from a less risky to a more risky alternative when the chances of winning 
a prize are reduced. These scenarios are period one gambles, so ​​   z ​​ t​ 

j​ = 0, t > 1. For 
simplicity we consider three possible outcomes ​Z​b​ < ​Z​m​ < ​Z​g​ where ​Z​b​ is taken to 
be zero.

We consider two different scenarios. In the base scenario the probabilities of the 
outcomes i ∈ {b, m, g} are ​p​ i​ 

j​ under the alternatives j = S, L. In the second scenario 
these probabilities are ​​

_ p​​ i​ 
j​ .

In the Allais paradox the probability of the good outcome is the same in both 
scenarios, that is, ​​

_ p​​ g​ j
 ​ = ​p​ g​ j

 ​, while the probability of the middle outcome is reduced 
by the same amount for both actions in moving from the first scenario to the sec-
ond, so ​​

_ p​​ m​ j
 ​ = ​p​ m​ j

 ​ − P. For example, in the classical Allais paradox, the rewards 
are ​Z​b​ = 0, ​Z​m​ = 1,000,000, ​Z​g​ = 5,000,000, while the base probabilities are ​
p​S​ = (0, 1, 0), meaning the middle outcome is certain, and ​p​ L​ = (0.01, 0.89, 0.10). 
The second scenario is defined by P = 0.89, meaning that ​​

_ p​​ S​ = (0.89, 0.11, 0) 
and ​​

_ p​​ L​ = (0.9, 0, 0.10). An expected utility maximizer must make the same choice 
in each scenario, but it is often observed that when asked about these hypothetical 
choices, many subjects prefer S in the base scenario and L in the second scenario.

In the common-ratio paradox, the probability of both the middle and good out
come are reduced by a common factor α, so that ​​

_ p​​ m​ j
 ​ = α​p​ m​ j

 ​, ​​
_ p​ ​ g​ 

j
 ​ = α​​_ p​​ g​ 

j
 ​ . In Baucells 

and Heukamp (2010a), for example, ​Z​b​ = 0, ​Z​m​ = 9, ​Z​g​ = 12. The base probabili-
ties are ​p​S​ = (0,1,0), ​p​L​ = (0.2, 0, 0.8), and α = 0.1 so that ​​

_ p​​S​ = (0.9, 0.1, 0), ​​
_ p​​L​  

= (0.92, 0, 0.08). As with the Allais paradox, an expected utility maximizer makes 
the same choice in each scenario, yet in practice many choose S in the base scenario 
and switch to L in the second scenario. There are many experiments showing the 

17 For example if we use the experimental data from Peter Boaessarts, Charles Plott, and William R. Zame 
(2007) and a lifetime wealth of $350,000.

18 Rajnish Mehra (2003).
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common ratio reversal. One such is Baucells and Heukamp (2010a) whose data is 
especially useful for us because they examine the temporal dimension of the reversal 
which we examine below.19 Their data in Table 2 show that only 22 percent choose 
the safer choice S in the second scenario, while the substantially greater fraction 
58 percent make that choice in the base scenario.20

Notice that in the base scenario S has a lower mean than L and S is less risky. 
Consequently if L is preferred by u to S then it is also preferred by any less risk 
averse utility function,21 and by Theorem 2 if ​c​1​/​w​1​ is small then V is less risk averse 
than u. Since both u and V are expected utility functions, and since the common 
ratio scenarios are constructed so that for any expected utility function preferences 
must be the same in the two scenarios, if L is preferred to S by u and V in the base 
scenario it is also preferred by both in the second scenario. Consequently no reversal 
will occur.

The interesting case, therefore, is the case in which the short-run self prefers S, 
that is, Eu(​x​1​ + ​​   z ​​ 1​ 

S​ ) ≥ Eu(​x​1​ + ​​   z ​​ 1​ 
L​), which we now assume. The idea is that in mov-

ing from the base scenario to the second scenario the overall probability of winning 
a prize is reduced, so the temptation and marginal cost of self-control are reduced, 
leading to a reversal from S to L.

To demonstrate this formally we examine the case where ​p​ i​ 
L​ = ​p​ i​ 

S​ + λ​P​ i​ and  
​​
_ p​​ i​ 

L​ = ​​
_ p​​ i​ 

S​ + λ​​
_
 P​​ i​ for i = b, m, g, and ​P​b​ = −​P​ m​ − ​P​ g​, ​​

_
 P​​b​ = −​​

_
 P​​ m​ − ​​

_
 P​​ g​ for small positive 

λ. In the Allais paradox ​​
_ p​​ g​ j

 ​ = ​p​ g​ j
 ​, and ​​

_ p​​ m​ j
 ​ = ​p​ m​ j

 ​ − P. In other words ​​
_
 P​​ i​ = ​P​ i​ . In the 

common ratio paradox ​​
_ p​​ m​ j

 ​ = α​p​ m​ j
 ​, ​​

_ p​​ g​ j
 ​ = α​​_ p​​ g​ j

 ​ so ​​
_
 P​​ i​ = α​P​ i​. Note that while the equa-

tions for ​​
_ p​​ i​ 

j​ are different for the Allais and common ratio paradoxes, both are special 
cases of what we may think of as the “generalized” common ratio paradox ​​

_
 P​​ i​ = α​P​ i​. 

For the Allais paradox, we have α = 1, for the common ratio paradox α < 1. We will 
now analyze the consequences of assuming ​​

_
 P​​ i​ = α​P​ i​ .

To determine the optimal choice, define Δ to be the utility advantage of S in the 
base scenario:

	 Δ  =  {Eu (​​   c​​ 1​ 
S​ )  −  g(Eu(​x​1​+ ​​    z ​​ 1​ 

S​ )  −  Eu(​​   c​​ 1​ 
S​ ))  +  δEV(​w​2​(​​   c​​ 1​ 

S​ ))}

	 −  {Eu(​​   c​​ 1​ 
L​)  −  g(Eu(​x​1​  + ​​    z ​​ 1​ 

S​ )  −  Eu(​​   c​​ 1​ 
L​))  +  δEV(​w​2​(​​   c​​ 1​ 

L​))}.

19 While Keren and Roelsfsma (1995) find that the immediacy effect is attenuated by uncertainty of reward, 
and Baucells and Heukamp (2010a) find that the common ratio paradox is attenuated by delay, Weber and Chapman 
(2005) are unable to find either effect, albeit in a very small sample. They also fail to find any attenuation of the 
common consequence Allais paradox due to delay. Hence the importance of these effects must await further research.

20 Based on a sample of 221 subjects.
21 Recall that u is less risk averse than v if v = g(u) where g is strictly increasing and weakly concave.

Table 2—Common Ratio Paradox

S 1.00 chance of 9 euros 0.58
L 0.80 chance of 12 euros 0.42
S 0.10 chance of 9 euros 0.22
L 0.08 chance of 12 euros 0.78
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For λ = 0 the two lotteries are equivalent and so Δ(0) = 0. To differentiate this 
with respect to λ notice that by the envelope theorem the derivatives with respect to 
the consumption levels ​c​ 1i​ 

j
  ​ are zero, so we need to consider only the derivative with 

respect to the probabilities ​p​ i​ 
j​ in the expectations. From ​p​ i​ 

L​ = ​p​ i​ 
S​ + λ​P​ i​ , the deriva-

tives of the differences in probabilities between the two choices are just ​P​ i​ . Hence 
we may compute

​ dΔ _ 
dλ ​ ​|​λ=0​  =  [1  +  g′(Eu(​x​1​  + ​​    z ​​ 1​ 

S​ )  −  Eu(​​   c​​ 1​ 
S​ ))]

 	  ×  [(u(​c​ 1m​ S
  ​)  −  u(​c​ 1b​ 

S
 ​))​P​ m​  +  (u(​c​ 1g​ 

S
 ​)  −  u(​c​ 1b​ 

S
 ​))​P​ g​] 

+  δ[(V(​w​2​(​c​ 1m​ S
  ​))  −  V(​w​2​(​c​ 1b​ 

S
 ​)))​P​ m​  +  (V(​w​2​(​c​ 1g​ 

S
 ​))  −  V(​w​2​(​c​ 1b​ 

S
 ​)))​P​ g​].

If this is positive then for small λ22 the optimal choice is L, and if it is negative the 
optimal choice is S.

When can changing from the base scenario to the second scenario reverse the 
agent’s preferences? Let ​

_
 Δ​ be the utility advantage of S in the second scenario. If 

the marginal cost of self-control, namely ​γ​1​ = g′(Eu(​x​1​ + ​​   z ​​ 1​ 
S​) − Eu(​​   c​​ 1​ 

S​)), is the same 
in both scenarios then

	​  d​
_

 Δ​ _ 
dλ ​  = ​  αdΔ _ 

dλ ​

so that there can be no sign change and no reversal. If

	​U  ​ *​  =  (u(​c​ 1m​ S
  ​)  −  u(​c​ 1b​ 

S
 ​))​P​ m​  +  (u(​c​ 1g​ 

S
 ​)  −  u(​c​ 1b​ 

S
 ​))​P​ g​

and

	​ V​ *​  =  (V(​w​2​(​c​ 1m​ S
  ​))  −  V(​w​2​(​c​ 1b​ 

S
 ​)))​P​ m​  +  (V(​w​2​(​c​ 1g​ 

S
 ​))  −  V(​w​2​(​c​ 1b​ 

S
 ​)))​P​ g​

have the same sign, then the magnitude of ​γ​1​ will not matter, and again there will 
be no reversal. Since u is more risk averse than V the interesting case then is one in 
which ​U​ *​ is negative (S preferred) and ​V​ *​ is positive (L preferred).

Let us suppose that ​Z​b​ < ​​  z ​​1​. Then

	​ γ​1​  =  g′((u(​x​1​  + ​ z​ 1m​ S
  ​)  −  Eu(​​   c​​ 1m​ S

  ​))​p​ m​ S
 ​  +  (u(​x​1​  + ​ z​ 1g​ 

S
 ​)  −  Eu(​​   c​​ 1g​ 

S
 ​))​p​ g​ S​ ).

In both the Allais paradox and the common ratio paradox ​​
_ p​​ m​ S

 ​ < ​p​ m​ S
 ​, ​​

_ p​​ m​ L
 ​ ≤ ​p​ m​ L

 ​ , 
so if ​Z​m​ > ​​  z ​​1​ and g′(·) is strictly increasing ​​

_ γ​​ 1​ < ​γ​1​. If dΔ/dλ = 0, this implies 
d​
_

 Δ​/dλ < 0, so by continuity the same is true if dΔ/dλ is slightly positive. In other 
words, the dual self model with strictly convex cost of self-control predicts both an 
Allais and common ratio paradox.

22 The general case of large λ is considered for the Allais paradox below.
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Reversal and Delay.—Dual self theory has a second implication for Allais and 
common ratio paradoxes: if the results of gambles are delayed long-enough that they 
fall outside the time horizon of the short-run self, the reversals should disappear. 
Some people find this conclusion to be implausible. There is very little data on what 
happens to Allais type reversals when there is delay, but Baucells and Heukamp 
(2010a) have studied the common ratio reversal with and without delay. Their data 
is summarized in Table 3.

The key fact is that the reversal rate is 0.36 without delay and falls to 0.22 with 
delay, which is qualitatively as the theory predicts. However, quantitatively fitting this 
data requires that the subjects who exhibit reversals with the 3-month delay have a 
“short run” of more than three months, which is not consistent with calibrations of the 
short run on other experiments. We address this fact, and other evidence that the length 
of delay has a continuous impact on decisions, in Fudenberg and Levine (2010).

Betweenness.—Another implication of increasing marginal cost of self-control 
is that it may be desirable to incur some cost of self-control, but not too much. This 
can result in the choice of a “compromise” action that lies in between an option that 
involves a high and a low cost of self-control. In particular—a dual-self agent may 
strictly prefer to randomize as a compromise to achieve and “intermediate” level of 
self-control cost.

Specifically, suppose that in addition to S and L, there is a third option M consist-
ing of a probability 0 < λ < 1 of S and 1 − λ of L. In expected utility theory unless 
S and L are indifferent, M can never be chosen, and indeed, can never be strictly pre-
ferred over both S and L. Dekel (1986) proposed this “betweenness” property as a 
way of relaxing the independence axiom. However, Colin F. Camerer and Teck-Hua 
Ho (1994) summarize considerable past work showing that this axiom is violated 
by a non-trivial fraction of subjects, and also conducted their own experiments that 
yielded similar results. For example, 20 percent of their subjects express a strict 
preference for the intermediate choice M.23

From the perspective of our theory this is not so surprising. Suppose that S is pre-
ferred by u and L by V. If L is chosen there is a high temptation so a high marginal 

23 We are grateful to Simone Cerreia-Vioglio for bringing the Camerer and Ho (1994) paper to our attention. 
They did not solicit willingness to pay for the most preferred option, so while stating indifference was an option, 
it may be that some subjects were indifferent but chose not to say so. Camerer and Ho (1994) conducted different 
sets of experiments with two populations: one of high school subjects and one of MBA students. The most relevant 
results are those with the MBA students, which is what we report here. Note that sixteen percent of subjects strictly 
prefer both S and L to the intermediate choice, which can be explained in our theory only with a decreasing marginal 
cost of self-control.

Table 3—Common Ratio with Delay

Now 3 month delay

S 1.00 chance of 9 euros 0.58 0.43
L 0.80 chance of 12 euros
S 0.10 chance of 9 euros 0.22 0.21
L 0.08 chance of 12 euros
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cost of self-control. With this high marginal cost of self-control, S may look quite 
attractive. If S then there is no temptation so a low marginal cost of self-control. This 
may make L attractive, suggesting that the optimum may lie in between.

To establish this formally, consider the utility of M as a function of λ:

	U (λ)  =  λEu(​​   c​​ 1​ 
S​ )  +  (1  −  λ)Eu(​​   c​​ 1​ 

L​) 

 	  −  g(Eu(​x​1​  + ​​    z ​​ 1​ 
S​ )  −  (λEu(​​   c​​ 1​ 

S​ )  +  (1  −  λ)Eu(​​   c​​ 1​ 
L​)))

 	  +  δ[λEV(​w​2​(​​   c​​ 1​ 
S​ ))  +  (1  −  λ)EV(​w​2​(​​   c​​ 1​ 

L​))].

Differentiating with respect to λ, we find

	U ′(λ)  =  (1  + ​ γ​1​(λ))(Eu(​​   c​​ 1​ 
S​ )  −  Eu(​​   c​​ 1​ 

L​))  +  δ[EV(​w​2​(​​   c​​ 1​ 
S​ ))  −  EV(​w​2​(​​   c​​ 1​ 

L​))],

where ​γ​1​(λ) denotes the first-period marginal cost of self-control as a function of λ. 
Notice that ​γ​1​(0) < ​γ​1​(1) provided that g is strictly convex, that is, L has a higher 
marginal cost of self-control than S. This implies ​​   c​​ 1​ 

S​ < ​​   c​​ 1​ 
L​ and because the problem is 

concave if ​γ​1​(0) is small enough U′(0) > 0, while if ​γ​1​(1) is large enough U′(1) < 0. 
These two conditions imply that there is some 0 < λ < 1 such that M is strictly pre-
ferred to both S and L.

IV.  Quantitative Analysis

We turn now to a quantitative analysis of the reversal phenomenon. Roughly 
speaking, the question we wish to address is whether there is a single set of prefer-
ences over risk, time, and self-control that can explain the behavior of each individual 
across a wide range of decisions. In doing so we need to contend with two issues: the 
heterogeneous nature of individuals, and the context in which decisions are made.

With respect to heterogeneity our focus here is on the median individual with the 
hope that this person does not differ too much from study to study. We do examine 
to a limited extent other people such as individuals who are more risk averse than 
the median.

With respect to the context in which decisions are made we make two adaptations 
to the model: we explicitly account for the fact that some consumer expenditure is 
precommitted (for durable goods and the like) and so not subject to temptation, and 
we drop the assumption that short-run and long-run risk aversion are linked.

Our methodology is that of calibration. We do not look at a particular collection 
of data on the Allais paradox and ask what parameter values might explain that data. 
Rather we use data from other sources to estimate behavioral parameters such as 
risk aversion and time preference, then ask whether these parameters are consis-
tent with the Allais paradox. In this section we report the parameters we used; the 
sources of data and estimation procedures are reported in Appendix II.

Consumption Commitment.—So far, we have followed Fudenberg and Levine 
(2006). Now we consider an extension of that model that we will use to explain the 
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degree of risk aversion we observe in experimental data. Specifically, we suppose 
that in the bank sub-period there is a choice of nightclubs to go to in the nightclub 
sub-period. These choices are indexed by the quality of the nightclub ​c​ t​ 

q​ ∈ (0, ∞). In 
a nightclub of quality ​c​ t​ 

q​ we assume that the utility of the short-run self has the form 
u(​c​t​ | ​c​ t​ 

q​) depending on the amount consumed ​c​t​ there and the quality of the nightclub. 
We want this function to satisfy u(​c​t​ | ​c​t​) = log ​c​t​ so that in a deterministic and perfectly 
foreseen environment without self-control costs, behavior is the same as with standard 
logarithmic preferences. There are a great many possible functional forms satisfying 
these properties. Our choice of a specification is guided both by analytic convenience 
and by evidence (examined below) that short-term risk preferences seem more risk 
averse than consistent with the logarithmic specification, even when self-control costs 
are taken into account. This leads us to adopt the functional form24

	 u(​c​t​ | ​c​ t​ 
q​ )  =  log ​c​ t​ 

q​  − ​ 
​(​c​t​/​c​ t​ 

q​ )​1−ρ​  −  1
  __ ρ  −  1

 ​  ,

where ρ ≥ 1 corresponds to the short-run self’s relative risk aversion over immediate 
consumption. Because our goal is a tightly parameterized model that fits the experi-
mental data, this functional form assumes that all of the nightclubs have the same 
coefficient ρ. In practice ρ could vary. This might be important in accounting for the 
preferences of the very rich and the very poor; we discuss it in more detail when we 
examine the robustness of our calibrated parameters.25

Durable Consumption.—The next step is to specify the agent’s preferences for 
durable versus non-durable consumption. Durable consumption ​c​ t​ 

d​ can only be 
adjusted slowly, and seems unlikely to respond at all to the sorts of income shocks 
received in the lab experiments we study. For this reason, we simplify the model by 
assuming that the time path of ​c​ t​ 

d ​is chosen for once and for all in the initial time 
period.26 Our goal here is simply to account for the fact that durable consumption 
exists, and not to explain it, so we adopt a simple Cobb-Douglas-like specification 
τ u(​c​t​ | ​c​ t​ 

q​ ) + (1 − τ)log ​c​ t​ 
d​; this will lead to a constant share 1 − τ of spending on 

durables. From National Income and Product account data, we estimate τ = 0.57. 
This number may be too large, as in addition to the durable categories we consider 
there are additional categories of consumption such as food, transportation, insur-
ance, childcare, communication, and health club dues that also may not be subject 
to temptation. For that reason we will also consider a robustness check with a much 
smaller value of τ = 0.23 calibrated so that u(​c​t​ | ​c​ t​ 

q​) is the logarithm.

24 This functional form, while not implied by the basic assumptions of the dual-self approach, is a standard CES 
and is not chosen with our particular data in mind.

25 Note that u(​c​t​ | ​c​ t​ 
q​ ) ≤ u(​c​t​ | ​c​t​), so that when planning to consume a given amount ​c​t​ it is best to choose the 

nightclub of the same index. Intuitively, the quality ​c​ t​ 
q​ of a nightclub represents a “target” level of consumption 

expenditure at that nightclub, and people with different planned consumption levels will choose consumption sites 
with different characteristics. The quality of a nightclub can also be interpreted as a state variable or capital stock 
that reflects experience with a given level of consumption: a wine lover who unexpectedly wins a large windfall 
may take a while both to learn to appreciate differences in grands crus and to learn which ones are the best values.

26 Similarly, we abstract from labor supply, precautionary savings motives, and so forth. However we explicitly 
introduce durable consumption so that when we calibrate pocket cash the short-run self does not perceive that the 
rent check and similar expenses are available for short-term amusement.
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Long-Run Self.—The objective function of the long-run self is

	​U ​RF​  =  E​∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ [τ  (u(​c​t​ | ​c​ t​ 
q​ )  −  g(u(​x​t​ | ​c​ t​ 

q​ )  −  u(​c​t​ | ​c​ t​ 
q ​)) 

	 +  (1  −  τ)log ​c​ t​ 
d​ )],

which is to be maximized with respect to ​c​t​ ≥ 0, ​c​ t​ 
q​ ≥ 0, ​c​ t​ 

d​ ≥ 0, ​x​t​ ≥ 0 subject to ​
w​1​, given ​w​t+1​ = R(​s​t​ + ​x​t​ − ​c​t​), ​s​t​ + ​x​t​ + ​c​ t​ 

d​ ≤ ​w​t​ , and ​w​t​ ≥ 0. Notice that this is a 
simple optimization problem with no uncertainty and perfect foresight. We provide 
solutions to this model in Appendix I. The key conclusion is that the consumption 
cutoff is given by

	​​   c​​1​  ≡ ​ x​1​  + ​​   z ​​1​  =  (​x​1​​)​(ρ−1)/ρ​[​ τ (1  −  δ)
 _ δ ​  (1  + ​ γ​1​)​w​2​​]​1/ρ

​

	 ≈ ​ x​1​(1  + ​ γ​1​​)​1/ρ​.

Define ​μ​1​(​γ​1​) = (1 + ​γ​1​​)​1/ρ​ ≈ ​​  c​​1​/​x​1​. Because the numerical value of ​γ​1​ is hard to 
interpret, in measuring the cost of self-control we will report ​μ​1​(​γ​1​) rather than ​γ​1​.

Cost of Self-Control.—In our calibrations of the model, we assume that the cost 
function is quadratic: g(​v​ t​) = γ​ v​ t​ + (1/2)Γ​v​ t​ 

2​, and we will maintain that assumption 
throughout the rest of the paper. Thus, the marginal cost of self-control at time t is 
now γ + Γ​v​t​ ; we continue to denote this as ​γ​t​ .

Time Patience and Wealth.—We consider several plausible scenarios for the sub-
jective discount factor, income, wealth, and pocket cash. For the time horizon Δ of 
the short-run self we use one day. For the purposes of robustness we checked that 
none of our results are sensitive to assuming a time horizon of a week: details can be 
found in the earlier working paper version available online.

Table 4 lists income corresponding to three different income levels,27 and three 
different subjective interest rates, for which we take the base case to be 1 percent.

Risk Aversion.— In our theory as long as the combination of pocket cash and the 
maximum winning is well below our estimates of ​​  c​​1​, all income is spent, and our 
consumer simply behaves as a risk-averse individual with wealth equal to pocket 
cash.28 In particular this means that the self-control parameters γ and Γ are irrel-
evant for the calibration, though they do help determine the magnitude of ​​  c​​1​. To 
determine the risk aversion of the short-run self, we examine small gambles using 

27 The middle level of income is the US median.
28 Note that this theory predicts that if payoffs are delayed sufficiently, risk aversion will be much lower. 

Experiments reported in Nicholas Barberis, Ming Huang, and Richard H. Thaler (2006) suggest that there is appre-
ciable risk aversion for gambles where the resolution of the uncertainty is delayed as well as the payoffs themselves. 
However, delayed gambles are subject to exactly the same self-control problem as regular ones, so this is consistent 
with our theory. In fact the number of subjects accepting the risky choice in the delayed gamble was in fact consider-
ably higher than the non-delayed gamble, rising from 10 percent to 22 percent.
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data from Holt and Laury (2002). In Appendix II we use this data to estimate the 
coefficient of relative risk aversion ρ that explains the behavior of the median indi-
vidual and the coefficient that matches the behavior of the individual at the 85th 
percentile of risk aversion.

Our estimates of median and “high” risk aversion are given in Table 5.

V.  Quantitative Analysis of Reversals

We proceed next to examine the Allais paradox and other reversals in the cali-
brated model. We assume that the choice in these experiments is completely unan-
ticipated. In this case the solution is simple: there is no self-control problem at 
the bank, so the choice is ​c​ 1​ *​ = ​x​1​ and spend all the pocket cash in the nightclub of 
choice. Given this, the problem is purely logarithmic, so the solution is to choose ​
x​1​ = (1 − δ)​w​1​.

In the Kahneman and Tversky (1979) version of the Allais paradox, the two 
options in the first scenario are ​L​1​ given by (0.01:0, 0.66:2,400, 0.33:2500), while ​
S​1​ is 2,400 for certain. Many people choose option ​S​1​. In scenario two the pair of 
choices are ​L​2​ = (0.67:0, 0.33:2,500) and ​S​2​ =  (0.66:0, 0.34:2,400).29 Here many 
people choose ​L​2​. Expected utility theory requires the same option L or S be chosen 
in both scenarios.

The original Allais paradox involved substantially higher stakes, so it would be 
difficult to implement other than as a thought experiment: option ​L​1​ was (0.01:0, 
0.89:1,000,000, 0.1:5,000,000) and ​S​1​ was 1,000,000 for certain; the second sce-
nario was ​L​2​ =  (0.90:0, 0.10:5,000,000) and ​S​2​ =  (0.89:0, 0.11:1,000,000).

From our qualitative analysis, we know that to get a reversal the safe alternative 
S must be preferred by u and the risky alternative L must be preferred by V. The 

29 These were thought experiments. We are unaware of data from Allais experiments with real payments of over 
$2,000, though other experiments with stakes of analogous shares of average per-capita yearly income have been 
conducted in poor countries. There is experimental data on the Allais paradox with real, but much smaller, stakes; 
we discuss this below. We thank Chew Soo Hong for drawing our attention to an error in our discussion of this ver-
sion of the paradox in a previous draft.

Table 4—Calibrated Parameter Summary

Percent interest r ​y​1​ = 14K ​y​1​ = 28K ​y​1​ = 56K

Annual Daily ​w​1​ ​x​1​ ​w​1​ ​x​1​ ​w​1​ ​x​1​

1 0.003 1.3M

20

2.6M

40

5.2M

803 0.008 0.43M 0.86M 1.7M
5 0.014 0.30M 0.61M 1.2M

Table 5—Estimated Relative Risk Aversion

Pocket cash ​x​1​

$20 $40 $80

ρ median 1.17 1.43 1.90
ρ 85th 2.02 2.74 4.15
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first question is whether this is true for the calibrated parameters. A computation 
shows that it is. However, the data cannot easily pin down the curvature of the self-
control function, beyond the fact that it cannot be linear. This is shown in Figure 2, 
where the (γ, Γ) pairs generating Allais paradoxes are computed for the base case of 
$28,000 annual income and risk aversion ρ = 1.43. In the light-shaded region with 
low costs of self-control, the long-run optimum L is the best choice in both scenar-
ios. In the unshaded region with high costs of self-control, the short-run optimum S 
is the best choice in both scenarios. In the dark-shaded region in between an Allais 
reversal occurs, as the optimal choice is S in the high temptation scenario and L in 
the low temptation scenario.

While a wide range of curvatures of the self-control function is consistent with 
the data, the marginal cost of self-control must lead to near indifference and so is 
well pinned down by the data. In Table 6 we report the types of marginal costs that 
are consistent with the Allais paradox and other reversals, using the median and 
85 percent risk aversion estimates and typical income values from the last section.30

Note that the estimates of the threshold ​μ​1​ depend on the preference parameters 
such as risk aversion and pocket cash. This is a necessary feature of the theory: since 
the data to be explained is the same, if we change other preference parameters, the 
self-control cost must also change to be consistent.

The crucial quantitative issue is the reasonableness of the parameters and their 
consistency with other data and other types of experiments. From the table, we can 
see that the data from the Allais experiments are consistent with the level of pocket 
cash and risk aversion in the Rabin paradox. This is a non-trivial quantitative finding, 

30 The programs used for the computations were in Octave, a free equivalent of Matlab. They can be found at 
www.dklevine.com/papers/allais.zip.
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Figure 2. Allais Paradoxes
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as to generate a reversal the long-run and short-run self must have opposite prefer-
ences over the alternatives, and the two selves do not have opposite preferences over 
these choices for all combinations of pocket cash and risk aversion. Moreover, the 
preferences of the long-run and short-run self must be sufficiently close to indiffer-
ence that we find marginal cost of self-control parameters that generate exact indif-
ference. Again, this is true for all the reversals examined.

In terms of the reasonableness of the calibrated parameters, the key issue is the 
range of marginal self-control costs ​μ​1​ that are needed to generate reversal. The 
high stakes Allais paradoxes require very large marginal costs of self-control: in 
both of these “OA” cases, this is because the cutoff at which self-control is used 
must lie below but close to the amount that is won. This is qualitatively consistent 
with the theory, in the sense that with convex cost of self-control higher stakes do 
lead to higher marginal cost of self-control, but it is not possible to fit the data with 
a single quadratic marginal cost of self-control function. It should be noted that the 
high stakes here are very high, and it may not be reasonable to approximate long-run 
preferences over such a large range with a logarithmic utility function.

More broadly, the parameters here have difficulty with other data that involves 
much higher or much lower stakes. They are hard to reconcile with the very low 
stakes in the common consequence case, and they cannot explain the Allais paradox 
for very small stakes: When all payoffs are below pocket cash the decision-maker 
simply uses the preferences of the short-run self, and so behaves as an expected 
utility maximizer with wealth equal to pocket cash. However, whether the Allais 
paradox occurs for very small stakes is controversial.31

31 Raymond Battalio, John H. Kagel, and Komain Jiranyakul (1990) found that subjects did exhibit the Allais 
paradox even for very small stakes in the range $0.12 to $18.00, and that they less frequently even made the reverse 
Allais choices. However, indifference or near indifference may be a key factor in the reported results. Glenn W. 
Harrison (1994) found that with various small stakes the Allais paradox was sensitive to using real rather than hypo-
thetical payoffs, and found in the real payoff case only 15 percent of the population exhibited the paradox, and a 

Table 6—Self Control Estimates (KT = Kahneman and Tversky Allais; OA = Original Allais; 
CR = Common Ratioa; CL = Cognitive Load b)

Case Stakes r τ Income ​x​1​ = ​c​ 1​ *​ ρ ​μ​1​

KT 2,400 1 percent 0.57 14,000 20 1.17 16.7
KT 2,400 1 percent 0.57 14,000 20 2.02 7.56
KT 2,400 1 percent 0.57 28,000 40 1.43 8.49
KT 2,400 1 percent 0.57 28,000 40 2.74 4.13
KT 2,400 1 percent 0.57 56,000 80 1.90 4.57
KT 2,400 1 percent 0.57 56,000 80 4.15 2.47
KT 2,400 1 percent 0.23 28,000 16.4 1.00 24.3
OA 5,000,000 1 percent 0.57 28,000 40 1.43 4,340
OA 5,000,000 1 percent 0.57 28,000 40 2.74 128
KT 2,400 3 percent 0.57 14,000 20 2.02 7.34
CR 12 3 percent 0.57 14,000 20 2.02 1.89
CL 1.0 7 percent 1.0 11.4 2.3 1.17 21.2

Notes:
a Data from Baucells and Heukamp (2010a) as described earlier.
b Data from Benjamin, Brown, and Shapiro (2006); the experiment and data are described in the Appendix.
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Finally, there is evidence on the level of self-control costs for much larger stakes 
from survey data on the response of consumption to windfall income such as inher-
itances and stimulus tax rebates. Most of the literature we have examined finds a 
high propensity to consume out of small or modest windfalls, but does not examine 
whether this propensity drops for larger windfalls, so it is difficult to pin down the 
size of a possible income threshold. For example, Jonathan A. Parker et al. (2010) 
find a substantial marginal propensity to consume from 2008 economic stimulus 
payments that ranged from $300–$600 for single individuals and $600–$1,200 per 
couple, with additional payments of $300 per “qualified” child. The large mar-
ginal propensity to consume from these payments suggests that the threshold for 
self-control is larger than say 5 percent, corresponding to ​μ​1​ of about 35, but does 
not pin down the payment level at which self-control would be used to lower the 
fraction of the payment consumed.32 The one study we know of that uses income 
measures to estimate this cutoff is Mohamed Abdel-Ghany et al. (1983); they find 
a find a cutoff of 10 percent of income which corresponds to ​μ​1​ of about 70. Below 
this threshold the marginal propensity to consume out of income is 94 percent; 
above this threshold it is only 2 percent. This is a much higher value of ​μ​1​ than we 
find in all but the high stakes Allais cases.

VI.  Conclusion

Because the long-run self in the dual-self model faces a dynamic programming 
problem, the model can be applied to a wide range of problems that combine choices 
over time with uncertain outcomes. Moreover, we have argued that a simple version 
of the model with a quadratic cost of self-control and logarithmic preferences for 
foreseen consumption is not only flexible enough to allow for various sorts of para-
doxical behavior but can also quantitatively fit a range of data.

One class of alternative models that can potentially be used to explain a wide 
range of phenomena are probability weighting models, including such prospect the-
ory and models of ambiguity aversion. These models are typically static, and while 
they often have a reference point that can be used, for example, to resolve the Rabin 
paradox, that reference point is generally exogenously given.33 However, there are 
recent efforts to extend these models to examine dynamic phenomena. For example, 
Halevy (2008) and Baucells and Heukamps (2010b) propose models of choice over 
time paths of money that permit the attenuation of the Allais paradox by delay and 
the attenuation of immediacy by uncertainty. However, the only probability weight-
ing model that has been studied extensively is that of prospect theory.34

following study by Michael S. Burke et al. (1996) found a statistically significant drop from 36 percent to 8 percent. 
John Conlisk (1989) also finds little evidence of an Allais paradox when the stakes are small.

32 A similar issue arises in interpreting the findings of David S. Johnson, Parker, and Nicholas S. Souleles (2006) 
and a number of related studies.

33 See Botond K​     o​szegi and Rabin (2006) for one way to make the reference point endogenous, and Gul and 
Pesendorfer (2008) for a critique.

34 There are many other alternative explanations of specific paradoxes, for example regret theory, but these are 
less comprehensive than either this theory or prospect theory. There are also paradoxes that are hard to explain in 
any theory. For example Justin Sydnor (2009) shows that a typical homeowner pays $100 to reduce his deductible 
from $1,000 to $500 with a claim rate of less than 5 percent. Rather than revealing something about risk preference, 
this may be the result of the homeowner’s not knowing the probability of a loss.



56	 American Economic Journal: Microeconomics� August 2011

Despite the fact that prospect theory has been used for many years, few efforts 
have been made to examine whether individual behavior over a range of different 
paradoxes can be explained in a single consistent way. William Neilson and Jill 
Stowe (2002) conducted a systematic examination of the parameters needed to fit 
cumulative prospect theory (with rank-dependent probabilities) to various empirical 
facts, and concluded that “there are no parameter combinations that allow for both 
the desired gambling/insurance behavior and a series of choices made by a strong 
majority of subjects and reasonable risk premia.” 35

The point is simply that prospect theory does not explain the data used to moti-
vate it with a single consistent set of preferences. Self-control theory, as examined, 
faces a similar difficulty, although arguably less severe.

Self-control theory can address issues such as the role of cognitive load and explains 
intertemporal paradoxes such as the hyperbolic discounting phenomenon about which 
prospect theory is generally silent. Also, our approach provides a self-contained the-
ory of intertemporal decision making; by way of contrast, while it is not transparent 
how to embed prospect theory into an intertemporal model.36,37

In the other direction, prospect theory allows for individuals who are simultane-
ously risk averse in the gain domain and risk loving over losses. This is done in 
part through the use of different value functions in the gain and loss domains, and 
in part through its use of a probability weighting function, which can allow indi-
viduals to overweight rare events.38 Most work on prospect theory has estimated a 
representative-agent model; Adrian Bruhin, Helga Fehr-Duda, and Thomas Epper 
(2010) refined this approach by classifying individuals as expected utility maxi-
mizing or as cumulative prospect theory types,39 and find that most individuals are 
prospect theory types.

There are two main deficiencies we have identified in current versions of the 
dual-self model. First, there is a tension with respect to the degree of self-control. 
The model predicts that there should be a threshold level of unanticipated income, 
with marginal propensity to consume of 100 percent below the threshold and a very 
low marginal propensity above it. However, it is difficult to reconcile the range of 
cut-offs needed to explain the data with the behavior of single individual. Second, 
as is the case with quasi-hyperbolic discounting, the model predicts very abrupt 

35 The paper also says that “the preference function estimated by Tversky and Kahneman (1992) can accom-
modate neither the strongest choice patterns from Battalio, Kagel, and Jiranyakul (1990) nor the Allais paradox, and 
implies some rather large risk premia. The preference functions estimated by Camerer and Ho (1994) and George 
Wu and Richard Gonzalez (1996) imply virtually no risk seeking over unlikely gains and virtually no risk aversion 
over unlikely losses, so that individuals will purchase neither lottery tickets nor insurance.”

36 Koszegi and Rabin (2009) develop but do not calibrate a dynamic model of reference dependent choice.
37 We have also argued that the same model can account for risky decision making of Chilean high school 

students faced with differing cognitive loads. This finding is not trivial, as there are possible observations that are 
not consistent with the theory. For example, cognitive load in the Chilean experiment could have caused subjects 
to switch in the reverse, “anti-Allais,” direction, which our model could not explain. Second, there is enormous 
heterogeneity in the data; only a fraction of subject populations exhibit reversals, and the populations in the various 
experiments are very different.

38 See Drazen Prelec (1998) for an axiomatic characterization of several probability weighting functions, and a 
discussion of their properties and implications.

39 Their estimation procedure tests for and rejects the presence of additional types. Given the functional forms 
they estimate, individuals with expected utility preferences are assumed to be risk averse throughout the gains 
domain, while in their data individuals are risk loving for small probabilities of winning, while for higher prob-
ability of success they are risk averse.
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responses to small changes in the timing of rewards near the end of the time cor-
responding to the end of the period, yet this is inconsistent both with common sense 
and a great deal of data.

Nevertheless, despite the fact that it has so far received less attention and devel-
opment, the dual-self model explains choices over lotteries about as well as the 
considerably more developed prospect theory, while explaining phenomena such 
as commitment and cognitive load that prospect theory cannot. Moreover, the 
dual-self model is a fully dynamic model of intertemporal choice that is consis-
tent with both traditional models of savings (long-run logarithmic preferences) 
and with the equity premium puzzle.40 As these models of individual behavior are 
widely and successfully used by macroeconomists (including New Keynesians) to 
explain a wide variety of aggregate data, ranging from bubbles to exchange rate 
paradoxes and the equity premium puzzle, it is important not to simply discard all 
this existing work.

Further improvements in the dual-self model are desirable, but its success in 
providing a unified explanation for a wide range of phenomena suggests that it 
should be viewed as a natural starting point for attempts to explain other sorts of 
departures from the predictions of the standard model of consumer choice. We 
hope here to convince the economics community of the importance of quantita-
tive calibrations of decision theory models. One possible next step would be try 
to more explicitly account for the evident heterogeneity of the population, and 
estimate distributions of self-control parameters as opposed to simply fitting the 
median or some other fractile as we have done here. Another direction is to fur-
ther extend the theory, as we do in Fudenberg and Levine (2010) by extending the 
model to account for the fact that the effect of delay is gradual as opposed to the 
abrupt effect in both the dual-self model and quasi-hyperbolic utility. This more 
complicated model should also be calibrated to experimental data, but this research 
has yet to be done.

Appendix I: Theory

The text considers four cases: the general case of nested utility and durable con-
sumption, and two special cases: nested CES/log, the base case of non-nested utility 
without durable consumption, and the base case specialized to logarithmic utility. 
Here we prove the results stated in the text, with some generalizations.

40 The “behavioral life cycle model” of Hersh M. Shefrin and Thaler (1988) can also explain many qualitative 
features of observed savings behavior, and pocket cash in our model plays a role similar to that of “mental accounts” 
in theirs. The behavioral life cycle model takes the accounts as completely exogenous, and does not provide an 
explanation for preferences over lotteries. It does seem plausible to us that some forms of mental accounting do 
occur as a way of simplifying choice problems. In our view this ought to be derived from a model that combines the 
long-run/short-run foundations of the dual-self model with a model of short-run player cognition.
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Calculation of ​V​1​(​w​1​) and ​V​2​(​w​2​ | ​w​1​) with Nested CES/Log.—Recall from the text 
that ​x​t​ = (1 − δ)τ ​w​t​ , ​c​ t​ 

d​ = (1 − τ)(1 − δ)​w​t​ , ​w​t+1​ = R(​w​t​ − ​x​t​ − ​c​ t​ 
d​) so ​w​t+1​ = Rδ ​w​t​ 

and thus ​w​t​ = (Rδ ​)​ t−1​ ​w​1​. We may then compute

	​ V​1​(​w​1​)  = ​ ∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ [τ log ​x​t​  +  (1  −  τ)log ​c​ t​ 
d​ ] 

		  = ​ ∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​[τ log((1  −  δ)τ​w​t​)  +  (1  −  τ)log((1  −  τ)(1  −  δ)​w​t​)] 

		  = ​ ∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​[log(1  −  δ)  +  log((Rδ ​)​t−1​ ​w​1​)  +  τ log(τ) 

			   +  (1  −  τ)log(1  −  τ)] 

		  = ​ 
log(​w​1​) _ (1  −  δ) ​  + ​   1 _ (1  −  δ) ​ (log(1  −  δ)  +  τ log(τ)

 	  +  (1  −  τ)log(1  −  τ)  + ​ 
δlog(Rδ ) _ (1  −  δ) ​).

Turning to ​V​2​(​w​2​ | ​w​1​), we observe that that ​c​ t​ 
d​ is already committed in the first 

period, the present value of utility from durable consumption starting in period 2 is 
a constant, it follows that the agent’s problem reduces to maximizing

	 τ ​∑ 
t=2

​ 
∞

 ​ ​δ​ t−2​​ log ​x​t​

subject to ​w​ 2​ ′ ​ ≡ ​w​2​ − (1 − τ) Rδ ​w​1​ and ​w​ t+1​ ′  ​ = R(​w​ t​ ′​ − ​x​t​). The solution is ​x​t​ = (1 − δ )  
× ​w​ t​ ′​ , so the general form of the maximized present value is (τ log(​w​ t​ ′​ )/(1 − δ )) + K″, 
where K″ is a constant independent of ​w​1​. Substituting ​w​ 2​ ′ ​ ≡ ​w​2​ − (1 − τ)Rδ ​w​1​ we 
see that the maximized present value from non-durable consumption is

	​ 
τ log(​w​2​  −  (1  −  τ) Rδ ​w​1​)   __  

1  −  δ ​   +  K″.

The present value of the utility from durable consumption is

	​ 
(1  −  τ)log((1  −  τ)​w​1​)   __  

1  −  δ ​   +  K‴,

where K‴, like the other constants, is independent of ​w​1​. Thus the overall present 
value of utility beginning in period 2 is

	​ V​2​(​w​2​ | ​w​1​)  = ​ 
τ log(​w​2​  −  (1  −  τ) Rδ ​w​1​)   __  

1  −  δ ​  

	 + ​ 
(1  −  τ)log((1  −  τ)Rδ ​w​1​)   __  

1  −  δ ​   +  K′.
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Using the fact that ​V​2​(δR​w​1​ | ​w​1​) = ​V​1​(δR​w​1​), we see that

​V​2​(Rδ ​w​1​ | ​w​1​)  = ​ 
τ log(Rδ ​ω​1​  −  (1  −  τ) Rδ ​w​1​)   ___  

1  −  δ ​  

		  + ​ 
(1  −  τ)log((1  −  τ) Rδ ​w​1​)   __  

1  −  δ ​   +  K′ 

		  = ​ 
τ log(τ)  +  (1  −  τ)log(1  −  τ)  +  log(Rδ ​ω​1​)     ____   

1  −  δ ​   +  K′

		  = ​ 
log(Rδ ​w​1​) _ (1  −  δ) ​   + ​   1 _ (1  −  δ) ​ (log(1  −  δ)  +  τ log(τ)

+  (1  −  τ)log(1  −  τ)  + ​ 
δlog(Rδ ) _ (1  −  δ) ​),

so that

	K ′  = ​   1 _ 
1  −  δ ​ [log(1  −  δ)  + ​ 

δ log(Rδ ) _ (1  −  δ) ​].
We prove Theorem 1 in the general case. The text makes use of the nested CES/log 
and of the base case.

Theorem 1: For given (​x​1​, ​c​ 1​ *​) and each j ∈ {S, L} there is a unique solution 
to

	​ γ​ 1​ 
j
 ​  = ​​   γ​​ 1​ j

 ​(​γ​ 1​ 
j
 ​).

�This solution together with ​​   c​​ 1​ 
j
 ​ = min(​​  c​​ 1​ 

j
 ​(​γ​ 1​ 

j
 ​)(​z​ 1​ 

j
 ​), ​x​1​ + ​z​ 1​ 

j
 ​} and the choice of j that 

maximizes long-run utility is necessary and sufficient for an optimal solution.

Proof:
Consider random unanticipated income ​​   z ​​ 1​ 

j
 ​ at the nightclub. If ​z​1​ is the realized 

income, the short-run self is constrained to consume ​c​1​ ≤ ​x​1​ + ​z​1​. Period 2 wealth 
is given by

	​ w​2​  =  R(​s​1​  + ​ x​1​  + ​ z​1​  − ​ c​1​  − ​ c​ 1​ 
d​ )  =  R(​w​1​  + ​ z​1​  − ​ c​1​  − ​ c​ 1​ 

d​ ).

The utility of the long-run self starting in period 2 is given by the solution of the 
problem without self-control.
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Let ​​   c​​1​ be the optimal response to the unanticipated income ​​   z ​​1​. This is a random 
variable measurable with respect to ​​   z ​​1​. The overall objective of the long-run self is 
to maximize

(A1)	 τ (Eu(​​   c​​ 1​ 
j
 ​ | ​c​ 1​ 

q​ )  − ​
_ g​(​x​1​,​ ​   c​​ 1​ 

j
 ​, ​c​ 1​ 

q​ )) 

	 + ​   δ _ (1  −  δ) ​ EV(R(​w​1​  + ​​    z ​​ 1​ 
j
 ​  − ​​    c​​ 1​ 

j
 ​  − ​ c​ 1​ 

d​ ) | ​w​1​),

where ​
_ g​ is the control cost associated with the specified pocket cash and non-dura-

ble consumption. Let ​​
_ u​​ 1​(​x​1​ | ​c​ 1​ 

q​ ) = max{Eu(​x​​1​ + ​​   z ​​ 1​ 
S​ | ​c​ 1​ 

q​ ), Eu(​x​1​ + ​​   z ​​ 1​ 
L​ | ​c​ 1​ 

q​ )} denote the 
maximum possible utility given ​c​ 1​ 

q​ and the pair of lotteries S, L. Since ​​
_ u​​ 1​ does not 

depend on ​​   c​​ 1​ 
j
 ​, the optimal level of consumption can be determined for each lottery 

realization by pointwise maximization of (A1) with respect to ​c​1​ =  ​c​ 1​ 
j
 ​(​z​ 1​ 

j
 ​). The 

value of the marginal cost of self-control is given by

(A2)	​ γ​1​  =  g′(​​_ u​​ 1​(​x​1​ | ​c​ 1​ 
q​ )  −  Eu(​​   c​​ 1​ 

j
 ​ | ​c​ 1​ 

q​  )) 

	 =  g′(​​_ u​​ 1​(​x​1​ | ​c​ 1​ 
q​ )  − ​ ∑ 

​z​ 1​ 
j
 ​

 ​ 
 

  ​ Pr​(​z​ 1​ 
j
 ​)u(​c​ 1​ 

j
 ​(​z​ 1​ 

j
 ​) | ​c​ 1​ 

q​ )).

First, we show that the first-order conditions corresponding to optimal consump-
tion for a given choice j have a unique solution. Observe that

	​ 
d​γ​1​ _ 

d​c​ 1​ 
j
 ​(​z​ 1​ 

j
 ​)
 ​  =  −Pr(​z​ 1​ 

j
 ​) ​ 

∂u(​c​ 1​ 
j
 ​(​z​ 1​ 

j
 ​) | ​c​ 1​ 

q​ )  __ 
∂​c​ 1​ 

j
 ​
 ​  g″(​​_ u​​ 1​(​x​1​ | ​c​ 1​ 

q​)  −  Eu ( ​​   c​​ 1​ 
j
 ​ | ​c​ 1​ 

q​ ))  ≤  0.

The derivative of (A1) with respect to ​c​ 1​ 
j
 ​ = ​c​ 1​ 

j
 ​(​z​ 1​ 

j
 ​) evaluated at ​z​ 1​ 

j
 ​ is

      τ (1  + ​ γ​1​) ​ 
∂u(​c​ 1​ 

j
 ​ | ​c​ 1​ 

q​ ) _ 
∂​c​ 1​ 

j
 ​
 ​   − ​   δ _ (1  −  δ) ​ ​ 

∂V(R(​w​1​  + ​ z​ 1​ 
j
 ​  − ​ c​ 1​ 

j
 ​  − ​ c​ 1​ 

d​ ) | ​w​1​)   ___  
∂ ​c​ 1​ 

j
 ​
 ​ .

From this we can compute the second derivative

	 τ ​ 
∂u(​c​ 1​ 

j
 ​ | ​c​ 1​ 

q​ ) _ 
∂​c​ 1​ 

j
 ​
 ​  ​ 

d​γ​1​ _ 
d​c​ 1​ 

j
 ​
 ​  +  τ (1  + ​ γ​1​) ​ 

​∂​ 2​ u(​c​ 1​ 
j
 ​ | ​c​ 1​ 

q ​)  _ 
∂​ c ​ 1​ 

j  2​
 ​ 

	 + ​   δ _ (1  −  δ) ​ ​ 
​∂​ 2​ V(R(​w​1​  + ​ z​ 1​ 

j
 ​  − ​ c​ 1​ 

j
 ​  − ​ c​ 1​ 

d​ ) | ​w​1​)    ___  
∂​ c ​ 1​ 

j  2​
 ​   <  0,

where the first term is non-positive and each other term is strictly negative, implying 
that the function is globally concave.
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Because the objective function is globally concave with respect to ​c​ 1​ 
j
 ​, it follows 

that the unique maximum is given by the solution to the first-order condition.
We now show that the conditions in Theorem 1 are necessary and sufficient for 

an optimum. Since the problem is one of maximizing a continuous function over a 
compact space, an optimum exists. To show necessity, consider any optimum, and 
suppose the choice is j. Then for any given consumption plan in j the marginal cost 
of self-control ​γ​1​ is defined by (A2), and the optimal consumption plan must satisfy 
the first-order condition with respect to that ​γ​1​ because our conditions preclude a 
boundary solution. That is, ​γ​ 1​ 

j ​= ​​  γ​​ 1​ j ​(​γ​ 1​ 
j ​) must hold.

Next we show sufficiency. Suppose j, ​γ​ 1​ 
j
 ​ satisfy the conditions of the theorem and 

that this is not the optimum. That optimum must yield more utility than choosing 
−j and any consumption plan in −j, so the unique consumption plan that comes 
from solving ​γ​ 1​ 

−j​ = ​​  γ​​ 1​ −j​(​γ​ 1​ 
−j​ ). Given that j is chosen, the optimal consumption is the 

unique solution of the first-order condition. On the other hand, if −j was chosen, 
we could do no better than the consumption plan defined by ​γ​ 1​ 

−j​ = ​​  γ​​ 1​ −j​(​γ​ 1​ 
−j​), and by 

assumption this is not as good as choosing j.

Computations in the Nested CES/Logarithmic Case.—The first-order conditions 
can be written as

	 (​c​ 1​ 
j
 ​​)​ρ​  =  (​c​ 1​ 

q​​)​ρ−1​ ​ 
τ (1  −  δ)(1  + ​ γ​1​)  __ δ ​  (​w​1​  + ​ z​ 1​ 

j
 ​  − ​ c​ 1​ 

j
 ​  − ​ c​ 1​ 

d​ ) 

	 = ​
_

 K​(​w​1​  + ​ z​ 1​ 
j
 ​  − ​ c​ 1​ 

j
 ​  − ​ c​ 1​ 

d​ ).

Since the left-hand side of this equality is continuous and increasing in ​c​ 1​ 
j
 ​, and is 

0 when ​c​ 1​ 
j
 ​ is 0, while the right-hand side is linearly decreasing in ​c​ 1​ 

j
 ​ starting from 

a positive value, this equality has exactly one solution; moreover the solution is 
increasing in ​

_
 K​, (and so decreasing in δ and increasing in ​γ​1​), and increasing in ​w​1​ + ​

z​ 1​ 
j
 ​. We prove Theorem 2 for the base case used in the text.

Theorem 2: Let ξ ≡ ​sup​​c​1​​(−​c​1​ u″(​c​1​)/u′(​c​1​))/​inf​​c​1​​(− ​c​1​u″(​c​1​)/u′(​c​1​)). Then

	 − ​ 
V″(​w​1​) _ 
V′(​w​1​)

 ​  ≤  −ξ ​ 
​c​1​ _ ​w​1​

 ​ ​ 
u″(​c​1​) _ 
u′(​c​1​)

 ​ .

Proof:
Let ​c​t​ be the optimal plan when initial wealth is ​w​1​. For z ≥ 0 define

	U (z)  ≡ ​ ∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ u(​c​t​  +  (​c​t​/​w​1​)z).

Notice that the budget constraint implies that

	​ ∑ 
t=1

​ 
∞

 ​ ​R​−t+1​​ (​c​t​/​w​1​)  =  1,
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so that if z is an increment to wealth the plan ​c​t​ + (​c​t​/​w​1​)z is feasible and satisfies 
the budget constraint with equality. This implies first that V(​w​1​ + z) ≥ U(z), and 
second, from the first-order conditions that V′(​w​1​) = U′(0).

Since V is concave, these two facts imply that V is twice differentiable at ​w​1​ and 
that −V″(​w​1​) ≤ −U″(0).

To finish the proof, write out

	   −U″(0)  =  −​∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ u″(​c​t​)(​c​t​/​w​1​​)​2​ 

		  =  (1/​w​1​)​∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ u′(​c​t​)(​c​t​/​w​1​){−​c​t​ u″(​c​t​)/u′(​c​t​)} 

		  ≤  (​sup​​c​t​​{−​c​t​u″(​c​t​)/u′(​c​t​)}/​w​1​)​∑ 
t=1

​ 
∞

 ​ ​δ​ t−1​​ u′(​c​t​)(​c​t​/​w​1​) 

		  =  (​sup​​c​t​​{−​c​t​ u″(​c​t​)/u′(​c​t​)}/​w​1​)U′(0).

Since by the first-order conditions of dynamic programming V′(​w​1​) = u′(​c​1​), we 
may write

	 −V″(0)  ≤  (​sup​​c​t​​{−​c​t​ u″(​c​t​)/u′(​c​t​)}/​w​1​)V′(0)

and the result follows by noting that

	​ 
−​c​1​ u″(​c​1​)/u′(​c​1​)  __  ​inf​​c​t​​{−​c​t​ u″(​c​t​)/u′(​c​t​)}

 ​  ≥  1.

Appendix II: Risk and the Rabin Paradox

We use data from Holt and Laury (2002), who did a careful laboratory study of 
risk aversion. Their subjects were given a list of ten choices between two lotteries 
S and L. The specific lotteries are shown below, where the first four columns show 
the probabilities of the rewards, and the first four rows, which are irrelevant to our 
analysis, are omitted.

Initially subjects were told that one of the ten rows would be picked at random and 
they would be paid the amount shown. Then they were given the option of renounc-
ing their payment and participating in a high stakes lottery, for either 20X, 50X, 
or 90X of the original stakes, depending on the treatment. The high-stakes lottery 
was otherwise the same as the original: a choice was made for each of the ten rows, 
and one picked at random for the actual payment. Everyone in fact renounced their 
winnings from the first round to participate in the second. The choices made by sub-
jects are shown in Table A1. Here we have marked (by asterisk and double-asterisk 
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respectively41) the cells that correspond most closely to the median and eighty-fifth 
percentiles.

Assuming that the amounts of the lotteries lie below the threshold ​​  z ​​1​, for each 
choice S, L and for given pocket cash ​x​1​ we can compute the coefficient of relative 
risk aversion ρ that leads to indifference between the two choices.

	 E(​x​ 1​  + ​​    z ​​ 1​ 
S​​)​1−ρ​  =  E(​x​1​  + ​​    z ​​ 1​ 

L​​)​1−ρ​.

These numbers are reported in bold face also in Table A1 for the base level of pocket 
cash ​x​1​ = 40.

We use Table A1 to infer the sample median and the 85th percentile of risk aver-
sion. For example, we can infer from the 1X column that the median individual 
prefers S when the probability of the high payment is 0.5, but prefers L when the 
probability of the high payment is 0.6. Hence the sample median value of ρ must 
lie between 4.2, which would lead to indifference when the probability is 0.5, and 
12, which would lead to indifference when the probability is 0.6. Table A2 gives the 
ranges for the median value of risk aversion as well as the 85th percentile based on 
the data in Table A1.

The first thing to observe is that the ranges for the 20X, 50X, and 90X treatments are 
generally consistent with each other. The 1X treatments exhibit considerably higher 
risk aversion. This cannot be due to sampling error: Taking a relatively broad confi-
dence band of three standard deviations, we see that 70 percent of subjects choose S 
in the 50-50 1X cell, three standard deviations below the mean is still 61 percent of 
subjects, so that the median relative risk aversion should be at least the 4.2 reported for 
that cell. On the other hand, in the 20X treatment, we see 20 percent of subjects choos-

41 Asterisk for the median; double-asterisk cells for the eighty-fifth percentile.

Table A1—Laboratory Preferences Towards Risk

Option S Option L Fraction of subjects shoosing S 
a

$2.00 $1.60 $3.85 $0.10 1X 20X 50X 90X
Number of observations => (187) (150) (19) (18)

0.5 0.5 0.5 0.5 0.70(0.03)
4.2

0.85(0.03) 1.0(0.0) 0.90(0.07)

0.6 0.4 0.6 0.4 0.45(0.04)
12*

0.65(0.04)
1.1

0.85(0.08) 0.85(0.09)

0.7 0.3 0.7 0.3 0.20(0.03)
21**

0.40(0.04)
1.9*

0.60(0.12)
1.2

0.65(0.12)

0.8 0.2 0.8 0.2 0.05(0.02)
32

0.20(0.03)
2.8**

0.25(0.1)
1.8*

0.45(0.12)
1.5

0.9 0.1 0.9 0.1 0.02(0.01)
50

0.05(0.02)
4.2

0.15(0.08)
2.6**

0.40(0.12)
2.1*

1.0 0.0 1.0 0.0 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0)

Note: Bold numbers are coefficients of relative risk aversion giving indifference when ​x​1​ = 40.
a Standard errors in parentheses.
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ing S in the 80-20 20X cell, and here three standard deviations above the mean is only 
29 percent of subjects, so that the median should be no more than the 2.8 reported for 
that cell, well below the 4.2 minimum estimate for the 1X treatment. We conclude that 
the CES functional form does not fit very small stakes gambles particularly well. This 
is well known from the empirical prospect theory literature, but is not a major concern, 
as we are not going to study gambles in the lower 1X range.42

Examining the 20X, 50X, and 90X ranges, for the median, we see that we can pin 
down the coefficient of relative risk aversion in the sample between a low value of 1.2 
(single asterisk) and a high value of 1.5 (double asterisk). Taking a non-parametric 
approach to estimating the corresponding population parameter in this case is unprob-
lematic since the sample median is a consistent estimator of the population median.43

For the 85th percentile—people who are more risk averse than 85 percent of the 
population—the sample data is contradictory, as in the 50X treatment the coefficient 
of relative risk aversion is pinned down to 2.6, while the range in the 20X treatment 
is 2.8 to 4.2. However, the 50X treatment is subject to substantial sampling error: the 
estimate the 15 percent of subjects choosing S in 90-10 50X cell has a standard error 
of 0.08, so the information in that cell has little value. Hence the non-parametric 
approach gives a range from 2.8 to 4.2 for the 85th percentile.

To choose a specific value from the ranges in Table A1, we choose values that fit 
these single asterisk (double asterisk) cells as closely as possible. We use the CES 
utility scaled by the pocket cash constant ​x​1​

	 −​x​1​ ​ 
(​c​1​/​x​1​​)​1−ρ​  −  1

  __ ρ  −  1
 ​  .

For any given coefficient of relative risk aversion and any cell in Table 4, we can 
compute a squared utility difference between S and L. For the bold face coefficients 
shown in Table 4, this number will be zero, but we cannot choose a single value to 
simultaneously make the utility difference in all the cells equal to zero. Instead we 
compute the value of ρ that minimizes the sum of these squared utility differences. 
This yields a median of 1.43, which lies in the range 1.2 to 1.5 that we have already 

42 It is possible that the size of the choices might have been confounded with the order in which the choices were 
given. Harrison et al. (2005) find that corrected for order the impact of the size of the gamble is somewhat less than 
Holt and Laury found, a point which Holt and Laury (2005) concede is correct. The follow-on studies which focus 
on the order effects do not contain sufficient data for us to get the risk aversion estimates we need.

43 We could use a parametric model by assuming an explicit functional form for the population distribution of 
risk aversion, but such an estimator would be susceptible to specification error.

Table A2—Bounds for Quantiles of Coefficient of Relative Risk Aversion

Pocket cash ​x​1​ = 40

Stakes 50th percentile risk aversion 85th percentile risk aversion

1X 4.2 12 21 32
20X 1.1 1.9 2.8 4.2
50X 1.2* 1.8 2.6 2.6
90X 1.5** 2.1
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identified, and an 85th percentile of 2.74, which lies slightly below the range from 
2.8 to 4.2.44 We carry out the same computation for our other candidates for pocket 
cash $20 and $80, with the results reported in Table 5. Because the estimated ρs are 
greater than 1, these preferences are not logarithmic. Notice that the data does not let 
us separately identify pocket cash and risk aversion; various combinations of these 
two are observationally equivalent.

We also wish to consider values of τ smaller than 0.57.
Since we do no allow less risk aversion than the logarithm, the smallest pos-

sible value of pocket cash is that which gives rise to ρ = 1. We calibrate this to be 
x = 16.4, which corresponds to a value of τ = 0.23 with the median income level. 
We use this value in robustness checks below.

Appendix III: Cognitive Load

To model cognitive load we assume that the control cost g depends on the sum of 
the foregone utility and the cognitive load; formally, if the load in period t is denoted ​
d​t​ then the cost of self-control in period t is g(​​_ u​​t​ − ​u​t​ + ​d​t​). The theory predicts 
that increasing cognitive load should increase the marginal cost of self-control and 
lead to reversals similar to those in the Allais paradox. Relatively few experiments 
have been conducted on the effect of cognitive load on decisions involving risk. 
One recent one is an experiment conducted with Chilean high school juniors by 
Benjamin, Brown, and Shapiro (2006). This shows Allais type reversals generated 
by changes in cognitive load rather than changes in scenarios.45

In the experiment students made choices about uncertain outcomes both 
under normal circumstances and under the cognitive load of having to remem-
ber a seven-digit number while responding. In scenario 1 the choice was between  
a 50-50 gamble between 650 pesos and nothing versus a sure option of 250 pesos. 
In scenario 2 the sure option was replaced by a 50-50 gamble between 300 and 
200 pesos.46 Table A3 summarizes the fraction of the population taking the risky 
choice, with the number in parentheses following the treatment indicating the 
number of subjects. These were real, and not hypothetical choices, the subjects 
were paid in cash at the end of the session. To provide some reference for these 

44 But also in the direction of the 90-10 50X cell.
45 The main focus of Benjamin, Brown, and Shapiro (2006), like that of Frederick (2005), is on the correlation 

between measures of cognitive ability and the phenomena of small-stakes risk aversion and of a preference for 
immediate rewards. Benjamin, Brown, and Shapiro (2006) find a significant and substantial correlation between 
each of these sorts of preferences and cognitive ability. They also note that the correlation between cognitive ability 
and time preference vanishes when neither choice results in an immediate payoff, and that the correlation between 
small-stakes risk aversion and “present bias” drops to zero once they control for cognitive ability. This evidence 
is consistent with our explanation of the Rabin paradox, as it suggests that small-stakes risk aversion results from 
the same self-control problem that leads to a present bias in the timing of rewards. They also discuss the sizable 
literature that examines the correlation between cognitive ability and present bias without discussing risk aversion.

46 We thank the authors for providing us with this data. There is data on a risky alternative involving four other 
size prizes that are not relevant for our purposes. There is one anomaly in the data that we cannot explain: the 
fraction of people choosing the risky option against the sure alternative under cognitive load actually decreases as 
the size of the prize is increased. This may be due to sampling error.
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numbers, 1 $US = 625 pesos and the subjects average weekly allowance was around 
10,000 pesos from which they had to buy themselves lunch twice a week.47

The key fact in the table is that introducing cognitive load when the alternative is 
safe induces many subjects to switch to the safe alternative, while there is no such 
reversal when the “safe” alternative is the 300/200 gamble. This is as the theory 
predicts. If the short-run self prefers the safe alternative to the risky one we should 
see the first reversal. However, the 300/200 gamble is less tempting than the sure 
alternative of 250, so a cognitive load that will lead to a reversal in the first scenario 
need not do so in the second.
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