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Abstract. We show that in any game that is continuous at in�nity, if a plan of action ai
is played by a type ti in a Bayesian Nash equilibrium, then there are perturbations of ti
for which ai is the only rationalizable plan and whose unique rationalizable belief regarding

the play of the game is arbitrarily close to the equilibrium belief of ti. As an application

to repeated games, we prove an unre�nable folk theorem: Any individually rational and

feasible payo¤ is the unique rationalizable payo¤ vector for some perturbed type pro�le.

This is true even if perturbed types are restricted to believe that the repeated-game payo¤

structure and the discount factor are common knowledge.

JEL Numbers: C72, C73.

1. Introduction

In the in�nite-horizon dynamic games commonly used in economic applications, the set

of equilibrium strategies is often very large. For example, the classic folk theorems for

repeated games state that every individually-rational payo¤ pro�le can be achieved in a

subgame-perfect equilibrium. A less transparent example is Rubinstein�s (1982) bargaining

game; although there is a unique subgame-perfect equilibrium, any outcome can occur in

Nash equilibrium. Consequently, economists focus on strong re�nements of equilibrium and

ignore other equilibria. For instance, they might select the Rubinstein outcome in bargaining

games or an e¢ cient outcome in repeated games. All of these applications assume common

knowledge of payo¤s. The robustness program in game theory seeks to determine when

strong predictions from equilibrium re�nements can be maintained despite a slight relaxation
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of common-knowledge assumptions.1 Here, we show a lack of robustness of such predictions:

any equilibrium outcome may become uniquely rationalizable when beliefs are perturbed, so

that no equilibrium action can ever be ruled out without an extremely precise knowledge of

players�beliefs.

Our work here builds on existing results, which show a similar lack of robustness in �-

nite games (Weinstein and Yildiz (2007), Chen (2012)). Many important economic models,

including those mentioned above, employ in�nite-horizon dynamic games, so here we estab-

lish several di¤erent extensions which apply to such games. Our most notable application

is an �unre�nable� folk theorem for in�nite repeated games: For every payo¤ v in the in-

terior of the individually rational and feasible set, and for su¢ ciently patient players, we

construct a perturbation such that v is the unique rationalizable outcome. Moreover, in the

situation described by the perturbation, all players anticipate that the payo¤s are within an

"-neighborhood of v. That is, the complete-information game is surrounded by types with a

unique solution, but the unique solution varies in such a way that it traces all individually

rational and feasible payo¤s. While the multiplicity in the standard folk theorems suggests

the need for a re�nement to obtain clear predictions, the multiplicity in our unre�nable folk

theorem shows the impossibility of a robust re�nement. In the same vein, in Rubinstein�s

bargaining model, we show that any bargaining outcome is the unique rationalizable outcome

for some perturbation. Once again, no re�nement can robustly rule out these outcomes.

These applications follow from our Proposition 2, which states: For any Bayesian Nash

equilibrium and any type ti, there exists a perturbed type t̂i for which the equilibrium action

plan of ti is the unique rationalizable plan. Furthermore, the unique rationalizable belief

of t̂i regarding the outcome is arbitrarily close to the equilibrium belief of ti. In particular,

if the original game has complete information, then the perturbed type assigns probability

nearly one to the equilibrium path (Corollary 1). Here the meaning of �perturbation�is that

t̂i may be chosen such that ti and t̂i have similar beliefs about the payo¤ functions, similar

beliefs about the other players�beliefs about the payo¤ functions, similar beliefs about the

other players�beliefs about the players�beliefs about the payo¤ functions, and so on, up to

an arbitrarily chosen �nite order. Hence, if a researcher has noisy information about the

players�beliefs up to a �nite order but does not have any other information, then he cannot
1See for example, Kreps, Milgrom, Roberts and Wilson (1982), Fudenberg, Kreps, and Levine (1988),

Rubinstein (1989), Monderer and Samet (1989), and Kajii and Morris (1997).
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distinguish some of the perturbations t̂i from the original type ti. Consequently, he cannot

verify a prediction about the behavior of ti unless it is also true for t̂i. In particular, by

Proposition 2, he cannot verify any prediction of an equilibrium re�nement that does not

follow from equilibrium alone.

In some applications, a researcher may believe that even if there is higher-order uncer-

tainty about payo¤s, there is common knowledge of some of the basic structure of payo¤s and

information. In particular, in a repeated game, he may wish to retain common knowledge

that the players�payo¤s in the repeated game are the discounted sum of the stage-game

payo¤s. The perturbations constructed in Proposition 2 would not maintain such common

knowledge, and in general, restrictions on perturbations sometimes lead to sharper predic-

tions. In the particular case of repeated games, however, we show (Proposition 5) that our

conclusions remain intact: the perturbed types in the unre�nable folk theorem can be con-

structed while maintaining full common knowledge that we are playing a repeated game with

commonly known discount factor, with uncertainly only concerning the stage-game payo¤s.2

In the same vein, Penta (2012a) describes robust predictions, under sequential rationality,

when the fact that certain parameters are known to certain players is common knowledge.

He shows that restrictions on information, combined with restricted payo¤ spaces, may lead

to sharper predictions. In Section 6 we extend Penta�s characterization to in�nite-horizon

games.

Our Proposition 2 applies more narrowly than the existing structure theorems, but with

a stronger conclusion. It applies only to action plans played in some equilibrium, and not to

all rationalizable plans. The stronger conclusion is that the perturbed types actually expect

the selected equilibrium outcome to occur as the unique rationalizable play. Without this

stronger conclusion, the selected outcome may be realized only by types who are surprised

by their opponents�moves and play moves they did not expect to play (see Example 3).

This would prevent one from applying the existing structure theorems to the analysis of

equilibrium payo¤s, so the stronger conclusion is important to our unre�nable folk theorem.

We have also established the natural extension of previous results to all rationalizable actions

in in�nite dynamic games.

2This result also suggests that one may not need non-trivial commitment types for reputation forma-

tion; uncertainty about the stage payo¤s may be enough when one allows more sophisticated information

structures.
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After laying out the model in the next section, we present our general results in Section

3. We present our applications to repeated games and bargaining in Sections 4 and 5,

respectively. We present extensions of our results to Penta�s framework in Section 6. Section

7 concludes. The proofs of our general results are presented in the appendix.

2. Basic Definitions

We suggest that the reader skim this section quickly and refer back as necessary. The

main text is not very notation-heavy.

Extensive game forms. We consider standard n-player extensive-form games with possibly

in�nite horizon, as modeled in Osborne and Rubinstein (1994). In particular, we �x an

extensive game form � =
�
N;H; (Ii)i2N

�
with perfect recall where N = f1; 2; : : : ; ng is a

�nite set of players, H is a set of histories, and Ii is the set of information sets at which
player i 2 N moves. We use i 2 N and h 2 H to denote a generic player and history,

respectively. We write Ii (h) for the information set that contains history h, at which player

i moves, i.e. the set of histories i �nds possible when he moves. The set of available moves

at Ii (h) is denoted by Bi (h). We have Bi (h) = fbi : (h; bi) 2 Hg, where (h; bi) denotes the
history in which h is followed by bi. We assume that Bi (h) is �nite for each h. An action

plan (or simply action) ai of i is de�ned as any contingent plan that maps the information

sets of i to the moves available at those information sets; i.e. ai : Ii (h) 7! ai (h) 2 Bi (h).
We write A = A1 � � � � � An for the set of action pro�les a = (a1; : : : ; an).3 We write Z

for the set of terminal nodes, including histories of in�nite length. We write z (a) for the

terminal history that is reached by pro�le a.

Type spaces. Given an extensive game form, a Bayesian game is de�ned by specifying the

belief structure about the payo¤s. To this end, we write � (z) = (�1 (z) ; : : : ; �n (z)) 2 [0; 1]n

for the payo¤ vector at the terminal node z 2 Z and write �� for the set of all payo¤

functions � : Z ! [0; 1]n. The payo¤ of i from an action pro�le a is denoted by ui (�; a).

3Notation: Given any list X1; : : : ; Xn of sets, write X = X1 � � � � �Xn with typical element x, X�i =Q
j 6=iXj with typical element x�i, and (xi; x�i) = (x1; : : : ; xi�1; xi; xi+1; : : : ; xn). Likewise, for any family

of functions fj : Xj ! Yj , we de�ne f�i : X�i ! X�i by f�i (x�i) = (fj (xj))j 6=i. This is with the

exception that h is a history as in dynamic games, rather than a pro�le of hierarchies (h1; : : : ; hn). Given

any topological space X, we write �(X) for the space of probability distributions on X, endowed with Borel

�-algebra and the weak topology.
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Note that ui (�; a) = �i (z (a)). We endow �� with the product topology (i.e. the topology of

pointwise convergence). Note that �� is compact and ui is continuous in �. Note, however,

that �� is not a metric space. We will use only �nite type spaces, so by a model, we mean a

�nite set �� T1 � � � � � Tn associated with beliefs �ti 2 �(�� T�i) for each ti 2 Ti, where
� � ��. Here, ti is called a type and T = T1 � � � � � Tn is called a type space. A model
(�; T; �) is said to be a common-prior model (with full support) if and only if there exists

a probability distribution p 2 �(�� T ) with support � � T and such that �ti = p (�jti)
for each ti 2 Ti. Note that (�;�; T; �) de�nes a Bayesian game. In this paper, we consider
games that vary by their type spaces for a �xed game form �.

Hierarchies of Beliefs. Given any type ti in a type space T , we can compute the �rst-

order belief h1i (ti) 2 �(��) of ti (about �), second-order belief h2i (ti) 2 �(�� ��(��)
n)

of ti (about � and the �rst-order beliefs), etc., using the joint distribution of the types and

�. Using the mapping hi : ti 7! (h1i (ti) ; h
2
i (ti) ; : : :), we can embed all such models in the

universal type space, denoted by T � = T �1 � � � � � T �n (Mertens and Zamir (1985); see also
Brandenburger and Dekel (1993)). We endow the universal type space with the product

topology of usual weak convergence. We say that a sequence of types ti (m) converges to a

type ti, denoted by ti (m) ! ti, if and only if hki (ti (m)) ! hki (ti) for each k, where the

latter convergence is in weak topology, i.e., �convergence in distribution.�

Equivalence of Actions and Continuity at In�nity. We now turn to the details of the

extensive game form. If a history h =
�
bl
�L
l=1
is formed by L moves for some �nite L, then h

is said to be �nite and have length L. If h contains in�nitely many moves, then h is said to

be in�nite. A game form is said to have �nite horizon if for some L < 1 all histories have

length at most L; the game form is said to have in�nite horizon otherwise. For any history

h =
�
bl
�L
l=1

and any L0, we write hL
0
for the subhistory of h that is truncated at length L0;

i.e. h =
�
bl
�minfL;L0g
l=1

. We say that a game (�;�; T; �) is continuous at in�nity4 (�rst de�ned

by Fudenberg and Levine (1983)) i¤ for any " > 0, there exists L <1, such that

(2.1) 8� 2 � :
����i (h)� �i(~h)��� < " whenever hL = ~hL

4 In that we do not allow L to depend on �, this de�nition assumes that the possible payo¤ functions in

the game are equicontinuous at in�nity. This equicontinuity, as opposed to mere continuity of each �, holds

in all of our applications but is not needed in our propositions; it is useful for establishing certain properties

of interim correlated rationalizability, noted in the next section. See Weinstein and Yildiz (2012) for more.
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for all i 2 N and all terminal histories h; ~h 2 Z.

We say that actions ai and a0i are equivalent if z (ai; a�i) = z (a0i; a�i) for all a�i 2 A�i.
For any integer L, we say that ai and a0i are L-equivalent if z (ai; a�i)

L = z (a0i; a�i)
L for all

a�i 2 A�i. That is, two actions are L-equivalent if both actions prescribe the same moves
in the �rst L moves on the path against every action pro�le a�i by others. For the �rst L

moves ai and a0i can di¤er only at the informations sets that they preclude. Of course this is

the same as the usual equivalence when the game has a �nite horizon that is shorter than L.

We will con�ne ourselves to the games that are continuous at in�nity throughout, in-

cluding our perturbations. Note that most games analyzed in economics are continuous at

in�nity. This includes repeated games with discounting, games of sequential bargaining with

discounting, all �nite-horizon games, and so on. Games that are excluded include repeated

games with a limit of averages criterion, or bargaining without discounting; generally, any

case in which there can be a signi�cant e¤ect from the arbitrarily far future.

Interim Correlated Rationalizability. For each i 2 N and for each belief � 2 �(�� A�i),
we write BRi (�) for the set of actions ai 2 Ai that maximize the expected value of

ui (�; ai; a�i) under the probability distribution �. Note that BRi is non-empty under con-

tinuity at in�nity, because this implies continuity with respect to the product topology

on histories, and that topology is compact by Tychono¤�s theorem. A solution concept

�i : ti 7! �i [ti] � Ai, i 2 N , is said to have the best-response property if and only if

for each ti and for each ai 2 �i [ti], there exists a belief � 2 �(�� T�i � A�i) such that
ai 2 BRi

�
marg��A�i�

�
, marg��T�i� = �ti and � (a�i 2 ��i [t�i]) = 1. We de�ne interim

correlated rationalizability (ICR), denoted by S1, as the largest solution concept with best-

response property. This largest set is well-de�ned because the set of solution concepts with

best-response property is closed under coordinate-wise union, i.e., S1 [ti] is the union of the

sets �i [ti] over all solution concepts � with the best-response property.

Under our assumption of continuity at in�nity, interim correlated rationalizability can

be computed by the following elimination procedure5: For each i and ti, set S0i [ti] =

Ai, and de�ne sets Ski [ti] for k > 0 iteratively, by letting ai 2 Ski [ti] if and only if

ai 2 BRi
�
marg��A�i�

�
for some � 2 �(�� T�i � A�i) such that marg��T�i� = �ti and

5See Weinstein and Yildiz (2012) for a proof of this claim.
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�
�
a�i 2 Sk�1�i [t�i]

�
= 1. That is, ai is a best response to a belief of ti that puts posi-

tive probability only to the actions that survive the elimination in round k � 1. We write
Sk�1�i [t�i] =

Q
j 6=i S

k�1
j [tj] and Sk [t] = Sk1 [t1]� � � � � Skn [tn]. Then,

S1i [ti] =

1\
k=0

Ski [ti] :

This equality of the two concepts implies that the in�nite intersection is non-empty.

Interim correlated rationalizability was introduced by Dekel, Fudenberg, and Morris (2007)

(see also Battigalli and Siniscalchi (2003) for a related concept). They show that the ICR

set for a given type is completely determined by its hierarchy of beliefs, so we will sometimes

refer to the ICR set of a hierarchy or �universal type.�They also show that ICR is upper-

hemicontinuous for �nite games. While this is not known to be true for all in�nite games,

we show that it is true under the present assumptions in Weinstein and Yildiz (2012).

ICR is the weakest rationalizability concept, and our main results such as Proposition 2

carry over to any stronger, non-empty concept by a very simple argument: If an action is

uniquely ICR for a perturbed type, it is also uniquely selected by the stronger concept at

that type. In particular, our result is true without modi�cation for the interim sequential

rationalizability (ISR) concept of Penta (2012a), if no further restriction on players�informa-

tion and beliefs is made. The concept of ISR does entail some modi�cation to our arguments

when combined with restrictions on players�information; see Section 6.

Miscellaneous De�nitions and Notation. We �x a set �A = �A1�� � �� �An of action pro�les
where �Ai selects one representative from each reduced-form equivalence class of action plans

for player i. We call a probability distribution � 2 �
�
�� � T ��i � �A�i

�
a rationalizable belief

of type ti if marg��T�i� = �hi(ti) and �
�
a�i 2 S1�i [t�i]

�
= 1. Given any strategy pro�le

s : T ! A, we write �� (�jti; s) 2 �
�
�� � T ��i � �A�i

�
for the belief of type ti given that

the other players play according to s�i. We write Pr (�j�; si) and E [�j�; ai] for the resulting
probability measure and expectation operator from playing ai against belief �, respectively.

The expectation operator under �� (�jti; s) is denoted by E [�js; ti].
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It has recently become common in game theory to reserve the term knowledge for cases

where truth axiom holds, and refer to certainty when players are certain but may be wrong6.

In this paper, we use this nuanced language, although the distinction is not important for our

analysis, and the general reader will not lose by reading �common certainty�and �common

knowledge�as alike. In particular, for any type space (�; T; �), we say that type ti knows

an event (or a proposition) if the event (or the proposition) holds on � � ftig � T�i, and
say that type ti is certain of the event if �ti assigns probability 1 to that event. Likewise,

an event (or a proposition) is common knowledge (according to ti) if it holds everywhere on

��T ; the event is common certainty according to ti if it holds on a �belief-closed subspace�
that contains ti. When types are embedded in a universal type space, knowledge is relaxed

to certainty; we still say that an event is common knowledge according to hi (ti) if it is

common knowledge according to ti. In our informal discussions, we say that one drops a

common knowledge assumption if he allows perturbed types coming from spaces in which

the assumption may fail, and we say that one retains a common knowledge assumption if he

restricts the perturbations to the type spaces in which the assumption holds throughout.

3. Structure Theorem

In this section we will present our main result for general in�nite-horizon games. Given

any game (�;�; T; �) that is continuous at in�nity and any Bayesian Nash equilibrium s :

T ! A, we will show that there are perturbations t̂i of types ti for which si
�
t̂i
�
is the only

rationalizable plan. Moreover, the unique rationalizable belief of t̂i regarding the outcomes is

arbitrarily close to the belief of t̂i under s. The following structure theorem extends existing

results and plays a crucial role in our construction.

Proposition 1. For any game (�;�; T; �) that is continuous at in�nity, for any type ti 2 Ti
of any player i 2 N , any rationalizable action ai 2 S1i [ti] of ti, any neighborhood Ui of hi(ti)
in the universal type space T �, and any L, there exists a hierarchy hi

�
t̂i
�
2 Ui; such that

for each a0i 2 S1i
�
t̂i
�
, a0i is L-equivalent to ai, and t̂i is a type in some �nite, common-prior

model.

6The truth axiom states that anything which is known is always true. The distinction of knowledge from

certainty can be critical in dynamic games when a zero-probability event occurs. An event which was known

is then still known, while that which was merely certain may be no longer certain.



ROBUST PREDICTIONS 9

In Weinstein and Yildiz (2007) we showed the structure theorem for �nite-action games

in normal form, under the assumption that the space of payo¤s is rich enough that any

action is dominant under some payo¤ speci�cation. While this richness assumption holds

when one relaxes all common-knowledge assumptions on payo¤ functions in a static game,

it fails if one �xes a non-trivial dynamic game tree. This is because a plan of action cannot

be strictly dominant when some information sets may not be reached. Chen (2012) has

nonetheless extended the structure theorem to �nite dynamic games, showing that the same

result holds under the weaker assumption that all payo¤ functions on the terminal histories

are possible. Here, we extend Chen�s results further by allowing in�nite-horizon games that

are continuous at in�nity.

The result can then be interpreted as follows: Consider a type t with a rationalizable

action plan a. For some arbitrarily chosen k, suppose we �nd it impossible to distinguish

types whose beliefs are similar up through order k. The lemma states that, for any L, there

is a �nite Bayesian game with type t̂ who we cannot distinguish from t and for which a is

the unique rationalizable action plan through period L.

Proposition 1 has one important limitation. Given any rationalizable path z (a) and L,

Proposition 1 establishes that there is a pro�le t = (t1; : : : ; tn) of perturbed types for which

zL (a) is the unique rationalizable path up to L. Nevertheless, these perturbed types may

all �nd the path zL (a) unlikely at the start of play, as we establish next.

Cooperation in Twice-Repeated Prisoners�Dilemma. Consider a twice-repeated pris-

oners�dilemma game with complete information and with no discounting. We shall need the

standard condition u(C;D) + u(D;C) > 2u(D;D), where u is the payo¤ of player 1 in the

stage game and C and D stand for the actions Cooperate and Defect, respectively. In the

twice-repeated game, the following �tit-for-tat�strategy is rationalizable:

aT4T : play Cooperate in the �rst round, and in the second round play what the other player

played in the �rst round.

Then, by Proposition 1, there exists a perturbation tT4T of the common-knowledge type

for which aT4T is the unique rationalizable action. If both players have type tT4T , the unique

rationalizable action pro�le
�
aT4T ; aT4T

�
leads to cooperation in both rounds. However, we

can deduce that the constructed type will necessarily �nd this outcome unlikely. Since tT4T

has a unique best reply, the player must assign positive probability to the event that the other
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player cooperates in the �rst round. Such cooperation must make him update his beliefs

about the payo¤s in such a way that Cooperate becomes a better response than Defect.

Since the de�nition of perturbation requires that, ex ante, he believes with high probability

the payo¤s are similar to the repeated prisoner dilemma, under which Defect is dominant

in the second round, this drastic updating implies that tT4T �nds it unlikely that the other

player will play Cooperate in the �rst round. Therefore, the perturbed type is nearly certain

that he will play Defect in the second round.

The above example demonstrates that the beliefs of the perturbed types in Proposition

1 may drastically diverge from the unique rationalizable outcome. This prevents us from

applying Proposition 1 to study the expected payo¤s and the players�intended play. Our

next result overcomes this limitation. For this, we need an outcome to be a Bayesian Nash

equilibrium rather than merely rationalizable.

Proposition 2. Let G = (�;�; T; �) be a Bayesian game that is continuous at in�nity, and

s� : T ! A be a strategy pro�le in G. Then, the following are equivalent:

(A): s� is a Bayesian Nash equilibrium of G.

(B): For any i 2 N , for any ti 2 Ti, for any neighborhood Ui of hi(ti) in the universal
type space T �, and for any neighborhood Vi of the belief �� (�jti; s�) of type ti under
s�, there exists a hierarchy hi

�
t̂i
�
2 Ui such that

(1) ai 2 S1i
�
t̂i
�
i¤ ai is equivalent to s�i (ti), and

(2) the unique rationalizable belief �̂ 2 �
�
�� � T ��i � �A�i

�
of t̂i is in Vi.

Moreover, for every " > 0, t̂i above can be chosen so that jE [uj (�; a) j�; a�i ]� E [uj (�; a) js�; ti]j �
" for all j 2 N .

Given a Bayesian Nash equilibrium s�, the �rst conclusion states that the equilibrium

action s�i (ti) is the only rationalizable action for the perturbed type in reduced form. The

second conclusion states that the rationalizable belief of the perturbed type t̂i is approxi-

mately the same as the equilibrium belief of the original type ti. Hence, the limitation of

Proposition 1 above does not apply. Moreover, the second conclusion immediately implies

that the interim expected payo¤s according to the perturbed type t̂i under rationalizability

are close to the equilibrium expected payo¤s according to ti. All in all, Proposition 2 estab-

lishes that no equilibrium outcome can be ruled out as the unique rationalizable outcome
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without knowledge of in�nite hierarchy of beliefs, both in terms of actual realization and in

terms of players�ex-ante expectations.

One may wonder if one can reach such a strong conclusion for other rationalizable strate-

gies. The answer is a �rm no; in fact, Proposition 2 establishes that the converse is also true:

if for every type ti one can �nd a perturbation under which the the players�interim beliefs

are close to the beliefs under the original strategy pro�le s� (condition 2) and if the action

s�i (ti) is uniquely rationalizable for the perturbed type (condition 1), then s
� is a Bayesian

Nash equilibrium. This is simply because, by the Maximum Theorem, the two conditions

imply that s�i (ti) is indeed a best reply for ti against s
�
�i.

We will later apply this result to some popular complete-information games. In order to

state the result for complete-information games, we �x a payo¤ function ��, and consider the

game in which �� is common knowledge. This game is represented by type pro�le tCK (��)

in the universal type space.

Corollary 1. Let
�
�; f��g ;

�
tCK (��)

	
; �
�
be a complete-information game that is continu-

ous at in�nity, and a� be a Nash equilibrium of this game. For any i 2 N , for any neighbor-
hood Ui of hi(tCKi (��)) in the universal type space T �, and any " > 0, there exists a hierarchy

hi
�
t̂i
�
2 Ui; such that for every rationalizable belief � of t̂i,

(1) ai 2 S1i
�
t̂i
�
i¤ ai is equivalent to a�i ;

(2) Pr (z (a�) j�; a�i ) � 1� ", and
(3) jE [uj (�; a) j�; a�i ]� uj (��; a�)j � " for all j 2 N .

For any Nash equilibrium a� of any complete-information game, the corollary presents a

pro�le t̂ of perturbations under which (1) the equilibrium a� is the unique rationalizable

action pro�le, (2) all players�rationalizable beliefs assign nearly probability one to the equi-

librium outcome z (a�), and (3) the expected payo¤s under these beliefs are nearly identical

to the equilibrium payo¤s. As established in Proposition 2, one can �nd such perturbations

only for Nash equilibria.

The proof of Proposition 2 uses a contagion argument that is suitable for equilibrium. In

order to illustrate the construction, we sketch the proof for the complete-information games

considered in the corollary. Building on Proposition 1 we �rst show that for each action

ai there exists a type tai for which ai is uniquely rationalizable, extending a result of Chen
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to in�nite-horizon games. For any Nash equilibrium a� of any complete-information game�
�; f��g ;

�
tCK (��)

	
; �
�
, we construct a family of types tj;m;�, j 2 N , m 2 N, � 2 [0; 1], by

tj;0;� = ta
�
j ;

�tj;m;� = ��
t
a�
j
+ (1� �) �(��;t�i;m�1;�) 8m > 0;

where �(��;t�i;m�1;�) is the Dirac measure that puts probability one on (�
�; t�i;m�1;�). For

large m and small �, ti;m;� satis�es all the desired properties of t̂i. To see this, �rst note

that for � = 0, under ti;m;0, it is mth-order mutual certainty that � = �
�. Hence, when m is

large and � is small, the belief hierarchy of ti;m;0 is close to the belief hierarchy of tCKi (��),

according to which it is common knowledge that � = ��. Second, for � > 0, a�j is uniquely

rationalizable for tj;m;� in reduced form. To see this, observing that it is true for m = 0 by

de�nition of tj;0;�, assume that it is true up to some m�1. Then, any rationalizable belief of
any type tj;m;� must be a mixture of two beliefs. With probability �, his belief is the same as

that of ta
�
j , to which a�j is the unique best response in reduced form actions. With probability

1 � �, the true state is �� and the other players play a��j (in reduced form), in which case
a�j is a best reply, as a

� is a Nash equilibrium under ��. Therefore, in reduced form a�j is

the unique best response to any of his rationalizable beliefs, showing that a�j is uniquely

rationalizable for tj;m;� in reduced form. Finally, for any m > 0, under rationalizability

type ti;m;� must assign at least probability 1� � on
�
��; a��i

�
in reduced form because a��i is

uniquely rationalizable for t�i;m�1;� in reduced form.

4. Application: An Unrefinable Folk Theorem

In this section, we consider in�nitely repeated games with complete information. Under

the standard assumptions for the folk theorem, we prove an unre�nable folk theorem, which

concludes that for every individually rational and feasible payo¤ vector v, there exists a

perturbation of beliefs under which there is a unique rationalizable outcome and players

expect to enjoy approximately the payo¤ vector v under any rationalizable belief.

For simplicity, we consider a simultaneous-action stage game G = (N;B; g) where B =

B1� � � ��Bn is the set of pro�les b = (b1; : : : ; bn) of moves and g� : B ! [0; 1]n is the vector

of stage payo¤s. Without loss of generality, we will assume that each player i has at least

two moves in the stage game, i.e., jBij � 2. We have perfect monitoring. Hence, a history is
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a sequence h =
�
bl
�
l2N of pro�les b

l =
�
bl1; : : : ; b

l
n

�
. In the complete-information game, the

players maximize the average discounted stage payo¤s. That is, the payo¤ function is

��� (h) = (1� �)
nX
l=0

�lg�
�
bl
� �

8h =
�
bl
�
l2N

�
where � 2 (0; 1) is the discount factor, which we will let vary. Denote the repeated game by
G� =

�
�; f���g ;

�
tCK (���)

	
; �
�
.

Let V = co (g (B)) be the set of feasible payo¤ vectors (from correlated mixed action

pro�les), where co takes the convex hull. De�ne also the pure-action min-max payo¤ as

vi = min
b�i2B�i

max
bi2Bi

g� (b)

for each i 2 N . We de�ne the set of feasible and individually rational payo¤ vectors as

V � = fv 2 V jvi > vi for each i 2 Ng :

We denote the interior of V � by intV �. The interior will be non-empty when a weak form

of full-rank assumption holds. The following lemma states a typical folk theorem (see

Proposition 9.3.1 in Mailath and Samuelson (2006) and also Fudenberg and Maskin (1991)).

Lemma 1. For every v 2 intV �, there exists �� < 1 such that for all � 2
�
��; 1
�
, G� has a

subgame-perfect equilibrium a� in pure strategies, such that u (��� ; a
�) = v.

The lemma states that every feasible and individually rational payo¤ vector in the interior

can be supported as the subgame-perfect equilibrium payo¤when the players are su¢ ciently

patient. Given such a large multiplicity, both theoretical and applied researchers often focus

on e¢ cient equilibria (or extremal equilibria). Combining such a folk theorem with Corollary

1, our next result establishes that the multiplicity is irreducible.

Proposition 3. For all v 2 intV � and " > 0, there exists �� < 1 such that for all � 2
�
��; 1
�
,

every open neighborhood U of tCK (���) contains a type pro�le t̂ 2 U such that

(1) each t̂i has a unique rationalizable action a�i in reduced form, and

(2) under every rationalizable belief � of t̂i, the expected payo¤s are all within " neigh-

borhood of v:

jE [uj (�; a) j�; a�i ]� vj � " 8j 2 N:
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Proof. Fix any v 2 intV � and " > 0. By Lemma 1, there exists �� < 1 such that for all � 2�
��; 1
�
, G� has a subgame-perfect equilibrium a� in pure strategies, such that u (��� ; a

�) = v.

Then, by Corollary 1, for any � 2
�
��; 1
�
and any open neighborhood U of tCK (���), there

exists a type pro�le t̂ 2 U such that each t̂i has a unique rationalizable action a�i in reduced
form (Part 1 of Corollary 1), and under every rationalizable belief � of t̂i, the expected

payo¤s are all within " neighborhood of u (��� ; a
�) = v (Part 3 of Corollary 1). �

Proposition 3 establishes an unre�nable folk theorem. It states that every individually

rational and feasible payo¤ v in the interior can be supported by the unique rationaliz-

able outcome for some perturbation. Moreover, in the actual situation described by the

perturbation, all players play according to the subgame-perfect equilibrium that supports

v and all players anticipate that the payo¤s are within " neighborhood of v. That is, the

complete-information game is surrounded by types with a unique solution, but the unique

solution varies in such a way that it traces all individually rational and feasible payo¤s.

While the multiplicity in the standard folk theorems may suggest a need for a re�nement,

the multiplicity in our unre�nable folk theorem emphasizes the impossibility of a robust

re�nement.

Structure Theorem with Uncertainty only about the Stage Payo¤s. An important

drawback of the structure theorems is that they may rely on the existence of types who are

far from the payo¤and information structure assumed in the original model. If a researcher is

willing to make common-knowledge assumptions regarding these structures (by considering

only the type spaces in which these structures are true throughout), those theorems may

become inapplicable. Indeed, recent papers (e.g. Weinstein and Yildiz (2011) and Penta

(2012a, 2012b)) study the robust predictions when some common knowledge assumptions

are retained.

In repeated games, one may wish to maintain common knowledge of the repeated-game

payo¤ structure. Unfortunately, in our proofs of the propositions above, the types we con-

struct do not preserve common knowledge of such a structure � they may depend on the

entire history in ways which are not additively separable across stages. It is more di¢ cult

to construct types with unique rationalizable action when we restrict the perturbations to
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preserve common knowledge of the repeated-game structure, but in our next two proposi-

tions we are able to do this. The proofs (deferred to the Appendix) are somewhat lengthy

and require the use of incentive structures similar to those in the repeated-game literature.

For any �xed discount factor � 2 (0; 1), we de�ne

(4.1) ��� =

(
��;g

�
b0; b1; : : :

�
� (1� �)

1X
l=0

�lg
�
bl
�
jg : B ! [0; 1]n

)
as the set of repeated games with discount factor �. Here, ��� allows uncertainty about the

stage payo¤s g, but �xes all the other aspects of the repeated game, including the discount

factor. For a �xed complete information repeated game with stage-payo¤ function g�, we

are interested in the predictions which are robust against perturbations in which it remains

common knowledge that the payo¤s come from ���, allowing only uncertainty about the

stage payo¤s. The complete information game is represented by type pro�le tCK (��;g�) in

the universal type space. The next result extends Corollary 1 to this case.

Proposition 4. For any � 2 (0; 1), let
�
�; f��g ;

�
tCK (��;g�)

	
; �
�
be a complete-information

repeated game and a� be a Nash equilibrium of this game. For any i 2 N , for any neighbor-
hood Ui of hi(tCKi (��;g�)) in the universal type space T �, any " > 0 and any L, there exists

a hierarchy hi
�
t̂i
�
2 Ui; such that

(1) ai 2 S1i
�
t̂i
�
i¤ ai is L-equivalent to a�i ;

(2) jE [uj (�; a) j�]� uj (��; a�)j � " for all j 2 N and for all rationalizable belief � of t̂i
on (�; a), and

(3) according to t̂i it is common knowledge that � 2 ���.

Proposition 4 strengthens Corollary 1 by adding the last condition that the perturbed

type still �nds it common knowledge that he is playing a repeated game that is identical

to the original complete-information game in all aspects except for the stage payo¤s. The

conclusion is weakened only by being silent about the tails, which will be immaterial to our

conclusions. Indeed, using Proposition 4 instead of Corollary 1 in the proof of Proposition

3, which is the main result in this application, one can easily extend that folk theorem to

the world in which a researcher is willing to retain common knowledge of the repeated game

structure:
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Proposition 5. For all v 2 intV �, there exists �� < 1 such that for all � 2
�
��; 1
�
, for all

" > 0 and all L < 1, every open neighborhood U of tCK (���) contains a type pro�le t̂ 2 U
such that

(1) each t̂i has a unique rationalizable action plan a�i up to date L in reduced form;

(2) under every rationalizable belief � of t̂i, the expected payo¤s are all within " neigh-

borhood of v:

jE [uj (�; a) j�]� vj � " 8j 2 N;

(3) and it is common knowledge according to t̂ that � 2 ���.

That is, even if a researcher is willing to assume the repeated game payo¤ structure,

for high discount factors, he cannot rule out any feasible payo¤ vector as the approximate

outcome of the unique rationalizable belief for some nearby type. Hence, allowing uncertainty

about the stage payo¤s is su¢ cient to reach the conclusion of the unre�nable folk theorem

above.

Proposition 4 is proved in the Appendix. The proof �rst involves showing that each action

plan is uniquely rationalizable, up to an arbitrarily long �nite horizon, for a type for which

it is common knowledge that � 2 ���. The construction of these types is rather involved,
and uses ideas from learning and incentives in repeated games. Using the existence of these

types, one then constructs the nearby types in the proposition following the ideas sketched

in illustrating the proof of Corollary 1 above. In the following example we illustrate the gist

of the idea on the twice-repeated prisoners�dilemma.

Example 1. Consider again the twice-repeated prisoners�dilemma with gPD1 (C;D)+gPD1 (D;C) >

2gPD1 (D;D), where gPD1 is the payo¤ of player 1 in the stage game, and � = 1. Given a type

according to which the payo¤s gPD are common knowledge, we will construct a nearby type

for which tit-for-tat is uniquely rationalizable. To this end, we �rst construct some types (not

necessarily nearby) for which certain action plans are uniquely rationalizable. For any strat-

egy pro�le b 2 fC;Dg2 in the stage game, consider the payo¤ function gb where gbi (b01; b02) = 1
if b0i = bi and g

b
i (b

0
1; b

0
2) = 0 otherwise. For a type ti;bi;0 that puts probability 1 on ��;g(bi;b�i)

for some b�i, playing bi in the �rst round is uniquely rationalizable. Such a type may have

multiple rationalizable actions in the second round, as he may assign zero probability to

some history. But now consider a type ti;bi;1 that puts probability 1/2 on
�
�
�;g(bi;b�i)

; t�i;C;0

�
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and probability 1/2 on
�
�
�;g(bi;b�i)

; t�i;D;0

�
for some b�i. Since types t�i;C;0 and t�i;D;0 play

C and D, respectively, as their unique rationalizable move in the �rst round, type ti;bi;1
puts positive probability at all histories at the beginning of the second period that are not

precluded by his own action. Hence, his unique rationalizable action plan is to play bi at

all histories. We next construct types ti;k with approximate kth-order mutual certainty of

prisoners�dilemma payo¤s who Defect at all histories in their unique rationalizable plan.

Type ti;1 puts probability 1=2 on each of
�
��;gPD ; t�i;C;1

�
and

�
��;gPD ; t�i;D;1

�
. Since the other

player does not react to the moves of player i and i is certain that he plays a prisoners�

dilemma game, his unique rationalizable plan is to defect everywhere (as he assigns posi-

tive probabilities to both moves). Proceeding inductively on k, for any small " and k > 1,

consider the type ti;k who puts probability 1 � " on
�
��;gPD ; t�i;k�1

�
and probability " on�

��;gPD ; t�i;C;1
�
. By the previous argument, type ti;k also defects at all histories as the unique

rationalizable plan. Moreover, when " is small, there is approximate kth-order mutual cer-

tainty of prisoners�dilemma. Now for arbitrary k > 1 and small " > 0, consider the type

t̂i;k that puts probability 1� " on
�
��;gPD ; t�i;k�1

�
and probability " on

�
��;g(C;C) ; t�i;C;1

�
. He

has approximate kth-order mutual certainty of the prisoners�dilemma payo¤s. Moreover,

since his opponent does not react to his moves and " is small, his unique rationalizable move

at the �rst period is D. In the second period, if he observes that his opponent played D

in the �rst period, he becomes sure that they play prisoners�dilemma and plays D as his

unique rationalizable move. If he observes that his opponent played C, however, he updates

his belief and put probability 1 on g(C;C) according to which C dominates D. In that case,

he too plays C in the second period. The types t̂i;k, which are close to common-knowledge

types, defect in period 1 and play tit-for-tat in period 2. Now consider the nearby types ~ti;k
that put probability 1 � " on

�
��;gPD ; t̂�i;k�1

�
and probability " on

�
��;g(C;C) ; t�i;C;1

�
. These

types believe that their opponent probably plays defection followed by tit-for-tat, so they

cooperate in the �rst period. In the second period, if they saw D, they still think they are

playing prisoner�s dilemma, so they defect. If they saw C, they think they are playing g(C;C),

so they cooperate. That is, their unique rationalizable action is tit-for-tat with cooperation

at the initial node.

Early literature identi�ed two mechanisms through which a small amount of incomplete

information can have a large e¤ect: reputation formation (Kreps, Milgrom, Roberts, and
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Wilson (1982)) and contagion (Rubinstein (1989)). In reputation formation, one learns about

the other players�payo¤s from their unexpected moves. As in Example 1, our perturbed types

in the proof of Proposition 4 generalize this idea: they learn not only about the other players�

payo¤s but also about their own payo¤s from the others�unexpected moves. Moreover, our

perturbations are explicitly constructed using a generalized contagion argument. Hence,

the perturbations here and in Chen (2012) combine the two mechanisms in order to obtain a

very strong conclusion: any rationalizable action can be made uniquely rationalizable under

some perturbation.

At another level, however, Propositions 4 and 5 make a stronger point than the previous

reputation and contagion literatures, in the following sense: The existing models mainly

rely on behavioral commitment types (or �crazy� types) that follow a complete plan of

action throughout the game, suggesting that non-robustness may be due to psychologi-

cal/behavioral concerns that are overlooked in game-theoretical analyses. By proving the

unre�nable folk theorem while allowing uncertainty only about the stage payo¤s7, Proposi-

tions 4 and 5 show that informational concerns can lead to the non-robustness results, even

without a full range of crazy types.

Chassang and Takahashi (2011) examine the question of robustness in repeated games

from an ex ante perspective. That is, following Kajii and Morris (1997), they de�ne an

equilibrium as robust if approximately the same outcome is possible in a class of elaborations.

(An elaboration is an incomplete-information game in which each player believes with high

probability that the original game is being played.) They consider speci�cally elaborations

with serially independent types, so that the moves of players do not reveal any information

about their payo¤s and behavior in the future. They obtain a useful one-shot robustness

result� to paraphrase, an equilibrium of the repeated game is robust if the equilibrium

at each stage game, augmented with continuation values, is risk-dominant. There are two

major distinctions from our work here. First, their perturbations are de�ned from an ex ante

perspective, by what players believe before receiving information. Ours are from an interim

perspective, based on what players believe just before play begins. This could be subsequent

to receiving information, but our setup does not actually require reference to a particular

7Of course, this allows for �crazy�types who always play the same action �but not for those who play

any more complicated plan, say tit-for-tat.
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information structure (type space with prior). For more on the distinction between these

approaches, see our 2007 paper. Second, while they focus on serially independent types,

whose moves do not reveal any information about future payo¤s, the moves of our perturbed

types reveal information about both their own and the other players�stage-game payo¤s,

which are assumed to be constant over time.

Some other papers have also restricted attention to perturbations which keep some payo¤

structure common knowledge. In Weinstein and Yildiz (2011), we dealt with nice games,

which are static games with unidimensional action spaces and strictly concave utility func-

tions. We obtained a characterization for sensitivity of Bayesian Nash equilibria in terms of

a local version of ICR, allowing arbitrary common-knowledge restrictions on payo¤s.8 In the

same vein, Oury and Tercieux (2007) allow arbitrarily small perturbations on payo¤s to ob-

tain an equivalence between continuous partial implementation in Bayesian Nash equilibria

and full implementation in rationalizable strategies. Most generally, Penta (2012b) proved a

version of the structure theorem under arbitrarily given common-knowledge restrictions on

payo¤s, identifying a set of actions that can be made uniquely rationalizable by perturbing

the interim beliefs under the given common knowledge restrictions on payo¤s.

We establish that equilibrium re�nements are not upper hemicontinuous, even if one im-

poses common-knowledge restrictions on the payo¤ structure. This results in the lack of

robustness above. One may, however, raise the same criticism for unre�ned solution con-

cepts, such as Bayesian Nash equilibrium and ICR. Extending the results of Dekel, Fuden-

berg, and Morris (2007) for �nite games to the in�nite games we analyze here, we show in

Weinstein and Yildiz (2012) that ICR is upper hemicontinuous under the usual continuity

and compactness properties, provided that the space of payo¤s can be embedded into a com-

pact metric space. In particular, we show that ICR is upper hemicontinuous whenever the

payo¤s are restricted to be in ���, imposing common knowledge of the repeated-game payo¤

structure and the discount factor. In fact, it su¢ ces for the discount factor to be unknown

but bounded away from 1. Therefore, the predictions of ICR are robust under the above

restriction. This further implies that the unique solution for the perturbed types remains

robust with respect to further perturbations. We should note, however, that the set �� of all

8Weinstein and Yildiz (2011) also solve the problem of uncountable action spaces within the important

class of nice games using a special structure of those games, which is clearly di¤erent from the structure in

in�nite-horizon games that allowed our characterization.
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payo¤ functions in in�nite-horizon games is not metrizable (or sequentially compact), and so

we do not know if ICR is upper hemicontinuous in the entire universal type space. We should

also note that, while Bayesian Nash equilibrium is not upper hemicontinuous in general (by

Proposition 1), it is robust with respect to perturbations that assign high probability on the

unique outcome (as in Proposition 2).

5. Application: Incomplete Information in Bargaining

In a model of bilateral bargaining with complete information, Rubinstein (1982) shows that

there exists a unique subgame-perfect equilibrium. Subsequent research illustrates that the

equilibrium result is sensitive to incomplete information. In this section, using Proposition

2, we show quite generally that the equilibrium must be highly sensitive: every bargaining

outcome can be supported as the unique rationalizable outcome for a nearby model.

We consider Rubinstein�s alternating-o¤er model with �nite set of divisions. There are

two players, N = f1; 2g, who want to divide a dollar. The set of possible shares is X =

f0; 1=m; 2=m; : : : ; 1g for some m > 1. At date 0, Player 1 o¤ers a division (x; 1� x), where
x 2 X is the share of Player 1 and 1�x is the share of Player 2. Player 2 decides whether to
accept or reject the o¤er. If he accepts, the game ends with division (x; 1� x). Otherwise,
we proceed to the next date. At date 1, Player 2 o¤ers a division (y; 1� y), and Player 1
accepts or rejects the o¤er. In this fashion, players make o¤ers back and forth until an o¤er

is accepted. We denote the bargaining outcome by (x; l) if players reach an agreement on

division (x; 1� x) at date l. In the complete-information game, the payo¤ function is

�� =

(
�l (x; 1� x) if the outcome is (x; l)

0 if players never agree

for some � 2 (0; 1).

When X = [0; 1], in the complete information game G� =
�
�; f��g ;

�
tCK (��)

	
; �
�
, there

is a unique subgame perfect equilibrium, and the bargaining outcome in the unique subgame-

perfect equilibrium is

(x�; 0) = (1= (1 + �) ; 0) .

That is, the players immediately agree on division (x�; 1� x�). When X = f0; 1=m; : : : ; 1g
as in here, there are more subgame-perfect equilibria due to multiple equilibrium behavior
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in the case of indi¤erence. Nevertheless, the bargaining outcomes of these equilibria all

converge to (x�; 0) as m!1.

In contrast with the unique subgame-perfect equilibrium, there is a large multiplicity of

non-subgame-perfect Nash equilibria, but these equilibria are ignored as they rely on incred-

ible threats or sequentially irrational moves o¤ the path. Building on such non-subgame-

perfect Nash equilibria and Proposition 2, the next result shows that each bargaining outcome

is the outcome of unique rationalizable action plan under some perturbation.

Proposition 6. For any bargaining outcome (x; l) 2 X � N and any " > 0, every open

neighborhood U of tCK (���) contains a type pro�le t̂ 2 U such that

(1) each t̂i has a unique rationalizable action a�i in reduced form;

(2) the bargaining outcome under a� is (x; l), and

(3) every rationalizable belief of t̂i assigns at least probability 1� " on (x; l).

Proof. We will show that the complete-information game has a Nash equilibrium a� with

bargaining outcome (x; l). Proposition 2 then establishes the existence of type pro�le t̂ as in

the statement of the proposition. Consider the case of even l, at which Player 1 makes an

o¤er; the other case is identical. De�ne a� in reduced-form as

(a�1) at any date l
0 6= l, o¤er only (1; 0) and reject all the o¤ers; o¤er (x; 1� x) at date l;

(a�2) at any date l
0 6= l, o¤er only (0; 1) and reject all the o¤ers; accept only (x; 1� x) at l.

It is clear that a� is a Nash equilibrium, and the bargaining outcome under a� is (x; l). �

That is, for every bargaining outcome (x; l), one can introduce a small amount of incom-

plete information in such a way that the resulting type pro�le has a unique rationalizable

action pro�le and it leads to the bargaining outcome (x; l). Moreover, in the perturbed

type pro�le, players are all nearly certain that (x; l) will be realized. Unlike in the case of

non-subgame-perfect equilibria, one cannot rule out these outcomes by re�nement because

there is a unique rationalizable outcome. In order to rule out these outcomes, one either

needs to introduce irrational behavior or rule out the information structure that leads to

the perturbed type pro�le by �at (as he cannot rule out these structures by observation

of �nite-order beliefs without ruling out the original model). Therefore, despite the unique

subgame-perfect outcome in the original model, and despite the fact that this outcome has
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generated many important and intuitive insights, one cannot make any prediction on the

outcome without introducing irrational behavior or making informational assumptions that

cannot be veri�ed by observing �nite-order beliefs.

The existing literature already illustrates that the subgame-perfect equilibrium is sensitive

to incomplete information. For example, for high �, the literature on the Coase conjecture

establishes that if one party has a private information about his own valuation, then he gets

everything� in contrast to the nearly equal sharing in the complete information game. This

further leads to delay due to reputation formation in bargaining with two-sided incomplete

information on payo¤s (Abreu and Gul (2000)) or on players�second-order beliefs (Feinberg

and Skrzypacz (2005)).

Proposition 6 di¤ers from these results in many ways. The �rst di¤erence is in the scope

of sensitivity: while the existing results show that another outcome may occur under a per-

turbation, Proposition 6 shows that any outcome can be supported by a perturbation. The

second di¤erence is in the solution concept: while the existing result show sensitivity with

respect to a sequential equilibrium or all sequential equilibria, there is a unique rationaliz-

able outcome in Proposition 6, ruling out reinstating the original outcome by a re�nement.

Third, the existing results often consider the limit � ! 0, which is already a point of discon-

tinuity for the complete-information model. In contrast, � is �xed in Proposition 6. Finally,

existing results consider simple perturbations, and these perturbations may correspond the

speci�cation of economic parameters, such as valuation, or may be commitment types. In

contrast, given the generality of the results, the types constructed in our paper are compli-

cated, and it is not easy to interpret how they are related to the economic parameters. (In

speci�c examples, the same results could be obtained using simple types that correspond to

economic parameters, as in Izmalkov and Yildiz (2010)).

6. Information and Sequential Rationality

We have discussed earlier that when analyzing robustness, one may want to consider only

perturbations which retain some structural common-knowledge assumptions, such as the

additive payo¤ structure in a repeated game, or the fact that a player knows the true value

of a certain parameter. When the set of possible payo¤ functions is the same from the point

of view of every player, our formalism su¢ ces for this. If each player may have his own
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information, and furthermore this information (unlike mere beliefs) is never doubted even

when probability-zero events occur, a slightly di¤erent setup, introduced by Penta (2012a),

is necessary. This setup is needed, for instance, to analyze a case in which it is common

knowledge that players know (and never doubt) their own utility functions. When the

underlying set of payo¤parameters is su¢ ciently rich (e.g. when all possible payo¤ functions

are available as in our model above), retaining such assumptions does not lead to any change,

and the original characterization in Proposition 1 remains intact. In restricted parameter

sets, retaining the informational assumption may lead to somewhat sharper predictions.

For example, in private value environments, this allows one round of elimination of weakly

dominated actions in addition to rationalizability. In this section, building on an extension

of the result of Penta (2012a) to in�nite horizon games, we will extend our results to Penta�s

setup. Note also that Penta�s framework is related to that of Battigalli and Siniscalchi

(2003), who introduced a version of rationalizability for extensive-form games which allowed

for restrictions on players�beliefs about their opponents�behavior.

Consider a compact set C = C0 � C1 � � � � � Cn of payo¤ parameters c = (c0; c1; : : : ; cn)
where the underlying payo¤ functions � depends on the payo¤ parameters c: � = f (c)

for some continuous and one-to-one mapping f : C ! ��. We will assume it is common

knowledge that � lies in the subspace f (C) � ��. It will also be assumed to be common

knowledge throughout the section that the true value of the parameter ci is known by player

i. For any type ti, we will write ci (ti) for the true value of ci, which is known by ti. Note

that this formulation subsumes our model above, by simply letting C1; : : : ; Cn be trivial

(singletons) so that �� = C0. We will write TC� � T � for the subspace of the universal type
space in which it is common knowledge that � 2 f (C) and each player i knows the true value
of ci. As in Penta (2012a), we will restrict perturbations to lie in TC�. Following Penta, we

will further focus on multistage games in which all previous moves are publicly observable.

A conjecture of a player i is a conditional probability system �i =
�
�i;h
�
h2H that is

consistent with Bayes�rule (on positive probability events), where �i;h 2 �(C0 � T�i � A�i)
for each h 2 H. Here, it is implicitly assumed that it remains common knowledge throughout
the game that (c1; : : : ; cn) = (c1 (t1) ; : : : ; cn (tn)). In particular, player i assigns probability

1 to ci (ti) throughout the game. For each conjecture �i of type ti, we write SBRi (�ijti)
for the set of actions ai 2 Ai that remain a best response to �i at all information sets
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that are not precluded by ai; we refer to ai 2 SBRi (�ijti) as a sequential best response.
A solution concept �i : ti 7! �i [ti] � Ai, i 2 N , is said to have the sequential best-reply
property if and only if for each ti and for each ai 2 �i [ti], there exists a conjecture �i of ti
such that ai 2 SBRi (�ijti), the beliefs about (�; t�i) according to �i;? agree with �ti and
�i;? (a�i 2 ��i [t�i]) = 1, where ? denotes the initial node of the game. We de�ne interim

sequential rationalizability (ISR), denoted by ISR1, as the largest solution concept that has

the sequential best-reply property. In �nite games this is equivalent to the result of a iterative

elimination process similar to iterative elimination of strictly dominated actions (see Penta

(2012a) for that alternative de�nition). Note that ISR di¤ers from ICR only in requiring

sequential rationality, rather than normal-form rationality. The only restriction here comes

from the common knowledge assumption that the player i does not change his belief about ci,

since the players�conjectures o¤ the path are otherwise unrestricted. The resulting solution

concept is relatively weak (e.g. weaker than extensive form rationalizability) and equal to

ICR in rich environments.9 We use the following richness assumption of Penta (2012a).

Assumption 1. For every ai 2 Ai there exists cai such that ai conditionally dominant under
cai, i.e., at every history that is consistent with ai, following ai is better than deviating from

ai.

Lemma 2 (Penta (2012a)). Under Assumption 1, for any �nite-horizon multistage game

(�;�; T; �) with � � f (C), for any type ti 2 Ti of any player i 2 N , any ISR action

ai 2 ISR1i [ti] of ti, and any neighborhood Ui of hi(ti) in the universal type space T �, there
exists a hierarchy hi

�
t̂i
�
2 Ui \ TC�i ; such that for each a0i 2 ISR1i

�
t̂i
�
, a0i is equivalent to

ai.

Note that the above model maintains two common-knowledge assumptions throughout the

perturbations: (i) each player i assigns probability one on the true value of ci (in de�ning

the interim beliefs at the beginning of the game) and (ii) the players never doubt this fact

throughout the play of the game (in de�ning the conjectures �). Lemma 7 establishes that,

under Assumption 1, maintaining the common knowledge of (i) has no bite because ISR

is equal to ICR in static games. It also establishes, however, that maintaining common

9For example, ISR is equal to ICR if for every ai and ci, there exists (c0; c�i) such that ai is conditionally

dominant under (c0; ci; c�i) (cf. Assumption 1). ISR is equal to ICR also when no player has any information.

See Penta (2009) for further details.
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knowledge of (ii) leads to potentially sharper predictions in dynamic games, as ISR may be

a strict re�nement of ICR in such games. The next result extends Penta�s result to in�nite

horizon games.

Proposition 7. Under Assumption 1, consider any multistage game (�;�; T; �) that is

continuous at in�nity and � � f (C) is such that each � = f (c) 2 � is in the interior

of f (C0 � f(c1; : : : ; cn)g). For any type ti 2 Ti of any player i 2 N , any ISR action ai 2
ISR1i [ti] of ti, any neighborhood Ui of hi(ti) in the universal type space T

�, and any L, there

exists a hierarchy hi
�
t̂i
�
2 Ui \TC�i ; such that for each a0i 2 ISR1i

�
t̂i
�
, a0i is L-equivalent to

ai, and t̂i is a type in some �nite, common-prior model.

Penta (2012a) proves this result for �nite games without requiring that � is in the interior

of f (C0 � f(c1; : : : ; cn)g). Here, we extend this result to in�nite-horizon games, with the
above requirement that one can make slight payo¤ perturbations in payo¤s by changing c0
alone. This is required only for uniformly small perturbations, in that there exists " > 0

such that if j� (z)� �0 (z)j � " for all z 2 Z, then there exists a c0o that leads to �0 instead
of �.10 Roughly speaking, Proposition 7 characterizes the robust prediction of common

knowledge of sequential rationality and the informational assumptions, such as the true

value of each ci is known by player i, who never updates his beliefs regarding ci. These are

the predictions that can be made by interim sequential rationality alone. One cannot obtain

a sharper robust prediction than those of interim sequential rationalizability by considering

its re�nements, even if one is willing to retain common knowledge assumptions regarding

players�information.

Using Proposition 7, one can also extend our other results to this framework. Here, we

will only formally present the extension of Corollary 1, our structure theorem for equilibrium

in the case of complete information; the proof is relegated to the Appendix.

Proposition 8. Under Assumption 1, let
�
�; f��g ;

�
tCK (��)

	
; �
�
be a multi-stage complete-

information game that is continuous at in�nity, with �� = f (c�) 2 � in the interior of

f (C0 � f(c�1; : : : ; c�n)g). Let also a� 2 ISR1
�
tCK (��)

�
be a Nash equilibrium of this game.

10While this assumption rules out pure private value environments in which jC0j = 1, it allows approximate
private value environments in which the players know their payo¤ functions up to an arbitrarily small error

".
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Then, for any i 2 N , for any L <1, for any neighborhood Ui of hi(tCKi (��)) in the universal

type space T �, and any " > 0, there exists a hierarchy hi
�
t̂i
�
2 Ui \ TC�i ; such that for every

ISR belief � of t̂i,

(1) ai 2 ISR1i
�
t̂i
�
i¤ ai is L-equivalent to a�i ;

(2) Pr (z (a�) j�; a�i ) � 1� ", and
(3) jE [uj (�; a) j�; a�i ]� uj (��; a�)j � " for all j 2 N .

Like Proposition 4, this result remains silent for the tail behavior, establishing uniqueness

of ISR only up to an arbitrary �nite horizon. The result is stronger than Corollary 1, in that

the perturbed types are in TC�i , retaining common knowledge of informational assumptions.

Note that the result also assumes that a� is ISR, putting a weak restriction on equilibrium.

Since subgame-perfect equilibria of a repeated game are ISR, the unre�nable folk theorem

in Proposition 3 also extends to the current setup.

7. Conclusion

In economic models there are often a multitude of equilibria. This problem is especially

acute in in�nite-horizon games, such as repeated games, in which the folk theorem applies,

establishing that any feasible payo¤ vector can be supported by an equilibrium. In response

to such multiplicity, economists often focus on re�nements. In this paper, we develop a struc-

ture theorem for in�nite-horizon games that can be readily used in applications. Our result

establishes that without any common-knowledge assumption regarding payo¤s and informa-

tion structure, one cannot obtain any robust prediction that is not implied by Bayesian Nash

equilibrium alone. As an application, we prove an unre�nable folk theorem, showing that no

feasible payo¤ vector can be excluded if there is noise in our knowledge of players�beliefs.

Our construction allows uncertainty only about the stage payo¤s. This shows that, even

without the large set of commitment types used in the reputation literature, the uncertainty

behind the structure theorem can operate with full force.

Appendix A. Proof of Proposition 1

A.1. Preliminaries. We start by describing some notation we use in the appendix.
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Notation 1. For any belief � 2 �(��A�i) and action ai and for any history h, write E [�jh; ai; �]
for the expectation operator induced by action ai and � conditional on reaching history h. For any

strategy pro�le s : T ! A and any type ti, we write � (�jti; s�i) 2 �(�� T�i �A�i) for the belief
induced by ti and s�i. Given any functions f : W ! X and g : Y ! Z, we write (f; g)�1 for the

pre-image of the mapping (w; y) 7! (f (w) ; g (y)).

We now de�ne some basic concepts and present some preliminary results. By a Bayesian game

in normal form, we mean a tuple (N;A; u;�; T; �) where N is the set of players, A is the set of

action pro�les, (�; T; �) is a model, and u : � � A ! [0; 1]n is the payo¤ function. We will also

de�ne some auxiliary Bayesian games with di¤erent action spaces, payo¤ functions and parameter

spaces. For any G = (N;A; u;�; T; �), we say that ai and a0i are G-equivalent if

u (�; ai; a�i) = u
�
�; a0i; a�i

�
(8� 2 �; a�i 2 A�i) :

By a reduced-form game, we mean a game GR =
�
N; �A; u;�; T; �

�
where �Ai contains one repre-

sentative action from each G-equivalence class for each i. Rationalizability depends only on the

reduced form:

Lemma 3. Given any game G and a reduced form GR for G, for any type ti, the set S1i [ti] of

rationalizable actions in G is the set of all actions that are G-equivalent to some rationalizable

action of ti in GR.

The lemma follows from the fact that in the elimination process, all members of an equivalence

class are eliminated at the same time; i.e. one eliminates, at each stage, a union of equivalence

classes. It implies the following isomorphism for rationalizability.

Lemma 4. Let G = (N;A; u;�; T; �) and G0 = (N;A0; u0;�0; T 0; �) be Bayesian games in normal

form, �i : Ai ! A0i, i 2 N , be onto mappings, and ' : � ! �0 and � i : Ti ! T 0i , i 2 N , be
bijections. Assume (i) �� i(ti) = �ti � ('; ��i)

�1 for all ti and (ii) u0 (' (�) ; � (a)) = u (�; a) for all

(�; a). Then, for any ti and ai,

(A.1) ai 2 S1i [ti] () �i (ai) 2 S1i [� i (ti)] :

Note that the bijections ' and � are a renaming, and (i) ensures that the beliefs do not change

under the renaming. On the other hand, �i can map many actions to one action, but (ii) ensures

that all those actions are G-equivalent. The lemma concludes that rationalizability is invariant to

such a transformation.
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Proof. First note that (ii) implies that for any ai; a0i 2 Ai,

(A.2) ai is G-equivalent to a0i () �i (ai) is G
0-equivalent to �i

�
a0i
�
:

In particular, if �i (ai) = �i (a
0
i), then ai is G-equivalent to a

0
i. Hence, there exists a reduced-form

game GR =
�
N; �A; u;�; T; �

�
for G, such that � is a bijection on �A, which is formed by picking a

unique representative from each ��1 (� (a)). Then, by (A.2) again, G0R =
�
N;�

�
�A
�
; u0;�0; T 0; �

�
is a reduced form for G0.11 Note that GR and G0R are isomorphic up to the renaming of actions,

parameters, and types by �, ', and � , respectively. Therefore, for any a0i 2 �Ai and ti, a0i is

rationalizable for ti in GR i¤ �i (a
0
i) is rationalizable for � i (ti) in G

0
R. Then, Lemma 3 and (A.2)

immediately yields (A.1). �

We will also apply a Lemma from Mertens-Zamir (1985) stating that the mapping from types in

any type space to their hierarchies is continuous, provided the belief mapping � de�ning the type

space is continuous.

Lemma 5 (Mertens and Zamir (1985)). Let (�; T; �) be any model, endowed with any topology,

such that �� T is compact and �ti is a continuous function of ti. Then, h is continuous.

A.2. Truncated and Virtually Truncated Games. We now formally introduce an equivalence

between �nitely-truncated games and payo¤ functions that implicitly assume such a truncation.

For any positive integer m, de�ne a truncated extensive game form �m =
�
N;Hm; (Ii)i2N

�
by

Hm = fhmjh 2 Hg :

The set of terminal histories in Hm is

Zm = fzmjz 2 Zg :

We de�ne

��m =
�
[0; 1]Z

m
�n

as the set of payo¤ functions for truncated game forms. Since Zm is not necessarily a subset of Z,
��m is not necessarily a subset of ��. We will now embed ��m into �� through an isomorphism to

a subset of ��. De�ne the subset

�̂m =
�
� 2 ��j� (h) = �

�
�h
�
for all h and �h with hm = �hm

	
:

11Proof: Since �i is onto, A
0
i = �i (Ai). Moreover, for any �i (ai) 2 A0i, there exists a0i 2 �Ai that is

G-equivalent to ai. By (A.2), �i (ai) is G
0-equivalent to �i (a

0
i) 2 �i

�
�Ai
�
.
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This is the set of payo¤ functions for which moves after period m are irrelevant. Games with such

payo¤s are nominally in�nite but inherently �nite, so we refer to them as �virtually truncated.�

We formalize this via the isomorphism 'm : ��
m ! �̂m de�ned by setting

(A.3) 'm (�) (h) = � (h
m)

for all � 2 ��m and h 2 Z, where hm 2 Hm is the truncation of h at length m. Clearly, under the

product topologies, 'm is an isomorphism, in the sense that it is one-to-one, onto, and both 'm
and '�1m are continuous. For each ai 2 Ai, let ami be the restriction of action ai to the histories with
length less than or equal tom. The set of actions in the truncated game form is Ami = fami jai 2 Aig.

Lemma 6. Let G = (�;�; T; �) and Gm = (�m;�m; Tm; �) be such that (i) �m � ��m, (ii) � =

'm (�
m) and (iii) Ti = �mi (T

m
i ) for some bijection �

m
i and such that ��mi (tmi )

= �tmi �
�
'm; �

m
�i
��1

for each tmi 2 Tmi . Then, the set of rationalizable actions are m-equivalent in G and Gm:

ai 2 S1i [�mi (tmi )] () ami 2 S1i [tmi ] (8i; tmi ; ai) :

Proof. In Lemma 4, take ' = '�1m , � i = (�mi )
�1, and � : ai 7! ami . We only need to check that

um
�
'�1m (�) ; am

�
= u (�; a) for all (�; a) where um denotes the utility function in the truncated

game Gm. Indeed, writing zm (am) for the outcome of am in Gm, we obtain

um
�
'�1m (�) ; am

�
= '�1m (�) (zm (am)) = '�1m (�) (z (a)m)

= 'm
�
'�1m (�)

�
(z (a)) = � (z (a)) = u (�; a) :

Here, the �rst and the last equalities are by de�nition; the second equality is by de�nition of am,

and the third equality is by de�nition (A.3) of 'm. �

Let T �m be the ��m-based universal type space, which is the universal type space generated by

the truncated extensive game form. This space is distinct from the universal type space, T �, for

the original in�nite-horizon extensive form. We will now de�ne an embedding between the two

type spaces, which will be continuous and one-to-one and preserve the rationalizable actions in the

sense of Lemma 6.

Lemma 7. For any m, there exists a continuous, one-to-one mapping �m : T �m ! T � with

�m (t) = (�m1 (t1) ; : : : ; �
m
n (tn)) such that for all i 2 N and ti 2 T �mi ,

(1) ti is a hierarchy for a type from a �nite model if and only if �mi (ti) is a hierarchy for a

type from a �nite model;

(2) ti is a hierarchy for a type from a common-prior model if and only if �mi (ti) is a hierarchy

for a type from a common-prior model, and
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(3) for all ai, ai 2 S1i [�mi (ti)] if and only if ami 2 S1i [ti].

Proof. Since T �m and T � do not have any redundant types, by the analysis of Mertens and Zamir

(1985), there exists a continuous and one-to-one mapping �m such that

(A.4) ��mi (ti) = �ti �
�
'm; �

m
�i
��1

for all i and ti 2 T �mi .12 First two statements immediately follow from (A.4). Part 3 follows from

(A.4) and Lemma 6. �

In Weinstein and Yildiz (2007), we proved a version of Proposition 1 for �nite action games. We

used a richness assumption on �� that is natural for static games but rules out �xing a dynamic

extensive game form. Chen (2012) has proven this result for �nite dynamic games, under a weaker

richness assumption that is satis�ed in our formulation. Our proof of Proposition 1 will take

advantage of these earlier results. In particular, we will use this lemma, which is implied by Chen�s

theorem:

Lemma 8 (Weinstein and Yildiz (2007) and Chen (2012)). For any �nite-horizon game (�;�; T; �),

for any type ti 2 Ti of any player i 2 N , any rationalizable action ai 2 S1i [ti] of ti, and any
neighborhood Ui of hi(ti) in the universal type space T �, there exists a hierarchy hi

�
t̂i
�
2 U; such

that for each a0i 2 S1i
�
t̂i
�
, a0i is equivalent to ai, and t̂i is a type in some �nite, common-prior

model.

We will prove the proposition in several steps.

Step 1 . Fix any positive integer m. We will construct a perturbed incomplete information game

with an enriched type space and truncated time horizon at m under which each rationalizable

action of each original type remains rationalizable for some perturbed type. For each rationalizable

action ai 2 S1i [ti], let

X [ai; ti] =
�
a0i 2 S1i [ti] ja0i is m-equivalent to ai

	
and pick a representative action rti (ai) from each set X [ai; ti]. We will consider the type space
~Tm = ~Tm1 � � � � � ~Tmn with

~Tmi = f(ti; rti (ai) ;m) jti 2 Ti; ai 2 S1i [ti]g :

12If one writes ti =
�
t1i ; t

2
i ; : : :

�
and �mi (ti) =

�
�m;1i

�
t1i
�
; �m;2i

�
t2i
�
; : : :

�
as a hierarchies, we de�ne �mi

inductively by setting �m;1i

�
t1i
�
= t1i � '�1m and �m;ki

�
tki
�
= tki �

�
'm; �

m;1
�i ; : : : ; �

m;k�1
�i

��1
for k > 1.
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Note that each type here has two dimensions, one corresponding to the original type the second

corresponding to an action. Note also that ~Tm is �nite because there are �nitely many equivalence

classes X [ai; ti], allowing only �nitely many representative actions rti (ai). Towards de�ning the

beliefs, recall that for each (ti; rti (ai) ;m), since rti (ai) 2 S1i [ti], there exists a belief �ti;rti (ai) 2
�(�� T�i �A�i) under which rti (ai) is a best reply for ti and marg��T�i(�ti;rti (ai)) = �ti . De�ne
a mapping �ti;rti (ai);m : �

� ! �� between the payo¤ functions by setting

(A.5) �ti;rti (ai);m
(�) (h) = E

h
� (h) jhm; rti (ai) ; �ti;rti (ai)

i
at each � 2 �� and h 2 Z. De�ne a joint mapping

(A.6) ��ti;rti (ai);m
: (�; t�i; a�i) 7!

�
�ti;rti (ai);m

(�) ; (t�i; rt�i (a�i) ;m)
�

on tuples for which a�i 2 S1�i [t�i]. We de�ne the belief of each type (ti; rti (ai) ;m) by

(A.7) �ti;rti (ai);m = �
ti;rti (ai) � ���1ti;rti (ai);m:

Note that �ti;rti (ai);m has a natural meaning. Imagine a type ti who wants to play rti (ai) under

a belief �ti;rti (ai) about (�; t�i; a�i). Suppose he assumes that payo¤s are �xed as if after m the

continuation will be according to him playing rti (ai) and the others playing according to what is

implied by his belief �ti;rti (ai). Now he considers the outcome paths up to length m in conjunction

with (�; t�i). His belief is then �ti;rti (ai);m. Let ~�m = [ti;rti (ai)�ti;rti (ai);m (�). The perturbed
model is

�
~�m; ~Tm; �

�
. We write ~Gm =

�
�; ~�m; ~Tm; �

�
for the resulting �virtually truncated�

Bayesian game.

Step 2 . For each ti and ai 2 S1i [ti], the hierarchies hi (ti; rti (ai) ;m) converge to hi (ti).

Proof: Let ~T1 =
1[
m=1

~Tm [ T be a type space with beliefs as in each component of the union,

and topology de�ned by the basic open sets being singletons f(ti; rti (ai) ;m)g together with sets
f(ti; rti (ai) ;m) : ai 2 S1i [ti] ;m > kg [ ftig for each ti 2 T and integer k. That is, the topology

is almost discrete, except that there is non-trivial convergence of sequences (ti; rti (ai) ;m) ! ti.

Since ~T1 is compact under this topology, Lemma 5 will now give the desired result, once we prove

that the map � from types to beliefs is continuous. This continuity is the substance of the proof

�if not for the need to prove this, our de�nition of the topology would have made the result true

by �at.

At types (ti; rti (ai) ;m) the topology is discrete and continuity is trivial, so it su¢ ces to shows

continuity at types ti. Since � is �nite, by continuity at in�nity, for any " we can pick an m such
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that for all � 2 �,
����i (h)� �i(~h)��� < " whenever hm = ~hm. Hence, by (A.5),

����ti;rti (ai);m (�) (h)� �(h)��� =
���E h� �~h� j~hm = hm; rti (ai) ; �ti;rti (ai)i� �(h)���

� E
h���� �~h�� �(h)��� j~hm = hm; rti (ai) ; �ti;rti (ai)i < ":

Thus, �ti;rti (ai);m (�) (h) ! �(h) for each h, showing that �ti;rti (ai);m (�) ! �. From the de�n-

ition (A.6) we see that this implies ��ti;rti (ai);m (�; t�i; a�i) ! (�; t�i) as m ! 1. (Recall that�
t�i; rt�i (a�i) ;m

�
! t�i.) Therefore, by (A.7), as m!1,

�ti;rti (ai);m ! �ti;rti (ai) � proj�1��T�i = marg��T�i(�
ti;rti (ai)) = �ti ;

which is the desired result.

Step 3 . The strategy pro�le s� : ~Tm ! A with s�i (ti; rti (ai) ;m) = rti (ai) is a Bayesian Nash

equilibrium in ~Gm.

Proof : Towards de�ning the belief of a type (ti; rti (ai) ;m) under s
�
�i, de�ne mapping


 :
�
�; t�i; rt�i (a�i) ;m

�
7!
�
�; t�i; rt�i (a�i) ;m; rt�i (a�i)

�
;

which describes s��i. Then, given s
�
�i, his beliefs about �� ~T�i �A�i is

�
�
�jti; rti (ai) ;m; s��i

�
= �ti;rti (ai);m � 


�1 = �ti;rti (ai) � ���1ti;rti (ai);m � 

�1;

where the second equality is by (A.7). His induced belief about ��A�i is

marg��A�i�
�
�jti; rti (ai) ;m; s��i

�
= �ti;rti (ai) � ���1ti;rti (ai);m � 


�1 � proj�1��A�i

= �ti;rti (ai) �
�
�ti;rti (ai);m

; r�i
��1

(A.8)

where r�i : (t�i; a�i) 7! rt�i (a�i). To see this, note that

proj��A�i � 
 � ��ti;rti (ai);m : (�; t�i; a�i) 7!
�
�ti;rti (ai);m

(�) ; rt�i (a�i)
�
:

Now consider any deviation a0i such that a
0
i (h) = rti (ai) (h) for every history longer than m. It

su¢ ces to focus on such deviations because the moves after length m are payo¤-irrelevant under
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~�m by (A.5). The expected payo¤ vector from any such a0i is

E
h
u
�
�; a0i; s

�
�i
�
j�ti;rti (ai);m

i
= E

h
u
�
�ti;rti (ai);m

(�) ; a0i; rt�i (a�i)
�
j�ti;rti (ai)

i
= E

h
�ti;rti (ai);m

(�)
�
z
�
a0i; rt�i (a�i)

��
j�ti;rti (ai)

i
= E

h
E
h
�
�
z
�
a0i; rt�i (a�i)

��
jz
�
a0i; rt�i (a�i)

�m
; rti (ai) ; �

ti;rti (ai)
i
j�ti;rti (ai)

i
= E

h
E
h
�
�
z
�
a0i; rt�i (a�i)

��
jz
�
a0i; rt�i (a�i)

�m
; a0i; �

ti;rti (ai)
i
j�ti;rti (ai)

i
= E

h
�
�
z
�
a0i; rt�i (a�i)

��
j�ti;rti (ai)

i
;

where the �rst equality is by (A.8); the second equality is by de�nition of u; the third equality

is by de�nition of �ti;rti (ai);m, which is (A.5); the fourth equality is by the fact that a
0
i is equal

to rti (ai) conditional on history z
�
a0i; rt�i (a�i)

�m, and the �fth equality is by the law of iterated
expectations. Hence, for any such a0i,

E
h
ui
�
�; rti (ai) ; s

�
�i
�
j�ti;rti (ai);m

i
= E

h
�i
�
z
�
rti (ai) ; rt�i (a�i)

��
j�ti;rti (ai)

i
� E

h
�i
�
z
�
a0i; rt�i (a�i)

��
j�ti;rti (ai)

i
= E

h
ui
�
�; a0i; s

�
�i
�
j�ti;rti (ai);m

i
;

where the inequality is by the fact that rti (ai) is a best reply to �
ti;rti (ai), by de�nition of �ti;rti (ai).

Therefore, rti (ai) is a best reply for type (ti; rti (ai) ;m), and hence s
� is a Bayesian Nash equilib-

rium.

Step 4 . Referring back to the statement of the proposition, by Step 2, pick m, ti, and ai such that

m > L and hi((ti; rti (ai) ;m)) 2 Ui. By Step 3, ai is rationalizable for type (ti; rti (ai) ;m).

Proof : Since hi((ti; rti (ai) ;m))! hi(ti) and Ui is an open neighborhood of ti, hi((ti; rti (ai) ;m)) 2
Ui for su¢ ciently large m. Hence, we can pick m as in the statement. Moreover, by Step 3, rti (ai)

is rationalizable for type (ti; rti (ai) ;m) (because it is played in an equilibrium). This implies also

that ai is rationalizable for type (ti; rti (ai) ;m), because m-equivalent actions are payo¤-equivalent

for type (ti; rti (ai) ;m).

The remaining steps will show that a further perturbation makes ai uniquely rationalizable.

Step 5 . De�ne hierarchy hi
�
~ti
�
2 T �mi for the �nite-horizon game form �m by

hi
�
~ti
�
= (�mi )

�1 (hi((ti; rti (ai) ;m))) ;

where �mi is as de�ned in Lemma 7 of Section A.2. Type ~ti comes from a �nite game Gm =

(�m;�m; Tm; �) and ami 2 S1i
�
~ti
�
.
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Proof : By Lemma 7, since type (ti; rti (ai) ;m) is from a �nite model, so is ~ti. Since ai is

rationalizable for type (ti; rti (ai) ;m), by Lemma 7, a
m
i is rationalizable for hi

�
~ti
�
and hence for

type ~ti in Gm.

Step 6 . By Step 5 and Lemma 8, there exists a hierarchy hi (�tmi ) in open neighborhood (�
m
i )

�1 (Ui)

of hi
�
~ti
�
such that each element of S1i [�t

m
i ] is m-equivalent to a

m
i , and �t

m
i is a type in a �nite,

common-prior model.

Proof : By the de�nition of hi
�
~ti
�
in Step 5, hi

�
~ti
�
2 (�mi )

�1 (Ui). Since Ui is open and �mi is

continuous, (�mi )
�1 (Ui) is open. Moreover, ~ti comes from a �nite game, and ami is rationalizable

for ~ti. Therefore, by Lemma 8, there exists a hierarchy hi (�tmi ) in (�
m
i )

�1 (Ui) as in the statement

above.

Please note that the unique ICR action in this perturbation will be robust to further small

perturbations, just as in the original structure theorem of Weinstein and Yildiz (2007), so long as

we con�ne attention to the truncated game form �m, since here the game is �nite and the results

of Dekel, Fudenberg, and Morris (2007) apply. However, once we apply the following step to pull

back the constructed type to lie in the original, in�nite game-form, this statement is known to be

true only for perturbations that retain common knowledge of �̂m. The statement is not necessarily

true for the perturbations that lie outside the image of the embedding.

Step 7 . De�ne the hierarchy hi
�
t̂i
�
by

hi
�
t̂i
�
= �mi (hi (�t

m
i )) :

The conclusion of the proposition is satis�ed by t̂i.

Proof : Since hi (�tmi ) 2 (�mi )
�1 (Ui),

hi
�
t̂i
�
= �mi (hi (�t

m
i )) 2 �mi

�
(�mi )

�1 (Ui)
�
� Ui:

Since �tmi is a type from a �nite, common-prior model, by Lemma 7, t̂i can also be picked from a

�nite, common-prior model. Finally, take any âi 2 S1i
�
t̂i
�
. By Lemma 7, âmi 2 S1i

�
t̂i
�
. Hence, by

Step 6, âmi is m-equivalent to a
m
i . It then follows that âi is m-equivalent to ai. Since m > L, âi is

also L-equivalent to ai.

Appendix B. Proof of Proposition 2

Using Proposition 1, we �rst establish that every action can be made rationalizable for some type.

This extends the lemma of Chen from equivalence at histories of bounded length to equivalence at

histories of unbounded length.
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Lemma 9. For all plans of action ai; there is a type tai of player i such that ai is the unique

rationalizable action plan for tai, up to reduced-form equivalence.

Proof. The set of non-terminal histories is countable, as each of them has �nite length. Index the

set of histories where it is i�s move and the history thus far is consistent with ai as fh (k) : k 2 Z+g.
By Proposition 1, for each k there is a type tk�i whose rationalizable actions are always consistent

with history h (k). We construct type tai as follows: his belief about t�i assigns probability 2�k

to type tk�i. His belief about � is a point-mass on the function �ai , de�ned as 1 if all of i�s actions

were consistent with ai and 1� 2�k if his �rst inconsistent move was at history h (k). Now, if type
tai plays action ai he receives a certain payo¤ of 1. If his plan bi is not reduced-form equivalent

to ai, let h (k) be the shortest history in the set fh (k) : k 2 Z+g where bi(h (k)) 6= ai(h (k)).

By construction, there is probability at least 2�k of reaching this history if he believes the other

player�s action is rationalizable, so his expected payo¤ is at most 1 � 2�2k. This completes the

proof. �

Proof of Proposition 2. We �rst show that (A) implies (B). Assume that s� is a Bayesian Nash

equilibrium of G. Construct a family of types � j (tj ;m; �), j 2 N , tj 2 Tj , m 2 N, � 2 [0; 1], as
follows

� j (tj ; 0; �) = ts
�
j (tj);

��j(tj ;m;�) = ��
t
s�
j(tj)

+ (1� �)�tj ;m;� 8m > 0

where

�tj ;m;� (�; ��j (t�j ;m� 1; �)) = �tj (�; t�j) 8 (�; t�j) 2 �� T�j :

For large m and small �, � j (ti;m; �) satis�es all the properties of t̂i, as we establish below.

Now, we use mathematical induction on m to show that for all � > 0 and for all m and tj ,

aj 2 S1j [� j (tj ;m; �)] if and only if aj is equivalent to s�j (tj), establishing the �rst conclusion in
(B). This statement is true for m = 0 by de�nition of � j (tj ; 0; �) and Lemma 9. Now assume that

it is true up to some m � 1. Consider any rationalizable belief of any type � j (tj ;m; �). With
probability �, his belief is the same as that of ts

�
j (tj). By de�nition, s�j (tj) is the unique best

response to this belief in reduced form actions. With probability 1 � �, his belief on �� � A�j
is the same as the equilibrium belief of tj on �� � A�j . The action s�j (tj) is also a best reply to
this belief because s� is a Bayesian Nash equilibrium in the original game. Therefore, s�j (tj) is the

unique best response to the rationalizable belief of type � j (tj ;m; �) in reduced form. Since type

� j (tj ;m; �) and his rationalizable belief are picked arbitrarily, this proves the statement.
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Note that by the preceding paragraph, for any � > 0 and m > 0, � j (tj ;m; �) has a unique

rationalizable belief

� (tj ;m; �) = ��j(tj ;m;�) � 

�1
j;m;�

where


j;m;� : (�; h�j (t�j ;m; �)) 7!
�
�; h�j (t�j ;m; �) ; s

�
�j (t�j)

�
:

Here, the mapping 
j;m;� corresponds to the fact that the newly constructed types play according to

the equilibrium strategy of the original types. We leave the actions of the other types unassigned as

their actions are not relevant for our proof. For � = 0, we de�ne � (tj ;m; �) by the same equation,

although the type � j (tj ;m; �) may also have other rationalizable beliefs.

In order to show that for large m and small �, the beliefs of � j (tj ;m; �) are as in the proposition,

note that for � = 0, themth-order belief of � j (tj ;m; 0) is equal to themth-order belief of tj . Hence,

as m!1, hj (� j (tj ;m; 0))! hj (tj) for each j. Consequently, for each j, as m!1, � (tj ;m; 0)
converges to

��tj = �tj �
�

�
j

��1
with 
�

j
: (�; t�j) 7!

�
�; t�j ; s

�
�j (t�j)

�
:

Note that ��tj is the equilibrium belief of type tj under s�. Therefore, there exists �m > 0 such that

hi (� i (ti; �m; 0)) 2 Ui and � (ti;m; 0) 2 Vi. Moreover, for j 2 N , m � �m, and � 2 [0; 1], beliefs of
� j (tj ;m; 0) are continuous in �. Hence, by Lemma 5,13 for each tj , as � ! 0, hj (� j (tj ; �m;�)) !
hj (� j (tj ; �m; 0)) and (thereby) � (tj ;m; �) ! � (tj ;m; 0). Thus, there exists �� > 0 such that

hi
�
� i
�
ti; �m; ��

��
2 Ui and �

�
ti;m; ��

�
2 Vi. Therefore, the type t̂i = � i

�
ti; �m; ��

�
satis�es all the

properties in (B).

In order to show the converse (i.e. that (B) implies (A)), take any type ti and assume (B). Then,

there exists a sequence of types t̂i (m) with unique rationalizable beliefs �̂m 2 �
�
�� � T ��i �A�i

�
and unique rationalizable action s�i (ti) where �̂m converges to the belief ��ti of type ti under s

�.

Since s�i (ti) 2 S1i
�
t̂i (m)

�
, s�i (ti) 2 BR

�
marg���A�i �̂m

�
for each m. Since ui is continuous and

�̂m ! ��ti , together with the Maximum Theorem, this implies that s�i (ti) 2 BR
�
marg���A�i�

�
ti

�
,

showing that s�i (ti) is a best reply to s
�
�i for type ti. Since ti is arbitrary, this proves that s

� is a

Bayesian Nash equilibrium. �

13To ensure compactness, put all of the types in construction of types ts
�
j (tj) together and for � (tj ;m; �)

with tj 2 Tj , j 2 N , m 2 f0; 1; : : : ; �mg, � 2 [0; 1], use the usual topology for (tj ;m; �).
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Appendix C. Proof of Proposition 4

We write T
CK(���)
i for the set of types of player i according to which it is common knowledge

that � 2 ��� , i.e. that we are playing a repeated game with discount factor �. In order to harness
our previous constructions, in Lemma 11 we will construct, for every possible plan ai and �nite

time horizon L, a type in T
CK(���)
i for which all rationalizable plans are L-equivalent to ai. These

types then play the role that dominant-action types would play in richer environments. Our �rst

step towards this, Lemma 10, constructs types who do not believe the other players�actions ever

a¤ect them directly, but who �nd others�actions informative about their own payo¤s. They are

further constructed so as to always choose the �myopic�action, optimizing the expected payo¤ in

the current period. This construction will not work on all plans, but only on those satisfying this

version of the sure-thing principle:

De�nition 1. A plan ai is said to be sure-thing compliant if and only if there is no partial history

h and move bi 2 Bi such that ai(h; (ai(h); b�i)) = bi for every b�i but ai(h) 6= bi.

In other words, a plan is sure-thing compliant if whenever the player plays bi in all possible

continuations next period, he also plays bi this period. This is of course equivalent to the sure-

thing principle of Savage if the player has the same preferences over his moves in both periods.

Given that, in our construction in the next proof, player i is actually facing a single-player decision

problem with unknown payo¤s, it is not hard to see that this particular construction can only work

for sure-thing compliant plans. Of course the necessity of the condition is not relevant to later

results, and our further construction in Lemma 11 extends the result to all plans.

Lemma 10. For any �, any L, and any sure-thing compliant action plan ai, there exists a type

tai;L 2 TCK(�
�
�)

i for which all rationalizable plans are L-equivalent to ai.

Proof. We will induct on L. When L = 1, it su¢ ces to consider a type tai;1 who is certain that

in the stage game, ai(?) yields payo¤ 1 while all other actions yield payo¤ 0. Now �x L; ai and
assume the result is true for all players and for L� 1. In outline: the type we construct will have
payo¤s which are completely insensitive to the actions of the other players, but will �nd those

actions informative about his own payo¤s. He also will believe that if he ever deviates from ai,

the other players�subsequent actions are uninformative � this ensures that he always chooses the

myopically best action.
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Formally: Let Ĥ be the set of histories of length L� 1 in which player i always follows the plan
ai, so that jĤj = jB�ijL�1, where B�i is the set of pro�les of static moves for the other players.
For each history h 2 Ĥ, we construct a pair (th�i; �h), and our constructed type tai;L assigns equal
weight to each of jB�ijL�1 such pairs. Each type th�i is constructed by applying the inductive
hypothesis to a plan ah�i which plays according to history h so long as i follows ai, and simply

repeats the previous move forever if player i deviates. Such plans are sure-thing compliant for the

player(s) �i because at every history, the current action is repeated on at least one branch.

To de�ne the payo¤ functions �h for all h 2 Ĥ, we will need to de�ne an auxiliary function
f : ~H�Bi ! R, where ~H is the set of pre�xes of histories in Ĥ. The motive behind the construction

is that f(h; �) represents i�s expected value of his stage-game payo¤s conditional on reaching the
history h. The function f is de�ned iteratively on histories of increasing length. Speci�cally, de�ne

f as follows: Fix " > 0: Let f(?; ai(?)) = 1 and f(?; b) = 0 for all b 6= ai(?), where ? is the empty
history. Next, assume f(h; �) has been de�ned and proceed for the relevant one-step continuations
of h as follows:

Case 1: If ai(h; (ai(h); b�i)) = ai(h) for all b�i, then let f((h; b); �) = f(h; �) for every b.

Case 2: Otherwise, by sure-thing compliance, at least two di¤erent actions are prescribed for con-

tinuations (h; (ai(h); b�i)) as we vary b�i. For each action bi 2 Bi, let Sbi = fb�i : ai(h; (ai(h); b�i)) = big
be the set of continuations where bi is prescribed. Then let

f((h; (ai(h); b�i)); bi) =

8<: f(h; ai(h)) + " if b�i 2 Sbi
jB�ijf(h;bi)�jSbi j(f(h;ai(h))+")

jB�ij�jSbi j
if b�i =2 Sbi

where the last denominator is non-zero by the observation that at least two di¤erent actions are

prescribed.

These payo¤s were chosen to satisfy the constraints

f(h; bi) =
1

jB�ij
X
b�i

f((h; (ai(h); b�i)); bi)(C.1)

f(h; ai(h)) � f(h; bi) + " (8h; bi 6= ai(h)) :(C.2)

as can be veri�ed algebraically.

For each history h 2 Ĥ, de�ne the stage-game payo¤ function gh : B ! [0; 1]n by setting

ghi (b) = f(h; bi) and g
h
j (b) = 0 at each b and j 6= i. De�ne �h accordingly, by

�h
�
b0; b1; : : :

�
� (1� �)

1X
l=0

�lgh
�
bl
�
;
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as in (4.1). De�ne tai;L as mentioned above, by assigning equal weight to each pair (th�i; �
h).

We claim that under rationalizable play, from the perspective of type tai;L, when he has followed

ai and reaches history h 2 ~H, f(h; �) is his expected value of the stage-game payo¤ gi. We show
this by induction on the length of histories, backwards. When a history h 2 Ĥ is reached, player

i becomes certain (assuming rationalizable play) that the opposing types must be th�i and thus

the payo¤s must be �h, which is the desired result for this case. Suppose the claim is true for all

histories in ~H of length M . Note that type tai;L puts equal weight on all sequences of play for his

opponent. Therefore, for a history h 2 ~H of length M � 1, the expected payo¤s are given by the
right-hand-side of (C.1) which proves the claim.

Note also that if he follows ai through period L, player i always learns his true payo¤. Let �ai be

the plan which follows ai through period L, then plays the known optimal action from period L+1

onward. We claim that �ai strictly outperforms any plan which deviates by period L. The intuitive

argument is as follows. Because type tai;L has stage-game payo¤s which are insensitive to the other

players�moves, he only has two possible incentives at each stage: the myopic goal of maximizing

his average stage-game payo¤s at the current stage, and the desire to receive further information

about his payo¤s. The former goal is strictly satis�ed by the move prescribed by �ai, and the latter

is at least weakly satis�ed by this move, since after a deviation he receives no further information.

Formally, we must show that for any �xed plan a0i not L-equivalent to ai and any rationalizable

belief of tai;L, the plan �ai gives a better expected payo¤. Given a rationalizable belief on opponents�

actions, player i has a uniform belief on the other players�actions as long as he follows ai. Let ĥ

be a random variable equal to the shortest realized history at which a0i di¤ers from ai before period

L, or 1 if they do not di¤er by period L. Note that the uniform belief on others�actions implies

that ĥ 6=1 with positive probability. We show that conditional on any non-in�nite value of ĥ, �ai
strictly outperforms a0i on average. In fact this is weakly true stage-by-stage, and strictly true at

the �rst deviation, because:

At stages 1; :::; jĥj: The plans are identical.

At stage jĥj+ 1: The average payo¤ f(ĥ; bi) is strictly optimized by �ai(ĥ).

At stages jĥj + 2; :::; L: Along the path observed by a player following a0i, the other players are
known to repeat their stage-jĥj + 1 move at stages jĥj + 2; :::; L. So at these stages, the plan a0i
cannot do better than to optimize with respect to the history truncated at length jĥj + 1. The
plan �ai optimizes the expected stage-game payo¤s with respect to a longer history, under which

opposing moves are identical through stage jĥj+ 1. Since he is therefore solving a less-constrained
optimization problem, he must perform better than a0i at each stage jĥj+ 2; :::; L.
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At stages L+ 1; :::: Under plan �ai, player i now has complete information about his payo¤ and

optimizes perfectly, so a0i cannot do better.

If ĥ =1, again �ai cannot be outperformed because he optimizes based on complete information
after L, and �ai and a0i prescribe the same behavior before L.

Finally, since there are only �nitely many histories and types in the construction, all payo¤s are

bounded and so can be normalized to lie in [0; 1]. �

The next lemma builds on this result to generalize to all action plans.

Lemma 11. For any � 2 (0; 1), any L and any action plan ai, there exists a type tai;Li 2 TCK(�
�
�)

i

for which playing according to ai until L is uniquely rationalizable in reduced form.

Proof. For some b��i 2 B�i, which will be �xed throughout the proof, consider a stage payo¤

function gi with gi
�
bi; b

�
�i
�
= 1 and gi (bi; b�i) = 0 for all b�i 6= b��i. That is, player i�s payo¤ does

not depend on his own action, but only on whether the other players reward him by playing b��i.

Write �̂ 2 ��� for a payo¤ function resulting from gi, i.e., �̂i
�
b0; b1; : : :

�
= (1� �)

P
l �
lgi
�
bl
�
. This

�̂ will be �xed throughout the proof and the constructed type tai;Li will be certain that payo¤s are

given by �̂. Fix an M large enough that �M < �L (jBij � 1) = (2 jBij � 1) < �L=2. Let Ĥ be the set

of all histories of length L or less. Let Â�i be the set of action pro�les a�i for which there exists a

function � : Ĥ �B�i ! Bi such that

(1) for any l � L+1, any history hl�1 of length l�1 and any (bi; b�i) 2 Bi, a�i
�
hl�1; (bi; b�i)

�
=

b��i if bi = �
�
hl�1; b�i

�
and aj

�
hl�1; (bi; b�i)

�
6= b�j for every j 6= i otherwise;14

(2) �
�
hL; b�i

�
� ai

�
hL
�
for all those hL such that player i has played according to ai through-

out, and

(3) for any l 2 fL+ 2; : : : ;Mg and any h at the beginning of l, a�i (h) = a�i
�
hL+1

�
.

That is: At any history in h 2 Ĥ, the other players reward a unique move � (h; b�i) of i at
each history (h; b). The only restriction on which move is rewarded occurs at stage L + 1, when

if player i has followed ai so far, he will be rewarded if he continues to do so. Furthermore, at

stages fL+ 2; : : : ;Mg the other players simply repeat their move from stage L + 1. The set Â�i
is symmetric in all other ways. Note also that at any l � M , a player j either reacts di¤erently

to di¤erent moves of player i or repeats his previous move regardless. Hence, the actions in Â�i
are all sure-thing compliant up to date M , and thus for each a�i 2 Â�i, there exists a sure-thing

14Note that hl�1 is the list of moves played at dates 0; 1; : : : ; l � 2, and aj
�
hl�1; b

�
is the move of player

j at date l if players play b at l � 1 after history hl�1.
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compliant action â�i that is M -equivalent to a�i. Let ÂM�i be a �nite subset of A�i that consists of

one sure-thing compliant element from each M -equivalence class in Â�i. By Lemma 10, for each

a�i 2 ÂM�i, there exists ta�i;M for which all rationalizable action pro�les are M -equivalent to a�i.

Consider a type tai;Li that assigns probability 1=
���Âm�i��� to each ��̂; ta�i;M� with a�i 2 Âm�i. Note

that, according to tai;Li the rewarded actions up to l = L � 1 are independently and identically
distributed with uniform distribution over his moves. This leads to the formulas for the probability

of reward in the next paragraph.

For any history h of length l, write P �l (h) for the probability that b
�
�i is played at date l

conditional on h according to the rationalizable belief of tai;Li . As noted above, by symmetry,

(C.3) P �l (h) = 1= jBij 8l � L;

and

(C.4) P �L+1 (h) =

8><>:
1 if i follows ai until L

0 if i follows ai until L� 1 and deviates at L
1= jBij otherwise.

Denote the expected payo¤ of type tai;Li under any action a0i by Ui (a
0
i), and note that

(C.5) Ui
�
a0i
�
�
X

l
(1� �) �lE

�
P �l ja0i

�
:

Using the above formulas, we will now show that type tai;Li does not have a best response that

di¤ers from ai at some history of length l � L. Consider such an action plan a0i. De�ne also a�i , by
setting

a�i

�
hl
�
=

(
ai
�
hl
�
if l � L

a0i
�
hl
�
if l > L

at each history hl of length l. We will show that a�i yields a strictly higher expected payo¤ than a
0
i.

To this end, for each history h, de�ne � (h) as the smallest date l such that the play of player i is in

accordance with both ai and a0i throughout history h
l, ai

�
hl
�
6= a0i

�
hl
�
, and player i plays a0i

�
hl
�

at date l according to h. (Here, � can be in�nite. It equals the �rst realized di¤erence in moves;

note that even if the two plans are not equivalent, they may not di¤er on a particular history.)

Conditioned on the event � > L, we know � =1, that is, a�i and a0i play identical moves and hence
yield the same payo¤. We will show that a�i has a strictly higher expected payo¤ than a

0
i when

conditioned on each of the events � = L and � < L. On the event � = L, by (C.3) and (C.4), a0i
yields a payo¤ of

Ui
�
a0ij� = L

�
=
�
1� �L+1

�
= jBij+

X
l>M

(1� �) �lE
�
P �l ja0i; � = L

�
;
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while, by (C.4), a�i yields

Ui (a
�
i j� = L) =

�
1� �L+1

�
= jBij+

�
�L+1 � �M+1

�
� 1 +

X
l>M

(1� �) �lE [P �l ja�i ; � = L] :

Hence,

Ui (a
�
i j� = L)� Ui

�
a0ij� = L

�
=

�
�L+1 � �M+1

�
+
X
l>M

(1� �) �l
�
E [P �l ja�i ; � = L]� E

�
P �l ja0i; � = L

��
�

�
�L+1 � �M+1 � �M+1

�
> 0;

where the �rst inequality holds because P �l 2 [0; 1] and the strict inequality follows from our de�ning
assumption on M .

Similarly, on the event � < L, by (C.3), a0i yields a payo¤ of

Ui
�
a0ij� < L

�
=
�
1� �L+1

�
= jBij+

�
�L+1 � �M+1

�
� 1= jBij+

X
l>M

(1� �) �lE
�
P �l ja0i; � < L

�
;

while a�i yields

Ui (a
�
i j� < L) =

�
1� �L+1

�
= jBij+

�
�L+1 � �M+1

�
� 1 +

X
l>M

(1� �) �lE [P �l ja�i ; � < L] :

Hence,

Ui (a
�
i j� < L)� Ui

�
a0ij� < L

�
=

�
�L+1 � �M+1

�
(1� 1= jBij) +

X
l>M

(1� �) �lE [P �l ja�i ; � � L]� E
�
P �l ja0i; � � L

�
�

�
�L+1 � �M+1

�
(1� 1= jBij)� �M+1 > 0;

where the �rst inequality is by the fact that P �l 2 [0; 1] and the strict inequality follows from our

de�ning assumption on M .

Finally, note that Pr (� � L) > 0 (as tai;Li puts positive probability at all histories up to date

L and a0i di¤ers from ai at some such history), so we can conclude that a�i yields a strictly higher

expected payo¤ than a0i and hence a
0
i is not optimal. �

This lemma establishes that any action can be made uniquely rationalizable for an arbitrarily

long horizon, even within the restricted class of repeated game payo¤s with the given discount

factor �. Using this lemma, we can now prove Proposition 4.

Proof of Proposition 4. First, note that by continuity at in�nity there exist �� 2 (0; 1) and l� <
1 such that if a player i assigns at least probability 1 � �� on the event that � = ��;g� and

everybody follows a� up to date l�, then the expected payo¤ vector under his belief will be within

" neighborhood of u (��;g� ; a�).



ROBUST PREDICTIONS 43

We construct a family of types tj;m;l;�, j 2 N , m; l 2 N, � 2
�
0; ��

�
, by

tj;0;l;� = ta
�
j ;l;

�tj;m;l;� = ��
t
a�
j
;l + (1� �) �(��;g� ;t�i;m�1;l0;�) 8m > 0;

where ta
�
j ;l 2 TCK(�

�
�)

j is the type for whom a�j is uniquely rationalizable up to date l, �(��;g� ;t�i;m�1;�)
is the Dirac measure that puts probability one on

�
��;g� ; t�i;m�1;l0�

�
and l0 will be de�ned momen-

tarily. The types tj;m;l;� will be constructed in such a way that under any rationalizable plan

they will follow a�j up to date l and the �rst m orders of beliefs will be within � neighborhood of

tCK (��;g�). Note that under �
t
a�
j
;l it is a unique best reply to follow a�j up to date l. Moreover, if

� = ��;g� and the other players follow a��j forever, then it is a best response to follow a
�
j up to date

l. Hence, it is a unique best response to follow a�j up to date l if one puts probability � on �ta
�
j
;l

and (1� �) on the latter scenario with � = ��;g� . Since there are only �nitely many plans to follow
up to date l and the game is continuous at in�nity, there exists a �nite l0 � l� such that it is still
the unique best response under ��;g� to follow a�j up to date l if the other players played a

�
�j only

up to date l0. We pick such an l0 � l�.

We now show that for large m and l and small �, ti;m;l;� satis�es all the desired properties of t̂i.

First note that for � = 0, under ti;m;l;0, it is mth-order mutual knowledge that � = ��;g� . Hence,

there exist m� and �� > 0 such that when m � m� and � � ��, the belief hierarchy of ti;m;l;� is

within the neighborhood Ui of the belief hierarchy of tCKi (��;g�), according to which it is common

knowledge that � = ��;g� . Second, for � > 0, a�j is uniquely rationalizable up to date l for tj;m;l;� in

reduced form. To see this, observing that it is true for m = 0 by de�nition of tj;0;l;�, assume that

it is true up to some m� 1. Then, any rationalizable belief of any type tj;m;l;� must be a mixture
of two beliefs. With probability �, his belief is the same as that of ta

�
j ;l, and with probability

1 � �, he believes that the true state is ��;g� and the other players play a��j (in reduced form) up
to date l0. But we have chosen l0 so that following a�j up to date l is a unique best response under

that belief. Therefore, any rationalizable action of tj;m;l;� is l-equivalent to a�j . Third, for any

m > 0 and l � l�, the expected payo¤s are within " neighborhood of u (��;g� ; a�). Indeed, under

rationalizability, type ti;m;l;� must assign at least probability 1 � � � 1 � �� on � = ��;g� and that
the other players follow a��i up to date l

0 � l� while he himself follows a�i up to date l � l�. The
expected payo¤ vector is " neighborhood of u (��;g� ; a�) under such a belief by de�nition of �� and l�.

Finally, each tj;m;l;� is in T
CK(���)
j because all possible types in the construction assigns probability

1 on � 2 ��� . We complete our proof by picking t̂i = ti;m;l;� for some m > m�, l � max fL; l�g, and
� 2

�
0;min

�
��; ��

	�
. �
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Appendix D. Proofs of Propositions 7 and 8

Here we show how to modify the proofs of Propositions 1 and 2 in order to retain the informational

common-knowledge assumptions described in Propositions 7 and 8 and satisfy sequential rationality.

Note that here, a Bayesian game also assigns a �payo¤ type�ci (ti) 2 Ci for each type ti, and hence
a Bayesian game is a list G = (�;�; T; c; �).

Proof of Proposition 7. Note that as in Lemma 4, ISR1 depends only on the reduced form of a

plan, and, as in Lemma 6, the ISR actions of �virtually truncated� games are equivalent to the

ISR actions of truncated games. In light of these facts, we now describe the major modi�cations

to each step of the proof of Proposition 1.

In Step 1, we observe that, by the de�nition of ISR, each rti (ai) is a sequential best response

to a conjecture �ti;rti (ai) of ti such that �
ti;rti (ai)
? agrees with �ti and puts probability one on ISR

actions. We de�ne types (ti; rti (ai) ;m) by setting ci (ti; rti (ai) ;m) = ci (ti), so that the private

information does not change, and setting

(D.1) �ti;rti (ai);m = �
ti;rti (ai)
? � ���1ti;rti (ai);m

where ��ti;rti (ai);m is now de�ned as

(D.2) ��ti;rti (ai);m
: (c0; t�i; a�i) 7!

�
�ti;rti (ai);m

(f (c0; ci (ti) ; c�i (ti))) ; (t�i; rt�i (a�i) ;m)
�
:

Since �ti;rti (ai);m (f (c0; ci (ti) ; c�i (ti))) ! f (c0; ci (ti) ; c�i (ti)) as in the proof of Proposition

1, by the interior assumption in the hypothesis, there exists �m such that for every m > �m;

�ti;rti (ai);m
(�) = f

�
Gti;rti (ai);m (c0; c�i (t�i)) ; ci (ti) ; c�i (t�i)

�
for someGti;rti (ai);m (c0; c�i (t�i)) 2

C, ensuring that the newly constructed types are in TC�. In Step 2, we prove that �ti;rti (ai);m ! �ti ,

by observing that ��ti;rti (ai);m (c0; t�i; a�i)! (f (c0; ci (ti) ; c�i (ti)) ; t�i).

In Step 3, we prove that � : (ti; rti (ai) ;m) 7! frti (ai)g is closed under sequentially rational
behavior in ~Gm, so that rti (ai) 2 ISR1i [ti; rti (ai) ;m]. To this end, for each (ti; rti (ai) ;m), we
construct a conjecture ~� of type (ti; rti (ai) ;m) against which rti (ai) is a sequential best response

and ~�? puts probability 1 on the graph of �, by setting

~�h = �
ti;rti (ai)

h � ~��1ti;rti (ai);m � 

�1

where


 :
�
c0; t�i; rt�i (a�i) ;m

�
7!
�
c0; t�i; rt�i (a�i) ;m; rt�i (a�i)

�
stipulates that the types play according to �, and the mapping

(D.3) ~�ti;rti (ai);m
: (c0; t�i; a�i) 7!

�
Gti;rti (ai);m (f (c0; ci (ti) ; c�i (ti))) ; (t�i; rt�i (a�i) ;m)

�
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incorporates the transformation of c0. By construction, �
ti;rti (ai)
? puts probability 1 on the graph

of �, and the belief induced on ~�m � ~T�i by ~�? is �ti;rti (ai);m. Towards showing that rti (ai)

is a sequential best response to ~�, we also observe that each ~�h induces probability distribution

�
ti;rti (ai)

h �
�
�ti;rti (ai);m

; r�i
��1

on � � A�i� as in the proof of Proposition 1, where that belief

was �ti;rti (ai) �
�
�ti;rti (ai);m

; r�i
��1

. One can then simply replace �ti;rti (ai) with �
ti;rti (ai)

h in the

remainder of the proof of that step, to show that rti (ai) is a best response to ~�h at each history

h that is not precluded by rti (ai), showing that rti (ai) is a sequential best response to ~� for type

(ti; rti (ai) ;m).

In Step 6, we use Lemma 2 instead of Lemma 8, to obtain a hierarchy hi (�tmi ) in open neigh-

borhood (�mi )
�1 (Ui) of hi

�
~ti
�
such that each element of ISR1i [�t

m
i ] is m-equivalent to a

m
i and

hi (�t
m
i ) 2 TCm�i , which is the subspace of T �mi in which it is common knowledge that � 2 f (C) and

the true value of cj is known by player j for each j. This leads to the type t̂i constructed in Step

7 to remain in TC�i and have ai as the unique ISR action up to m-equivalence. �

Though Proposition 8 is a close analogue of the general result on equilibria, Proposition 2, its

proof is more closely analogous to the �nal steps in our result speci�c to repeated games, Proposition

4. (It is in the lemmas preceding that proof that the steps speci�c to repeated games occur.)

Proof of Proposition 8. In the proof of Proposition 4, modify the types tj;m;l;� by substituting ��

for ��;g� and taking t
a�j ;l to be the type in TC�j for whom a�j is uniquely ISR up to date l and

cj

�
ta
�
j ;l
�
= c�j (by Proposition 7). Take also cj (tj;m;l;�) = c

�
j , so that hj (tj;0;l;�) 2 TC�j . Moreover,

as in the proof of Proposition 4, since playing according to a�j up to l is the unique sequential best

response for type tj;m;l;� when the others follow a��j forever, we can take l
0 su¢ ciently large so that

following a�j remains the unique sequential best response up to l when the others follow a
�
�j up to

l0. As in the proof of Proposition 4, this shows that a�j is the unique ISR plan for type tj;m;l;�.

Finally, as in the proof of Proposition 4, one can select m, l, and � to satisfy the other properties

in the proposition. �
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