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Screening and Selection: The Case of Mammograms†

By Liran Einav, Amy Finkelstein, Tamar Oostrom, Abigail Ostriker, 
and Heidi Williams*

We analyze selection into screening in the context of recommen-
dations that breast cancer screening start at age 40. Combining 
medical claims with a clinical oncology model, we document that 
compliers with the recommendation are less likely to have cancer 
than younger women who select into screening or women who never 
screen. We show this selection is quantitatively important: shifting 
the recommendation from age 40 to 45 results in three times as many 
deaths if compliers were randomly selected than under the estimated 
patterns of selection. The results highlight the importance of consid-
ering characteristics of compliers when making and designing rec-
ommendations. (JEL I12, I18, J16)

Whether and when to recommend screening for potential diseases is a highly 
controversial and evolving policy area, with active academic research.1 Much of 
the debate, both in public policy and in academia, centers on the causal impact 
of screening for a typical individual covered by the recommendation. Estimating 
this causal impact is challenging for several well-known reasons. First, there are 
the usual challenges to causal inference. Second, many of the potential costs and 

1 For example, Welch, Schwartz, and Woloshin (2011) argue that although many medical conditions, such as
high blood pressure, elevated blood glucose levels, low bone density, and high cholesterol, benefit from treatment, 
there has been a trend over time toward widespread use of medical screening tests and increasingly low diagnostic 
thresholds that recommend treating patients for whom the benefits from treatments are quite small. By contrast, 
Maciosek et al. (2010) review these same screening efforts and conclude that they save a large number of lives at
relatively low cost.
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benefits of screening are difficult to measure and to monetize.2 In this paper, we 
highlight another important, and, we believe, overlooked, challenge in analyzing 
and designing screening recommendations: the typical individual covered by a rec-
ommendation may be very different from the typical individual who responds to 
the recommendation. As a result, the estimated impact of screening for a randomly 
selected individual may be quite different from the impact for an affected individual.

We explore this distinction in the context of the current controversy over whether 
to recommend annual mammograms for women starting at age 40. Results from 
randomized trials have consistently failed to show statistically significant mortality 
benefits of mammograms for women in their 40s. In 2009, these results prompted 
the US Preventive Services Task Force (USPTF) to change its recommendation for 
routine mammograms to begin at age 50 rather than at age 40. This change gener-
ated substantial public controversy (Saad 2009, Berry 2013).3

This debate has focused on the costs and benefits of mammograms for typical 
(“average-risk”) 40-year-old women, with little attention paid to what types of 
women respond to a screening recommendation and whether the costs and benefits 
for them may differ from the average woman. To investigate the type of women 
who respond, we draw on two primary data sources. The first is insurance claims 
data on mammogram choices and their results (negative, false positive, or true pos-
itive) for privately insured women aged 35–50 from the Health Care Cost Institute 
(HCCI). The second is cancer registry data, from the National Cancer Institute’s 
Surveillance, Epidemiology, and End Results (SEER) database, on the size and 
stage of detected tumors for women aged 35–50 who were diagnosed with breast 
cancer. We supplement some of the descriptive analyses with additional informa-
tion from the Behavioral Risk Factor Surveillance System Survey (BRFSS), which 
allows us to observe additional health behaviors and demographics of women who 
do and do not receive mammograms at various ages.

The visual evidence shows sharp and pronounced changes in behavior and out-
comes at age 40. There is a 25 percentage point jump in the annual mammogram 
rate at age 40, from 10 percent to 35 percent of women. We then compare charac-
teristics of the women who respond to the recommendation for a mammogram (i.e., 
“compliers” in the terminology of Angrist, Imbens, and Rubin 1996) to character-
istics of always-takers (i.e., women who choose mammograms even in the absence 
of the recommendation, which is before age 40). We find that compliers have a 
lower incidence of cancer than always-takers: there is a roughly 30 percent decline 
(from 0.84 percent to 0.56 percent) in the share of screened women diagnosed with 
cancer (i.e., true positives) at age 40. Given the high rate of false positives (about 
90 percent of initial positive mammograms turn out to be false positives) the sharp 
increase in the mammogram rate at age 40 translates into a substantial increase in 
the number of women experiencing false positives, from about 10 per 1,000 women 
to about 40 per 1,000 women. This is consistent with false positives being a key 

2 The costs and benefits of screening include monetary costs, clinical outcomes, discomfort from unnecessary 
procedures, and psychological effects induced by the screening process, including pre-screening apprehension and 
anxiety due to false positives (e.g., Brett et al. 2005, Nelson et al. 2009, Welch and Passow 2014, Ong and Mandl 
2015, Welch 2015).

3 See also Gina Kolata, “Get a Mammogram. No Don’t. Repeat,” New York Times, November 21, 2009, https://
www.nytimes.com/2009/11/ 22/weekinreview/22kolata.html.

https://www.nytimes.com/2009/11/22/weekinreview/22kolata.html
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concern that motivated moving the recommended age of beginning mammography 
from 40 to 50 (Nelson et al. 2009). Moreover, among those diagnosed with cancer, 
the registry data show a sharp decline in the average tumor’s stage and size starting 
at age 40, compared to earlier ages. For example, the share of detected tumors that 
are in a late stage (invasive tumors) as opposed to early stage (in-situ tumors) falls 
by about 6 percentage points (or 7 percent) at age 40.

These descriptive results indicate that women who respond to the recommenda-
tion for a mammogram have lower risk of cancer than those who seek mammograms 
in the absence of the recommendation. For non-cancer characteristics, we can also 
compare compliers to never-takers (women who do not get mammograms even once 
the recommendation is in effect). We find that, relative to never-takers, compliers are 
more likely to undertake other types of recommended preventive care, such as cervi-
cal cancer screening tests and flu shots. This pattern is consistent with findings that 
when a health behavior is recommended, those who comply with the recommenda-
tion tend to exhibit other positive health behaviors (Oster 2020). It also echoes the 
observation that women who comply with assignment to mammograms in an RCT 
setting are healthier than never-takers (Kowalski 2019).4

To assess the implications of these findings and to quantify costs and health out-
comes under various counterfactual selection scenarios, we specify a model of mam-
mogram demand that is a function of a woman’s age, her (undiagnosed) cancer type 
(no cancer, in-situ, or invasive), and whether or not a mammogram is recommended 
at her age. We estimate the model by method of moments, using two key inputs. 
First, we leverage our data on the observed patterns of mammogram decisions and 
mammogram outcomes (specifically, cancer type) for women by age. Second, we 
bring in a clinical oncology model of the underlying rate of onset of breast cancer 
by age, as well as the cancer’s clinical progression in the absence of detection and 
treatment.

The clinical model allows us to estimate the cancer characteristics of never-takers. 
In the absence of a clinical model, these cancer characteristics are inherently diffi-
cult (or impossible) to observe: cancer incidence is not observed in the non-screened 
population, and almost all detected cancer is treated immediately upon detection. 
The clinical model of breast cancer incidence and progression is drawn from a 
large-scale, coordinated project funded by the National Cancer Institute (NCI) 
involving seven different research groups (Clarke et al. 2006); since there is nat-
urally some uncertainty about the underlying model, we confirm that our main 
findings are not sensitive to a range of alternative assumptions about the onset and 
distribution of cancer type by age.

The estimates from our model indicate that women who would select into mam-
mograms in the absence of the recommendation (“always-takers”) have much 
higher rates of both in-situ and invasive cancer than the general population. We refer 
to this as “positive selection”  into mammograms (positive with respect to cancer 
incidence). However, our estimates indicate that the women who select into mam-
mograms due to the recommendation (“compliers”) are much less likely to have 

4 Because the context is naturally quite different, one might expect selection into compliance with RCT assign-
ment to be different than selection into compliance with a recommendation. Indeed, never-takers comprise only 
5 percent of the population in the context of Kowalski (2019), but are approximately 60 percent in ours.



3839EINAV ET AL.: SCREENING AND SELECTIONVOL. 110 NO. 12

invasive cancer, and are no more likely to have in-situ cancer, than women who do 
not select into mammograms (“never-takers”). The relative degree of selection pre- 
and post- the age-40 recommendation is identified directly from our data; the clini-
cal model of underlying cancer incidence is needed to assess whether the observed 
selection either pre- or post-age 40 is positive with respect to the underlying popu-
lation, whose cancer incidence is not directly observed.

We apply our model and its estimates to illustrate how the nature of selection 
in response to the recommendation affects the impact of the recommendation. 
Specifically, we estimate that shifting the recommendation from age 40 to age 45 
results in more than three times as many deaths, at similar cost savings, if we assume 
that compliers with the recommendation are randomly drawn from the population 
rather than drawn based on the estimated selection patterns. We view this as a par-
ticularly instructive counterfactual, since assuming that the women who respond are 
randomly drawn from the population is conceptually similar to using estimates of 
the impact of mammography from randomized experiments (with full compliance). 
Because in practice those who respond to the recommendation have a much lower 
rate of invasive cancer than the underlying population, the mortality cost of moving 
the recommendation to age 45 is lower than under random selection. Conversely, our 
model also illustrates that if it were feasible to target the recommendations to those 
with higher rates of cancer, the mortality cost of moving the recommendation from 
age 40 to 45 could be substantially larger than even the random selection assumption 
would imply. This is consistent with recent interest in reducing over-diagnosis by 
developing targeted, precision screening for women at higher risk (Elmore 2016; 
Esserman, Shieh, and Thompson 2009).

Our paper relates to several distinct literatures. Most narrowly, it speaks to the 
large body of work on mammograms, which we describe in the next section. But 
beyond the specific application of mammograms, it speaks to a broader health pol-
icy debate about whether and when to recommend medical screening tests (e.g., 
Welch, Schwartz, and Woloshin 2011). A central challenge that has limited empirical 
research on this topic is that, in the datasets typically available to researchers, the 
testing decision is observed but the outcome of the test is not. An attractive feature of 
our setting is that the outcome of the test (i.e., cancer incidence and type of cancer) 
is measurable both in claims data and in registry data. In this sense our analysis is 
similar in spirit to Abaluck et al. (2016), who are able to measure the outcome of 
imaging tests for pulmonary embolism in claims data, which they use to investigate 
whether and when that imaging test is being “overused.” Both our paper and Abaluck 
et al. (2016) share a common feature with the racial profiling literature on stop and 
frisks (Anwar and Fang 2006, Persico 2009): the object of interest is only observed 
conditional on an action. This raises an empirical challenge for analyzing how the 
action (in our case, screening) relates to the underlying object of interest (in our case, 
the underlying incidence of cancer and cancer types). In our setting, we overcome 
this empirical challenge by combining two insights. First, the recommendation at 
age 40 serves as an exogenous source of variation in the screening rate, allowing us 
to estimate the cancer type of the marginal person affected by the recommendation. 
Second, the clinical oncology model of cancer incidence and growth allows us to use 
the observed moments (namely, outcomes conditional on screening under different 
regimes) to model outcomes under counterfactual regimes.
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More broadly, our paper speaks to the value of complementing reduced-form 
estimates of causal effects with economic models of behavior, and particularly of 
selection. Reduced-form methods, both quasi-experimental and randomized exper-
iments, aim to estimate causal effects by shutting down any endogenous choices. In 
practice, however, most policies involve an element of choice, so that the ultimate 
impact of the policy depends not only on the distribution of causal treatment effects 
but also on which women select into treatment. In this sense, our paper relates 
broadly to the literature on Roy selection, or selection on gains. In the health care 
context specifically, Einav et al. (2013) emphasize that the impact on health care 
spending of offering a high-deductible health insurance plan may be very different 
than what would be estimated from random assignment of high-deductible plans 
across individuals, because the types of people who choose high-deductible plans 
can have very different health care utilization responses to cost sharing than a typ-
ical individual. Our analysis speaks to a similar issue, in the context of evaluating 
recommendations for disease screening.

The rest of the paper proceeds as follows. Section  I summarizes the relevant 
institutional details of our empirical context (breast cancer and mammography), and 
describes the existing evidence regarding the effect of mammograms and of various 
policy interventions that are designed to increase mammography rates. Section II 
describes our data and presents descriptive results. Section III presents our model of 
mammogram choice and describes how we estimate it using the observed descrip-
tive patterns together with a clinical oncology model. Section IV presents the model 
estimates and discusses their implications for the impact of changing the recom-
mended age of beginning mammography under both observed and counterfactual 
selection patterns. The last section  concludes by using our findings to speculate 
about possible policy implications more broadly.

I.  Empirical Context

A. Breast Cancer

The earliest stages of breast cancer typically produce no symptoms and are not 
detectable in the absence of screening technologies.5 As breast cancer progresses, it 
can spread within the breast, to adjacent tissues, to adjacent lymph nodes, and to dis-
tant organs (known as metastases). In clinical settings, tumors are classified accord-
ing to the size of the tumor, the extent to which it has spread to lymph nodes, and 
whether it has metastasized. Public health research typically relies on a standardized 
classification, namely, the SEER classification system, which includes four stages: 
in-situ, local, regional, and distant; the last three stages are collectively referred to 
as “invasive” tumors.

Our analysis focuses on the distinction between in-situ and invasive tumors, a 
distinction that has been a key focus of the policy debate around mammography rec-
ommendations. In-situ refers to abnormal cells that have not invaded nearby tissues, 
instead remaining confined to the ducts or glands in which they originated. Some 

5 Unless otherwise noted, the discussion in this section draws from the American Cancer Society (2017a).
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but not all in-situ tumors will become invasive. Expected survival time varies greatly 
by stage at diagnosis: women who are diagnosed with localized breast cancer are 
99 percent as likely as cancer-free women to survive to 5 years after diagnosis, 
compared to 85 percent for regional breast cancer, and 27 percent for distant-stage 
breast cancer.6 Within a stage, survival also varies with tumor size. For example, 
among women with regional disease, 5-year survival (again, relative to comparable 
cancer-free women) is 95 percent for tumors smaller than 2 centimeters in diameter, 
85 percent for tumors of 2–5 centimeters, and 72 percent for tumors greater than 5 
centimeters.7

B. Mammography

Asymptomatic breast cancer can be detected by a mammogram, which is a 
low-dose X-ray procedure that allows visualization of the internal structure of 
the breast. If an abnormality is detected on a routine screening mammogram, the 
woman is typically called back in for a diagnostic mammogram and, if needed, a 
confirmatory biopsy (Cutler 2008, Hubbard et al. 2011). Once a diagnosis has been 
confirmed, the woman may undergo surgery to remove the tumor, in addition to 
other treatments which aim to reduce the risk of recurrence, such as radiation ther-
apy, chemotherapy, hormone therapy, and/or targeted therapy.

Mammography is based on the theory of early detection of invasive cancer, rather 
than detection and removal of precancerous lesions (Humphrey et al. 2002). The 
efficacy of mammography is the subject of considerable debate. Mechanically, 
mammography is most beneficial if machines can detect tumors in their earliest 
stages, and if tumors (on average) rapidly become more difficult to treat the longer 
they go undetected. The benefits from mammography will be lower if a tumor is 
slow to advance from stage to stage, if mortality when treatment begins at a later 
stage is similar to when tumors are treated earlier, or if mammogram machines are 
unlikely to correctly identify tumors. In practice, because most women diagnosed 
with breast cancer are treated immediately upon detection, there is little information 
about the natural history of breast cancer tumors, making it difficult to know how an 
individual tumor would have progressed had it not been treated (Zahl, Maehlen, and 
Welch 2008). This complicates attempts to quantify the benefits of mammography.

In principle, the major potential health benefit of mammography is reduced mor-
tality. However, in practice, randomized trials of the impact of mammograms on 
mortality have documented mixed results (Habbema et al. 1986; Alexander et al. 
1999; Miller et al. 2000, 2002; Nyström et al. 2002; Bjurstam et al. 2003; Moss 
et al. 2006). There have been nine trials in total, with the first one dating back to 
the 1960s (Welch and Black 2010). Their estimates of relative risk reduction in 
breast-cancer mortality due to invitation to mammography range from 0 percent 
to 31 percent (Welch and Passow 2014), but many of these studies have lacked the 
statistical power to separately determine effects in different age groups (Humphrey 

6 These tabulations are drawn from US SEER cancer registry data from 2007–2013, as in American Cancer 
Society (2017a).

7 These tabulations are drawn from US SEER cancer registry data from 2000–2014, as in American Cancer 
Society (2017a).



3842 THE AMERICAN ECONOMIC REVIEW DECEMBER 2020

et al. 2002). In particular, while most studies indicate that mammography reduces 
mortality among average-risk women over age 50, recent trials specifically designed 
to study mammography in younger women (aged 40–49) have estimated statisti-
cally insignificant reductions in breast-cancer mortality in this age group (Bjurstam 
et al. 2003, Moss et al. 2006).

The potential costs of mammography include financial, physical, and psycho-
logical costs. These costs arise from the initial screening, the frequent finding of 
false positives, and the treatment of cancers that would not have become clinically 
relevant in a woman’s lifetime (often referred to as “over-diagnosis”) (Jørgensen 
and Gøtzsche 2009). Some of these costs, such as the financial cost of a screening, 
are easy to quantify, while others are much more difficult to estimate. Estimates 
of the rate of over-diagnosis of breast cancer (from both observational work and 
inferences from randomized control trials) range from less than 5 percent to more 
than 50 percent of diagnosed breast cancers (Zackrisson et al. 2006, Jørgensen and 
Gøtzsche 2009, Bleyer and Welch 2012, Oeffinger et al. 2015, Harding et al. 2015, 
Welch et al. 2016, Jørgensen et al. 2017).8

C. Age-Specific Mammogram Recommendation and Its Impact

Several studies have combined the existing evidence to quantify the costs and 
benefits of mammograms (e.g., Welch and Passow 2014, Ong and Mandl 2015). 
For example, Welch and Passow (2014) estimate that for every 1,000 women aged 
40–49 who undergo annual mammography for 10 years, 0.1–1.6 women will avoid 
dying from breast cancer, while 510–690 will have at least one false-positive result 
and up to 11 women will be over-diagnosed and (unnecessarily) treated. As the 
estimates of the costs and benefits of mammography have evolved, so have the rec-
ommendations by medical associations regarding which groups of women should 
receive mammograms, and how often.

In the 1980s, following the first randomized trials of routine mammography, the 
National Institutes of Health (NIH), the National Cancer Institute (NCI), and 11 
other health care organizations issued recommendations for routine screenings of 
women over age 40.9 These recommendations became the subject of controversy 
over time as more trials were published, and the US federal government subse-
quently reconsidered its position. In 1997, an NIH panel concluded that there was 
insufficient evidence to recommend routine screening for women in their 40s, a 
finding that was controversial (one radiologist described the finding as a “death 
sentence” for women (Taubes 1997)). After public pressure, the Senate encouraged 
an advisory board to reject that conclusion.10 In 2009, following the publication 
of experimental data that failed to show statistically significant mortality benefits 
of mammograms for women in their 40s, the US Preventive Services Task Force 
(USPSTF) recommended that women begin screening at age 50. Again, this con-
clusion generated backlash from patient advocacy groups like the American Cancer 

8 Selection into screening potentially (partially) explains the phenomenon of over-diagnosis, since it results in 
more diagnoses of low-risk tumors.

9 Gina Kolata, “Get a Mammogram. No Don’t. Repeat.” See footnote 3.
10 Ibid.
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Society, which at the time recommended annual screening for women aged 40 and 
above (American Cancer Society 2018).11 This negative reaction was exacerbated 
by fears that the Affordable Care Act (ACA, then being drafted) would allow insur-
ers to refuse to cover mammograms for younger women. The USPSTF stood by its 
recommendation, but a poll found that 84 percent of women aged 35–49 did not 
plan to follow the new recommendations, and the ACA was modified to mandate 
that insurers reimburse mammograms for women aged 40 and over (Saad 2009). 
Although in the last few years most patient advocacy organizations have begun to 
moderate their stances, the question of whether mammography should be recom-
mended in the 40–49 age group remains controversial.

Importantly, both the academic literature and the policy debate over the costs 
and benefits of mammograms have primarily focused on the average impacts of 
mammograms at specific ages. For example, Welch and Passow (2014) extrapo-
late results from mammography RCTs to the entire population without considering 
selection effects. In contrast, our focus is on the characteristics of women whose 
decision to get a mammogram is influenced by the mammogram recommendation, 
and how their underlying cancer incidence and characteristics may differ from that 
of a randomly selected woman in the population.

Several papers have examined the mammogram response to recommendations 
(Kadiyala and Strumpf 2011, 2016; Jacobson and Kadiyala 2017). Most closely 
related to our work on the selected response to mammogram recommendations 
is Kadiyala and Strumpf (2016), who document a sharp increase in self-reported 
mammograms at age 40 and estimate that most of the “newly detected”  cancers 
are early-stage cancers. Also closely related is the work of Kim and Lee (2017) 
and Bitler and Carpenter (2016), who document that women who elect to receive 
mammograms in response to price reductions are in better health than those who 
get the mammogram even without the price reduction or those who don’t get the 
mammogram even with the price reduction. Finally, Kowalski (2019) shows that the 
compliers in a Canadian mammography RCT are healthier on both cancer dimen-
sions (i.e., rates of breast cancer) and non-cancer dimensions (e.g., body mass and 
smoking) than the never-takers.

II.  Data and Descriptive Patterns

A. Data and Variable Construction

Our analysis of mammogram choices and outcomes focuses on women aged 
35–50 and draws on two primary data sources. The first is claim-level data provided 
by the Health Care Cost Institute (HCCI), consisting of all claims paid by three 
large commercial insurers (Aetna, Humana, and UnitedHealthcare) from January 
2008 through December 2012. Together, these three insurers represented about 
one-quarter of individuals under age 65 with commercial insurance (HCCI 2012). 
The data capture the billing-related information contained in the claims that these 
insurers pay out to medical providers; this includes the exact date and purpose of 

11 The American Cancer Society currently recommends annual screening for women between ages 45–54 and 
screening every 2 years for women 55 years and older (American Cancer Society 2018).
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each claim, as well as the amount paid by the insurer and the amount owed out of 
pocket. The data also include a (masked) person identifier as well as the individual’s 
birth year and gender.

The claim-level information in the HCCI data allow us to construct variables 
measuring whether an individual had a screening mammogram,12 whether the result 
was positive or negative, and whether a positive result was a true positive or false 
positive. Our coding of screening mammograms (henceforth, “mammograms”), as 
well as their outcomes, broadly follows the approach of Segel, Balkrishnan, and 
Hirth (2017), which we cross-validated using Medicare claims data linked to cancer 
registry data (see online Appendix Section A for more details).

The complete HCCI data contain about 28.7 million privately insured women 
aged 25–64, and over 70 million woman-years. We limit the data to woman-years 
aged 35–50 who are covered continuously for at least three years between January 
2008 and December 2012; we keep all the years of coverage except the first and last 
(since for every woman-year we need to observe the previous year to define screen-
ing mammograms and the subsequent year to measure outcomes). This results in 
about 7.4 million woman-years, and 3.7 million distinct women over the years from 
January 2009 to December of 2011.

The primary drawback of the HCCI data is that we are not able to observe infor-
mation on a breast cancer diagnosis beyond its detection. To overcome this lim-
itation of the HCCI data, we also analyze the National Cancer Institute’s (NCI) 
Surveillance, Epidemiology, and End Results (SEER) database. This is an adminis-
trative, patient-level cancer registry of all cancer diagnoses in 13 US states, covering 
about one quarter of the US population (SEER 2019). We analyze all the breast can-
cer diagnoses in the data between 2000 and 2014 for women aged 35–50 at the time 
of diagnosis; this covers about 212,000 diagnoses. All cancer diagnoses are required 
to be reported, with data collected directly from the cancer patients’ medical records 
at the time of diagnosis (rather than self reports).13 For each diagnosed cancer, the 
SEER data contain information about the size and stage of each tumor at diagnosis. 
They also contain basic demographics for the patient including age at time of diag-
nosis, race, and insurance coverage, as well as subsequent mortality information 
through December 2013.

In our HCCI sample, the average woman’s age is 43 and 27 percent of 
woman-years are under 40. In the SEER data, because cancer risk increases with 
age, the average age at diagnosis is a bit higher (44.6) and only 13 percent of the 
SEER diagnoses occur in women under 40. In SEER, where we can observe race, 
slightly over three-quarters of the sample is white. And unlike the HCCI data where, 
by construction, everyone is privately insured, in the SEER data only 84 percent are 
privately insured, while 13 percent are on Medicaid.

Table 1 documents mammogram rates and test results in the HCCI data. About 
30 percent of woman-years are associated with a mammogram. The vast majority 

12 A “screening mammogram” is a routine test that is conceptually different, and coded differently in the data, 
from a “diagnostic mammogram,” which would typically follow the emergence of a possible breast cancer symptom 
(such as a positive screening mammogram).

13 See https://seer.cancer.gov/manuals/2018/SPCSM_2018_maindoc.pdf for more information. SEER registries 
are required to collect data on persons who are diagnosed with cancer and who, at the time of diagnosis, are resi-
dents of the geographic area covered by the SEER registry.

https://seer.cancer.gov/manuals/2018/SPCSM_2018_maindoc.pdf
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(89.6 percent) of mammograms are negative, and another 9.7 percent are false 
positives. Only 0.7 percent are true positives. Among all woman-years with a mam-
mogram, total (insurer plus out-of-pocket) health care spending in the 12 months 
starting from (and including) the mammogram averages $5,000; while it is slightly 
higher (by about $1,000) for those with a false positive, it is dramatically higher 
for those with true positives, averaging almost $50,000. Out-of-pocket spending in 
the 12 months post-mammogram is about $2,800 for women with a positive mam-
mogram, compared to $715 for women with a negative mammogram and $950 for 
women with a false positive.

The SEER data provide more information on tumor stage and tumor size for the 
212,000 true positives (i.e., diagnoses) we observe. Just over 15 percent are in-situ; 
the rest are invasive. Of the invasive, about 57 percent are localized, 38 percent are 
regional, and the remaining 5 percent are distant.

B. Mammograms and Outcomes by Age

Figure 1 shows the age profile of annual mammogram rates in the HCCI data. 
Because we observe birth year, the mammogram rate at age, say, 40 is the share of 
women who got a mammogram in the year they turned 40. Between ages 39 and 
41, the mammogram rate jumps by over 25 percentage points, from 8.9 percent to 
35.2 percent. This pronounced jump in mammogram rates at age 40 has been pre-
viously documented in self-reported data (Kadiyala and Strumpf 2011, 2016).14 
One might be concerned that the existence of a recommendation for mammograms 
at age 40 could bias upward self-reports at that age. However, our analysis, which 
uses claims data, confirms a real change in mammogram behavior at 40. Indeed, 
as we show in online Appendix Figure A.1, the increase in mammogram rates that 

14 Our data span the time period when the 2009 US Preventive Services Task Force changed its recommendation 
for routine mammograms to begin at age 50 rather than at age 40. Past analyses, such as Block et al. (2013), have 
documented that this appears to have had little affect on women’s mammography behavior, which is not surprising 
given the substantial public controversy over this recommendation change.

Table 1—Summary Statistics

Observations Health care spending (US$)

N (000s) Share Total Out-of-pocket

No mammogram 5,166.2 0.701 4,300 625

Mammogram 2,206.9 0.299 4,985 751

Conditional on mammogram
  Negative 1,977.8 0.896 4,552 715
  False positive 214.6 0.097 6,106 952
  True positive 14.4 0.007 47,639 2,821

Notes: Table shows summary statistics from insurance claims data on a set of 35–50-year-old privately insured 
women from 2008–2012, for mammograms between 2009–2011. Each observation is a woman-year. 12-month 
spending measures health care spending in the 12 months after the mammogram (including the mammogram itself) 
for those with a mammogram. For those without a mammogram, we draw a reference date from the distribution of 
actual mammograms in that year. All reference dates are set to be the first of the given month. Spending is measured 
in the 12 months after this reference date.
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we estimate at age 40 in the HCCI data is very similar to what we estimate using 
self-reported data (from the Behavioral Risk Factor Surveillance System Survey, or 
BRFSS), although, consistent with prior work (Blustein 1995, Cronin et al. 2009), 
we estimate lower mammogram rates at every age in claims data compared to 
self-reported data.

We examine the outcomes of these mammograms (negative, false positive, and 
true positive) by age in the HCCI data. As shown in online Appendix Figure A.2, the 
vast majority (85 to 90 percent) of mammograms are negative, and almost all of the 
remainder are false positives; spending is much higher for true positives than false 
positives and negatives.

Panel A of Figure 2 shows the share of mammograms that are true positive and 
false positive by age. Between ages 39 and 41, the share of true positives falls by 
one-third (from 0.84 percent to 0.56 percent). This indicates that the marginal 
women who choose to have a mammogram because of the screening recommen-
dation at age 40 (i.e., “compliers”) have lower underlying rates of cancer (i.e., true 
positive diagnoses) than those who choose to get screened at younger ages before 
the recommendation kicks in (“always-takers”).

The share of mammograms that are false positive is generally declining smoothly 
in age because the probability of a false positive is higher for women with denser 
breast tissue, and density generally decreases with age (Susan G. Komen Foundation 
2018). The exception is a small “spike” in false positives around age 40; this likely 
is attributable to the fact that the probability of a false positive mammogram is 
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Figure 1. Mammogram Rates by Age

Notes: Figure shows share of women who had a mammogram by age, from insurance claims data on a set of pri-
vately insured woman-years from 2008–2012, for mammograms between 2009–2011. Because we observe birth 
year, age is measured as of the start of the calendar year. Thus, the mammogram rate at age 40 is the share of women 
who got a mammogram in the year they turned 40. Error bars (small, and therefore not visible in the figure) reflect 
95 percent confidence intervals. N = 7,373,302 woman-years.
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highest for a woman’s first mammogram (American Cancer Society 2017b). Note, 
however, that while the share of mammograms that are false positive is trending 
fairly smoothly in age, the share of women experiencing a false positive rises con-
siderably at age 40, since there is a 25-percentage-point increase in the share of 
women who have a mammogram. This is shown in panel B: the share of women 
experiencing a false positive mammogram quadruples at age 40, from about 10 to 
40 per 1,000 women.
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Panel B. Share of women with a false positive by age

Figure 2. Mammogram Outcomes by Age

Notes: Sample is limited to the set of privately insured woman-years from the private insurance claims data who had 
a mammogram. N = 7,373,302 woman-years. For each age (measured by the age at the beginning of the calendar 
year), panel A shows the share of mammograms that are true positive (left-hand axis) and false positive (right-hand 
axis); the omitted category is mammograms that are negative. Panel B presents the share of women with a false pos-
itive by age; this reflects both mammogram rates by age from Figure 1, and the share of mammograms with a false 
positive by age from panel A. Error bars reflect 95 percent confidence intervals.
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Panel A of Figure 3 documents the age profile of tumor type among all diagno-
ses in the SEER data. Between ages 39 and 41, the share of detected tumors that 
are in-situ (as opposed to invasive) rises by 6 percentage points, from 11.6 percent 
to 17.9 percent; this is consistent with prior findings from Kadiyala and Strumpf 
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Figure 3. Tumor Characteristics and Mortality by Age

Notes: Panel A shows diagnosed breast cancer tumors by age in the SEER data from 2000–2015; N = 197,956 
breast cancer diagnoses. Primary y-axis shows share of breast cancer tumors that are in-situ; secondary y-axis shows 
average size of diagnosed tumors. Panel B shows 5-year mortality for diagnosed breast cancer tumors separately 
by age of diagnoses and by tumor stage (in-situ and invasive) in the SEER data from 2000–2010 to account for 
five-year mortality outcomes by 2015; N = 147,243 diagnoses with non-missing 5-year mortality. Error bars reflect 
95 percent confidence intervals.
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(2016). The average size of a detected tumor falls by over 10 percent, from 27.3mm 
at age 39 to 24.4mm at age 41, although the pattern is less dramatic since detected 
tumor size is also falling (albeit less rapidly) at earlier ages.

Finally, panel B documents 5-year mortality post-diagnosis in the SEER data 
by age of diagnosis, separately for tumors initially diagnosed as in-situ and inva-
sive tumors. Mortality is almost three times higher for invasive tumors compared to 
in-situ tumors. For example, at age 40, the five-year mortality rate is 16.2 percent for 
invasive tumors compared to 4.5 percent for in-situ tumors. However, the mortality 
rate is roughly flat by age within tumor type.

C. Who Responds to the Recommendation?

The preceding descriptive results from both the HCCI and SEER data suggest 
that the women brought into screening by the recommendation at age 40 have a 
lower cancer disease burden than those who sought screening prior to the age-40 
recommendation. This manifests in lower rates of cancer, detection of cancer at 
earlier stages, and smaller tumors conditional on cancer detection among compliers 
compared to always-takers.

Naturally, we are also interested in comparing compliers to never-takers: those 
who do not get screened even after the age-40 recommendation is in effect. Since 
the cancer status of women who do not get screened is inherently difficult (or impos-
sible) to observe, we will draw on a clinical model of breast cancer incidence and 
progression to estimate the cancer profile of never-takers. Before turning to this 
exercise in the next section, we can use the available data to compare compliers and 
never-takers on various non-cancer characteristics.

Specifically, we use the discrete onset of the recommendation at age 40 in a regres-
sion discontinuity framework to implement the Abadie (2002, 2003) approach to 
characterizing compliers and never-takers. Figure 4 shows the results. The left panel 
compares various characteristics of compliers and never-takers; for completeness, the 
right panel compares compliers to always-takers. The top panel examines preventive 
health behaviors and prior health care use in the HCCI data. The bottom two panels 
examine insured women in the BRFSS data; these data allows us to observe additional 
health behaviors and demographic characteristics. Online Appendix Section B con-
tains more detail on the estimation approach and also shows the average characteris-
tics of the population and the subset who receive a mammogram, by age.

Overall, Figure 4 suggests that women who receive a mammogram as a result 
of the recommendation are more likely to comply with other recommended pre-
ventive care than women who do not get a mammogram even in the presence of 
the recommendation. In particular, both datasets indicate that compliers are more 
likely to get flu shots and Papanicolaou tests (also known as Pap tests, which are 
used to screen for cervical cancer) than never-takers. The HCCI data also indicate 
that compliers have lower health care spending and have fewer emergency room 
visits than never-takers. These results are consistent with Oster’s (2020) finding that 
when a health behavior is recommended, those who take it up also tend to exhibit 
other positive health behaviors. The results are also broadly consistent with related 
patterns reported by Kowalski (2019) in the context of selection into participation in 
clinical trials. Interestingly, however, we find no evidence of pronounced differences 
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between compliers and never-takers on non-health-care dimensions; they look simi-
lar on other health behaviors (such as seat belt use and alcohol consumption) as well 
as on basic demographics.

III.  Model and Estimation

The empirical patterns documented in the preceding section  indicate that the 
women who respond to the mammogram recommendation have a lower incidence of 
cancer than those who seek mammograms in the absence of a recommendation. To 
evaluate the implications of this selection for alternative, counterfactual timings of 
the screening recommendation (such as at age 45 instead of age 40), we write down 
a stylized model of mammogram decision making. We then estimate this model 
using the observed patterns shown in Section  II combined with a clinical oncol-
ogy model of the underlying cancer incidence in the population and tumor evolu-
tion in the absence of detection. The clinical oncology model provides the (hitherto 
absent) crucial information on the cancer disease burden of women who respond to 
the mammogram recommendation compared to women who do not. Naturally, we 
explore sensitivity to alternative clinical assumptions.
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Number of ER visits in prior year

Any �u shot in prior year
Any Pap test in prior year

Currently smoke
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BMI greater than 30
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Figure 4. Characteristics of Who Selects into Mammograms

Notes: Figure reports the ratio of health care use, behavior, and demographics for compliers relative to always-takers 
(left panel) and compliers relative to never-takers (right panel). The mean characteristics for these groups were cal-
culated using regression coefficients from the estimation of equation (A.1) as described in online Appendix Section 
B. Error bars represent 95 percent confidence intervals. Standard errors are constructed using a bootstrap with 100 
repetitions clustered at the age level. The error bars for Use oral contraceptive pill and Number of drinks in prior 
month in the right panel are truncated at 0 and 2 for scaling; the actual bootstrap confidence intervals are larger. 
The sample in the first section is a set of privately insured woman-years from HCCI from 2008–2012, for mammo-
grams between 2009–2011. The sample in the second and third sections is from BRFSS for even years 2000–2012, 
restricted to women with any health insurance (the data do not distinguish between public or private insurance sta-
tus). Details for each outcome are listed in online Appendix Figures A.3, A.4, and A.5.
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A. A Descriptive Model of Mammogram Choice

Consider a woman ​i​ in a given year she is observed in the data.15 We model the 
annual decision of whether or not to have a mammogram; annual decision frequency 
seems natural given that mammogram screening tends not to be done more fre-
quently than once a year. Absent any recommendation to do so, we assume that the 
“organic” decision to have a mammogram follows a simple probit, so that

(1)� ​Pr​(​m​ i​ o​ = 1)​  =  Pr​(​α​​ o​ + ​γ​​ o​ ​a​i​​ + ​δ​ in-situ​ o  ​ I​(​c​ i​ in-situ​)​ + ​δ​ invasive​ o  ​ I​(​c​ i​ invasive​)​ + ​ε​ i​ o​ > 0)​,​

where ​​m​ i​ o​​ is an indicator for whether woman ​i​ had a mammogram in that observed 
year, ​​a​i​​​ is woman ​i​’s age that year, ​​c​i​​  = ​ (​c​ i​ in-situ​, ​c​ i​ invasive​)​​ describes woman ​i​’s undi-
agnosed cancer status that year, and ​​ε​ i​ o​​ is a (standard) Normally distributed error 
term. Following our discussion in Section II, our baseline specification summarizes 
cancer status ​​c​i​​​ with two indicator variables, one that indicates an in-situ tumor and 
another that indicates an invasive tumor; the omitted category is no cancer.

If it is recommended that woman ​i​ obtain a mammogram, we model her response 
to the recommendation as a second, subsequent decision that is taken within the 
same year. That is, if a woman has already decided to have a mammogram “organ-
ically” based on equation (1), a recommendation has no additional impact. But for 
women who decided not to have a mammogram organically (that is, ​​m​ i​ o​ =  0​), a sec-
ond decision point arises due to the recommendation, and we model this second deci-
sion point in a similar fashion, except that the parameters are allowed to be different:

(2)    ​Pr​(​m​ i​ r​ = 1 | ​m​ i​ o​ = 0)​ 

          =  Pr​(​α​​ r​ + ​γ​​ r​ ​a​i​​ + ​δ​ in-situ​ r  ​ I​(​c​ i​ in-situ​)​ + ​δ​ invasive​ r  ​ I​(​c​ i​ invasive​)​ + ​ε​ i​ r​ > 0)​,​

where ​​ε​ i​ r​​ is a (standard) Normally distributed error term, drawn independently 
from ​​ε​ i​ o​​.16 This model assumes that the impact of the recommendation is (weakly) 
monotone for all women. For each woman, it only increases the probability that she 
has a mammogram, a feature that seems (to us) natural.17

Since we do not directly observe whether a mammogram was taken for organic 
reasons or in response to a recommendation, the probability that woman ​i​ obtains a 
mammogram in the year she is observed is given by

​Pr​(​m​i​​  =  1)​ 

    = ​​ {​​​
Pr​(​m​ i​ o​  =  1)​

​ 
if not recommended

​       
Pr​(​m​ i​ o​  =  1)​ + Pr​(​m​ i​ r​  =  1 | ​m​ i​ o​  =  0)​Pr​(​m​ i​ o​  =  0)​

​ 
if recommended.

 ​​​

15 We observe women for one, two, or three years. As discussed below, this is a static model, which does not use 
the panel dimension, so we essentially treat the entire data as a cross-section of woman-years, each denoted by ​i​.

16 While this independence assumption may appear restrictive, note that equation (2) only applies to those 
women who elected not to obtain an “organic” mammogram. It is therefore effectively restricted to women with 
“low enough” ​​ε​ i​ o​​ values, so that much of the potential correlation is already conditioned out.

17 That is, as in the analysis of Section IIC, we assume that there are no defiers. As will become clear later, other 
than appearing a natural assumption to us, it also simplifies the intuition of how counterfactual recommendation 
policies play out.
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We use the model’s results to quantify the degree of selection into mammo-
grams in the presence and absence of a recommendation, and to examine how 
the nature of this selection affects the impact of recommendations. To do so, we 
use the model estimates to predict mammogram rates and mammogram outcomes 
under the current recommendation to begin mammograms at age 40 as well as 
under a counterfactual recommendation to begin at age 45. Consistent with our 
focus on selection, we also examine how alternative, counterfactual selection 
into mammograms in response to the recommendation would change the impact 
of changing the recommended age of beginning mammography from 40 to 45. 

Discussion.—Importantly, this is a descriptive, or statistical model of mammo-
gram choice, rather than a behavioral one. This is most apparent from the fact that 
we use the cancer status ​​c​i​​​ as an explanatory variable, when naturally this cancer 
status is unknown by undiagnosed women. Cancer status ​​c​i​​​ is also unobserved by 
the econometrician; we describe below the clinical model of tumor evolution which 
we use to “fill in” these missing data, thus essentially integrating over the population 
distribution of this cancer status component.

We take this modeling approach for several reasons. First, many of the out-
comes in this setting are difficult to assess or monetize, e.g., the stress and anxi-
ety associated with false-positive test results or the nonmonetary costs associated 
with the breast cancer treatment (even if successful). This makes it difficult to 
translate the rich set of outcomes into a single metric of utility. Second, our key 
focus is on the impact of the recommendation policy. With a perfectly informed 
population of women, recommendations should have no impact, yet the data 
in Section  II show a clear increase in the mammogram rate in response to the 
age 40 recommendation. We could try to attribute this recommendation-induced 
increase in mammogram rate to improved information, but this would require us 
to make assumptions about what type of information is being revealed and how, 
or why women did not have such information to begin with. We prefer instead 
to remain agnostic about the behavioral channel by which the recommendation 
affects screening rates. Finally, a descriptive model of decision making does not 
require us to try to reconcile observed patterns of decisions with optimal behav-
ior, or model deviations from optimality. The drawback is, of course, that we will 
not be able to engage with other policy changes or with the impact of changes in 
the recommendation policy on individual welfare directly, but rather will only 
evaluate changes in recommendation policies through their effect on observed  
outcomes.

Another key feature of our setup is that we model the mammogram decision 
to be a static, and perhaps naïve, one. The decision is static in the sense that 
we assume that women do not take into account, for example, the time elapsed 
since their most recent mammogram (if any).18 The decision is naïve in the sense 

18 While restrictive, there is no strong evidence of such dynamic patterns in the data. We only have a short panel 
of at most three years for each woman, so it is difficult to apply any formal statistical testing. However, conditional 
on having two mammograms during the three years of mammogram claims we observe (2009–2011), the frequency 
of getting a mammogram “every other year” (that is, getting mammograms in 2009 and 2011 but not in 2010) is not 
more likely than getting a mammogram in consecutive years (34 percent, relative to 39 percent for 2009 and 2010, 
and 27 percent for 2010 and 2011).
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that we assume that women, when deciding to get a mammogram, do not explic-
itly take into account their propensity to get a mammogram in future years. This 
assumption seems not unrealistic, and simplifies the model. This assumption is 
particularly important in the context of our counterfactual exercise, which holds 
the estimated model as given while we change the age at which it is recommended 
to begin mammography. Specifically, in considering the changes that occur when 
the mammogram recommendation begins at age 45 instead of 40, our static model 
assumes that this would have no impact on women aged 39 or younger. In a 
dynamic model with forward-looking agents, however, it could increase the pro-
pensity of women under age 40 to get a mammogram. Our current model could 
in principle capture such dynamics implicitly by allowing serial correlation in ​​ε​ i​ o​​ 
and in ​​ε​ i​ r​​. However, because we have a relatively short panel, and because we 
only use age to match the two main datasets, it would be hard to identify such 
a serial correlation structure. Consistent with this being a fairly inconsequential 
assumption, Figure  2 shows very low rates of pre-recommendation mammo-
grams, and no evidence that mammogram rates decline in the year or two that are 
right before age 40 (when forward-looking women might anticipate their future  
mammogram).

B. Implementation

A Clinical Model of Tumor Appearance and Evolution.—To complete the 
empirical specification, we specify a clinical oncology model of tumor appear-
ance and tumor evolution. The oncology model has two important roles in our 
analysis, one for estimation and another for our counterfactual exercises. For esti-
mation, the key role of the oncology model is that it allows us to “impute” cancer 
status for the “never-takers,” i.e., the women who do not get screened even when 
it is recommended. This clinical model delivers two key elements. First, it pro-
duces the underlying incidence of cancer (and cancer type) by age. This cannot be 
directly observed in data since cancer incidence is only observed conditional on 
screening. Intuitively, since we observe the rate of cancer among those who get 
screened and the share of women who get screened, then, with the estimate of the 
overall rate of cancer from the clinical model, we can deduce the rate of cancer in 
the unscreened population. Second, the clinical model provides (counterfactual) 
predictions for the rate at which tumors would progress in the absence of detection 
and treatment (the so-called “natural history” of the tumor). Since breast cancer is 
usually treated once diagnosed, rather than being monitored without treatment, it 
is difficult (perhaps impossible) to directly estimate the natural history of tumors 
from existing data. This latter element is particularly important for our counter-
factual exercises, in which the effect of different selection patterns depends on the 
share of cancer cases that get diagnosed, as well as how early tumors are found. 
In order to assess how clinically important early diagnosis is (e.g., in its effect on 
mortality), a model of tumor evolution is needed.

For the clinical model, we draw on an active literature creating clinical/biolog-
ical models of cancer arrival and growth. Specifically, we draw on the work of the 
Cancer Intervention and Surveillance Modeling Network (CISNET) project funded 
by the National Cancer Institute to analyze the role of mammography in contributing 
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to breast cancer mortality reductions over the last quarter of the twentieth century. 
As part of this effort, seven different groups19 developed models of breast cancer 
incidence and progression (Clarke et al. 2006). For convenience, we focus on one 
of these models, the Erasmus model (Tan et al. 2006). As we discuss below, we also 
confirm that our main results are not sensitive to alternative specifications designed 
to produce markedly different estimates for the key objects (the underlying inci-
dence of cancer and cancer types).

We briefly summarize the Erasmus model here; online Appendix Section C 
describes the model in much more detail. Starting with a cancer-free population 
of 20-year-old women, the Erasmus model assumes that breast tumors appear at 
a given age-specific rate (that is increasing in age). When they appear, tumors are 
endowed with a given invasive potential and initial rate of growth, and then evolve 
accordingly over time with respect to those two characteristics. Tumors can either be 
invasive, leading to death of the women if not detected early enough, or be in-situ. 
In-situ tumors are not themselves harmful but may either transform into a harmful 
invasive tumor or remain benign. In some sense, a key issue in the debate over mam-
mograms is the extent to which tumors that are detected early (e.g., in-situ tumors) 
would have become harmful if not detected or would have remained benign; Marmot 
et al. (2013) discusses how, depending on the method of analysis, a wide variety of 
estimates can be obtained when trying to answer this question. The Erasmus model 
further classifies tumors by whether or not they are detectable by screening, which 
in the case of invasive tumors depends on their size and in the case of in-situ tumors 
depends on their subtype. Finally, the model assumes that beyond a certain size, 
invasive tumors are fatal.

The original Erasmus model was calibrated using a combination of Swedish trial 
data and US (SEER) population data. To better match the cancer incidence rates 
in the SEER data (birth cohorts 1950–1975), we introduce a proportional shifter 
of overall cancer incidence and calibrate this parameter on the SEER data. Online 
Appendix Figure A.6 shows the calibrated model’s predictions, under the assump-
tion of no screening, of the share of women with cancer at each age, and the share 
of existing cancers that are in-situ (rather than invasive) by age.

Estimation and Identification.—We estimate the model using method of moments. 
The observed moments we try to match are the mammogram screening rate at each 
age (Figure 1), the true positive rate at each age (panel A of Figure 2), and the share 
of tumors at each age that are in-situ conditional on true positive (as in panel A of 
Figure 3).20 Because identification is primarily driven by the discontinuous change 

19 The composition of the CISNET consortium has changed over time, but the seven groups who produced 
models for the original publication in 2006 were affiliated with the Dana-Farber Cancer Center, Erasmus University 
Rotterdam, Georgetown University Medical Center, University of Texas M. D. Anderson Cancer Center, Stanford 
University, University of Rochester, and University of Wisconsin-Madison.

20 Panel A of Figure 3 shows the share of all diagnosed cancers (in the SEER data) that are in-situ, but the model 
produces a different metric: the share of screening mammogram-diagnosed cancers that are in-situ. Cancers that 
are clinically diagnosed are highly unlikely to be in-situ, so the SEER value likely underestimates the true value of 
share in-situ for screening mammogram-diagnosed cancers. Online Appendix Section D describes how we adjust 
the SEER moments to account for this.
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in screening rates at age 40, we weight more heavily moments that are closer to age 
40 than moments that are associated with younger and older ages.21

To generate the corresponding model-generated moments, we simulate a panel 
of women starting at age 20, and use the clinical model described above to generate 
cancer incidence and tumor growth for each woman. We then apply our mammo-
gram decision model, by age and recommendation status, to each simulated woman 
who is alive and has yet to be diagnosed with cancer. The simulated cohort allows us 
to see the fraction of women with a detectable (by mammogram) tumor at each age, 
and thus generate the mammogram rate, and the true positive rate (by cancer type) 
conditional on screening. As mentioned above, for cancer type, we distinguish only 
between in-situ and invasive tumors.

With this simulated population of women, an assumed value of parameters asso-
ciated with the mammogram decisions with and without recommendation (equa-
tions (1) and (2)) and the observed policy recommendation (40 and above), the 
model generates an age-specific share of women who are screened, and the tumor 
characteristics (in-situ and invasive rates), conditional on getting screened. We then 
search for the parameters that minimize the (weighted) distance between these gen-
erated moments and the observed moments described above.

Although the model is static, it does have a dynamic element because we calculate 
the model-generated moments only for women who were not diagnosed with cancer 
in previous years, and for those who did not die (from breast cancer or other causes) 
prior to the given age. Specifically, because the mammogram decision applies to 
women who have yet to be diagnosed with cancer, fitting the model requires calcu-
lating the rate of cancer among the population who is eligible to be screened, which 
includes those who have currently undiagnosed cancer or no cancer, but does not 
include those who are dead or already diagnosed. Online Appendix Section D pro-
vides more detail on this and other aspects of the estimation.

For our counterfactual exercises, the estimates from the mammogram choice 
model, and the assumption that choices would be smooth in age through age 40 
in the absence of the recommendation, allow us to predict mammogram decisions 
and outcomes under counterfactual scenarios. Crucially, the model estimates allow 
us to forecast the cancer characteristics of women who (counterfactually) do not 
get screened and whose cancer may therefore progress in the absence of diagno-
sis. The key parameters are ​​δ​​ o​​ and ​​δ​​ r​​, which capture the nature of selection into 
mammogram screening. Positive selection (i.e., positive ​δ​) implies that women with 
cancer (or with invasive versus in-situ cancer) are more likely to get a mammogram 
than are women without cancer. A negative ​δ​ implies the opposite. Both types of 
selection are plausible. Positive selection could arise, for example, if women with 
a greater risk of breast cancer (e.g., due to family history) are more likely to get a 
mammogram; negative selection could arise, for example, if women with certain 
underlying characteristics (e.g., risk aversion) are both more likely to get a mammo-
gram and also more likely to avoid risk factors linked to breast cancer. Importantly, 
by allowing ​​δ​​ o​​ and ​​δ​​ r​​ to be different, the model allows for the nature of selection to 

21 Specifically, the weight on moments associated with ages 39 and 41 is 10/11 of the weight on the age 40 
moment, the weight on moments associated with ages 38 and 42 is 9/11 of the weight on the age 40 moment, and 
so on.
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be different for organic and recommendation-driven mammograms. Identification 
of these selection effects is driven by comparing the share of cancer in the popula-
tion (which is “data” provided by the clinical oncology model) to the true positive 
mammogram rates. The extent to which this relationship changes discretely at age 
40, when the recommendation kicks in, allows us to separately identify ​​δ​​ o​​ and ​​δ​​ r​​.

IV.  The Impact of Alternative Screening Policies

A. Model Fit and Parameter Estimates

Figure 5 presents the model fit to the key moments, which we view as quite rea-
sonable. The parameter estimates are shown in Table 2. It may be easiest to see the 
implications of these parameters in the context of our counterfactual results, but one 
can already infer the general pattern by focusing on the four ​δ​ parameters, which 
indicate the extent of selection into mammogram. The two ​​δ​​ o​​ parameters are posi-
tive and relatively large, indicating strong positive selection into the “organic” deci-
sion to have a mammogram. For example, for the average woman-year in the sample 
(that is, using the distribution of ages in the sample), the estimated coefficients imply 
that the “organic” mammogram rates for women with either an in-situ or invasive 
tumor are much higher (0.30 and 0.57, respectively) relative to the “organic” mam-
mogram rates for cancer-free women (0.20).

In contrast, the two ​​δ​​ r​​ parameters tell a different story. The estimates suggest that 
there is no differential selection into the “recommended” decision for women with 
in-situ tumors (relative to cancer-free women), and that essentially no woman with 
an invasive tumor selects into mammogram due to the recommendation. This result is 
driven by precisely the patterns in the data that identify these parameters, and which 
were presented in panel A of Figure 3. Namely, conditional on diagnosis, the share 
of in-situ tumors rises sharply at age 40, so that virtually all the increase in detected 
cancers reflects in-situ tumors. As we show below, this pattern has a critical effect on 
our results, because women without cancer or with in-situ tumors, who constitute the 
primary incremental positive mammogram results, may not face drastic health impli-
cations if those tumors would instead be discovered several years later.

We note that the large confidence intervals on ​​δ​ invasive​ o  ​​ and ​​δ​ invasive​ r  ​​ reflect the fact 
that the estimates imply that virtually all women with invasive tumors who get 
screened do so organically, with essentially no women with invasive tumors getting 
screened in response to the recommendation; as a result, the likelihood function is 
fairly flat for high values of ​​δ​ invasive​ o  ​​ and low values of ​​δ​ invasive​ r  ​​. But for exactly the 
same reason, these imprecise estimates of the parameter have little impact on the 
counterfactual results, as reflected by the much tighter standard errors associated 
with the counterfactuals of interest reported in the next section.

B. Implications

We apply the estimated parameters from Table  2 to analyze outcomes under 
various counterfactual recommendations. For concreteness, we focus on outcomes 
under the current recommendation to begin mammograms at age 40 as well as under 
a counterfactual recommendation to begin at age 45. Our model is well suited for 
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Figure 5. Model Fit

Notes: Figure shows model fit by comparing the observed patterns of mammogram rates, outcomes, and types of 
diagnoses by age to the fitted values from the model based on the parameter estimates from Table 2. The observed 
data on mammograms (panel A) was previously shown in Figure 1; the observed data on share of mammograms that 
are true positives was previously shown in panel A of Figure 2; the observed data on the share of diagnoses that are 
in-situ is a modified version of the data shown in panel A of Figure 3. While panel A of Figure 3 presented the share 
of all diagnosed cancers that are in-situ, we match the share of mammogram-diagnosed cancers that are in-situ, as 
shown in panel C. Online Appendix Section D provides more detail.



3858 THE AMERICAN ECONOMIC REVIEW DECEMBER 2020

such a counterfactual exercise: we simply assume that mammogram decisions are 
based on the “organic” decision until age 45, and only at age 45 is there a second, 
recommendation-induced decision. Given the static nature of the model, mammogram 
rates will remain the same until age 40, and would be the same (conditional on can-
cer status) from age 45 and on, but will decrease for women aged 40–44 without 
a recommendation. We choose a counterfactual recommendation that begins at age 
45 because this is not too far out of sample, and also in the range of realistic policy 
alternatives; Canada, for instance, recommends routine screening beginning at age 50 
(Kadiyala and Strumpf 2011). Of course, such counterfactuals do require us to rely on 
our assumption of a linear age profile in order to predict outcomes for always-takers 
beyond age 40 in a counterfactual world in which the recommendation does not occur 
until age 45; while this strikes us as not unreasonable, given that the linear specifi-
cation in age seems to fit the data well, it is of course an important (and untestable) 
assumption.

For both the age 40 and age 45 recommendations, we also examine how alter-
native, counterfactual selection into mammograms in response to the recommenda-
tion would change the recommendation’s impact. The main outcomes we generate 
under the various counterfactuals are age-specific mammogram rates, mammogram 
outcomes (specifically, negative, false positive, and true positive, as well as tumor 
type), total health care spending, and mortality. We do not attempt to quantify other 
potential consequences of a change in recommendation (such as the opportunity to 
use less invasive treatments for early-stage diagnoses, or increased anxiety from 
false positive results, which are more uncertain (Welch and Passow 2014)).

Throughout the counterfactual exercises, mammogram rates are generated directly 
from the parameter estimates in Table 2, and mammogram outcomes are generated 
based on the parameter estimates in Table 2 and the underlying incidence and natural 
history of breast cancer tumors from the Erasmus model. We also use the Erasmus 
model’s parameters in order to map detection of tumors to subsequent mortality, 
allowing us to translate the estimated changes in detection into implied changes in 
mortality. Finally, we use the auxiliary data from online Appendix Figure A.2b on 
how health care spending varies with age and mammogram outcomes to translate 
the estimated change in mammogram rates and mammogram outcomes into implied 
spending changes. Online Appendix Section E provides more details behind these 
counterfactual calculations.

Table 2—Parameter Estimates

Parameter Estimate 95% Confidence interval

αo −5.21 [−5.63, −4.48]
γ  o 0.10 [0.08, 0.11]
​​δ​ in-situ​ 

o ​​  0.36 [0.29, 0.97]
​​δ​ invasive​ 

o ​​  1.13 [0.98, 56.73]
​​α​​ r​​ 0.29 [−0.63, 1.18]
​​γ​​ r​​ −0.03 [−0.05, 0.00]
​​δ​ in-situ​ 

r ​​  −0.01 [−0.20, 0.77]
​​δ​ invasive​ 

r ​​  −4.67 [−143, −0.01]

Notes: Table shows the parameter estimates from the mammogram decision model. Confidence 
intervals are calculated using 100 repetitions of the bootstrap.
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Shifting the Age of Recommendation from 40 to 45.—Table 3 shows the impli-
cations of shifting the recommendation from age 40 to age 45, given the estimated 
response to recommendations from Table 2. We focus on the implications for women 
ages 35–50.

Panel A summarizes the implications for screening and spending; Figure 6 
shows how the age profile of screening and screening outcomes change with this 
counterfactual. Changing the recommended age from 40 to 45 reduces the average 
number of mammograms a woman receives between ages 35 and 50 from 4.7 to 
3.8, an almost 20 percent decline. By design, all of the “lost” mammograms occur 
between ages 40 and 44. Naturally, the vast majority of these “lost” mammograms 
would have been negative (89.5 percent) or false positive (10.4 percent). Moving 
the recommendation to age 45 decreases the average number of false positives a 
woman experiences over ages 30–45 by 0.09. The fraction of true positive mam-
mograms that are “lost” due to the later recommendation, while small in absolute 
number (0.0004 per woman), is not negligible, and it constitutes an approximately 
6 percent reduction in the cancer detection rate. Of the “lost” true positives, how-
ever, all are in-situ since our estimates imply that the recommendation effectively 

Table 3—Impact of Changing the Mammogram Recommendation Age from 40 to 45

Rec at age 40 Rec at age 45 Change

Panel A. Screening and spending ( per woman)
Mammograms 4.70 3.80 −0.90

(0.06) (0.14) (0.08)
Negative 4.22 3.42 −0.81

(0.05) (0.12) (0.07)
False positives 0.46 0.36 −0.09

(0.01) (0.02) (0.01)
True positives 0.0208 0.0204 −0.0004

(0.0024) (0.0024) (0.0001)
  In-situ diagnoses 0.0063 0.0060 −0.0004

(0.0005) (0.0005) (0.0001)
  Invasive diagnoses 0.0145 0.0145 0.0000

(0.0019) (0.0019) (0.0001)
Total health care spending ($) 71,326 71,007 −319

(128) (155) (29)

Panel B. Mortality (  per 1,000 women by age 50)
Dead 15.98 16.03 0.05

(0.53) (0.53) (0.03)
  Dead from breast cancer 8.23 8.28 0.05

(0.53) (0.53) (0.03)
  Dead from other reason 7.75 7.75 0.00

(0.00) (0.00) (0.00)
Years alive, per woman 15.87 15.87 −0.0002

(0.00) (0.00) (0.0001)

Notes: Table reports model predictions for various outcomes under the status quo recommendation that mammo-
grams begin at age 40 (column 1) and the counterfactual recommendation that mammograms begin at age 45 (col-
umn 2). The predictions are generated using the parameter estimates from Table 2, and simulated women’s life 
histories under a non-screening regime based on the clinical oncology model. Panel A reports the average number 
of mammograms and different mammogram outcomes per woman over ages 35–50. Panel B shows the share of 
women dead (and from different causes) by age 50, as well as the number of years alive on average between 35 and 
50. Standard errors are calculated using 100 repetitions of the bootstrap.
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Figure 6. Impact of Changing the Mammogram Recommendation Age from 40 to 45, by Age

Notes: Figure reports the model predictions, by age, for mammogram rates, mammogram outcomes, and the share 
of diagnoses that are in-situ, based on the parameter estimates from Table 2. As in Table 3, we report the model pre-
dictions both under the status quo recommendation that mammograms begin at age 40 and the counterfactual rec-
ommendation that mammograms begin at age 45.
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induces no additional women with invasive cancer to get screened. Thus, any 
changes in mortality are due to in-situ tumors that go unscreened and later become  
invasive.

The last row of panel A shows that changing the recommendation age to 45 
reduces total health care spending over ages 35–50 per woman by about $320, or 
about half a percent. This reduction in spending arises from a combination of a 
level and composition effect. The dominant factor is naturally the decline in the 
overall number of mammograms. We estimate that women who have a mammo-
gram in a given year are expected to spend approximately $570 more (on average, 
averaging over ages 40–44) over the subsequent 12 months relative to women 
with no mammograms, and that moving the recommendation age to 45 results in 
0.9 fewer mammograms per woman. This would mechanically result in approx-
imately $510 lower spending. The estimated spending reduction is lower ($320) 
because of selection. The “lost” mammograms are disproportionately negative or 
false positive, and the true positive mammogram results are associated with, by 
far, the highest expected subsequent spending (see online Appendix Figure A.2b). 
True-positive mammograms account for a larger share of mammograms in the 
counterfactual scenario (0.53 percent, relative to 0.44 percent under the age-40 
recommendation).

Panel B documents the implications of this counterfactual for health outcomes. 
The lower detection rate of cancers is associated with 5 more women per 100,000 
who are dead by the age of 50; all of this increase in deaths comes from increased 
breast cancer mortality. The results thus suggest that, relative to an age-45 recom-
mendation, an age-40 recommendation increases spending by about $32 million 
per 100,000 women (during the ages of 35–50), and prevents about 5 additional 
deaths by age 50 per 100,000 women; the cost per life saved is thus about $6 
million.

Naturally, these mortality implications are driven by the assumptions in the clin-
ical oncology model, about which there is a range of views (Clarke et al. 2006, 
Welch and Passow 2014). In addition, our analysis considers only the costs in terms 
of health care spending, and does not consider the disutility of stress and anxiety 
created by false positives or additional medical care. For both reasons, our goal here 
is not to emphasize a specific estimate of the cost per life saved per se, but rather to 
examine whether and how this type of counterfactual policy exercise can be affected 
by the nature of selection into mammograms in response to the recommendation, a 
question we turn to in the next section.

Consequences of Selection Patterns in Response to Mammogram.—Table 4 illus-
trates the importance of selection in response to the recommendation. To do so, 
panel A replicates the results from Table 3, while Panels B and C contrast them with 
what the results would be under alternative selection responses to the recommenda-
tion. Under both alternative selection models, we maintain our estimated selection 
associated with the “organic” mammogram decision, but vary the nature of selection 
into mammograms in response to the recommendation. One case (panel B) assumes 
no selection, which is conceptually consistent with the idea of using estimated mam-
mogram treatment effects from randomized experiments to inform the recommen-
dation policy (as in, for example, Welch and Passow 2014); in practice we do this by 
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assuming that ​​δ​​ r​  =  0​.22 The other case (panel C) assumes that selection in response 
to the recommendation is positive, and is the same as in the “organic” decision; we 
implement this counterfactual by assuming that ​​δ​​ r​​ is equal to our estimated ​​δ​​ o​​.

In both counterfactual selection cases we consider, we adjust the model to main-
tain the same age-specific mammogram rates under a given recommendation regard-
less of the assumed selection, so that only the nature of selection changes; online 
Appendix Section E provides more detail. By design, therefore, the mammogram 

22 Note that here we have in mind a conceptual randomized experiment with full compliance. Of course, in 
practice, full compliance is rare, and the complier population to the experiment is itself not random, although it may 
be differentially selected from the complier population to the recommendation. In a recent paper, Kowalski (2019) 
argues that in practice the women most likely to receive mammograms when encouraged to do so in a randomized 
clinical trial are healthier, and hence benefit less from mammograms.

Table 4—Spending Differences for Different Components of Spending

Recommendation at

Age 40 Age 45 Difference

Panel A. Estimated selection

Mammograms (per woman) 4.70 3.80 −0.90
(0.06) (0.14) (0.08)

Total health care spending ($ per woman) 71,326 71,007 −319
(128) (155) (29)

Dead by age 50 (per 1,000 women) 15.98 16.03 0.05
(0.53) (0.53) (0.03)

Panel B. No selection

Mammograms (per woman) 4.70 3.80 −0.90
(0.06) (0.14) (0.08)

Total health care spending ($ per woman) 71,364 71,024 −340
(111) (147) (37)

Dead by age 50 (per 1,000 women) 15.84 16.02 0.18
(0.47) (0.53) (0.06)

Panel C. Consistent selection

Mammograms (per woman) 4.70 3.80 −0.90
(0.06) (0.14) (0.08)

Total health care spending ($ per woman) 71,450 71,068 −382
(87) (134) (48)

Dead by age 50 (per 1,000 women) 15.54 15.99 0.45
(0.39) (0.52) (0.13)

Notes: Table reports model predictions under the status quo recommendation that mammograms begin at age 40 
(column 1) and the counterfactual recommendation that mammograms begin at age 45 (column 2). Each panel 
reports results under different assumptions about the nature of selection both in the absence and presence of a rec-
ommendation. Panel A reports results based on the estimated selection patterns; these results repeat findings shown 
previously in Table 3. Panel B repeats the same exercises as in Panel A, but instead of using the estimated selection 
(i.e., the ​​δ​​ o​​ and ​​δ​​ r​​ parameters shown in Table 2), we instead assume “no selection” (i.e., we set ​​δ​​ o​  = ​ δ​​ r​  =  0​). 
Panel C also repeats the exercises in panel A but now assumes “consistent selection” (i.e., we set ​​δ​​ r​​ equal to our 
estimates of ​​δ​​ o​​ in Table 2). In both panel B and C, we hold the overall mammogram rate fixed at panel A’s pre-
dicted age-specific mammogram rates (which of course varies in column 1 and column 2), so that the counterfac-
tuals across panels consider differences in selection, not in levels. To do this we adjust the intercept ​​α​r​​​ for each 
age and counterfactual to match the age-specific mammogram rates in panel A, assuming the simulated life histo-
ries and cancer status remains constant. The small differences in mammograms in panel A and panel C are due to 
changes in the denominator of simulated life histories. Specifically, since fewer women die in panel C, there are 
more years where they could potentially obtain a mammogram. Standard errors are calculated using 100 repetitions 
of the bootstrap.
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rates (first row of each panel) remain almost the same across all three selection 
models,23 and therefore the spending effect associated with each of these cases also 
remains almost identical (second row of each panel). In contrast, the importance 
of selection is shown in the third row of each panel: different patterns of selection 
affect the reduction in deaths from moving the recommendation to age 40 compared 
to age 45. For example, while our estimates that are based on observed selection 
imply that moving the recommendation from 45 to 40 saves 5 additional lives (by 
age 50) per 100,000 women, which corresponds to a cost of about $6.3 million per 
life saved, random selection would imply over three times as many lives saved (18 
per 100,000), corresponding to a cost of about $1.9 million per life saved. At a more 
extreme case of selection, assuming that the strong positive selection associated 
with “organic” selection would also apply to the selection in response to the rec-
ommendation, would imply almost nine times as many lives saved (45 per 100,000 
women), corresponding to a cost per life saved of about $0.86 million.

The qualitative results are intuitive. As selection associated with the recommen-
dation is more negative (i.e., women who respond are less likely to have cancer), 
the recommendation for earlier mammograms is less effective in finding tumors 
that would have not been found otherwise or tumors that would otherwise be found 
only later. However, if the selection associated with the recommendation were very 
positive (i.e., women who respond are more likely to have cancer), an earlier rec-
ommendation would be more effective. Thus, out of the three selection scenarios 
considered, earlier recommendation is most beneficial if the selection response to 
the recommendation is the same as under “organic”  selection, which was highly 
positive (panel C). While it is not immediately clear how in practice to achieve such 
strong positive selection in response to the recommendation, this result suggests that 
better targeting of the recommended mammogram to women with higher a priori 
risk of cancer could, if feasible, have dramatic effects on the mortality benefits from 
the recommendation.24 The comparison between our estimated selection (panel A) 
and the “no selection” case (panel B) is an intermediate case. Because we estimate 
negative selection for invasive tumors, an earlier recommendation is more effective 
(i.e., more women with cancer would be screened) under random selection, and the 
cost per life saved is therefore lower.

Sensitivity.—The data allow us to estimate characteristics of always-takers 
and compliers, and to see that compliers have a lower incidence of cancer than 
always-takers (see panel A of Figure 2, and panel A of Figure 3). However, our 
counterfactuals require us to also estimate the cancer status of never-takers, as well 
as how cancer would evolve if (counterfactually) screening occurred at a later age. 
For both of these endeavors, we relied heavily on the underlying natural history 

23 Although not seen in the table due to rounding, the mammogram rates are not exactly the same across the 
panels because the nature of selection leads to differential mortality (discussed below), which in turn (slightly) 
affects the set of women “eligible” for a screening mammogram.

24 The potential benefits of personalizing breast cancer screening recommendations have highlighted in the 
medical literature (e.g., Schousboe et al. 2011), and current breast cancer screening recommendations often differ 
across average-risk and high-risk women (where the latter is, e.g., women with a family history of breast cancer). 
But to the best of our knowledge our point about selection responses to recommendations has not been made pre-
viously. Our consistent selection model is one way of illustrating the potential gains from recommendation designs 
that affect take-up of mammograms based on unobservables.
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(“clinical”) model of breast cancer. We therefore examine the sensitivity of our con-
clusions to changing key features of this model, such as the underlying incidence 
rate of cancer, the share of in-situ tumors that will become invasive if not treated, 
and the share of tumors that are non-malignant, i.e., have no potential to be invasive 
and therefore would never result in a breast cancer mortality.

This sensitivity analysis serves to highlight a point we have tried to emphasize 
throughout: the reader should not place much (or any) weight on our particular, 
quantitative estimates of the cost per life saved of recommending that mammogra-
phy begin at 40 instead of at 45; these are quite sensitive to the assumptions under-
lying the clinical model. By contrast, the qualitative result we focus on, how the 
nature of the selection response to the recommendation affects any estimate of the 
impact of an earlier recommendation, is quite robust to alternative assumptions in 
the underlying clinical model. Online Appendix Section F discusses the specifics of 
how we implement the sensitivity analysis and presents the results in detail.

V.  Summary and Possible Policy Implications

The debate over whether and when to recommend screening for a particular dis-
ease involves a host of empirical and conceptual challenges with which the exist-
ing literature has grappled, including how to estimate the “health” return to early 
screening, how to measure non-health benefits or costs, and how to monetize all of 
these factors (Humphrey et al. 2002, Nelson et al. 2009, Marmot et al. 2013, Welch 
and Passow 2014, Ong and Mandl 2015). We make no pretense of “resolving” these 
issues. Instead, we suggest an additional important and largely overlooked fac-
tor that can, and should, be considered: the nature of selection in response to the 
recommendation.

We illustrate this point in the specific context of the (controversial) recommen-
dation that women should begin regular mammogram screenings at age 40. We doc-
ument that this recommendation is associated with a sharp (25 percentage point) 
increase in mammogram rates, and that those who respond to the recommendation 
have substantially lower rates of cancer incidence than those who choose to get mam-
mograms in the absence of the recommendation (i.e., before age 40). Conditional on 
having cancer, women who respond to the recommendation also have lower rates of 
the more lethal invasive cancer, relative to the less lethal in-situ cancer. These data 
speak directly to the relative cancer risks of women who select mammograms in the 
absence and presence of a recommendation. To further assess how the cancer risk 
of those who select mammograms when recommended compares to those who do 
not select mammograms even when recommended, we draw on a clinical oncology 
model to estimate the underlying cancer incidence in the non-screened population 
(since this is not directly observed). These results suggest that those who choose 
mammograms in the absence of a recommendation have substantially higher rates 
of both invasive and in-situ cancer than women who do not get screened; women 
who choose mammograms in response to the recommendation have similar rates of 
in-situ cancer to unscreened women but much lower rates of invasive cancer than 
unscreened women.

To illustrate the potential consequences of these selection responses to recom-
mendations, we write down a stylized model of the mammogram decision, which 
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depends on age, cancer status, and recommendation. We estimate this model using 
the observed empirical patterns combined with the clinical oncology model, the lat-
ter of which provides both the underlying incidence of cancer and the (counterfac-
tual) tumor evolution in the absence of detection. We then apply the model to assess 
the implications for spending and mortality of changing the recommended age for 
beginning mammograms from 40 to 45. The specific numbers that we estimate will 
naturally be sensitive to the modeling assumptions; moreover, our estimates do not 
attempt to measure all of the potential impacts of mammograms, such as stress.

Our focus instead is on the consequences of the selection response to the recom-
mendation, which our estimates suggest are nontrivial. Specifically, we consider the 
impact of moving the recommended age of beginning mammography from 45 to 40, 
and how this varies under alternative selection responses to the recommendation. 
We hold the change in mammogram rates (and consequently the cost increase) from 
changing the recommended age constant, and show that the mortality implications 
from earlier recommended mammograms vary markedly with selection patterns. For 
example, under the observed selection pattern, the number of lives saved by moving 
the recommendation from age 45 to 40 is less than one-third of what it would be if 
those who responded to the recommendation were instead drawn at random from 
the population. This difference arises because we estimate that those who respond 
to the recommendation have much lower rates of invasive cancer. Conversely, our 
results also suggest that if it were feasible to target the recommendations to those 
with higher rates of cancer, shifting the recommendation from age 45 to 40 would 
save substantially more lives than either the observed selection patterns or random 
selection.

These findings suggest that the ongoing debates over whether and when to rec-
ommend screening for a disease should consider not only average costs and benefits 
from screening, but also the nature of selection associated with those who respond 
to the recommendation. They also suggest that future work exploring the impact of 
existing policy instruments or the design of potential new ones should consider not 
just aggregate impacts on mammography rates, but also the cancer incidence for 
compliers.

While our empirical focus has been on recommendations, these are of course 
only one part of a broader set of policy efforts that have been deployed or discussed 
for increasing disease screening. In the case of mammograms, another widely used 
instrument has been lowering the financial costs of screenings. For example, in 1991 
the federal government launched the National Breast and Cervical Cancer Early 
Detection Program to provide free screenings to women below 250 percent of the 
federal poverty line (Lee et al. 2014). In the same year, Medicare expanded its cover-
age to include bi-annual screening mammograms; subsequently, in 1998, Medicare 
expanded coverage further to include annual screening mammograms and to waive 
the deductible (O’Sullivan et al. 1997, Kelaher and Stellman 2000, Habermann et al. 
2007). On the private insurance side, a number of states have mandated that insur-
ance plans must cover mammography (Bitler and Carpenter 2016). Beyond these 
financial levers, there are also policy efforts to reduce nonfinancial barriers to mam-
mograms. These include, for example, increasing ease of access to mammograms 
through programs such as mobile mammography clinics (Vang, Margolies, and 
Jandorf 2018), and outreach efforts designed to educate women about the benefits 
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of mammograms and informing them of the services available to them (Levano 
et al. 2014).

Related to these efforts, an existing literature has studied the impact of various 
policy instruments on mammography rates. It has found, for example, that lowering 
out-of-pocket financial costs increases mammogram rates (Kelaher and Stellman 
2000, Habermann et al. 2007, Finkelstein et al. 2012, Fedewa et al. 2015, Mehta 
et al. 2015, Bitler and Carpenter 2016, Cooper et al. 2017, Kim and Lee 2017), 
while increasing the distance a woman must travel to get a mammogram decreases 
mammogram rates (Lu and Slusky 2016). Only a few of these studies have examined 
differential responses to the policy by underlying health characteristics. This exist-
ing work suggests that, like our findings on the response to guidelines, those who get 
mammograms in response to a lower price and those who comply with assignment 
to mammogram treatment in a clinical trial tend to be healthier than never-takers 
and always-takers (Bitler and Carpenter 2016, Kim and Lee 2017, Kowalski 2019). 
While one of course must be careful in generalizing too much from a few studies, 
our read of this existing literature is that these alternative interventions are not obvi-
ously better targeted than recommendations in terms of the compliers, at least in the 
context of mammograms.

The combined evidence therefore highlights the importance of trying to better 
target the existing instruments. This is challenging since underlying cancer inci-
dence, tumor stage, and tumor size are not observable without screening. However, 
our descriptive analyses in Section II, comparing compliers to never-takers on a host 
of observable characteristics, suggest that never-takers are also less likely than com-
pliers to engage in other recommended health behaviors, such as flu shots and Pap 
tests. This finding is consistent with the idea that those who comply with recommen-
dations tend to exhibit other positive health behaviors (Oster 2020). It also suggests 
that coordinated efforts, which attempt to draw in women who otherwise would not 
engage in any preventive health behaviors, could be high-value. If we are willing to 
extrapolate our qualitative results from breast cancer to these related contexts, our 
findings suggest that trying to get such women to undertake a slew of recommended 
health behaviors might be well-targeted at reaching women at higher risk of not only 
breast cancer, but perhaps also cervical cancer and the flu.

Recent analyses by clinical researchers also suggest other observables that might 
be useful in targeting mammograms to higher-risk groups, instead of (or in conjunc-
tion with) age-based screening recommendations. For example, Evans et al. (2019) 
describe the results of a randomized trial that begins regular mammograms at age 34 
for women with a mother or sister who has been diagnosed with breast cancer, and 
an ongoing trial is investigating the impact of risk-based screening relative to stan-
dard annual screening (Esserman et al. 2017). Motivated by such work, researchers 
have proposed that the recommended age of beginning mammography should be 
based on individual risk factors such as age of first birth, number of children, and 
breast density (Evans, Howell, and Howell 2020; Mukama et al. 2020). Our findings 
underscore the potential value of such targeting, given that compliance with the 
existing recommendation is only about one-third, and compliers appear to be dis-
proportionately low-risk for cancer. They also suggest the importance of analyzing 
the impact of targeted instruments, not only for recommendations but also for price 
subsidies and other policy instruments.
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More broadly, our findings suggest that considering and improving selection into 
screening is a first-order factor in an effective design and analysis of interventions 
to increase screenings. However, the extent to which we can generalize our find-
ings in this paper, in the context of mammograms, to other types of screening and 
preventive medicine remains an open question. The controversy surrounding the 
recommendation that mammography start at age 40 may generate stronger selection 
than in other, less controversial settings (e.g., flu shots). Whether this is true is an 
important question that we leave for future work.
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