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Abstract

We study agents who are more likely to remember some experiences than
others but update beliefs as if the experiences they remember are the only ones
that occurred. To understand the long-run effects of selective memory we pro-
pose a new equilibrium concept, selective memory equilibrium. We show that if
the agent’s behavior converges, their limit strategy is a selective memory equi-
librium, and we provide a sufficient condition for behavior to converge. We use
this equilibrium concept to explore the consequences of several well-documented
biases, such as positive memory bias, associativeness, cognitive dissonance re-
duction, and confirmatory bias. We also show that there is a close connection
between the outcomes of selective memory equilibria and the outcomes of mis-
specified learning.
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1 Introduction
We provide a new conceptual framework for the study of agents who have selective
memory in that they are more likely to recall some events than others. We assume
that selective memory is stochastic and exogenous, and allow the agent’s actions to
influence what they observe.1 In most of the paper, we also assume that agents are
unaware of their selective memory, so they update their beliefs as if the experiences
they remember are the only ones that occurred.2 These assumptions fit evidence from
both experimental and real-world settings. Although our work is inspired by the neu-
roscience and psychology literature on memory, we do not try to develop a model that
fully matches the memory formation and retrieval process. Instead, we develop and
motivate a solution concept that makes it easy to obtain predictions about long-run
actions and beliefs for any given memory distortion.

Our focus is on selective memory’s long-run implications. We show that if an
agent’s behavior converges, their beliefs concentrate on the memory-weighted likelihood
maximizers, i.e., distributions that maximize the likelihood of a distorted version of the
true outcome distribution that gives more weight to realizations that are more likely
to be remembered. We also provide conditions on the agent’s payoff function and the
support of their prior that imply their behavior does converge. Whether or not these
conditions are satisfied, when behavior converges, it converges to a selective memory
equilibrium, which is a strategy that myopically maximizes their expected payoff against
a probability distribution over these maximizers. If all experiences are recalled with
the same probability, then memory limitations have no long-run effect. However, if
memory is selective and agents are more likely to remember some experiences than
others, selective memory can have a persistent effect. For example, an agent who is
more likely to recall when they performed well in a task than when they performed
poorly will underestimate the task’s difficulty and do it too often.

Our framework lets us analyze the long-run consequences of important and widely
documented forms of selective memory such as pleasant memory bias (Mischel, Ebbe-

1Memory has been informally described as stochastic since the early stages of the psychology
literature, as in James [1890], and recent evidence in neuroscience (e.g., Shadlen and Shohamy [2016])
and economics (e.g., Sial, Sydnor, and Taubinsky [2023]) supports this interpretation. Schacter [2008]
and Kahana [2012] discuss evidence that some experiences are recalled more often than others.

2Reder [2014], Zimmermann [2020], Gödker, Jiao, and Smeets [2022] provide evidence of partial
or complete unawareness of memory biases. The main results extend as stated to the case of an agent
that is aware they sometimes forget but are not aware that their memory is selective, and that does
not draw inference from their past actions.
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sen, and Zeiss [1976], Adler and Pansky [2020], Chew, Huang, and Zhao [2020] and
the related ego-boosting bias, Zimmermann [2020]), cognitive dissonance (Elkin and
Leippe [1986], Chammat et al. [2017], Gödker, Jiao, and Smeets [2022]), associative-
ness (Thomson and Tulving [1970], Tulving and Schacter [1990], Enke, Schwerter, and
Zimmermann [2022], Goetzmann, Watanabe, and Watanabe [2022]), confirmatory bias
(Hastie and Park [1986]), and the relative memorability of extreme outcomes (Cruciani,
Berardi, Cabib, and Conversi [2011]). In contrast, earlier papers on selective memory
each studied a specific form of memory bias, and most only considered short-run effects.

Under positive memory bias, the agent is more likely to recall experiences that
induce a larger utility. For example, Zimmermann [2020] finds that subjects who
received poor scores on an IQ test are more likely to state that they “cannot recall”
their test results, even though that answer is payoff dominated in the experiment, and
there were only three things for subjects to recall. Gödker, Jiao, and Smeets [2022] finds
that investors are more likely to remember positive returns of stocks they invested in
and that their selective memory distorts both their beliefs and their future investment
decisions in the direction our model predicts.

We show that positive memory bias can endogenously generate the same long-run
behavior as dogmatic overconfidence in a fixed learning environment. However, we
argue that the overconfidence that arises from selective memory is more susceptible
to external manipulation through changes in the feedback provided to the agent. For
example, coupling negative feedback on one dimension with positive feedback on an-
other will make the negative feedback be recalled more often, which leads to less bias
in long-run beliefs.3

Agents with associative memory are more likely to recall situations similar to the
current decision problem, for example, when they had a similar mood. In general, this
can lead the agent to underweight data relative to its true informativeness. However,
the simplest version of associativeness, similarity weighting (Kahana [2012]), does not
alter the possible long-run outcomes for a correctly specified agent because they learn
the true consequences of their on-path action.4

We also study extreme experience bias, which makes experiences with more extreme
payoffs more memorable. We show that moderate risk aversion paired with this bias
may explain the extreme risk aversion revealed by the prices of safe and risky assets

3This is suggested in the management literature by, e.g., Procházka, Ovcari, and Durinik [2020].
4Thus with similarity weighting, all selective memory equilibria are unitary self-confirming equi-

libria (Battigalli [1987] and Fudenberg and Levine [1993a]).
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in financial markets. Moreover, if rarer experiences are more easily recalled, the agent
overweights small probabilities as assumed in prospect theory.

Selective memory equilibrium resembles Berk-Nash equilibrium (Esponda and Pouzo
[2016]), which applies to agents with perfect memory but a misspecified prior, as both
require that the agent’s action is a best reply to a distorted version of the true outcome
distributions. Indeed, we show that every uniformly strict Berk-Nash equilibrium (Fu-
denberg, Lanzani, and Strack [2021]) that is not supported by beliefs that assign strictly
positive probability to an impossible outcome is equivalent to a uniformly strict selec-
tive memory equilibrium for some memory function and a full-support prior. Moreover,
every uniformly strict selective memory equilibrium is equivalent to a uniformly strict
Berk-Nash equilibrium with the appropriate prior support. However, this equivalence
fails for equilibria that are not uniformly strict.5 In addition, unlike Berk-Nash equi-
libria, selective memory equilibria generally do not reduce to self-confirming equilibria
when the agent is correctly specified because the agent need not learn the consequence
of the equilibrium action. Importantly, the form of misspecification that would lead
to the same behavior as a given form of selective memory depends on the environ-
ment. That is, particular forms of misspecification and selective memory that coincide
under one information structure could lead to very different comparative statics with
respect to changes in what the agent observes. To illustrate this, we show that com-
bining positive and negative feedback has qualitatively different effects on agents with
ego-boosting memory than on dogmatically overconfident agents.

Related Theoretical Work Mullainathan [2002] studies selective memory where
the probability of recalling an observation is the sum of a base rate, an “associative-
ness” term that measures the experience’s similarity to the current observation, and
a “rehearsal” term that indicates whether the experience was recalled in the previous
period. Like us, the paper assumes that agents are naïve about their selective memory.
It also assumes that signals are Gaussian and are not influenced by the agent’s actions.
Afrouzi, Kwon, Landier, Ma, and Thesmar [2020] also studies an agent forecasting the
next realization of an AR(1) process. It assumes the agent knows the data generating
process and chooses which experiences to recall at a cost. Bordalo, Coffman, Gennaioli,
Schwerter, and Shleifer [2021] shows how memory depends on the relative frequency of
various characteristics and can be manipulated by making some observations stand out

5A selective memory equilibrium is uniformly strict if it is the unique best reply to all the beliefs
supported on the memory-weighted likelihood maximizers.
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more. None of these papers addresses our question of determining the agent’s long-run
beliefs and actions.

There is also a set of papers that study long-run behavior with selective attention
or recording, where whether an experience is recorded determines whether it will be
recalled in every future period, as in the model in Online Appendix B.4. Compte
and Postlewaite [2004] considers a myopic agent with the choice between a safe action
with a known payoff and a risky action whose outcome distribution is unknown. It
assumes that taking the risky action is sometimes a dominant strategy so that the
agent will eventually take it infinitely often and that periods with good performance
are more likely to be recorded. This leads to overconfidence, as in our Section 4.2
example. Schwartzstein [2014] studies the long-run beliefs of an agent whose attention
is based on perceived informational value. The agent recalls all of their observations
but naively does not realize they did not pay attention to some relevant aspects of what
they observed. As with selective memory and misspecified beliefs, this can lead the
agent to make systematically biased forecasts. Relatedly, Schweizer and De Vries [2022]
assumes that for exogenous reasons, the agent weights outcomes differently depending
on how extreme they were (compared to other outcomes) at the time they realized.
This can lead to probability distortions analogous to those of cumulative prospect
theory or selective memory with rare experience bias (see Section 4.3).

Wilson [2014] and Jehiel and Steiner [2020] study the optimal use of a finite mem-
ory by an agent who receives a stream of exogenous signals until they stop and take
a single action. Battigalli and Generoso [2021] proposes a formalism to separate as-
sumptions on the players’ objective information and memory in games. Bénabou and
Tirole [2002] considers a two-period model where a time-inconsistent agent receives
either a null signal or a bad signal in the first period, and at a cost can change the
probability that the second-period self recalls the bad signal. The resulting game need
not have a unique equilibrium, but in some cases, it can lead to overconfidence. Jehiel
[2021] proposes a multi-self solution concept to model “forgetful liars.” Further afield,
Malmendier and Nagel [2016], Malmendier and Shen [2023], and Malmendier, Pouzo,
and Vanasco [2020] consider models where agents weight events based on their age
when the events happened, and Nagel and Xu [2022] analyzes an asset pricing model
where the representative agent has fading memory.
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2 Setup
We study a sequence of choices made by a single agent. In every period t P N, the
agent observes a signal s from the finite set S and then chooses an action a from
the finite set A. The realized signal s and the chosen action a induce an objective
probability distribution p˚

s,a P ∆pY q over the finite set of possible outcomes Y .6 A pure
strategy is a map σ : S Ñ A, and the agent’s flow payoff is given by the utility function
u : S ˆ A ˆ Y Ñ R.

We assume the agent knows the fixed and i.i.d. full-support distribution ζ P ∆pSq

over signals.7 They also know that the map from actions and signals to probability
distributions over outcomes is fixed and depends only on their current action and the
realized signal. However, they are uncertain about the outcome distributions each
signal-action pair induces. To model this uncertainty, we suppose that the agent has
a prior µ over data generating processes p P ∆pY qSˆA, where ps,apyq denotes the
probability of outcome y P Y when signal s is observed and action a is played. The
support of µ is Θ; its elements are the p the agent initially thinks are possible. The prior
is correctly specified if its support contains the true data generating process p˚ P Θ; if
not, the prior is misspecified.

To simplify the exposition, we will assume throughout the paper that selective-
memory agents are correctly specified, but this is not essential; all results except for
Proposition 1 are true as stated under the weaker assumption that Bayesian updating is
well-defined at every history that is reachable with positive probability. We sometimes
consider a prior with full support, by which we mean that every possible data generating
process is in the support of the agent’s prior, i.e., Θ “ ∆pY qSˆA.

Assumption 1 (Maintained Assumption). The agent is correctly specified.

Objective Histories and Recalled Histories We assume that the agent always
recalls the signal they just observed. The agent’s memory of the outcomes correspond-
ing to past signal-action pairs is distorted by a collection of signal-dependent memory
functions ms1 : S ˆ A ˆ Y Ñ r0, 1s, where ms1ps, a, yq specifies the probability with
which the agent remembers a past realization of the signal, action, outcome triplet
ps, a, yq when they observe signal s1. We call these triplets experiences.

6We denote objective distributions with a superscript ˚.
7This assumption lets us focus on our key points and can be substantially relaxed.
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Let Ht “ pS ˆ A ˆ Y qt denote the set of all histories of length t, and H “ YtHt

the set of all histories. After objective history ht “ psτ , aτ , yτ qtτ“1 and signal st`1,
the recalled periods Rt are a random subset of t1, ..., tu. Period τ is remembered with
probability mst`1psτ , aτ , yτ q, independently of which other periods are remembered, so
the probability that Rt Ď t1, .., tu is remembered given ht “ psτ , aτ , yτ qtτ“1 and st`1 is

P
“

Rt|psτ , aτ , yτ qtτ“1, st`1

‰

“
ź

τPRt

mst`1psτ , aτ , yτ q
ź

τPt1,...,tuzRt

p1 ´ mst`1psτ , aτ , yτ qq.

For every objective history ht and set of recalled periods Rt, the recalled history htpRtq P

H|Rt| is the subsequence of recalled experiences listed in the order they realized.8

Beliefs We assume the agent recomputes their beliefs each period based on all of
their recollections, as opposed to simply updating their period-t beliefs on the basis
of their period-t observation, and that the agent is unaware of their selective memory
and naïvely updates their beliefs as if the experiences they remember are the only ones
that occurred,9 so that the posterior probability of every (measurable) C Ď Θ after
recalled history ht “ psτ , aτ , yτ qtτ“1 is

µpC|htq “

ş

C

śt
τ“1 psτ ,aτ pyτ qdµppq

ş

Θ

śt
τ“1 psτ ,aτ pyτ qdµppq

. (1)

In Appendix A.3, we show that if agents recognize that their memory is faulty but
believe it is not selective and do not make inferences about unrecalled observations
from their recalled past actions, the main results extend as stated.10

8Appendix A.1 gives a formal definition of recalled histories.
9See, e.g., d’Acremont, Schultz, and Bossaerts [2013] for fMRI evidence that agents access their

accumulated evidence each period when updating beliefs, and Reder [2014] for evidence that agents are
often näive about their selective memory and do not make inferences about their forgotten observations
from the actions they remember taking.

10Appendix A.3 maintains our assumption that the agent either remembers an experience perfectly
or not at all. We relax this in Online Appendix B.3, where the agent may remember some but not all
aspects of a past experience, such as one or two components of a multi-dimensional outcome. That
model assumes the agent is not fully naïve, because remembering that some experience occurred but
not all of its details might lead the agent to question their ability to perfectly recollect the past.
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Best Responses and Optimal Policies Denote by BRps, νq the actions that max-
imize expected utility when signal s is observed and the agent’s belief is ν P ∆pΘq:11

BRps, νq “ argmax
aPA

ż

Θ

ÿ

yPY

ups, a, yqps,apyqdνppq.

A policy π : H Ñ AS specifies a pure strategy for every recalled history. We assume
that the agent is myopic and uses an optimal policy, i.e., a map π : H Ñ AS such that
for every s P S and recalled history ht P H, πphtqpsq P BRps, µp¨|htqq.12

2.1 Examples

We illustrate our model with five commonly studied examples of memory bias. In this
subsection, assumptions about the memory function m hold for all s, s1 P S, y, y1 P Y ,
and a P A.

Example 1 (Utility-Dependent Memory). In some cases, the probability of remember-
ing an experience depends on its associated utility, so that ms1ps, a, yq “ Φpups, a, yqq

for some Φ : R Ñ r0, 1s. Agents who are more likely to remember pleasant experi-
ences correspond to monotone increasing Φ; agents who are more likely to remember
extremely high or low utility realizations have Φ that is single-dipped.13 ▲

Example 2 (Positive Memory Bias). Positive memory bias is the tendency to over-
remember experiences that reflect positively on oneself, such as a high test score (see
Mischel, Ebbesen, and Zeiss [1976] for early experimental evidence of positive memory
bias and Adler and Pansky [2020] for a survey). To model this, we let one dimension
y1 P R of the outcome y reflect the self-image consequences of the experience, and
specify that ms1ps, a, yq “ Φpy1q for some increasing Φ : R Ñ r0, 1s. ▲

Example 3 (Cognitive Dissonance and Ex-post Regret). Cognitive dissonance is a
memory bias where the probability of recalling an experience depends on how well the

11For every X Ď Rk, ∆pXq denotes the set of Borel probability distributions on X endowed with
the topology of weak convergence.

12Note that we restrict attention to deterministic optimal policies, and do not allow the agent to
randomize over pure strategies.

13Because agents never make choices before the signal realizations, there is no way to pin down the
relationship between the utilities of two experiences that differ in their signal component. Therefore,
both here and in Example 3, the definitions of the biases should be interpreted as saying that there
are a u and a Φ such that the conditions are satisfied.
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chosen alternative performed compared to the counterfactual payoff the agent would
have received under the ex-post optimal choice (Elkin and Leippe [1986]). This cor-
responds to ms1ps, a, yq “ Φpmaxa1PA ups, a1, yq ´ ups, a, yqq where Φ : R` Ñ r0, 1s is
decreasing. If the outcome includes the payoff that would have been obtained with
each action, the probability of remembering an outcome is decreasing in what Loomes
and Sugden [1982] called “regret” (see Lanzani [2022] for the version without a state
space that formally corresponds to the case we have here). ▲

Example 4 (Associative Memory and Similarity Weighting). To model associative
memory (Thomson and Tulving [1970]), assume that

msps, a, yq ą 0 and msps, a, yq

msps1, a, yq
ą
ms1ps, a, yq

ms1ps1, a, yq
,

so that a signal is more likely to trigger memories of experiences where the signal was
the same. In general, signals represent the conditions under which the choice is made.
For example, when in a particular mood, agents tend to recall situations when they
were in that mood before (Matt, Vázquez, and Campbell [1992], Mayer, McCormick,
and Strong [1995]), and professional economic forecasters overweight periods with a
macroeconomic context similar to the current one, but only if they lived through them
(Goetzmann, Watanabe, and Watanabe [2022]).14

A leading special case is similarity-weighted memory, where the probability of re-
calling a past experience only depends on the context in which the choice is taken:
Here there is a metric d : S2 Ñ R`, and ms1ps, a, yq “ Φpdps, s1qq for some strictly
decreasing function Φ : R` Ñ r0, 1s. ▲

Example 5 (Confirmatory Memory Bias). The agent has confirmatory memory bias
(see Hastie and Park [1986] and Esponda, Vespa, and Yuksel [2023] for evidence of the
relevance of memory for confirmation bias) if they are more likely to remember experi-
ences that the prior deems more likely. Suppose the agent only has two hypotheses, as
in Lord, Ross, and Lepper [1979] and Rabin and Schrag [1999], so that Θ “ tp0, p1u,

14Jehiel [2018] studies investors who make their decisions based only on the outcomes of projects
that were implemented after the same signal and ignore periods when the signal was different, and
Bordalo, Gennaioli, and Shleifer [2020] shows how similarity weighting can lead to the attribution and
projection biases.
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with µpp0q ą µpp1q. Then, confirmatory memory bias corresponds to

p0s,apyq

p1s,apyq
ě pąq

p0s,apy1q

p1s,apy1q
ùñ ms1ps, a, yq ě pąqms1ps, a, y1q . ▲

3 Long-Run Outcomes
Let Pπ denote the probability measure on the set pS ˆAˆ Y qN of sequences of experi-
ences induced by the objective signal and outcome distributions ζ and p˚, the agent’s
memory m, and policy π.15

Definition 1. A strategy σ is a
(i) Limit strategy if there is an optimal policy π such that

Pπ rsuptt : at ‰ σpstqu ă 8s ą 0.

(ii) Global attractor if for every optimal policy π

Pπ rsuptt : at ‰ σpstqu ă 8s “ 1.

In words, strategy σ is a limit strategy if there is positive probability that it will be
played in every period after some random but finite time, and it is a global attractor
if it is a limit with probability 1. This section gives some general results about limit
strategies.16 Section 4 then discusses the consequences of some specific memory biases.

3.1 Selective Memory Equilibrium

To characterize the strategies that can arise as limit behavior, we define for each strat-
egy σ and signal s1 the set of memory-weighted likelihood maximizers after s1:

Θm
s1 pσq : “ argmax

pPΘ

˜

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq log ps,σpsqpyq

¸

. (2)

These are the elements of Θ that maximize the likelihood of the memory-weighted
outcome distribution induced by σ. Note that only the relative sizes of the weights m

15This is the unique extension from the probabilities of the finite histories pS ˆ A ˆ Y qt, t P N.
16Example 11 shows that limit strategies may not exist without further assumptions.
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matter for determining Θm
s1 pσq: if m̂p¨q “ λmp¨q for some λ ą 0 then m̂ and m have

the same memory-weighted maximizers.

Assumption 2 (Maintained Assumption). For every s1, s P S, a P A, σ P AS, y P Y

and p P Θm
s1 pσq, p˚

s,apyq ą 0 implies ps,apyq ą 0.

This assumption requires that every data generating process that is a best memory-
weighted fit to some strategy cannot be ruled out in finite time.17

Definition 2. A strategy σ is a
(i) Selective memory equilibrium if for all s P S there is νs P ∆pΘm

s pσqq such that
σpsq P BRps, νsq.

(ii) Uniformly strict selective memory equilibrium if for all s P S and all ν P ∆pΘm
s pσqq,

tσpsqu “ BRps, νq.

In a selective memory equilibrium σ, the action played after each signal s is a
best reply to some belief over memory-weighted likelihood maximizers given σ. The
uniformly strict version adds the restriction that there is the same unique best reply
for each of these maximizers. Both concepts allow the actions played in response to
different signals to be justified by different beliefs because which memories are triggered
depends on the current realization of the signal.

Theorem 1. Every limit strategy is a selective memory equilibrium.

To prove the theorem, we fix a limit strategy σ and suppose by contradiction that
is not a selective memory equilibrium. This means that σps1q is not a best reply to
any belief in Θmpσq for some s1 P S. If σps1q is not a best reply to any belief in Θ,
it is never played in response to s1, so it cannot be a limit strategy. If it is a best
reply to some belief in Θ but not in Θmpσq, Lemma A.3 implies that there exists an
experience with objective positive probability under σ that is recalled with positive
probability. Lemma A.4 then shows that since σ is a limit strategy, for some time t,
there is an action sequence at such that if the agent plays at and then σ afterward,
there is positive probability that the induced sequence of beliefs makes σ optimal at
all periods τ ě t ` 1.

17The misspecified learning literature usually makes the stronger assumption that the true data
generating process and all the agent’s mental models are mutually absolutely continuous. We relax
this to allow the natural full-support prior on the action-independent models in our overconfidence
application.
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Under a policy that converges to σ, when there is an experience with positive prob-
ability of being recalled, a variation of the Borel-Cantelli lemma (Claim 1) implies that
almost surely the recalled history is long and that the associated empirical frequency
after s1 converges to the distribution given by p˚

s1,σps1q. Thus, the strong law of large
numbers implies that a large recalled history is representative of the memory-based
outcome distribution. With this, we can extend Berk [1966]’s concentration result to
the beliefs given the recalled experiences to show that distributions that don’t maxi-
mize the memory-weighted likelihood have vanishing posterior probability on a set of
representative recalled histories that has objective probability converging to 1. But
then σ must be a selective memory equilibrium, as otherwise, it could not be a best
reply to these beliefs concentrated on the maximizers.

Theorem 1 provides a learning foundation for some equilibrium concepts that have
been used in recent work. For example, Koszegi, Loewenstein, and Murooka [2021]
proposes an equilibrium concept where the agent is more likely to remember successes
than failures if they are in a good mood, and the agent’s mood is determined by
their self-esteem, which is a function of the number of past successes they remember.
This is a case of our model where the agent’s mood is an action chosen to match
their perceived probability of succeeding at a task (i.e., their perceived ability). Our
equilibrium concept then coincides with Koszegi, Loewenstein, and Murooka [2021]’s
“self-esteem personal equilibrium,” and Theorem 1 shows that any long-run learning
outcome must be such an equilibrium.

We also provide a foundation for Berk-Nash equilibrium based on selective memory.
For example, Section 4.2 shows that positive memory bias can lead to overconfidence.
Overconfidence has been modeled as the result of exogenous misspecification; the fact
that it can be endogenously derived from a well-documented memory bias provides a
micro-foundation for Berk-Nash equilibrium in this context. More generally, Proposi-
tion 6 shows that any Berk-Nash equilibrium can be micro-founded through selective
memory. Finally, Section 5.1 shows that in our setting, the long-run action of an
agent with underinference (Phillips and Edwards [1966]) must be a selective memory
equilibrium.

3.2 Global Convergence to Equilibrium

We now give a sufficient condition for the agent’s strategy to globally converge to
a uniformly strict selective memory equilibrium, which a fortiori implies that such
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equilibria exist.18

Assumption 3 (Identification).
(i) For all ps, s1, aq P S2 ˆ A,

ř

yPY p
˚
s,apyqms1ps, a, yq ą 0.

(ii) There is a p̂ P Θ such that for every ps, s1, aq P S2 ˆ A,

argmax
pPΘ

˜

ÿ

yPY

ms1ps, a, yqp˚
s,apyq log ps,apyq

¸

“ tp̂u .

The substantial assumption here is Assumption 3 (ii), which requires that the best
fit for the remembered distribution is independent of the agent’s action. This assump-
tion is always satisfied if the agent correctly believes their actions have no influence
on the distribution of outcomes and has the same memory function for each action, as
in the examples in Section 4. Note that without an assumption along these lines, the
data generating process that best explains the agent’s observations given one action a1
could lead to a belief that makes another action a2 optimal, which then, in turn, could
lead to a belief that makes a1 optimal. Clearly, such cycles would preclude global con-
vergence; see Example 11. Beyond that, the assumption requires that for each ps, s1, aq,
there is an outcome with a positive probability of being remembered. Our next result
considers closed balls Bϵpp̂q around the data generating process p̂ of Assumption 3 (ii),
where the distance used to define the ε balls is the maximum of the total variation
distance between their signal-action contingent distributions.19

Theorem 2.
(i) Under Assumption 3, for every optimal strategy π and every ϵ ą 0

Pπ

”

lim
tÑ8

µpBϵpp̂q|htpRtqq “ 1
ı

“ 1.

(ii) If in addition BRps, δp̂q is a singleton for all s, then σ̂ is a global attractor, where

σ̂psq “ BRps, δp̂q @s P S.

It is the unique selective memory equilibrium, and it is uniformly strict.

The proof starts by using a “mixingale law of large numbers” (see, e.g., Hall and
18Fudenberg, Lanzani, and Strack [2024] show that the heterogeneous-belief version of selective

memory equilibrium does exist.
19Formally, Bϵpp̂q “

␣

q P ∆pY qAˆS : maxsPS,aPA ||qs,a ´ p̂s,a||TV ď ϵ
(

.
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Heyde [2014]) to conclude that the outcome frequency converges to the one predicted
by the true data generating process and the agent’s actions. We then address the
complication posed by the fact that memory is stochastic, so even when the agent has
played many times, their beliefs can be very different from one period to the next, unlike
in learning models with perfect memory, preventing the use of classical martingale
arguments for beliefs (see, e.g., Battigalli, Francetich, Lanzani, and Marinacci, 2019).

We first use the Chernoff inequality to provide an upper bound on the probability
that the recalled empirical frequency significantly diverges from the memory-distorted
version of the actual empirical frequency. This upper bound is then combined with
the Borel-Cantelli lemma to show that for every γ P p0, 1q, there exists a random but
a.s. finite time after which any signal-action pair with frequency at least γ doesn’t
have a large deviation from the memory-distorted empirical distribution of its induced
consequences and has recalled frequency bounded away from 0.

Assumption 3 implies that for every signal-action pair, model p̂ is the unique model
that best fits the memory-adjusted theoretical distribution. Thus, because recalled
memories are representative after signal-action pairs that have positive frequency, and
pairs with low frequency have negligible impact on beliefs, beliefs concentrate on p̂.
When there is a unique best reply to p̂, this implies that the agent’s behavior converges
as well.

Remark 1. In our model, the set of recalled histories is not only stochastic but non-
monotonic: the agent might remember a past event one day and not another, which
fits the evidence on memory retrieval, see, e.g., Kahana [2012]. Online Appendix B.4
analyses the limit implications of an alternative model where the memory function
determines the probability that an experience is recalled in the period just after it
occurs. If it is recalled, it is never forgotten; if not, it is never remembered. Because
experiences recalled at later dates include all those recalled earlier, in this alternative
model, the agent’s past actions don’t convey additional information. As with the model
we present here, any limit action must be a selective memory equilibrium.
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4 Specific Forms of Selective Memory

4.1 Similarity-Weighted Memory and Self-Confirming Equilibrium

Definition 3. Strategy σ is a (unitary) self-confirming equilibrium if for all s P S there
is νs P ∆pΘq such that for all p P supp νs ps1,σpsq “ p˚

s,σpsq and σpsq P BRps, νsq.

Unitary self-confirming equilibrium (Battigalli [1987] and Fudenberg and Levine
[1993a]) requires that the action played is a best response to a belief that is correct on
the equilibrium path but possibly incorrect about off-path actions.20

Proposition 1. For an agent with similarity-weighted memory (Example 4), a strategy
is a selective memory equilibrium if and only if it is a self-confirming equilibrium.

More generally, this conclusion holds whenever ms1ps, a, yq does not depend on a or
y, as the true distribution is the best fit for every signal, so the weight assigned to each
signal does not matter. However, similarity weighting can change the set of selective
memory equilibria when the agent is misspecified.21

4.2 Ego-Boosting Memory Bias and Overconfidence

It is well established that many people are more likely to recall situations that reflect
positively on themselves.22 This leads to a particular kind of pleasant memory bias:
they are more likely to remember experiences that boost their self-assessment than
those that reduce it.

Consider a situation where the agent observes i.i.d. outcomes yt P Y Ă R that reveal
information about an ego-relevant characteristic such as IQ. There are no signals, A is
endowed with a linear order, and the agent (correctly) believes their action does not
affect the realized outcome. The next proposition shows that a larger bias leads to a

20Fudenberg and Kreps [1988] shows how such actions can be the long-run limit of myopic learning,
and Fudenberg and Kreps [1995] shows any long-run outcome with purely myopic players and a
single agent in each player role must be a unitary self-confirming equilibrium. Fudenberg and Levine
[1993b] show that when there are many agents in each player role, the long-run outcome must be a
heterogeneous-beliefs self-confirming equilibrium, whether players are myopic or not.

21Also, even when there is a unique selective memory equilibrium, and it is objectively optimal,
the speed of convergence to the equilibrium can be influenced by similarity weighting. This is similar
to what happens with case-based decision theory (Gilboa and Schmeidler, 2001) and kernel density
estimation, where the optimal bandwidth trades off having enough observations with relying too much
on distant values.

22See, e.g. Mischel, Ebbesen, and Zeiss [1976], Adler and Pansky [2020], Chew, Huang, and Zhao
[2020], and Zimmermann [2020]).
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more positive limit belief and higher limit action. This provides a selective memory
foundation for the positive correlation between an agent’s happiness and the inaccuracy
of their beliefs documented in Alloy and Abramson [1979].

Proposition 2. Suppose that m,m1, and p˚ are constant in a, m1pa, yq “ fpyqmpa, yq

for some increasing function f , u is supermodular, and that Θ “ ∆pY q. The agent’s
long-run belief with memory m1 concentrates on a distribution of outcomes weakly higher
in first-order stochastic dominance than the distribution under the long-run belief with
memory m, and the limit action with memory m1 will be weakly higher than the limit
action with memory m.

Intuitively, because the prior assigns positive probability to all action-independent
outcome distributions, the memory-weighted likelihood maximizer will be the outcome
distribution that exactly matches what the agent remembers. The agent’s selective
memory makes this recalled history more favorable than the true one, and because the
agent’s utility function is supermodular, their limit action is weakly higher than the
objective optimum.

Example 6. Suppose that each period the agent takes an action a P t0, 1u, with
upa, yq “ apy ´ zq, z P p0, 1q. Here y is the outcome of an IQ test, which is either pass,
y “ 1, or fail, y “ 0, so a “ 1 is optimal if and only if the probability of passing the test
exceeds z. The agent passes the test with probability p˚. They always recall passed
tests, and they recall failed tests with probability ϕ:

mpa, yq “

$

&

%

1 if y “ 1

ϕ if y “ 0
.

In the long run, the agent believes that the probability of passing an IQ test is

p “
p˚

p˚
loomoon

Successes

` p1 ´ p˚q ˆ ϕ
loooooomoooooon

Failures

“ p˚ `
p˚p1 ´ p˚qp1 ´ ϕq

ϕ ` p1 ´ ϕqp˚
.

For example, if the true probability p˚ is .5, and the agent remembers failing an IQ
test with probability .8, in the long run, they believe that they pass the test with
probability 5{9. Consequently, they will behave like an exogenously misspecified agent
who dogmatically believes their ability to pass is at least 5{9. Moreover, the difference
between p and p˚ is monotonic in the agent’s selectivity bias ϕ. ▲
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This example relates to an experiment by Zimmermann [2020] in which subjects
took an IQ test and received three noisy observations of how well they performed
relative to other subjects. Zimmermann [2020] finds that all subjects can recall the
signals immediately after observing them, but subjects who received negative feedback
were less likely to recall the feedback a month later than subjects who received positive
feedback: subjects are roughly 20% more likely to state that they “cannot recall” the
result of the IQ test if the feedback was negative, even though that answer is payoff
dominated in the experiment and there were only three things for subjects to try to
recall.23 Thus at least in this experiment selective memory is a better explanation than
selective attention for long-run overconfidence.

Example 6 and Proposition 2 also relate to the literature on overconfidence and
financial decision-making. Walters and Fernbach [2021] finds investors are 10% less
likely to recall an investment that led to a loss compared to an investment that led
to a gain. Moreover, selective memory predicts overconfidence, and overconfidence is
reduced when investors rely less on memory. In an incentivized experiment, Gödker,
Jiao, and Smeets [2022] finds that subjects over-remember good investment outcomes
and under-remember bad investment outcomes. In line with the prediction of Proposi-
tion 2, this leads subjects to have overly optimistic beliefs about their investments and
reinvest in bad investments more often. Gervais and Odean [2001] studies a different
bias, where traders overweight successful trades when learning about their ability, this
can lead to overconfidence in a similar way as selective memory.

Ego-Boosting Bias and Misattribution We next show how an agent with ego-
boosting bias can misinterpret data about other aspects of the world.

Example 7. Suppose that, besides taking an IQ test, the agent works on a project with
a coworker. The outcome distributions pp, qq P r0, 1s2 and outcome py1, y2q P t0, 1u2 are
two dimensional, where the first component denotes whether or not the agent passed
an IQ test and the second component denotes whether a group project succeeded. The
agent passes the IQ test with probability p˚, and the project succeeds with probability
αp˚ ` p1´αqq˚, where 1´α is the share of the work done by the coworker. The agent
always remembers experiences with positive IQ test results and remembers experiences

23Zimmermann [2020] finds that “negative feedback is indeed recalled with significantly lower ac-
curacy, compared to positive feedback.” Here lower accuracy means both that the agents are more
likely to report that they do not recall the experience and that they misreport the experience.
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with negative test results with probability ϕ P p0, 1q. Thus, beliefs concentrate on

p “ p˚ `
p˚p1 ´ p˚q

ϕ{p1 ´ ϕq ` p˚
q “ q˚ ´

α

1 ´ α

p˚p1 ´ p˚q

ϕ{p1 ´ ϕq ` p˚
.

The agent underestimates the coworker’s ability, and the underestimation grows as
memory becomes more selective. ▲

To generalize this example, we consider a two-dimensional outcome space Y “

Z ˆZ Ă R2, where y1 corresponds to an ego-relevant characteristic, and is distributed
according to p˚. The second component y2 is drawn independently with probability
αp˚py2q ` p1 ´ αqq˚py2q for some α P p0, 1q. The agent knows that the outcomes are
independently drawn each period according to these conditions, but does not know p˚

or q˚, and their prior belief assigns positive probability to each of these distributions.24

Proposition 3. If m is constant in a and y2, increasing in y1, and there is y P Y with
p˚pyqmpyq ą 0, then the agent’s long-run belief about p concentrates on a distribution
p̂ that is weakly higher in first-order stochastic dominance than p˚, and the agent’s
long-run belief about q concentrates on a distribution that is weakly lower than q˚.

“Perhaps the most robust finding in the psychology of judgment is that people are
overconfident.” (DeBondt and Thaler, 1995, p. 389). The proposition provides an
explanation for two commonly found forms of overconfidence: (i) overestimation of
one’s own absolute level of performance and (ii) overestimate of performance relative
to others (see, e.g., Svenson, 1981; Merkle and Weber, 2011). For example, Gilovich
[2008] finds that 94% of the college professors thought they were better than their
average colleague.25

Reinforcement Through Actions Actions can play an important role in ampli-
fying the misconceptions caused by selective memory. For example, suppose that in
Example 7, the agent starts out with an unbiased belief about their coworker’s ability,
and each period t chooses the fraction 1´αt of work to delegate to them. Because here
the memory-weighted likelihood maximizers do depend on the agent’s action, Theorem

24Formally, Θ “ tr P ∆pZ ˆ Zq : rpy1, y2q “ ppy1qrαppy2q ` p1 ´ αqqpy2qs for some p, q P ∆pZqu,
25Benoı̂t and Dubra [2011] shows how this “I’m better-than-average effect” can be explained within

a purely Bayesian framework; Benoı̂t, Dubra, and Moore [2015] provides more direct evidence for
relative overconfidence that rules out the purely rational explanation.
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2 does not apply, but as in Heidhues, Kőszegi, and Strack [2018]’s analysis of exoge-
nously overconfident agents, there is a global attractor: As the agent over-remembers
their own successes, they become overconfident about their own ability, and to ex-
plain the disappointingly low frequency of successes in the group project, they became
overly pessimistic about their coworker’s. The agent thus delegates less work to their
coworker, whose ability then has a smaller effect on output. To explain the disap-
pointingly low output, the agent becomes even more pessimistic about the coworker’s
ability, leading to even less delegation in the unique limit strategy.

Changes to the Informational Environment More generally, Section 5.2 shows
that the long-run belief induced by selective memory equilibria can be replicated by
exogenous misspecification in any fixed environment, and vice versa. However, selective
memory and exogenous misspecification can lead to very different predictions about
the effect of changes in information. Suppose, for example, that negative feedback is
delivered along with positive feedback about an unrelated trait of the agent. Combining
positive and negative information in this way makes a “feedback sandwich,” which the
management and psychology literatures suggest strengthens the effect of feedback.26

If the positive feedback makes the experiences with failed IQ tests less unpleasant, an
agent with positive memory bias would be more likely to remember them, so their
long-run belief would move closer to their actual ability, and they would be less biased
about their coworker’s ability. In contrast, with exogenous misspecification, positive
feedback about an unrelated state would not affect the agent’s beliefs about their own
or their coworker’s ability.

4.3 Extreme Experience Bias and Risk Attitudes

This section shows that for choices over lotteries, selective memory can generate the
same behavior as distorted risk attitudes. We again simplify by supposing there are
no signals, and let the outcome y P R be the amount of money received by the agent,
with ups, a, yq “ vpyq for some increasing and concave v.

Extreme Experience Bias Suppose the agent chooses between a safe action a “ 0

that induces outcome y0 and a risky lottery a “ 1 with expected value ȳ. We say
26Procházka, Ovcari, and Durinik [2020] describes an experiment where bundling negative feedback

with positive feedback about an unrelated domain helps agents perform better.
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that the agent has an extreme experience bias if the probability of remembering an
experiencem is an increasing function of the distance of the outcome y from its expected
value and does not depend on s or a:

mps, a, yq “ hp|y ´ ȳ|q (3)

for some increasing h : R` Ñ r0, 1s. Our next result shows that the risky lottery is
a selective memory equilibrium with extreme experience bias only if it is a selective
memory equilibrium with perfect memory. Moreover, Example 10 in the Online Ap-
pendix shows that extreme experience bias can shift the long-run outcome from the
lottery to the safe action. To state a result that holds for all concave utility functions,
we assume that the true distribution of outcomes is symmetric.27

Proposition 4. Suppose the distribution p˚
1 is symmetric and that the agent thinks all

outcome distributions are possible under the risky action.28 If choosing the lottery is
not a self-confirming equilibrium, it is not a selective memory equilibrium with extreme
experience bias.

Because the agent over-remembers extreme experiences, the environment seems
riskier than it truly is, so in the long run, they do not take the risky action if it would
not be optimal for an agent without extreme experience bias. By making the tail
realizations relatively more memorable, extreme experience bias makes a risk-averse
agent act as if they were even more risk-averse. This may help explain why the risk
aversion needed to match the real-world investment choices is unrealistically high: the
agents can be attracted by safe alternatives because they are moderately risk-averse,
and their memory exaggerates the riskiness of the uncertain alternatives. For example,
a single day when the stock market crashed might be more easily remembered than
many days of average returns, leading to a biased perception of its riskiness. Indeed,
the plausibility of this channel is supported by several studies that show that higher
working memory is associated, either directly or through a proxy measure of cognitive
ability, with lower risk aversion at both the intra- and interpersonal levels (see, e.g.,
Cokely and Kelley [2009], Boyle, Yu, Buchman, and Bennett [2012], and Benjamin,
Brown, and Shapiro [2013]).

27Extreme-experience bias can have the opposite effect of encouraging risk-taking behavior when
the true distribution is very asymmetric with a very low probability of a large payoff.

28That is, p˚
1 pȳ ` cq “ p˚

1 pȳ ´ cq for all c P R, and Θ “ tp P ∆pY qA : p0py0q “ 1u.
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Rare Experience Bias Similarly, some forms of selective memory are equivalent to
preferences that arise from distorting outcome probabilities. Suppose that the agent is
more likely to remember experiences that happen more rarely, i.e., there is a decreasing
function h : r0, 1s Ñ r0, 1s such that mps, a, yq “ hpp˚

1pyqq. In this case, in the long run
the agent believes that the outcome distribution for the risky action is

hpp˚
1pyqq

ř

zPY hpp˚
1pzqq

.

They will thus act as if they distort probabilities, as in prospect theory (Kahneman
and Tversky [1979]).29

5 Alternative Models
This section compares our selective memory model with underinference and misspeci-
fication, which are two other ways to model similar effects.

5.1 Underinference

The phenomenon of underinference (Phillips and Edwards [1966]) is distinct from se-
lective memory but has similar long-run implications, as we establish in Proposition 5.
Here agents remember (or are presented with) a record of past observations, so memory
is not an issue, and the agent’s beliefs are a deterministic function of the sequence of
observations. However, they underweight a given observation ps, a, yq when applying
Bayes rule. In particular, they use the deterministic updating rule

µUpC|psi, ai, yiq
t
i“1q “

ş

C

śt
i“1ppsi,aipyiqqmpsi,ai,yiqdµppq

ş

Θ

śt
i“1pp

1
si,ai

pyiqqmpsi,ai,yiqdµpp1q
, (4)

for every measurable C Ď Θ, where mps, a, yq P r0, 1s is the underinference distortion
applied to experience ps, a, yq.

As with selective memory, this memory distortion leads beliefs to concentrate on
the memory-weighted likelihood maximizers, and as the next result shows, the under-
inference distortion maps directly to a selective memory function.30

29We view this specification, where m depends on the theoretical frequency p˚, as a convenient
modeling shortcut for long-run outcome when instead m depends on the empirical outcome frequency.

30We identify the underinference distortion with the vector of memory functions that do not depend
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Proposition 5. If σ is a limit strategy with underinference distortion m, it is a selective
memory equilibrium with memory function m.

A leading special case is uniform underinference where mps, a, yq “ c ă 1 and
the agent discounts all observations by the same amount. In this case, Propositions 1
and 5 imply that the limit strategy for a correctly specified agent must be a (unitary)
self-confirming equilibrium.31 It seems difficult to distinguish selective memory from
underinference bias using data about beliefs alone, and none of the data we have found
includes information on which histories the subjects recall (see Benjamin [2019] for a
survey).

If signals are absent and actions are real-valued, the way actions respond to out-
comes can be used to distinguish underinference and selective memory. Under over-
confidence, the realization of yt is sufficient to predict whether at`1 is more or less than
at. Under selective memory, the set of past experiences retrieved at time t ` 1 may
differ from those at time t, so in general the previous period’s outcome and action are
not sufficient to predict how actions change. Moreover, the action sequence features
a sort of regression to the mean: after a particularly high action, the next action will
likely be lower.

In general, with an exogenous data generating process, the agent’s beliefs will con-
verge to the same limit with selective memory as with underinference, so their limit
action will be the same. If the data generating process is endogenous, random memory
realizations can induce switches in actions, reducing the set of actions that can be
long-run limits for a given memory function. The following example illustrates this
possibility.

Example 8. There are no signals, A “ ta1, a2u, Y “ t0, 1u, up¨, yq “ y, and the agent
knows the probability of y “ 1 given action a1 is some c P p0, 1q, i.e., pa1p1q “ p˚

a1p1q “ c

for all p P Θ. The agent does not know the probability of outcome 1 under action a2.
Their initial belief is that it is larger than that of action a1, so BRpµq “ a2, although
there is p1 P Θ with p1

a2p1q ă c. The truth is that 1 ą p˚
a2p1q ą c, so action a2 is

optimal, but if m is constant and strictly positive, both a1 and a2 are selective memory
equilibria. In the underinference model, a1 is a limit action for any such m, and if
at “ a1, then aτ “ a1 for all τ ą t. Instead, with the selective memory model, a1 is not

on the current signal.
31Frick, Iijima, and Ishii [2021] shows that uniform underinference leads to the same speed of belief

convergence as correct updating in a setting with a fixed outcome distribution.
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a limit action because if a2 is played only a finite number of times, there is a positive
probability of forgetting all such experiences and only using the prior to choose the
action, which favors action a2. ▲

More generally, selective memory does not generate as much long-run inefficiency as
underinference: Whenever the agent believes that the consequences of different actions
are independent, if the expected utility of a selective memory equilibrium a under the
memory-weighted likelihood maximizer is lower than the ex-ante value of an alternative
b, then a is not a limit strategy.

5.2 Selective Memory and Misspecification

We now relate the long-run implications of selective memory to those of misspecification
in the sense of the statistics literature, where the true model is not in the support Θ

of the agent’s prior, and the agent remembers all past observations. The case studied
in the misspecification literature has perfect memory, so there m “ 1 and Θ1

s1pσq does
not depend on s1, so we simply write Θ1pσq.

Definition 4. A strategy σ is a

1. Berk-Nash equilibrium if there exists ν P ∆pΘ1pσqq such that for all s P S,
σpsq P BRps, νq.

2. Uniformly strict Berk-Nash equilibrium if for all ν P ∆pΘ1pσqq and all s P S,
tσpsqu “ BRps, νq.

Esponda and Pouzo [2016] shows that only Berk-Nash equilibria can be the long-run
outcomes of misspecified learning, and Fudenberg, Lanzani, and Strack [2021] shows
that in “rich” environments only uniformly strict Berk-Nash equilibria are stable long-
run outcomes.

There is a close relationship between the uniformly strict versions of Berk-Nash
equilibrium and selective memory equilibrium: For a given prior support Θ, every
uniformly strict Berk-Nash equilibrium is equivalent to a selective memory equilibrium
with full-support prior for some memory function, and every uniformly strict selective
memory equilibrium is equivalent to a Berk-Nash equilibrium for some support.

Definition 5. A Berk-Nash equilibrium σ with support Θ and a selective memory
equilibrium σ1 with support Θ̃ and memory function m are belief equivalent if σ “ σ1,
and for all s P S there exists a belief ν P ∆pΘ1pσq X Θ̃m

s pσqq such that σpsq P BRps, νq.
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Two equilibria are belief equivalent if they prescribe the same strategies, and be-
havior after each signal can be justified by the same belief.

Proposition 6.
1. Every uniformly strict Berk-Nash equilibrium σ where supp qs,a Ď supp p˚

s,a for all
q P Θ1pσq, s P S, and a P A is belief equivalent to a selective memory equilibrium
with full support for some strictly positive memory function.

2. Every uniformly strict selective memory equilibrium with support Θ is belief equiv-
alent to a uniformly strict Berk-Nash equilibrium for some Θ1.

The idea behind the first part of the proposition is that if we start from a maximizer
p with perfect memory but incomplete support, we can choose a memory function that
rescales the probability of each ps, a, yq by some constant times ps,apyq{p˚

s,apyq. This
makes the recalled frequency equal to p, so p is a weighted-memory likelihood maxi-
mizer, and σ is the best reply.32 Here, the absolute continuity requirement is needed be-
cause selective memory cannot replicate misspecifications where likelihood-maximizing
models assign positive probability to an event that can never be realized. To the best of
our knowledge, all of the examples of misspecification studied in the literature satisfy
this restriction. The second part of the proposition is trivial: To construct a uniformly
strict Berk-Nash equilibrium that leads to the same beliefs and behavior as in the
selective memory equilibrium, we can endow the agent with a degenerate belief that
equals the belief in the specified selective memory equilibrium.

Remark 2. As we prove in Online Appendix B.2, the uniform strictness conditions of
Proposition 6 are needed:

1. There are Berk-Nash equilibria that are not belief equivalent to any selective
memory equilibrium with full support and strictly positive memory function.

2. There are selective memory equilibria that are not belief equivalent to any Berk-
Nash equilibrium.

Moreover, selective memory equilibria need not be objectively optimal when the agent
knows that the distribution of outcomes is independent of their action (p˚

s,a “ p˚
s,a1 and

ps,a “ ps,a1 for every p P Θ, a, a1 P A, s P S).

To illustrate the equivalence result, consider a buyer who submits an offer for a
good in a double-blind two-sided auction where the price z is set at the buyer’s bid,

32Every p2 that is outcome-equivalent under σ is also a maximizer, and this p2 may not have been
an element of Θ. Because σ need not be a best response to some of them, it need not be a uniformly
strict selective memory equilibrium.
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so the seller’s dominant strategy is to bid their value. Suppose that the buyer has an
exogenously fixed conviction that the price sellers ask is independent of the quality of
the good they are selling. If the buyer’s value of the good is x`v`ε where x P X Ď R
is the value for the seller, v P V Ď R measures the gains from trade, and ε is a
noise term, then in the Berk-Nash equilibrium they submit a bid that is too low, as in
Esponda [2008]. Proposition 6 shows that memory distortions can, over time, lead the
agent to believe that value and bid are independent and thus have the same long-run
behavior and beliefs. This is obtained with a memory function that gives more weight
to experiences with a larger gap between buyer’s values and ask prices.33

Persistence While agents undoubtedly are sometimes misspecified, some recent pa-
pers have theoretically questioned how likely these misperceptions are to persist and
proposed mechanisms by which agents might realize that some model not in the sup-
port of their initial beliefs better fits the data (Schwartzstein, 2014; Fudenberg and
Lanzani, 2023; He and Libgober, 2023; Lanzani, 2024). In contrast, an agent with a
selective memory and a full support prior will be able to explain their recollections
with one of their conjectured models and so have less reason to learn of their errors.

6 Discussion
Our equilibrium concept and results make it easy to predict the long-run implications of
arbitrary memory biases, which should be of broad use in applied work. We illustrated
our framework by showing that it explains how overconfidence can arise from an ego-
boosting memory bias, and why agents may underestimate their co-workers’ abilities
even when they are correctly specified. It also lets us explain the excessive levels of risk
aversion implied by asset choice as the result of moderate risk aversion paired with an
extreme experience bias that leads agents to overestimate the riskiness of the assets.

Distinguishing Between Models While Proposition 6 implies that selective mem-
ory and misspecification will have similar long-run implications in a fixed environment,
Section 4.2 shows that the two models have different comparative statics with respect
to changes in the environment.34 If we look at the correspondences mapping a true

33Specifically mpa, px, vqq “ k
“
ř

v1PV p˚px, v1q
ř

x1PX p˚px1, vq
‰

{p˚px, vq for sufficiently small k ą 0.
34Selective memory can arguably be viewed as a form of misspecification, as the agent is not aware

of their memory limitations. From that perspective, our results show that the classic misspecification
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data generating process into the sets of selective memory equilibria and uniformly strict
Berk-Nash equilibria, our result says that for a fixed p˚ we can find an m that makes an
element of the image of the Berk-Nash correspondence at p˚ an element of the selective
memory equilibrium correspondence at p˚. But this property of the correspondence is
lost at a different p̃˚, which can let us distinguish between the models. For example,
the Berk-Nash equilibrium of a degenerate misspecified model has a constant graph,
something selective memory function cannot replicate for nontrivial utility and mem-
ory functions. More generally, empirical work might be able to distinguish between
the two models based on how agents respond to changes in the true data generating
process (for a concrete example in the context of overconfidence, see the discussion at
the end of Section 4.2).

To distinguish between selective memory and underinference, one can elicit the
agent’s beliefs.35 Underinference predicts that the likelihood ratio between two data
generating processes θ and θ1 always increases between period t´ 1 and t if the period
t ´ 1 outcome was more likely under θ. Selective memory allows for violations of this
monotonicity, especially if at the beginning of period t a signal triggering experiences
favoring θ1 is observed, while this signal is irrelevant with underinference. A more direct
way to distinguish selective memory from other sources of mistaken inference, including
misspecification, is to elicit both what the agent remembers and what they believe, as
in Huffman, Raymond, and Shvets [2022] and Gödker, Jiao, and Smeets [2022], where
an important role for memory is observed. This allows one to estimate the memory
function and qualitatively distinguish between selective memory, misspecification, and
underinference.

Convergence to Equilibria Theorem 2 gives sufficient conditions for there to be
a global attractor. Even when no such strategy exists, one could hope that there
is probability one of converging to some limit strategy, with which strategy occurs
depending both on the agent’s prior and on the realized outcomes. We hope to find
sufficient conditions for that in future work, along with (presumably weaker) conditions
that ensure a positive probability of converging to a limit strategy.

Partial naïveté We have assumed that agents treat the experiences they remember
as if these were the only ones that happened. Appendix A.3 considers agents who are

studied in Bayesian statistics is closely related to a psychologically founded form of misspecification.
35However, see Danz, Vesterlund, and Wilson [2022] for practical challenges in belief elicitation.
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partially aware of their memory limitations. To do this, we assume that agents know
calendar time and therefore how many observations they have not remembered.36 For
an agent who is aware of their own forgetfulness but unaware that their memory is
selective, the selective memory equilibria under partial and full naïveté coincide. At
the other extreme, if agents are fully aware of their memory function, any action that is
optimal for the true data generating process is always a selective memory equilibrium.

Finite Memory In our model, the number of recalled experiences converges to in-
finity, as if the agent had perfect memory. In Fudenberg, Lanzani, and Strack [2024],
we modify the model to make the expected number of recalled periods bounded. Here
the agent’s beliefs need not converge to a deterministic limit even when the strategy is
fixed, which can make the limit behavior stochastic. Thus, instead of characterizing the
possible limit strategies, we show that if the frequency with which strategies are used
converges, the limit strategy distribution is generated by a best response to the distri-
bution of memories it generates. We also use this to model the effect of “rehearsal,”
where an experience recalled in one period is more likely to be recalled again.

Other Possible Extensions It would be relatively easy to extend our analysis to
agents who “misremember” and access false memories as opposed to simply forgetting
things that happened. A more substantive generalization would be from an agent
who believes that outcomes are i.i.d. to an agent who believes that outcomes follow
a Markov process. This would let us capture the gambler’s fallacy (see Rabin and
Vayanos [2010] and He [2022]) if an outcome is more memorable when it is different
than the outcome in the previous period.37 Or it might be much easier for agents to
recall whether an experience happened at all than whether it happened five or six times;
we could capture this by using a memory function that is concave in the number of times
an experience occurred. Another generalization would be to memory functions with
recency bias, such as ms1 ,tpsτ , aτ , yτ q “ ms1 psτ , aτ , yτ qfpt ´ τq where f is a decreasing
function. As with associative memory, when the outcomes are exogenous and f is
bounded away from 0, this bias only leads to slower learning, but when outcomes are
endogenous, it can prevent the agent from locking on to the optimal action.

36As Example 9 in the Appendix shows, less naïve agents can take worse actions and get lower
payoffs.

37This extension could make use of the analysis of belief concentration for misspecified agents with
Markov models developed in Fudenberg, Lanzani, and Strack [2023].
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A Appendix

A.1 Preliminaries

For every t P N, we first explicitly describe the map

Ht ˆ 2t1,...,tu Ñ H
`

ht “ psi, ai, yiq
t
i“1 , R

˘

ÞÑ ht pRtq

that transforms an objective history and a set of recalled periods into the recalled
history. Let n pk,Rtq “ τ if τ is the k-th smallest number in Rt, i.e., n p1, Rtq “ τ if τ
is the first period that is recalled, n p2, Rtq “ τ if τ is the second period that is recalled,
and so on. The recalled history is

ht pRtq “
`

snpk,Rtq, anpk,Rtq, ynpk,Rtq

˘|Rt|

k“1
. (5)

Combining equations (1) and (5) we have that the posterior probability of every mea-
surable C Ď Θ after objective history ht when the recalled periods are Rt ‰ H is

ş

C

ś

τPRt
psτ ,aτ pyτ qdµppq

ş

Θ

ś

τPRt
psτ ,aτ pyτ qdµppq

. (6)

We now state a few lemmas whose proofs are in the Online Appendix. For every
ht P H let fphtq P ∆pSˆAˆY q denote the empirical distribution over signals, actions,
and outcomes in ht “ psi, ai, yiq

t
i“1, and let

f̂pht, Rtqps, a, yq “
1

|Rt|

ÿ

iPRt

1tpsi,ai,yiqups, a, yq

denote the recalled empirical distribution in objective history ht when the recalled
periods are H ‰ Rt. Also, for every γ P ∆pS ˆ A ˆ Y q and p P ∆pY qSˆA let

Lpγ||pq “
ÿ

ps,a,yqPSˆAˆY

γps, a, yq logpps,apyqq

be the log-likelihood of the distribution γ with respect to data generating process p.
The next result shows that the posterior beliefs concentrate on the likelihood max-

imizers given the recalled empirical distribution.
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Lemma A.1. For all Borel measurable C,C 1 Ď ∆pY qSˆA, t P N, ht P Ht, and Rt Ď

t1, ..., tu,

µpC|htpRtqq

1 ´ µpC 1|htpRtqq
ě

µpCq

1 ´ µpC 1q
exp

˜

|Rt|

«

sup
pPΘzC1

Lpf̂pht, Rtq||pq ´ inf
pPC

Lpf̂pht, Rtq||pq

ff¸

.

Let Θm
s pσ, εq “ tp P Θ : Dq P Θm

s pσq, ||p ´ q||8 ď εu denote an ε ball around the
memory-weighted maximizers.

Lemma A.2. If σ is not a selective memory equilibrium, there are s1 P S and ε, C P

R`` such that for all ν P ∆pΘq,

νpΘm
s1 pσ, εqq

1 ´ νpΘm
s1 pσ, εqq

ą C ùñ σps1q R BRps1, νq.

If σ is a uniformly strict selective memory equilibrium, there are ε, C P R`` such
that for all s P S and ν P ∆pΘq,

νpΘm
s pσ, εqq

1 ´ νpΘm
s pσ, εqq

ą C ùñ tσpsqu “ BRps, νq.

The next lemma says that if an action is an undominated response to some signal
s1 but cannot be played as a response to s1 in any selective memory equilibrium, then
after signal s1 the agent must have a non-zero chance of remembering at least one
possible experience ps, a, yq.

Lemma A.3. If σps1q P BRps1,∆pΘqqzBRps1,∆pΘm
s1 pσqqq, then there is

`

s, y
˘

P S ˆ Y

with p˚
s,σpsq

`

y
˘

ą 0 and
ms1

`

s, σpsq, y
˘

“ : ℓ ą 0.

For any t P N, σ P AS and at P At let πpat,σq P AH be the policy that prescribes
action aτ at period τ ď t and action σpsτ q at all periods τ ą t, and let Pat,σ be the
probability distribution induced by πpat,σq. Throughout the Appendix, we let Rt denote
the random variable corresponding to the subset of periods recalled after pht, st`1q,
while we continue to use the non-bold version for its realizations.

The next lemma shows that if σ is a limit strategy, then for some time t, there is
an action sequence at such that if the agent plays at in the first t periods and then σ

afterward, there is positive probability that the induced sequence of beliefs makes σ
optimal at all periods τ ě t ` 1.
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Lemma A.4. Let σ P AS. If for every t P N, every at P At, and every optimal policy
π̃, Pat,σrσpsτ`1q “ π̃phτ pRτ qqpsτ`1q for all τ ě ts “ 0 then σ is not a limit strategy.

Fix an arbitrary outcome y. Let ns,a,t the number of times the signal-action pair
ps, aq P SˆA occurred in periods t1, ..., tu and gs,a,t be the frequency of outcomes that
realized after signal s and action a until period t, i.e.,

gs,a,tpyq “
1

ns,a,t

t
ÿ

i“1

1tps,a,yqupsi, ai, yiq

with gs,a,tpyq “ 1tyupyq whenever ns,a,t “ 0. Similarly, let ñs,a,t be the number of times
the signal-action pair ps, aq is recalled in period t ` 1. Also, let fs,a,t be the frequency
of outcomes induced by signal s and action a that is recalled at period t ` 1, with
fs,a,tpyq “ 1tyupyq whenever ñs,a,t “ 0.

For every ps1, s, aq P S2 ˆ A and ε ą 0 and t P N let

Dtps
1, s, a, εq “ 1pε,`8q

ˆˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñs,a,t

ns,a,t

fs,a,tp¨q ´ ms1 ps, a, ¨q gs,a,tp¨q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

˙

be an indicator function that is 1 if at period t there is a deviation of more than
ε between the recalled empirical frequency given s, a and the ms1-memory distorted
version of the true empirical frequency. The next lemma shows that it is impossible
to have infinitely many periods t where an action-signal pair with realized frequency
larger than γ at t has this sort of deviation.

Lemma A.5. For every π P AH , ps1, s, aq P S2 ˆ A and ε, γ ą 0,

Pπ

«

8
ÿ

t“1

Dtps
1, s, aq1pγ,8q

´ns,a,t

t

¯

1ps1qpst`1q ă 8

ff

“ 1. (7)

A.2 Proof of Theorem 1

Proof. Suppose towards a contradiction that σ is a limit strategy under the optimal
policy π, but not a selective memory equilibrium. By Lemma A.2 there are s1 P S and
ε, C P R`` such that for all ν P ∆pΘq

νpΘm
s1 pσ, εqq

1 ´ νpΘm
s1 pσ, εqq

ą C ùñ σps1q R BRps1, νq, (8)
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and in particular
σps1q R BRps1,∆pΘm

s1 pσqqq. (9)

Fix this s1 throughout the rest of the proof.
If σps1q R BRps1, νq for all ν P ∆pΘq, we immediately reach a contradiction by

definition of optimal policy, since by Kolmogorov 0 ´ 1 Law (see, e.g., Theorem 8.4.4
in Dudley [2018]) signal s1 will realize infinitely many times Pπ-a.s.

If σps1q P BRps1,∆pΘqq, equation (9) and Lemma A.3 imply there is an experience
ps, σpsq, yq that has objective positive probability under σ and is recalled with positive
probability ℓ under signal s1. Now fix an objective history ht “ pst, at, ytq P Ht that
has positive probability under an optimal policy π, i.e., Pπrhts ą 0. We will show that
if the agent plays σ at every period after ht, Pat,σ almost surely the belief µτ p¨|hτ pRτ qq

reaches a region where no optimal policy prescribes σps1q after signal s1, i.e., σps1q R

BRps1, µτ p¨|hτ pRτ qqq. By Lemma A.4, this is enough to obtain the desired conclusion.
By the strong law of large numbers, for every ps, a, yq P S ˆ A ˆ Y

lim
τÑ8

fphτ qps, a, yq “

$

&

%

ζpsqp˚
s,a pyq if a “ σpsq

0 otherwise
Pat,σ a.s. on the cylinder ht.

Let p̃pσ, s1q P ∆pS ˆ A ˆ Y q be the induced distribution over remembered experiences

p̃pσ, s1qps, a, yq “

$

&

%

ζpsqms1 ps,σpsq,yqp˚
s,σpsq

pyq
ř

ŷPY,ŝPS ζpŝqms1 pŝ,σpŝq,ŷqp˚
ŝ,σpŝq

pŷq
if a “ σpsq

0 otherwise
.

For every two periods τ 1 ą τ and R1
τ 1 Ď t1, ..., τ 1u, the probability of recalling R1

τ 1 at
time τ 1 conditional on the objective history hτ 1 is independent of the recalled periods
Rτ at period τ , i.e., Pat,σ rRτ 1 “ R1

τ 1 , sτ 1`1|hτ 1s “ Pat,σ rRτ 1 “ R1
τ 1 , sτ 1`1|hτ 1 ,Rτ “ Rτ s .

The next claim shows that for every k P N, Pat,σ almost surely there is a τ ą t such
that sτ`1 “ s1, and the number of periods recalled after hτ , sτ`1 is larger than k. It is
a variation of the Borel-Cantelli lemma based on conditional instead of unconditional
probabilities.

To state the claim, for every t P N, let Et denote the event that either |Rt| ď k or
st`1 ‰ s1 or both hold.

Claim 1. For all τ̂ P N and k P N, Pat,σ rXτěτ̂Eτ s “ 0.
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Proof of Claim 1. For every τ P N and h “ psi, ai, yiq
τ
i“1 letNphq “

řτ
i“1 1tps,σpsq,yqu psi, ai, yiq

be number of times ps, σpsq, yq occurs between period 1 and τ . For any j P N, we have

Pat,σ

“

XτPtτ̂ ,...,τ̂`juEτ

‰

“

τ̂`j
ź

τ“τ̂

Pat,σ pEτ |E1, ..., Eτ´1q “

τ̂`j
ź

τ“τ̂

ÿ

hPHτ

Pat,σ phqPat,σpEτ |E1, ..., Eτ´1, hq

“

τ̂`j
ź

τ“τ̂

ÿ

hPHτ

Pat,σ phq p1 ´ Pat,σ r|Rτ | ą k, sτ`1 “ s1| p|Rτ̂ | ď k, ..., |Rτ´1| ď k, hqsq

“

τ̂`j
ź

τ“τ̂

ÿ

hPHτ

Pat,σ phq p1 ´ Pat,σ r|Rτ | ą k, sτ`1 “ s1|hsq

ď

τ̂`j
ź

τ“τ̂

¨

˝Pat,σ pth P Hτ : Nphq ď kuq `
ÿ

hPHτ :Nphqěk`1

Pat,σ phq p1 ´ Pat,σ r|Rτ | ą k, sτ`1 “ s1|hsq

˛

‚

ď

τ̂`j
ź

τ“τ̂

´

Pat,σ pth P Hτ : Nphq ď kuq `
ř

hPHτ :Nphqěk`1 Pat,σ phq
`

1 ´ ℓk`1ζps1q
˘

¯

“

τ̂`j
ź

τ“τ̂

´

Pat,σ pth P Hτ : Nphq ď kuq ` p1 ´ Pat,σ pth P Hτ : Nphq ď kuqq
`

1 ´ ℓk`1ζps1q
˘

¯

“

τ̂`j
ź

τ“τ̂

`

1 ´ ℓk`1ζps1q ` Pat,σ pth P Hτ : Nphq ď kuq ℓk`1ζps1q
˘

,

where the second equality follows from the law of iterated expectations, the first in-
equality because for every τ P tτ̂ , ..., τ̂ ` ju,

ÿ

hPHτ :Nphqďk

Pat,σ phq p1 ´ Pat,σ r|Rτ | ą k, sτ`1 “ s1|hsq ď
ÿ

hPHτ :Nphqďk

Pat,σ phq ,

and the second inequality follows from the fact that if signal s1 realized and ps, σpsq, yq

appears at least k`1 times in the objective history, the probability of recalling at least
k ` 1 events is not smaller than ℓk`1. Since 1 ` x ď ex for all x P R, the last term is
smaller than

exp

˜

τ̂`j
ÿ

τ“τ̂

´ℓk`1ζps1q ` Pat,σ pth P Hτ : Nphq ď kuq ℓk`1ζps1q

¸

.

By definition, ps, σpsq, yq has objective positive probability under σ, so there is
τ̂ P N and β P p0, 1q such that for every τ ě τ̂ , Pat,σ pth P Hτ : Nphq ď kuq ă β ă 1.
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Thus

lim
jÑ8

Pat,σ

“

XτPtτ̂ ,...,τ̂`juEτ

‰

ď lim
jÑ8

exp

˜

τ̂`j
ÿ

τ“τ̂

´ℓk`1ζps1q ` Pat,σ pth P Hτ : Nphq ď kuq ℓk`1ζps1q

¸

“ 0

proving the claim: For all τ̂ P N and k P N, Pat,σ rXτěτ̂Eτ s “ 0.

By the previous claim, for every k P N``, Pat,σ almost surely

Dτ ą t : sτ`1 “ s1 and |Rτ | ą k. (10)

Claim 2. For every y P Y

Pat,σ

”ˇ

ˇ

ˇ
tτ : sτ`1 “ s1, ||f̂phτ ,Rτ q ´ p̃pσ, s1q||8 ą εu

ˇ

ˇ

ˇ
“ 8

ı

“ 0. (11)

Proof of Claim 2. Let t P N, ht P Ht and ε ą 0. By the Chernoff inequality (see,
e.g., pages 23-24 of Boucheron, Lugosi, and Massart [2013]),

Pat,σ

«

ˇ

ˇ

ˇ

ˇ

Rτ

τ
f̂phτ ,Rτ q ´ p̃pσ, s1q

ˇ

ˇ

ˇ

ˇ

ą ε | phτ , s
1q

ff

ď 2|Y | exp

ˆ

´ετ

„

log 1{2 ´
logp1{2 ` εq ` logp1{2 ´ εq

2

ȷ˙

.

Since
8
ÿ

k“1

2 exp p´εkrlog 1{2 ´ ψpεqsq ă 8,

the result follows by the Borel-Cantelli lemma.

We show that eventually νpΘm
s1 pσ,εqq

1´νpΘm
s1 pσ,εqq

ą C on the histories where conditions (10)
and (11) are satisfied. Since they hold Pat,σ almost surely, the result follows by (8).

Let ε1 P p0, εq and κ P R`` be such that for all ps, aq P S ˆ A and p P Θm
s1 pσ, ε1q,

ps,a " p˚
s,a,

κ

2
ą sup

p1RΘm
s1 pσ,εq

ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq
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and
κ ă inf

p1PΘm
s1 pσ,ε1q

ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq

where their existence is guaranteed by the continuity in p of the memory-weighted
log-likelihood and Assumption 2. So, by Lemma A.1

µpΘm
s1 pσ, εq|hτ pRτ qq

1 ´ µpΘm
s1 pσ, εq|hτ pRτ qq

ě
µpΘm

s1 pσ, ε1q|hτ pRτ qq

1 ´ µpΘm
s1 pσ, εq|hτ pRτ qq

ě
µ pΘm

s1 pσ, ε1qq

1 ´ µ pΘm
s1 pσ, εqq

exp

˜

|Rτ |

˜

inf
pPΘm

s1 pσ,ε1q
Lpf̂phτ , Rτ q||pq ´ sup

pRΘm
s1 pσ,εq

Lpf̂phτ , Rτ q||pq

¸¸

.

The last expression goes to `8 as τ Ñ 8, since (i) |Rτ | Ñ 8 by equation (10), and
(ii) by the definitions of κ and ε1 as well as equation (11) we have

lim
τÑ8

inf
pPΘm

s1 pσ,ε1q

ÿ

ps,a,yq

f̂phτ , Rτ q ps, a, yq logpps,apyqq ´ sup
pRΘm

s1 pσ,εq

ÿ

ps,a,yq

f̂phτ , Rτ q ps, a, yq logpps,apyqq

“ inf
pPΘm

s1 pσ,ε1q

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq logpps,σpsqpyqq

´ sup
pRΘm

s1 pσ,εq

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq logpps,σpsqpyqq ą

κ

2
ą 0.

Proof of Theorem 2. First, we introduce some notation. Let

m : “ min
s1,s,aPS2ˆA

ÿ

yPY

p˚
s,apyqms1ps, a, yq ą 0,

and for every ps, s1, a, yq P S2 ˆ A ˆ Y , let

p̄s,apy|s1q :“
ms1ps, a, yqp˚

s,apyq
ř

y1PY ms1ps, a, y1qp˚
s,apy1q

denote the memory-adjusted version of the data generating process.
(i) Now we will prove the first part of the theorem, namely that

Pπ

”

lim
tÑ8

µpBϵpp̂q|htpRtqq “ 1
ı

“ 1.

The first step is to characterize the distribution of outcomes given the realized signals
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and actions. Consider the stochastic processes pX
pŝ,â,ŷq
t qpŝ,â,ŷqPSˆAˆY,tPN defined by

Xŝ,â,ŷ
t “ p1tŷupytq ´ p˚

ŝ,âpŷqq1tpŝ,âqupst, atq @t P N.

These stochastic processes correspond to the deviation of the number of times each
y has appeared from their expected frequency given the signal realized and action
chosen. They are measurable with respect to the filtration pFtqtPN generated by the
stochastic process of histories phtqtPN. These processes are not i.i.d., as previous out-
come realizations affect current period choices, but for each ps, a, yq P S ˆ A ˆ Y ,
ErX

ps,a,yq
t | Ft´1s “ 0. Consequently, for each ps, a, yq P S ˆ A ˆ Y , pX

ps,a,yq
t qtPN is a

mixingale difference sequence, and from the strong law of large numbers for mixingale
sequences (see Theorem 2.7 in Hall and Heyde, 2014 for the version that applies here)
limnÑ8

1
n

řn
t“1 X

ps,a,yq
t “ 0, Pπ-a.s. Recall that ns,a,t is the number of periods before

t in which the signal was s, and the action a was played, and gs,a,t is the empirical
distribution over outcomes in these periods. Moreover

1

n

n
ÿ

t“1

Xs,a,y
t “

ns,a,t

n
pgs,a,tpyq ´ p˚

s,apyqq,

which implies that for every ε ą 0, γ ą 0, Pπ almost surely

lim sup
nÑ8

´

1rγ,8s

´ns,a,t

n

¯

¨ 1rε,8qp||gs,a,t ´ p˚
s,a||8q

¯

“ 0. (12)

Recall that ñs,a,t is the number of times the signal and action pair ps, aq is recalled at
time t. By Lemma A.5, for every ps, s1, aq P S2 ˆ A, ε ą 0 and γ ą 0

Pπ

«

8
ÿ

t“1

Dtps
1, s, aq1pγ,8q

´ns,a,t

t

¯

1ps1qpst`1q ă 8

ff

“ 1. (13)

In the set identified by equation (13), which has Pπ probability 1, for all ps, aq P
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S ˆ A and every time subsequence ptiqiPN where ns,a,ti

ti
ą γ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fs,a,tip¨q ´
ms1 ps, a, ¨q gs,a,tip¨q

ř

y1PY ms1ps, a, yqgs,a,tipy
1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fs,a,tip¨q ´
ñs,a,ti

ns,a,ti

fs,a,tip¨q
ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñs,a,ti

ns,a,ti

fs,a,tip¨q
ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

´
ms1 ps, a, ¨q gs,a,tip¨q

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ns,a,ti

ñs,a,ti

´
1

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñs,a,ti

ns,a,ti

fs,a,tip¨q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

`
1

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñs,a,ti

ns,a,ti

fs,a,tip¨q ´ ms1 ps, a, ¨q gs,a,tip¨q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
ř

y1PY

ñs,a,ti

ns,a,ti
fs,a,tip¨q

´
1

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ε

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

ď
1

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q ´ |Y |ε

´
1

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

`
ε

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

“
|Y |ε

´

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q ´ |Y |ε

¯

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q

`
ε

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q
.

Moreover limiÑ8

ř

y1PY ms1ps, a, y1qgs,a,tipy
1q “

ř

y1PY ms1ps, a, y1qp˚
s,a pyq, so that the last

term in the display above converges to

|Y |ε
´

ř

y1PY ms1ps, a, y1qp˚
s,a pyq ´ |Y |ε

¯

ř

y1PY ms1ps, a, y1qp˚
s,a pyq

`
ε

ř

y1PY ms1ps, a, y1qp˚
s,a pyq

.

and by point (i) of Assumption 3, this can be taken arbitrarily small by choosing
sufficiently small ε.

Therefore, equation (13) implies that for every ps, s1, aq P S2 ˆ A, and γ ą 0

Pπ

”ˇ

ˇ

ˇ
t : ns,a,t

t
ą γ, st`1 “ s1 and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
fs,a,tp¨q ´

ms1 ps,a,¨qgs,a,tp¨q
ř

y1PY ms1 ps,a,y1qgs,a,tpy1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ą ε

ˇ

ˇ

ˇ
“ 8

ı

“ 0.

(14)
Observe that under data generating process q P Θ, the log-likelihood of any history
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psi, ai, yiq
τ
i“1, τ ď t that the agent might recall at time t can be rewritten as

τ
ÿ

i“1

log qsi,aipyiq “
ÿ

ps,aqPSˆA

ñs,a,t

ÿ

yPY

fs,a,tpyq log qs,apyq

“
ÿ

ps,aqPSˆA

ñs,a,t

˜

´DKLpfs,a,t, qs,aq `
ÿ

yPY

fs,a,tpyq log fs,a,tpyq

¸

where DKLpq, q1q denotes the Kullback-Leibler divergence between q, q1 P ∆pY q. Thus
for every ε ą 0,

µpBεpp̂q|psi, ai, yiq
τ
i“1q

1 ´ µpBεpp̂q|psi, ai, yiqτi“1q
“

ş

Bϵpp̂q
exp

´

´
ř

ps,aqPSˆA ñs,a,tDKLpfs,a,t, ps,aq

¯

dµppq

ş

ΘzBεpp̂q
exp

´

´
ř

ps,aqPSˆA ñs,a,tDKLpfs,a,t, qs,aq

¯

dµpqq
.

By Assumption 3, p̂ maximizes the log-likelihood and hence minimizes the divergence
from p̄ after every signal action pair. Thus, becauseDKL is jointly lower semicontinuous
(see, e.g., Lemma 1.4.3 in Dupuis and Ellis [2011]), there is ϵ̄ ą 0 such that for all
ps1, s, aq P S ˆ A and q P ΘzBϵpp̂q, DKLpp̄s,ap¨|s1q, qs,aq ą ϵ̄ ` DKLpp̄s,ap¨|s1q, p̂s,aq.

By definition, p̄s,ap¨|s1q " fs,a,t at every t P N such that st`1 “ s1. Thus, by
equations (12) and (14), for every γ ą 0,Pπ almost surely,

lim inf
tÑ8

p1{tq
ÿ

ps,aqPSˆA

ñs,a,tDKLpfs,a,t, qs,aq (15)

ď lim inf
tÑ8

p1{tq
ÿ

ps,aqPSˆA:ns,a,t{tďγ

ñs,a,tDKLpfs,a,t, qs,aq

ď lim inf
tÑ8

p1{tq
ÿ

ps,aqPSˆA:ns,a,t{tďγ

ñs,a,tpϵ̄ ` DKLpp̄s,ap¨|s1q, p̂s,aqq

for every q P ΘzBϵpp̂q.
Conversely, by Assumption 2, we can choose ϵ1 ă ϵ small enough that if ||fs,a,t ´

p̄s,ap¨|s1q||TV ď ϵ1, and p P Bϵ1pp̂q then

DKLpfs,a,t, ps,aq ď
ϵ̄

2
` DKLpp̄s,ap¨|s1q, p̂s,aq

and
K : “ sup

s,s1PS2,aPA,pPBϵ1 pp̂q,fP∆pY q:p̄s,ap¨|s1q"f

DKLpf, ps,aq ă 8.
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Therefore, for all β P p0, 1q, Pπ-almost surely

lim inf
tÑ8

µpBϵ1pp̂q|htpRtqq

1 ´ µpBϵ1pp̂q|htpRtqq
“ lim inf

tÑ8

ş

Bϵ1 pp̂q
exp

´

´
ř

sPS,aPA ñs,a,tDKLpfs,a,t, ps,aq

¯

dµppq

ş

ΘzBϵ1 pp̂q
exp

´

´
ř

sPS,aPA ñs,a,tDKLpfs,a,t, qs,aq

¯

dµpqq

ě lim inf
tÑ8

ş

Bϵ1 pp̂q
exp

ˆ

´tβK ´
ř

sPS,aPA:
ñs,a,t

t
ą

β
|SˆA|

ñs,a,tDKLpfs,a,t, ps,aq

˙

dµppq

ş

ΘzBϵ1 pp̂q
exp

ˆ

´
ř

sPS,aPA:
ñs,a,t

t
ą

β
|SˆA|

ñs,a,tDKLpfs,a,t, qs,aq

˙

dµpqq

ě lim
tÑ8

µpBϵ1pp̂qq

1 ´ µpBϵ1pp̂qq
exp

´

t
”

´βK `
m

2
p1 ´ βq

´

ϵ̄ ´
ϵ̄

2

¯ı¯

where the last inequality follows from equations (13) and (15). For β small enough that
´βK `

m
2

p1 ´ βq
`

ϵ ´ ϵ
2

˘

ą 0, the right-hand side goes to infinity as t goes to infinity,
so the left-hand side must also diverge, which shows that Pπ

“

limtÑ8 µpBϵ1pp̂q|htpRtqq “

1
‰

“ 1. Since ϵ1 ă ϵ, this proves the first part of the theorem. In particular, for every
ε ą 0, the random variable T defined by

T :“ suptt P N : µpBεpp̂q|htpRtqq ă 1 ´ εu (16)

is Pπ-almost surely finite.
(ii) To prove the second part of the theorem, note that Assumption 3 (ii) implies

that Θm
s pσq “ tp̂u for all s P S and σ P AS. Therefore, every selective memory

equilibrium must prescribe a best reply to a Dirac belief on p̂ after every signal. Since
there is a unique best response to p̂ for every signal s, σ̂ is the unique selective memory
equilibrium, and it is uniformly strict. By Lemma A.2, there is an ϵ such that σ̂psq is
the response to s for any belief ν that assigns probability at least 1´ ϵ to Bϵpp̂q. Since
by equation (16) Pπ-almost surely there will be a finite time T (that can depend on
the sample path) with µpBϵpp̂q|htpRtqq ą 1 ´ ϵ for all t ą T , the result follows.

Proof of Proposition 1. We show that for every signal s P S, only data generating
processes p for which ps,σpsq “ p˚

s,σpsq are memory-weighted likelihood maximizers.
Fix ŝ P S and suppose that p is such that pσpŝq,ŝ ‰ p˚

σpŝq,ŝ. By the Gibbs inequality,

ÿ

yPY

p˚
s,σpsqpyq log p˚

σpsq,spyq ě
ÿ

yPY

p˚
s,σpsqpyq log ps,σpsqpyq

for all s P S, with strict inequality for s “ ŝ. This, together with dpŝ, ŝq “ 0 and
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Φp0q ą 0, implies that

ÿ

sPS

ζpsq
ÿ

yPY

mŝps, σpsq, yqp˚
s,σpsqpyq log ps,σpsqpyq “

ÿ

sPS

ζpsqΦpdps, ŝqq
ÿ

yPY

p˚
s,σpsqpyq log ps,σpsqpyq

ă
ÿ

sPS

ζpsqΦpdps, ŝqq
ÿ

yPY

p˚
s,σpsqpyq log p˚

s,σpsqpyq

“
ÿ

sPS

ζpsq
ÿ

yPY

mŝps, σpsq, yqp˚
s,σpsqpyq log p˚

s,σpsqpyq

proving that p R Θm
ŝ pσq.

Proof of Proposition 2. If Assumption 3(i) is not satisfied, i.e., no objectively pos-
sible outcome has a strictly positive probability of being remembered, beliefs remain
constant over time and thus trivially converge. Otherwise, by Theorem 2, we also know
that beliefs converge. We first derive the long-run belief for m̃ P tm,m1u. Because the
memory function m̃ and the probability distribution over outcomes p˚ are independent
of the agent’s action, this long-run belief is unique and independent of a, so we suppress
the dependence of p and m̃ on a.

Because Θ “ ∆pY q, for every σ the unique memory-weighted likelihood maximizers
is the distribution

pm̃pyq “
m̃pyqp˚pyq

ř

zPY m̃pzqp˚pzq
,

and by Theorem 2 the beliefs concentrate on pm̃. Moreover pm1

pyq “ wpyqpmpyq,
where wpyq “ fpyq

ř

zPY mpzqp˚pzq
ř

zPY m1pzqp˚pzq
is non-decreasing, so z ÞÑ

ř

xďzppm
1

pxq ´ pmpxqq “
ř

xďz p
mpxqpwpxq ´ 1q is quasi-convex. It equals 0 for z ă minyPY y and for z ě

maxyPY y, so it is non-positive for z P rminyPY y,maxyPY ys, and pm
1 dominates pm in

first-order stochastic dominance. Every limit action must be optimal given pm̃ for
m̃ P tm,m1u by Theorem 1, so the agent’s action must be weakly higher under m1

than under m.

Proof of Proposition 3. From Theorem 2, we know that beliefs converge. Because
py1, y2q are subjectively independent conditional on the value of p, the learning problem
decouples across the two dimensions. By Proposition 2, the long-run belief about p is
weakly higher than the true distribution p˚. The probability with which an outcome
is remembered is independent of the second component, so the agent learns αp˚py2q `
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p1 ´ αqq˚py2q. They infer q to be

qpy2q “
αp˚py2q ` p1 ´ αqq˚py2q ´ αppy2q

1 ´ α
.

Thus q´q˚ ” α
1´α

pp˚´pq, and as p is greater than p˚ in first-order stochastic dominance,
it follows that q is lower than q˚ in first-order stochastic dominance.

Proof of Proposition 4. If a “ 1 is not a unitary self-confirming equilibrium, then
the safe action a “ 0 is preferred to the risky action a “ 1, so

ř

yPY vpyqp˚
1pyq ă vpy0q.

Because the prior assigns positive probability to all distributions induced by action a1,
the unique memory-weighted likelihood maximizer p̂ under action 1 is such that

p̂1pyq :“
p˚
1pyqhp|y ´ ȳ|q

ř

zPY p
˚
1pzqhp|z ´ ȳ|q

.

Therefore, if a “ 1 is a selective memory equilibrium when mpyq “ hp|y ´ ȳ|q, then
vpy0q ď

ř

yPY p̂1pyqvpyq. We prove that this cannot be the case by showing that the
distribution p̂1 is second-order stochastically dominated by p˚

1 . To see this, observe
that as p˚

1 is symmetric around ȳ and hp|y ´ ȳ|q is symmetric around ȳ it follows that
p̂1 is symmetric around ȳ. As h is increasing it follows that p̂1´p˚

1 changes its sign from
positive to negative and back to positive so

ř

yďz p
˚
1pyq and

ř

yďz p̂1pyq cross only once,
at z “ ȳ. And since v is concave, Theorem 3 and Footnote 19 of Machina and Pratt
[1997] imply that

ř

yPY vpyqp˚pyq ě

ř

yPY p˚
1 pyqhp|y´ȳ|qvpyq

ř

yPY p˚
1 pyqhp|y´ȳ|q

and the risky action cannot be
a selective memory equilibrium.

Proof of Proposition 5. Suppose towards a contradiction that σ is a limit strategy
under the optimal policy π but not a selective memory equilibrium. Then by Lemma
A.2 there are s1 P S and c, C P R`` such that if

νpΘm
s1 pσ, cqq

1 ´ νpΘm
s1 pσ, cqq

ą C then σps1q R BRps1, νq. (17)

Let ht “ pst, at, ytq be a history with positive probability under π. We show that
if the agent plays the strategy πpat,σq, then almost surely the underinference belief
µUp¨|psτ , aτ , yτ qq is asymptotically in a region where no optimal policy prescribes σ
after signal s1. Since almost surely signal s1 occurs infinitely many times, the same
arguments as in Lemma A.4 show this implies the desired conclusion.
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By the Strong Law of Large Numbers,

lim
τÑ8

fphτ qps, a, yq “

$

&

%

ζpsqp˚
s,a pyq if a “ σpsq

0 otherwise
(18)

Pat,σ almost surely. Next, we express the posterior as a function of the observed fre-
quencies and show that it concentrates on the memory-weighted likelihood maximizers,
so the result follows by equation (17). By Assumption 2 and the continuity in p of the
memory weighted log-likelihood we can choose κ, c1 P R`` so that for all ps, aq P SˆA

and p P Θm
s1 pσ, c1q, ps,a " p˚

s,a,

κ{2 ą sup
p1RΘm

s1 pσ,cq

ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq

and
κ ă inf

p1PΘm
s1 pσ,c1q

ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq.

By equation (18) and the definition of κ and c1, almost surely on the cylinder ht we
have

K : “ lim
tÑ8

inf
p1PΘm

s1 pσ,c1q

ÿ

ps,a,yq

fphtps, a, yqqmps, a, yq logpp1
s,apyqq

´ lim
tÑ8

sup
p1RΘm

s1 pσ,cq

ÿ

ps,a,yq

fphtps, a, yqqmps, a, yq logpp1
s,apyqq

“ inf
p1PΘm

s1 pσ,c1q

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq log p1

s,σpsqpyq

´ sup
p1RΘm

s1 pσ,cq

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq log p1

s,σpsqpyq ą κ{2 ą 0.

By Lemma A.1,
µpΘm

s1 pσ, cq|htq

1 ´ µpΘm
s1 pσ, cq|htq

ě
µ pΘm

s1 pσ, c1qq exp
´

supp1PΘm
s1 pσ,c1q ´

ř

ps,a,yq tfphtps, a, yqqmps, a, yq logpp1
s,apyqq

¯

p1 ´ µ pΘm
s1 pσ, c1qqq exp

´

infp1RΘm
s1 pσ,cq ´

ř

ps,a,yq tfphtps, a, yqqmps, a, yq logpp1
s,apyqq

¯

“
µ pΘm

s1 pσ, c1qq

p1 ´ µ pΘm
s1 pσ, c1qqq

expptKq,
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which goes to 8 with t since K ą 0.

Proof of Proposition 6. To prove part (1), let σ be a uniformly strict Berk-Nash
equilibrium, and let p1 be an arbitrary element of Θ1pσq. Since σ is a uniformly strict
Berk-Nash equilibrium, for all s P S, tσpsqu “ BRps, δp1q. Moreover, by the absolute
continuity condition, p˚

s,σpsqpyq “ 0 implies p1
s,σpsqpyq “ 0, so38 K :“ maxps,a,yqPSˆAˆY

p1
s,apyq

p˚
s,apyq

ă

8. Define m̃ by m̃s1ps, a, yq “
p1
s,apyq

Kp˚
s,apyq

if p˚
s,apyq ą 0 and m̃s1ps, a, yq “ 1{2 otherwise.

Then, for an agent with a full-support prior and memory function m̃ the memory-
weighted likelihood maximizers for strategy σ after signal s1 are the elements of

argmax
pP∆pY qSˆA

ÿ

sPS

ζpsq
ÿ

yPY

m̃s1ps, σpsq, yqp˚
s,σpsqpyq log ps,σpsqpyq

“ argmax
pP∆pY qSˆA

ÿ

sPS

ζpsq
ÿ

yPY

p1
s,σpsqpyq

K
log ps,σpsqpyq “ argmax

pP∆pY qSˆA

ÿ

sPS

ζpsq
ÿ

yPY

p1
s,σpsqpyq log ps,σpsqpyq.

Thus p1 maximizes the memory-weighted likelihood for all s1 P S, so σ is a selective
memory equilibrium with a full-support prior.

Part (2), the converse direction, is trivial: take Θ1 to be a singleton p such that for
all a P A and s P S, ps,apyq “ p1

s,apyq for some p1 P Θm
s pσq.

A.3 Partial naïveté

So far, we have assumed that agents treat the experiences they remember as if these
were the only ones that happened. This section considers agents who are at least
partially aware of their memory limitations. We suppose throughout this section that
actions have no effect on the outcome distribution. We also assume that the agent either
does not remember their actions or believes they convey no information. Finally, we
suppose that agents know the current period and so know how many observations they
have forgotten. If the agent believes that they remember an occurrence of signal s P S

and outcome y P Y with probability m̂ps, yq P p0, 1s instead of the true probability
mps, yq, the subjective likelihood of recalling the periods Rt after pht, s

1q under data
generating process p is proportional to

«

ÿ

sPS

ζpsq
ÿ

zPY

pspzqp1 ´ m̂s1ps, zqq

fft´|Rt|
ź

iPRt

ζpsiqpsipyiqm̂s1psi, yiq

38We use the convention that 0{0 “ 0.
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where |Rt| is the number of events the agent remembers. Thus, the subjective log-
likelihood equals

pt ´ |Rt|q log

«

ÿ

sPS

ζpsq
ÿ

zPY

pspzqp1 ´ m̂s1ps, zqq

ff

`
ÿ

yPY,sPS,τPRt

1tps,yqupsτ , yτ q logppspyqm̂s1ps, yqq.

(19)
Because the expected value of |Rt|{t is

ř

yPY

ř

sPS ζpsqp˚
s pyqms1ps, yq, (19) suggests

the following generalization of the definition the memory-weighted likelihood maximiz-
ers:

Θm,m̂
s1 pσq“argmax

pPΘ

´

1 ´
ÿ

sPS

ÿ

yPY

ms1ps, yqζpsqp˚
s pyq

¯

log
´

1 ´
ÿ

sPS

ÿ

yPY

ζpsqpspyqm̂s1ps, yq

¯

`
ÿ

yPY

ÿ

sPS

ms1ps, yqζpsqp˚
s pyq log pm̂s1ps, yqpspyqq .

Definition 6. A selective memory equilibrium for a partially naïve agent is a strategy
σ such that for every s P S there exists a belief ν P Θm,m̂

s pσq with σpsq P BRps, νq.

For an agent who is aware of their own forgetfulness but not aware that their mem-
ory is selective, i.e., who believes that their memory function m is constant, Θm,m̂

s “ Θm
s

and the selective memory equilibria of a partially and fully naïve agent coincide.39 This
shows that what matters for our results is that the agent is unaware that their memory
is selective, not that they are unaware of their forgetfulness. At the other extreme, if
agents are fully aware of their memory function, selective memory equilibrium reduces
to unitary self-confirming equilibrium because δp˚ P Θm,m

s1 .
The next result, whose proof is omitted, follows by observing that for a partially

naïve agent, the posterior probability of C after an objective history pht, st`1q when
39This is true in particular when the agent is fully naïve and m̂ is identically 1, even though the

maximand becomes ill-defined. To see why, note that when m̂s1 p¨q “ ks1 for some constants ks1 ă 1,
the maximand is
´

1´
ÿ

sPS

ÿ

yPY

ms1 ps, yqζpsqp˚
s pyq

¯

log
´

1´ks1

¯

`
ÿ

yPY

ÿ

sPS

ms1 ps, yqζpsqp˚
s pyq log pks1 q`

ÿ

yPY

ÿ

sPS

ms1 ps, yqζpsqp˚
s pyq log ppspyqq .

The first terms do not depend on p, so Θm,m̂
s1 “ Θm

s1 , and in particular complete naïveté is reached in
the limit where all ks1 Ñ 1.
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the recalled periods are Rt is

ş

C

´

ś

τPRt
m̂st`1psτ , yτ qpsτ pyτ q

¯´

1 ´
ř

sPS

ř

yPY ζpsqpspyqm̂st`1ps, yq

¯t´|Rt|

dµppq

ş

Θ

´

ś

τPRt
m̂st`1psτ , yτ qpsτ pyτ q

¯´

1 ´
ř

sPS

ř

yPY ζpsqpspyqm̂st`1ps, yq

¯t´|Rt|

dµppq

,

and then using an argument analogous to the proof of Theorem 1.

Proposition 7. When the agent is partially naïve, every limit strategy is a selective
memory equilibrium.

Moreover, as with notions of partial naïveté in cursed equilibrium and quasi-hyperbolic
discounting, one can define a parametric notion of partial naïveté by assuming that
m̂s1ps, yq “ p1 ´ αq ` αms1ps, yq. For α “ 0 the agent is fully naïve and unaware of
their memory limitations. For α “ 1 the agent is sophisticated and understands their
memory limitations, and so has correct long-run beliefs.

The next example shows that the amount of naïveté can have a non-monotonic
effect when there are more than two actions.

Example 9. Suppose that the agent has three alternatives. They can either “do
nothing,” a “ n with certain payoff of 0, do a quick job a “ k with payoff 1 if the job
succeeds and ´1 otherwise, or do a careful and time-consuming job a “ h at cost 0.6

that yields 1 ´ .6 “ .4 if the project succeeds and ´1.6 otherwise. The probability of
success in the quick job is some unknown p P r0, 1s, while the probability of success in
the careful job is 2p for p ď 0.45 and 2p{11` 9{11 otherwise. The agent’s prior assigns
positive probability to all p P r0, 1s, where p is a reflection of the agent’s ability.

The true probability is p˚ “ 0.2, so Ep˚rupn, ¨qs ą Ep˚rupk, ¨qs ą Ep˚ruph, ¨qs.
Suppose that the agent has ego-boosting bias, in that they recall successes and they
recall failures with probability 0.03. Here welfare is non-monotone in the amount
of partial naïveté of the agent. For a fully sophisticated agent, the unique selective
memory equilibrium is the objectively optimal n, while a naïve agent has two selective
memory equilibria, n and k, with the latter sustained by the incorrect belief that their
ability is so high that k is better than h. However, if the agent believes that they recall
the failures with probability 0.12, playing the worst action h is a selective memory
equilibrium because the agent ends up believing that the probability of success is 0.5,
which makes h the unique best reply.
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B For Online Publication

B.1 Proof of Lemmas

Lemma A.1. For all Borel measurable C,C 1 Ď ∆pY qSˆA, t P N, ht P Ht, and Rt Ď

t1, ..., tu,

µpC|htpRtqq

1 ´ µpC 1|htpRtqq
ě

µpCq

1 ´ µpC 1q
exp

˜

|Rt|

«

sup
pPΘzC1

Lpf̂pht, Rtq||pq ´ inf
pPC

Lpf̂pht, Rtq||pq

ff¸

.

Proof. Equation (6) implies that

µpC|htpRqq “

ş

C

ś

ps,a,yqPSˆAˆY pps,apyqq
ř

iPR 1tps,a,yqupsi,ai,yiqdµppq
ş

Θ

ś

ps,a,yqPSˆAˆY pps,apyqq
ř

iPR 1tps,a,yqupsi,ai,yiqdµppq

“

ş

C

ś

ps,a,yqPSˆAˆY pps,apyqq|R|f̂pht,Rqps,a,yqdµppq
ş

Θ

ś

ps,a,yqPSˆAˆY pps,apyqq|R|f̂pht,Rqps,a,yqdµppq

“

ş

C
exp

´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq

ş

Θ
exp

´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq
.

Therefore,

µpC|htpRqq

1 ´ µpC 1|htpRqq
“

ş

C
exp

´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq

ş

ΘzC1 exp
´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq

“

ş

C
exp

´

´|R|Lpf̂pht, Rq||pq

¯

dµppq

ş

ΘzC1 exp
´

´|R|Lpf̂pht, Rq||pq

¯

dµppq

ě
µpCq

1 ´ µpC 1q

exp
´

´|R| suppPC Lpf̂pht, Rq||pq

¯

exp
´

´|R| infpPΘzC1 Lpf̂pht, Rq||pq

¯ .

Lemma A.2. If σ is not a selective memory equilibrium, there are s1 P S and ε, C P

R`` such that for all ν P ∆pΘq,

νpΘm
s1 pσ, εqq

1 ´ νpΘm
s1 pσ, εqq

ą C ùñ σps1q R BRps1, νq.

If σ is a uniformly strict selective memory equilibrium, there are ε, C P R`` such
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that for all s P S and ν P ∆pΘq,

νpΘm
s pσ, εqq

1 ´ νpΘm
s pσ, εqq

ą C ùñ tσpsqu “ BRps, νq.

Proof. First we show that for every σ P AS, s P S, and ε ą 0, Θm
s pσq and Θm

s pσ, εq

are nonempty and compact. By Assumption 1, there exists a p1 P Θ such that

E : “
ÿ

s1PS

ζps1q
ÿ

yPY

msps
1, σpsq, yqp˚

s1,σps1qpyq log p1
s1,σps1qpyq ă 8,

so the function

p ÞÑ
ÿ

s1PS

ζps1q
ÿ

yPY

msps
1, σpsq, yqp˚

s1,σps1qpyq log ps1,σps1qpyq

is finite-valued and continuous on the nonempty and compact set

Θ X tp :
ÿ

s1PS

ζps1q
ÿ

yPY

msps
1, σpsq, yqp˚

s1,σps1qpyq log ps1,σps1qpyq ď Eu.

Therefore Θm
s pσq is nonempty and compact by Theorem 2.43 in Aliprantis and Border

[2013]. The result for Θm
s pσ, εq is an immediate consequence given the continuity of

the supnorm.
For the first part of the lemma, suppose σ is not a selective memory equilibrium.

Then there is an s1 P S such that σps1q R BRps1,∆pΘm
s1 pσqqq. The upper hemicontinuity

of the best reply map BRps1, ¨q and the compactness of Θm
s1 pσ, εq imply that there are

ε, C P R`` such that if νpΘm
s1 pσ,εqq

1´νpΘm
s1 pσ,εqq

ą C then σps1q R BRps1, νq.
For the second part of the lemma, suppose σ is a uniformly strict selective memory

equilibrium. The upper hemicontinuity of the best reply map BRps, ¨q for all s P S and
the compactness of Θm

s pσ, εq imply that there are C, ε P R`` such that for all s P S if
νpΘm

s pσ, εqq ą Cp1 ´ νpΘm
s pσ, εqq then tσpsqu “ BRps, νq.

Lemma A.3. If σps1q P BRps1,∆pΘqqzBRps1,∆pΘm
s1 pσqqq, then there is

`

s, y
˘

P S ˆ Y

with p˚
s,σpsq

`

y
˘

ą 0 and
ms1

`

s, σpsq, y
˘

“ : ℓ ą 0.

Proof. If σps1q P BRps1,∆pΘqq but is not in BRps1,∆pΘm
s1 pσqqq, then Θm

s1 pσq ‰ Θ. But
then there must be some experience that has objective positive probability under σ that
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is recalled with positive probability under signal s1, as otherwise the maximand function
of equation (2) would be constant and all the elements of Θ would be maximizers, i.e.,
Θm

s1 pσq “ Θ.

Lemma A.4. Let σ P AS. If for every t P N, every at P At, and every optimal policy
π̃, Pat,σrσpsτ`1q “ π̃phτ pRτ qqpsτ`1q for all τ ě ts “ 0 then σ is not a limit strategy.

Proof. Fix an arbitrary optimal policy π̃, t P N, and a history pst, at, ytq P Ht with
Pπ̃pst, at, ytq ą 0. Let

τ “ mintt1 ą t : σpst1q ‰ π̃ppst
1´1, at

1´1, yt
1´1qpRt1´1qqpst1qu

be the first time after pst, at, ytq when π̃ does not prescribe σ. Note that since

π̃ppst̂´1, at̂´1, yt̂´1qpRt̂´1qqpst̂q “ σpst̂q “ πpat,σqppst̂´1, at̂´1, yt̂´1qpRt̂´1qqpst̂`1q

for all t̂ P tt, ..., τ ´ 1u, the agent’s belief until period τ is the same under πpat,σq and π̃.
As Pπ̃pst

1

, at
1´1, yt

1´1, Rt1´1q ą 0 implies Pat,σpst
1

, at
1´1, yt

1´1, Rt1´1q ą 0, the probability
that π̃ prescribes strategy σ forever (i.e., τ “ 8) after history pst, at, ytq equals 0 by
the assumption of the lemma. Thus, since by the law of iterated expectations for every
optimal policy π̃ P AH

Pπ̃ rsuptt : at ‰ σpstqu ă 8s ď

8
ÿ

t“0

ÿ

htPHt

Pπ̃ rσpsτ`1q “ π̃phτ pRτ qqpsτ`1q, @τ ě t|htsPπ̃rhts “ 0,

σ is not a limit strategy.

Lemma A.5. For every π P AH , ps1, s, aq P S2 ˆ A and ε, γ ą 0,

Pπ

«

8
ÿ

t“1

Dtps
1, s, aq1pγ,8q

´ns,a,t

t

¯

1ps1qpst`1q ă 8

ff

“ 1. (20)

Proof. Let t P N, pht, s
1q P Ht ˆS and ε ą 0, and let ψpεq “ 1

2
plogp1{2`εq` logp1{2´

εqq. By the Chernoff inequality (see, e.g., Exercise 2.10 of Boucheron, Lugosi, and
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Massart [2013]), for every ps, aq P S ˆ A

Pπ

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñs,a,tfs,a,tpyq

ns,a,t

´ ms1 ps, a, yq gs,a,tpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ą ε | pht, s
1q

ff

ď |Y |max
yPY

Pπ

«

ˇ

ˇ

ˇ

ˇ

ñs,a,tfs,a,tpyq

ns,a,t

´ ms1 ps, a, yq gs,a,tpyq

ˇ

ˇ

ˇ

ˇ

ą ε | pht, s
1q

ff

ď 2|Y |max
yPY

exp
`

´ε3ns,a,t{3
˘

.

Now we combine this upper bound with the Borel-Cantelli lemma to show that for
any signal-action pair ps, aq that occurs a non-vanishing fraction of time, there are
only finitely many periods where either only a small fraction of recalled histories have
recalled signal-action pair ps, aq or the recalled frequency is a large deviation in the
sense of the last display. Since

8
ÿ

t“1

2|Y | exp
`

´ε3γt{3
˘

ă 8,

the Borel-Cantelli lemma implies that

Pπ

«

8
ÿ

t“1

Dtps
1, s, a, εqIpγ,8q

´ns,a,t

t

¯

Ips1qpst`1q ă 8

ff

“ 1.

B.2 Proof of Remark 2

Proof. To prove the statements, we give three examples with a singleton signal space.
1. Suppose that Y “ t´1, 1u, A “ t´1, 0, 1u, upa, yq “ ay, and the probability of

1 is 0.5 regardless of a. The agent does not have selective memory but is misspecified:
They correctly believe the probability of 1 is independent of their action, but their
prior over this probability has support r0, .2s Y r.8, 1s. Here, a “ 0 is a Berk-Nash
equilibrium that can only be sustained by a non-degenerate belief over the maximizers
.2 and .8. This non-degenerate belief cannot arise from selective memory with a full
support prior because the memory-weighted likelihood is strictly concave.

2. Suppose that Y “ t´1, 0, 1u “ A, upa, yq “ ay ` 1a“´1{20 ´ 1a“1{12, and
the probability distribution over outcomes is p1{2, 1{4, 1{4q regardless of a, with Θ “
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tp1{2, 1{6, 1{3q, p1{3, 1{6, 1{2qu and mpa, yq “ 1 ´
1tpa,´1q:aPAupa,yq

2
. Then, both elements of

Θ are memory-weighted likelihood maximizers. Moreover, 0 is a selective memory
equilibrium that can only be sustained with beliefs that assign a probability between
1{4 and 13{20 to the data generating process p1{2, 1{6, 1{3q and in particular must be
non-degenerate. But when the agent has perfect memory, there is no Θ1 for which
both elements of Θ are maximum likelihood maximizers. Thus, 0 is a selective memory
equilibrium that is not belief equivalent to any Berk-Nash equilibrium.

3. Suppose Y “ t´1, 1u “ A and upa, yq “ ya. Then if mpa,´1q “ 0 ă mpa, 1q for
all a P A, and the agent has a full-support prior over the action-independent outcome
distributions, the only selective memory equilibrium is a “ 1 even if the true probability
of 1 under both actions is less than 1{2 so that the objectively optimal action is ´1.

B.3 Partially Recalled Histories with Partial naïveté

Here, we suppose that the outcome space has a product structure, i.e., Y “ ˆiPIYi and
that the agent may recall only some components of the outcome. Moreover, we continue
to allow for partial naïveté as in Appendix A.3. To model this case, we use a collection
of signal-dependent memory functions ms1 : pS ˆ Y ˆ 2Iq Ñ r0, 1s, where ms1ps, y, Bq

specifies the probability an agent remembers the B Ď I outcome components of a past
realization of experience ps, yq and

ÿ

BP2I

ms1ps, y, Bq “ 1.

Moreover, the agent believes that they remember an occurrence of signal s and outcome
y with probability m̂s1ps, y, Bq. Thus the recalled history at time t is the sequence of
recalled experiences psτ , yτ , Bτ,tq

t
τ“1 where Bτ,t denotes the components of the period

τ outcome recalled at time t, and for all Borel measurable C Ď Θ

µpC|psτ , yτ , Bτ,tq
t
τ“1, s

1q “

ş

C

śt
τ“1 m̂s1psτ ,

ś

iPI Ỹτ,i, Bτ,tqpsτ p
ś

iPI Ỹτ,iqdµppq
ş

Θ

śt
τ“1 m̂s1psτ ,

ś

iPI Ỹτ,i, Bτ,tqpsτ p
śt

τ“1 Ỹτ,iqdµppq

where Ỹτ,i “ Yi if i R Bτ,t and Ỹτ,i “ tyτ,iu if i P Bτ,t. With this, the results of the
paper carry through with the following adaptation of the concept of memory-weighted
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likelihood maximizers:

Θm
s1 pσq “ argmax

pPΘ

ÿ

sPS

ζpsq
ÿ

BP2I

ÿ

yPY

ms1ps, y, Bqp˚
s pyq log

ÿ

y1P
ś

iPI Ỹipy,Bq

m̂s1ps, y1, Bqpspy
1q

where Ỹipy,Bq “ Yi if i R B and Ỹipy,Bq “ tyiu if i P B.

B.4 Permanent Memories

Suppose that the memory function m determines the probability that a particular
experience is recalled in the period just after it occurs. If it is recalled, it is never
forgotten; if it is not, it is never remembered. Then the belief process has the following
recursive formula: for all Borel measurable C Ď Θ,

µt`1pCq “

$

&

%

ş

C pst,at pytqdµtppq
ş

Θ pst,at pytqdµtppq
with probability mpst, at, ytq

µtpCq otherwise
.

It is easy to see that if the strategies in this dynamic system converge, they converge
to a selective memory equilibrium. However, as in Example 8 on underinference, the
fact that permanent memory is “less stochastic” allows behaviors that are not limit
strategies under selective memory to be limit strategies.

Example 10. In the setting of Proposition 4, let Y “ t0, 2.5, 4, 8u with y0 “ 2.5,
p˚
1p0q “ p˚

1p4q “ p˚
1p8q “ 1{3, and vpyq “

?
y. Playing the risky lottery is a selective

memory equilibrium. However, under the extreme event bias where mp0q “ mp8q “ 1,
mp2.5q “ 1{2, and mp4q “ 1{10, the unique selective memory equilibrium is to play
the safe action. ▲

Example 11. Suppose that S is a singleton, Y “ t´1, 1u “ A, upa, yq “ ay and
the probability of 1 is 0.3 regardless of a. The agent (correctly) believes that the
action does not affect the outcome and assigns positive probability to every possible
distribution over outcomes. Let mpa, yq “ 1{100 if a “ y and mpa, yq “ 1 otherwise,
so the agent is more likely to recall periods where their action mismatched the state
than when they matched. In this case, by Theorem 1 for every optimal policy π,
the action process Pπ almost surely does not converge. Indeed, the memory-weighted
likelihood maximizers for action 1 assign probability 3{1000 to y “ 1, inducing 0 as
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the unique best reply, while the memory-weighted likelihood maximizers for action ´1

assign probability 993{1000 to y “ 1 inducing 1 as the unique best reply.

OA-7


	Introduction
	Setup
	Examples

	Long-Run Outcomes
	Selective Memory Equilibrium
	Global Convergence to Equilibrium

	Specific Forms of Selective Memory
	Similarity-Weighted Memory and Self-Confirming Equilibrium
	Ego-Boosting Memory Bias and Overconfidence
	Extreme Experience Bias and Risk Attitudes

	Alternative Models
	Underinference
	Selective Memory and Misspecification

	Discussion
	Appendix
	Preliminaries
	Proof of Theorem 1
	Partial naïveté

	For Online Publication
	Proof of Lemmas
	Proof of Remark 2
	Partially Recalled Histories with Partial naïveté
	Permanent Memories


