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Abstract. We consider “nice” games (where action spaces are compact in-
tervals, utilities continuous and strictly concave in own action), which are used
frequently in classical economic models. Without making any “richness” assump-
tion, we characterize the sensitivity of any given Bayesian Nash equilibrium to
higher-order beliefs. That is, for each type, we characterize the set of actions
that can be played in equilibrium by some type whose lower-order beliefs are
all as in the original type. We show that this set is given by a local version
of interim correlated rationalizability. This allows us to characterize the robust
predictions of a given model under arbitrary common knowledge restrictions.

We apply our framework to a Cournot game with many players. There we show
that we can never robustly rule out any production level below the monopoly
production of each firm. This is even true if we assume common knowledge that
the payoffs are within an arbitrarily small neighborhood of a given value, and
that the exact value is mutually known at an arbitrarily high order, and we fix
any desired equilibrium.
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1. Introduction

Most economic applications, even those that model incomplete information, fix
a specific type space. They thus make common-knowledge assumptions that are
difficult to verify in the modeling stage. Unfortunately, as in the well-known e-
mail game example of Rubinstein (1989), the equilibrium behavior may be highly
sensitive to these assumptions, so the researcher may not be able to know whether
his predictions are valid. Indeed, for finite action games, we showed in Weinstein
and Yildiz (2007a) [hereafter WY] that whenever there are multiple rationalizable
actions and the space of basic uncertainty is rich, rationalizable strategies are
highly sensitive to common-knowledge assumptions. In fact, by relaxing these
assumptions suitably one can make any rationalizable action the unique solution.
In this paper, changing our solution concept to Bayesian Nash equilibria, we extend
this result in two important directions.

First, this paper relaxes the richness assumption in WY. There, we assume that
the set of underlying payoff parameters is rich enough so that each action could
be dominant at some parameter value. In other words, there are no common-
knowledge restrictions on payoffs. An application, however, may impose a natural
structure on payoffs, and the researcher may be willing to assume that this struc-
ture is common knowledge. For example, it may be natural to assume that the
bidders in an auction care only about whether they win the object and how much
they pay in case they win. Such a bidder would be indifferent towards how he loses
the object, and in that case submitting a low bid cannot be a strictly dominant
action for him. If the researcher is willing to assume that this is indeed common
knowledge, then the richness assumption of WY would fail. In this paper, we
show that we can characterize the sensitivity of equilibrium strategies without the
full richness assumption. The characterization now depends on a local version of
interim correlated rationalizability, rather than the usual interim correlated ratio-
nalizability defined in Dekel, Fudenberg, Morris (2007).1

Second, we generalize from finite-action games to nice games (Moulin, 1984),
which are commonly used in classical economic models. In these games, the action

1Local rationalizability starts with a subset of actions for each player and applies the best
response function iteratively, instead of starting with the set of all possible actions. The word
local here does not refer to local best replies or nearby types.
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spaces are compact intervals, and the utility functions are continuous and strictly
concave in own action, as in Cournot competition and differentiated Bertrand
competition. The assumption of finite-action games with finite types is used in
WY to ensure measurability of a certain constructed mapping. There is no way to
completely solve the measurability problem for general infinite games, but here we
are able to solve the measurability problem by showing that rationalizability in nice
games has a special structure. The keys are that in nice games, any rationalizable
action is a best reply to a deterministic theory of the other players’ actions, and
that at each step in the elimination process, the set of remaining actions is an
interval. A further advantage of nice games is the uniqueness of best replies. This
avoids our having to allow small perturbations to lower-order beliefs; instead we can
assume the parameter is mutually known up to arbitrary order, with no reference
to a topology on each order of beliefs. The use of a fixed equilibrium also plays
a role, by telling us that a player has a consistent theory of the actions taken by
each type of the other players.

Since we do not make any richness assumption on the set of payoff functions, our
result allows us to analyze the robustness of equilibrium predictions in complete
information games under weaker robustness concepts, such as that given by the
uniform topology. Specifically, suppose that instead of assuming common knowl-
edge of payoffs, we assume that the exact payoffs are mutually known up to an
arbitrary finite order and that it is common knowledge that the payoffs are in an ar-
bitrarily small neighborhood of the actual payoffs. Then, our result states that for
an equilibrium prediction to remain valid under these slightly weaker assumptions,
it must be true for all locally interim correlated rationalizable strategies.

In some important games this leads to disturbing conclusions. As an example, we
consider a Cournot oligopoly with linear cost function and sufficiently many firms.
We can show that in such a game any production level that is less than or equal to
the monopoly production is locally rationalizable. Suppose we weaken the complete
information assumption just slightly, by assuming instead that the payoffs are
mutually known up to an arbitrarily high finite order and it is common knowledge
that the payoffs are within an arbitrarily small neighborhood of the original payoffs.
Then, our theorem tells us that even a fixed equilibrium now yields no sharper
prediction than the trivial one given by mere individual rationality, that firms’
productions do not exceed the monopoly level.
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In the next section, we lay out our model. In Section 3, we introduce our notion
of sensitivity of equilibrium strategies and present our general result. In Section 4,
we study the robustness of equilibrium predictions in complete information games
to the mild perturbations as in the Cournot example above. In Section 5, we
present our application on Cournot oligopoly. Finally, in Section 6, we discuss the
literature and the role of our modeling assumptions in more detail. In particular,
we present two extensions, one to multidimensional action spaces and one to infinite
type spaces. Some of the proofs are relegated to the appendix.

2. Basic Definitions

We consider n-player nice games with a possibly unknown payoff-relevant pa-
rameter θ ∈ Θ∗, where Θ∗ is a compact metric space, and with a finite set
N = {1, 2, . . . , n} of players. In a nice game, the action space of each player i
is Ai = [0, 1]; the space of action profiles is A = [0, 1]n,2 and the utility function
ui : Θ

∗ × A → R of player i is continuous in the action profile a = (ai, a−i) ∈ A

and strictly concave3 in own action ai ∈ Ai. We fix the players, action space and
utility function and consider the set of games that differ in their specifications of
the belief structure on θ, i.e. their type spaces, which we also call models. For-
mally, by a (finite) model, we mean a finite set Θ× T1 × · · · × Tn associated with
beliefs κti ∈ ∆ (Θ× T−i) for each ti ∈ Ti, where Θ ⊆ Θ∗.4 By associating each
type ti with a belief κti, we encode all the relevant information about the model
into types. We designate ti as a generic type and Θ× T as a model that contains
ti.

2Notation: Given any list X1, . . . ,Xn of sets, we write X = X1 × · · · ×Xn with typical ele-
ment x, X−i =

Q
j 6=iXj with typical element x−i, and (xi, x−i) = (x1, . . . , xi−1, xi, xi+1, . . . , xn).

Likewise, for any family of functions fj : Xj → Yj , we define f−i : X−i → X−i by

f−i (x−i) = (fj (xj))j 6=i. Given any metric space (X, d), we write ∆(X) for the space of proba-

bility distributions on X, endowed with Borel σ-algebra and the weak topology.
3We use the strict concavity assumption to make sure that for any belief over the other

players’ actions, a player’s utility function is always single-peaked in his own action. (Mere
single-peakedness is not strong enough, because it is not preserved in the presence of uncertainty.)
4It is standard to define a type space as a pair (T, κ). For convenience, we suppress the belief

map κ in our notation of type spaces. This will cause no confusion, as we will never use the
same labels for types in two different spaces, so we can safely associate types themselves with
beliefs rather than considering them as merely labels.
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Remark 1. In our formulation, in any model it is common knowledge that the
payoff functions are in {u (θ, ·) |θ ∈ Θ∗}. Since Θ∗ is arbitrary, this allows arbitrary
common knowledge restrictions on payoff functions.

Given any type ti in a type space Θ× T , we can compute the first-order belief
h1i (ti) ∈ ∆ (Θ∗) of ti (about θ), second-order belief h2i (ti) ∈ ∆ (Θ∗ ×∆ (Θ∗)n)

of ti (about θ and the first-order beliefs), etc., using the joint distribution of the
types and θ. Note that h1i (ti) is computed from κti, h

2
i (ti) is computed from κti

and from those κt−i with κti (t−i) > 0, and so on. Using the mapping hi : ti 7→
(h1i (ti) , h

2
i (ti) , . . .), we can embed all such models in the universal type space

(Mertens and Zamir (1985) and Brandenburger and Dekel (1993)). We will be
interested in the subset T u of the universal type space consisting of hierarchies
that can arise in finite models. That is, we consider T u = T u

1 × · · · × T u
n where

T u
i = {hi (ti) |ti ∈ Ti for some finite model Θ× T} .

A strategy of a player i with respect to Ti is any function si : Ti → Ai. Given
any type ti and any profile s−i of strategies, we write π (·|ti, s−i) ∈ ∆ (Θ×A−i) for
the joint distribution of the underlying uncertainty and the other players’ actions
induced by ti and s−i. We define π (·|ti, s−i) similarly for functions s−i : Θ×T−i →
A−i. For each i ∈ N and for each belief π ∈ ∆ (Θ×A−i), we write BRi (π) for the
unique action ai ∈ Ai that maximizes the expected value of ui (θ, ai, a−i) under the
probability distribution π. A strategy profile s∗ = (s∗1, s

∗
2, . . .) is a Bayesian Nash

equilibrium if and only if at each ti,

s∗i (ti) = BRi

¡
π
¡
·|ti, s∗−i

¢¢
.

Note that under our assumptions, there exists a Bayesian Nash equilibrium s∗ on
T u (see Yildiz (2009)).

We will consider singleton selections from Bayesian Nash equilibria of models,
picking a Bayesian Nash equilibrium for each model such that when we put all these
models together, the resulting strategy profile is a Bayesian Nash equilibrium of
the larger game. This can be thought of as a consistency requirement of a theory of
selection for various games. More precisely, we will fix a Bayesian Nash equilibrium
s∗ : T u → A in T u and pick the Bayesian Nash equilibrium s∗|T with

s∗|T (t) = s∗(h(t)) (∀t ∈ T )
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as the solution in type space T . (Notice that s∗|T is a Bayesian Nash equilibrium
of T .) Multiple equilibria are introduced to our analysis trivially, by considering
sets of equilibria s∗ on T u, which does not affect our analysis.

Our formulation also restricts the equilibrium action to depend only on the
hierarchy of beliefs. That is, if there are two types ti and t0i in possibly two different
models with identical belief hierarchies (i.e. hi (ti) = hi (t

0
i)), then the equilibrium

actions are the same for ti and t0i. In particular, in a model with redundant types,
all types with identical belief hierarchies play the same action, ruling out the extra
equilibria introduced by the redundant types. This is the only restriction imposed
on the solution of individual models: Yildiz (2009) shows that given any family of
models Θα × Tα with equilibria sα : Tα → A such that the types with identical
belief hierarchies play the same action, there exists an equilibrium s∗ : T u → A

such that s∗ (t) = sα (t) for all t ∈ Tα and for all α.

The next result establishes that s∗ (T u) is a product of convex intervals:

Lemma 1. For any equilibrium s∗ : T u → A and any i ∈ N , s∗i (T
u
i ) is convex.

As we detail in the appendix, this very useful result follows from the facts that
the (single-valued) best-response function is continuous with respect to beliefs and
that T u is a convex set when types are represented by their beliefs. This is despite
the fact that s∗ is highly discontinuous and T u is a large, complicated type space.
The result also applies to the standard universal type space.

Local Interim Rationalizability. We will show that the sensitivity of equilib-
rium strategies is characterized by a local version of (interim correlated) ratio-
nalizability (for the original version, see Dekel, Fudenberg, and Morris (2007),
Battigalli (2003), Battigalli and Siniscalchi (2003)). Interim correlated rationaliz-
ability allows correlations not only within players’ strategies but also between their
strategies and θ. For any set B = B1 × · · · ×Bn ⊂ A and any i and ti, we set

S0i [B, ti] = Bi

and define sets Sk
i [B, ti] for k > 0 iteratively by

Sk
i [B, ti] = {BRi

¡
margΘ×A−iπ

¢
|π ∈ ∆ (Θ× T−i ×A−i) ,

margΘ×T−iπ = κti , π
¡
a−i ∈ Sk−1

−i [B, t−i]
¢
= 1}.
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The set Sk
i [B, ti] consists of best replies to beliefs that assign positive probability

only to the actions that are in Sk−1
−i [B, ·]. As in Dekel, Fudenberg, and Morris

(2007), Sk
i [B, ti] only depends on hki (ti), not the particular type space or any

higher-order beliefs. That is,

(2.1) Sk
i [B, ti] = Sk

i

£
B, t̃i

¤
whenever hmi (ti) = hmi

¡
t̃i
¢
for all m ≤ k.

We define the limit set, which we call the set of locally interim correlated rational-
izable actions with respect to B, by

(2.2) S∞i [B, ti] =
∞\
k=0

∞[
m=k

Sm
i [B, ti] .

Note that unlike in the typical elimination process, the sequence of sets Sk
i [B, ti]

may become larger or be incomparable to one another. Therefore, to make sure
the rationalizable set S∞i [B, ti] is well-defined, we have used in (2.2) the lim sup,
or the set of actions contained in Sk

i [B, ti] for infinitely many k. In the following
section we will see that in the case of primary interest, when B is the range of an
equilibrium, the sets indeed decrease and we have an ordinary elimination process.
Nevertheless, the general definition is useful: since Sk

i [B, ti] and hence S
∞
i [B, ti]

are monotone with respect to set inclusion in the argument B, when we know
B ⊂ s∗ (T u) we can use S∞i [B, ti] as a lower bound in Proposition 1. This is the
motivation for using the lim sup in (2.2) rather than the lim inf or intersection; it
gives the largest lower bound in the sequel. Finally, note that when B = A, we
have simply the usual elimination process for interim correlated rationalizability,
and can write Sk

i [ti] for S
k
i [A, ti].

The following result is an extension of earlier results by Moulin (1984) and
Battigalli (2003) to local interim correlated rationalizability.

Lemma 2. For any convex B = B1×· · ·×Bn, any i, ti, k, and any ai ∈ Sk
i [B, ti],

ai = BRi (π (·|ti, ŝ−i))

for some ŝ−i : Θ× T−i → A−i with ŝ−i (θ, t−i) ∈ Sk−1
−i [B, t−i] for all (θ, t−i).

That is, in a nice game, every rationalizable action is a best reply to a deter-
ministic theory about how the other players’ actions are related to their types and
the underlying parameter. Here, the action of another player j may vary with θ

or a third player’s type because we allow all possible correlations.
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3. Sensitivity to Higher-order Beliefs

In this section, we will introduce a straightforward measure of sensitivity of
a strategy to higher-order beliefs and present our general result, which gives a
characterization of sensitivity in terms of local interim correlated rationalizability.

Fix any strategy s∗i : T
u
i → Ai on T u

i and any type ti of a player i. According
to strategy s∗i , type ti will play s∗i (hi (ti)). Now imagine a researcher who only
knows the first k orders of beliefs of player i and knows that he plays s∗i . All the
researcher can conclude from this information is that i plays one of the actions in5

Ak
i [s

∗
i , ti] ≡

©
s∗i
¡
hi
¡
t̃i
¢¢
|hi
¡
t̃i
¢
∈ T u

i , hmi
¡
t̃i
¢
= hmi (ti) ∀m ≤ k

ª
.

That is, an action is in Ak
i [s

∗, ti] if and only if it is played according to s∗i by a
type t̃i that comes from a finite model and whose first k order beliefs are as in
ti. Therefore, Ak

i [s
∗
i , ti] measures precisely how sensitive the strategy s∗i is to the

specification of beliefs at orders higher than k when the first k orders of beliefs are
as specified by ti. Assuming, plausibly, that a researcher can verify only finitely
many orders of a player’s beliefs, all a researcher can ever know is that player i
will play one of the actions in

A∞i [s
∗
i , ti] =

∞\
k=0

Ak
i [s

∗
i , ti] .

If the researcher knew only that the strategy of i is in a given set Si, rather than
knowing what his strategy is, then he could conclude from his information only
that i will play an action in

Ak
i [Si, ti] =

[
s∗i∈Si

Ak
i [s

∗
i , ti] .

The main result of this paper characterizes the sets Ak
i [s

∗
i , ti] by local rationaliz-

ability:

Proposition 1. For any equilibrium s∗ and any (i, k, ti),

Ak
i [s

∗
i , ti] = Sk

i [s
∗ (T u) , ti] .

In particular, when s∗ (T u) = A, Ak
i [s

∗
i , ti] = Sk

i [ti]. Also, for any B ⊆ s∗ (T u),
S∞i

£
B, t̂i

¤
⊆ ∪m≥kSm

i

£
B, t̂i

¤
⊆ Ak

i [s
∗
i , ti].

5Note that it would suffice to require hki
¡
t̃i
¢
= hki (ti), which by coherence entails agreement

in all lower-order beliefs. We find it more intuitive to refer to agreement at orders 1 through k.
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Proposition 1 tells us a way of determining how sensitive an arbitrary equilibrium
s∗ is to the specifications of beliefs at orders higher than k: Consider the set of
all actions that are played by some type according to s∗, without requiring any
connection to the beliefs at hand. Apply the best response operator to this set k
times, allowing all possible correlations. The resulting set is precisely the set of
actions that could be played by types whose first k orders of beliefs are as specified
at the beginning. When the parameter space is rich enough so that all actions are
played by some types, this set is simply the set of actions that survive kth-order
elimination of strictly dominated actions in the interim stage. When we allow k

to be arbitrarily high, this set is simply the set of all (locally) interim correlated
rationalizable actions. It is immediate from their definition that the sets Ak

i [s
∗
i , ti]

are decreasing in k, i.e. Ak
i [s

∗
i , ti] ⊇ Ak+1

i [s∗i , ti]. The equality in the proposition
then implies that the sets Sk

i [s
∗ (T u) , ti] are also decreasing in k. That is, when

we start with the range s∗ (T u) of an equilibrium, the above process is, in fact, an
elimination process:

Corollary 1. For any equilibrium s∗ and any (i, k, ti), Sk
i [s

∗ (T u) , ti] ⊇ Sk+1
i [s∗ (T u) , ti].

Sometimes, it may be difficult to know the set of actions played by arbitrary
types according to s∗, but we may still know the behavior of certain types, e.g.,
the common knowledge types. In that case, we can still use Proposition 1 to find
a lower bound: consider the set of actions that are known to be played by some
type and apply the best response correspondence k times. In that case, Sk

i [B, ti]

may not be decreasing in k, and one can find a better lower bound by iterating
the procedure further. Since Sm

i [B, ti] ⊆ Am
i [s

∗
i , ti] ⊆ Ak

i [s
∗
i , ti] for each m ≥ k,

we have ∪m≥kSm
i

£
B, t̂i

¤
⊆ Ak

i [s
∗
i , ti].

A comparison of this result with that of WY is useful. In WY, we consider
a finite action game and assume that the parameter space is so rich that every
action becomes dominant at some parameter value. Then, we show that for each
ai ∈ Sk

i [ti] and each rationalizable strategy si, we can perturb first k order beliefs
arbitrarily slightly and change the higher-order beliefs to obtain a type t̃i such
that si

¡
t̃i
¢
= ai. Here, we consider nice games instead of finite-action games.

At the expense of focusing on Bayesian Nash equilibria, rather than arbitrary
rationalizable strategies, we strengthen the result in two ways. First, we do not
make any richness assumption, allowing arbitrary common knowledge restriction
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on payoffs. Instead, we give a general characterization, Ak
i [s

∗
i , ti] = Sk

i [s
∗ (T u) , ti],

that depends on the the range of equilibrium on T u. Second, since the best reply is
always unique, we do not need to perturb the lower-order beliefs at all, and hence
our result does not refer directly to any topology on beliefs.

We will now give the proof for k = 1. Our general proof, which is in the appendix,
uses the same arguments inductively. The inclusion A1i [s

∗
i , ti] ⊆ S1i [s

∗ (T u) , ti]

follows from the definitions and (2.1). Indeed, for any ai ∈ A1i [s
∗
i , ti], we have

ai = s∗i
¡
t̃i
¢
for some t̃i with h1i

¡
t̃i
¢
= h1i (ti), implying also ai = BRi

¡
π
¡
·|t̃i, s∗−i

¢¢
.

Then, ai ∈ S1i
£
s∗ (T u) , t̃i

¤
= S1i [s

∗ (T u) , ti], where the last equality is by (2.1).

To show the inclusion S1i [s
∗ (T u) , ti] ⊆ A1i [s

∗
i , ti], take any type ti, from a finite

type space Θ× T , and any ai ∈ S1i [s
∗ (T u) , ti]. We need to construct a new type

t̃i, from a finite type space Θ̃× T̃ , such that

(1) h1i
¡
t̃i
¢
= h1i (ti), i.e.,

P
t̃−i∈T̃−i κt̃i

¡
θ, t̃−i

¢
=
P

t−i∈T−i κti (θ, t−i) for each
θ ∈ Θ, and

(2) s∗i
¡
t̃i
¢
= ai, i.e., ai = BRi

¡
π
¡
·|t̃i, s∗−i

¢¢
.

By Lemma 1, s∗ (T u) is a product of of convex sets. Hence, by Lemma 2,
ai = BRi (π (·|ti, s−i)) for some function s−i : Θ × T−i → A−i with s−i (θ, t−i) ∈
s∗−i
¡
T u
−i
¢
. By definition, for each a−i ∈ s−i (Θ× T−i), which is contained in

s∗−i
¡
T u
−i
¢
, there exists t−i [a−i] ∈ T u

−i such that s
∗
−i (t−i [a−i]) = a−i. We will define

our type t̃i by beliefs

(3.1) κt̃i (θ, t−i [a−i]) = π (θ, a−i|ti, s−i) (∀θ ∈ Θ, a−i ∈ s−i (Θ× T−i)) .

That is, we assign the probability of an action under π (·|ti, s−i) to a type who
plays that action in equilibrium, while we keep the probabilities of θ intact. It is
then straightforward to check that the two conditions above are satisfied. First,X

t−i[a−i]

κt̃i (θ, t−i [a−i]) =
X
a−i

π (θ, a−i|ti, s−i) =
X

t−i∈T−i

κti (θ, t−i) .

Here, the first equality is by (3.1). To see the second equality, note that both
expressions are equal to the probability type ti assigns on θ. The second condition
is satisfied (i.e. ai = BRi

¡
π
¡
·|t̃i, s∗−i

¢¢
) because, for each (θ, a−i),

π
¡
θ, a−i|t̃i, s∗−i

¢
=

X
s∗−i(t−i)=a−i

κt̃i (θ, t−i) = κt̃i (θ, t−i [a−i])

= π (θ, a−i|ti, s−i)
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and ai = BRi (π (·|ti, s−i)). (It is also clear that t̃i comes from a finite space.6)

It is crucial for the proof and the result that s∗ is an equilibrium. Since s∗ is
an equilibrium, each type plays a best response to the same strategy profile s∗−i of
the other players. This puts a strong restriction on the actions played by different
types. Indeed, we conclude that t̃i plays ai by assuming that both ti and t̃i play
a best reply to s∗−i. On the other hand, in a rationalizable strategy, each type’s
action may be a best response to different rationalizable strategies of the other
players. In that case, we could not make such assumptions, and the result need
not be true.

Lemma 2 also plays a crucial role in the proof. In order for the belief κt̃i to
be well-defined, the mapping a−i 7→ t−i [a−i] needs to be measurable on the set of
actions a−i type ti assigns positive probability when he plays ai as a best reply.
Lemma 2 allows us to focus on the “degenerate belief” for which that set, which
is contained in s−i (Θ× T−i), is finite, and therefore the mapping a−i 7→ t−i [a−i]

is trivially measurable on that domain. Since we have uncountably many actions,
without Lemma 2, we would need to consider beliefs that put positive probability
on an uncountable set of actions. On such a domain, the mapping a−i 7→ t−i [a−i]

need not be measurable.

4. Minimally Robust Predictions of Equilibrium

In this section, we study the minimally robust equilibrium predictions of complete-
information models. For any given complete-information model, instead of assum-
ing that payoffs are common knowledge, we assume that the payoffs are mutually
known up to a finite order k, for arbitrarily high k, and that it is common knowl-
edge that the payoffs are within an arbitrarily small neighborhood. We show that
if a prediction is robust to such a mild relaxation, then it must hold for all locally
rationalizable outcomes near the solution.

Take Θ∗ ⊂ R and fix any θ̄ ∈ int (Θ∗),7 so that all values in Θ∗ε̄ ≡
£
θ̄ − ε̄, θ̄ + ε̄

¤
are possible for some ε̄ > 0. Consider the complete information model T u,0 ≡
6For each a−i, we have t−i [a−i] ∈ T

a−i
−i for some finite model Θa−i × T a−i . We define the

finite model Θ̃× T̃ by Θ̃ =
¡
∪a−iΘa−i

¢
∪Θ, T̃i =

¡
∪a−iT

a−i
i

¢
∪
©
t̃i
ª
, and T̃j = ∪a−iT

a−i
j for all

other players j. The belief of t̃i is defined as above, and the beliefs of all the other types are kept
as in the original model each comes from.
7R denotes the set of real numbers, and for any X ⊂ R, int (X) denotes the interior of X.
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tCK

¡
θ̄
¢ª
in which it is common knowledge that θ = θ̄. Towards relaxing this

common knowledge restriction slightly, for each ε ∈ (0, ε̄], take Θ∗ε ≡
£
θ̄ − ε, θ̄ + ε

¤
as the parameter space. Consider the space T u,ε of all belief hierarchies of types
that come from finite type spaces in which it is common knowledge that θ ∈ Θ∗ε.
Fix any Bayesian Nash equilibrium s∗ : T u,ε̄ → A. Note that since T u,ε̄ contains
all type spaces T u,ε with ε ∈ [0, ε̄] as belief closed subspaces, the restriction of
s∗ to each of these spaces induces a Bayesian Nash equilibrium on that space.
In the complete information model T u,0, s∗ yields s∗

¡
tCK

¡
θ̄
¢¢
as the unique out-

come. If one relaxes the common knowledge restriction, by instead assuming that
it is common knowledge that θ is in the ε-neighborhood Θ∗ε of θ̄ and that players
have mutual certainty of θ = θ̄ up to order k,8 then the set of possible outcomes
according to s∗ is

Ak,ε
£
s∗, θ̄

¤
≡
©
s∗
¡
h
¡
t̃
¢¢
| h
¡
t̃
¢
∈ T u,ε, hm

¡
t̃
¢
= hm

¡
tCK

¡
θ̄
¢¢

∀m ≤ k
ª
.

Definition 1. The minimally-robust prediction of s∗ at θ̄ is

A∞,0
£
s∗, θ̄

¤
≡

\
k<∞,ε∈(0,ε̄)

Ak,ε
£
s∗, θ̄

¤
.

Note that if a ∈ A∞,0
£
s∗, θ̄

¤
, we cannot rule out that a is the outcome of s∗

even if we know that the players have kth-order mutual certainty of θ = θ̄ and it
is common knowledge that θ is in ε neighborhood of θ̄, regardless of the sizes of
k and ε. Conversely, if a 6∈ A∞,0

£
s∗, θ̄

¤
, then there exist k and ε > 0 such that

we can rule out a as the outcome of s∗ whenever we know that the players have
kth-order mutual certainty of θ = θ̄ and it is common knowledge that θ is in ε

neighborhood of θ̄. Note also that we consider only the predictions of the form
"the outcome is in set B". Robustness of other predictions can be deduced from
the robustness of such basic predictions (see WY). In general, for a prediction to
be minimally robust, it must hold for all outcomes in A∞,0

£
s∗, θ̄

¤
.

8Here, we use the term certainty instead of knowledge to emphasize that the truth axiom is not

assumed, i.e., a player may be certain of something that happens to be false. For example, the
common knowledge assumption that θ = θ̄ in model Tu,0 =

©
tCK

¡
θ̄
¢ª
is weakened to common

certainty when we embed tCK
¡
θ̄
¢
into Tu,ε with ε > 0, as Tu,ε contains a type ti that assigns

positive probability on
¡
θ, tCK−i

¡
θ̄
¢¢
for some θ 6= θ̄.
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Towards finding a lower bound for the minimally-robust prediction, for any a ∈ A

and any ε > 0, we write B (a, ε) = ([a1 − ε, a1 + ε]× · · · × [an − ε, an + ε])∩A for
the ε-neighborhood of a.

Definition 2. For any a ∈ A and θ̄, the locally rationalizable set at
¡
a, θ̄
¢
is

S∞
£
a, θ̄
¤
≡
\
ε>0

S∞
£
B (a, ε) , tCK

¡
θ̄
¢¤
.

Note that in order to compute the locally rationalizable set, one does not need
to consider the payoff or information perturbations. In the complete information
model, one slightly perturbs the equilibrium outcome and applies best response
operator iteratively. The difference between various notions of rationalizability
disappears because there is no payoff uncertainty. Finally, we assume that θ is
payoff-relevant around the equilibrium value of the complete information game:

Assumption 1. There exists a neighborhood of θ̄ on which, for each i ∈ N ,
fi (θ) ≡ argmaxai ui

¡
θ, ai, s

∗
−i
¡
tCK−i

¡
θ̄
¢¢¢

is continuous and either strictly increas-
ing or strictly decreasing in θ.

Assumption 1 ensures that the minimally robust prediction of s∗ cannot be
sharper than local rationalizability:

Proposition 2. Under Assumption 1, the minimally robust prediction of equilib-
rium s∗ at θ̄ contains the locally interim rationalizable set at

¡
θ̄, s∗

¡
tCK

¡
θ̄
¢¢¢
:

A∞,0
£
s∗, θ̄

¤
⊇ S∞

£
s∗
¡
tCK

¡
θ̄
¢¢

, θ̄
¤
.

Proof. By Assumption 1, for any ε > 0, there exists ε0 > 0 such that for any
a ∈ B

¡
s∗
¡
tCK

¡
θ̄
¢¢

, ε0
¢
and any i ∈ N , there exists θ0 ∈ Θ∗ε such that ai is the

best reply to s∗−i
¡
tCK−i

¡
θ̄
¢¢
under θ0. Then, the type t0i ∈ T u,ε

i that puts probability
1 on

¡
θ0, tCK−i

¡
θ̄
¢¢
plays ai according to s∗. Hence,

B
¡
s∗
¡
tCK

¡
θ̄
¢¢

, ε0
¢
⊆ s∗ (T u,ε) .

Thus, by Proposition 1, S∞
£
B
¡
s∗
¡
tCK

¡
θ̄
¢¢

, ε0
¢
, tCK

¡
θ̄
¢¤
⊆ A∞,ε

£
s∗, θ̄

¤
, showing

that

S∞
£
s∗
¡
tCK

¡
θ̄
¢¢

, tCK
¡
θ̄
¢¤
⊆ A∞,ε

£
s∗, θ̄

¤
.
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Since ε is arbitrary, it follows that

S∞
£
s∗
¡
tCK

¡
θ̄
¢¢

, tCK
¡
θ̄
¢¤
⊆
\
ε>0

A∞,ε
£
s∗, θ̄

¤
= A∞,0

£
s∗, θ̄

¤
.

¤

Proposition 2 establishes that in order for a prediction to be robust, it must
hold for all locally rationalizable actions near equilibrium. In other words, even
under the strong common knowledge restrictions, one cannot make any sharper
prediction than local rationalizability around equilibrium. The converse is not
necessarily true, as the next example illustrates.

Example 1. Take N = {1, 2}, ui (θ, a1, a2) = θa1a2−a3i /3, Θ∗ = [0, 2], and θ̄ = 1.
For every k > 0 and every ε ∈ (0, 1), consider a finite type space

©
θ̄, θ̄ + ε

ª
× T k,ε

in which θ = θ̄ can be mutually known up to order k and not for any higher order
(e.g. consider a version of the e-mail game in which the players send messages
until it becomes kth-order mutual knowledge that θ = θ̄ ). Note that (1, 1) is an
equilibrium of

©
tCK

¡
θ̄
¢ª
, and each

©
θ̄, θ̄ + ε

ª
× T k,ε has an equilibrium in which

each type plays 0. Since tCK
¡
θ̄
¢
is not contained in any T k,ε, by the existence

result in Yildiz (2009), there then exists an equilibrium s∗ : T u → A such that
s∗
¡
tCK

¡
θ̄
¢¢
= (1, 1) and s∗ (t) = (0, 0) for all t ∈ T k,ε and for all (k, ε). One

can easily check that the complete-information game is locally dominance solvable
around the equilibrium: S∞

£
s∗
¡
tCK

¡
θ̄
¢¢

, tCK
¡
θ̄
¢¤
= {(1, 1)}. But, by construc-

tion, (0, 0) ∈ A∞,0
£
s∗, θ̄

¤
. Hence,

A∞,0
£
s∗, θ̄

¤
* S∞

£
s∗
¡
tCK

¡
θ̄
¢¢

, tCK
¡
θ̄
¢¤
.

Therefore, a prediction may not be minimally robust even if it holds for all locally
rationalizable actions. In this example, s∗ is discontinuous at tCK

¡
θ̄
¢
, while there

exists a continuous equilibrium s∗∗ on T u,ε, in which all types play 0. It is tempting
to seek for a characterization by assuming continuity at tCK

¡
θ̄
¢
. Unfortunately,

equilibrium must be discontinuous when there are multiple locally rationalizable
actions (by Proposition 2) or when there are multiple rationalizable actions and
a rich set of parameters (by the result of WY). This example also shows that
Assumption 1 is not superfluous in Proposition 2. To see this, take equilibrium
s∗∗. Assumption 1 does not hold, as fi (θ) = argmaxui

¡
θ, ai, s

∗∗
−i
¡
tCK−i

¡
θ̄
¢¢¢

=
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0 at each θ. In contrast to Proposition 2, we have A∞,0
i

£
s∗∗i , θ̄

¤
= {0} while

S∞i
£
s∗∗
¡
tCK

¡
θ̄
¢¢

, tCK
¡
θ̄
¢¤
= [0, 1).

A number of papers, such as Moulin (1984) and Guesnerie (1992), have analyzed
the relationship between local dominance-solvability and Cournot stability of equi-
librium, i.e. stability under best-reply dynamics. Assuming common knowledge
of payoffs, they show that local dominance solvability is sufficient (but not always
necessary) for stability under small perturbations to equilibrium actions. Here, we
assume that players do not deviate from the equilibrium strategies, but instead
examine a very different kind of robustness, to small perturbations of the interim
beliefs. In contrast to the prior results, we show that local dominance solvability
is a necessary but not a sufficient condition for our notion of robustness.

5. Application: Cournot Oligopoly

In this section, we will show that in Cournot oligopoly with sufficiently many
firms, the minimally robust prediction of Bayesian Nash equilibrium is that no firm
produced more than its monopoly outcome, a trivial implication of profit maxi-
mization. That is, even a slight relaxation of the common-knowledge assumption
will preclude us from making any prediction beyond the elementary fact that no
firm will produce more than the monopoly outcome.

In a Cournot oligopoly with sufficiently many firms, any production level that is
less than or equal to the monopoly production is rationalizable (Bernheim (1984),
Basu (1992)). We will show that this result extends to local interim correlated
rationalizability when the equilibrium of the complete information game is in the
interior of A. Then, Proposition 2 implies that a researcher cannot rule out any
such output level as the equilibrium output for a firm no matter how many orders
of beliefs he specifies, even if he assumes that it is common knowledge that the
payoffs are in an arbitrarily small neighborhood of the true value and subscribes to
strong refinements of equilibrium that yield unique solutions. Even a slight doubt
about the payoffs in very high orders will lead a researcher to fail to rule out any
outcome that is less than the monopoly outcome as a firm’s equilibrium output.

On the other hand, Börgers and Janssen (1995) show that if we replicate both
consumers and the firms in such a way that the cobweb dynamics is stable for the
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resulting demand and supply curves, then the Cournot oligopoly will be dominance-
solvable. In that case, by Proposition 1, equilibrium outcomes will not be sensitive
to higher-order beliefs.

Consider n firms with identical constant marginal cost c > 0. Simultaneously,
each firm i produces qi at cost qic and sell its output at price P (Q; θ) where Q =P

i qi is the total supply. For some fixed θ̄, we assume that Θ∗ is a closed interval
with θ̄ ∈ int (Θ∗). We also assume that P

¡
0; θ̄
¢
> 0, P

¡
·; θ̄
¢
is strictly decreasing

when it is positive, and limQ→∞ P
¡
Q; θ̄

¢
= 0. Therefore, there exists a unique

Q̂ such that P
³
Q̂; θ̄

´
= c. We assume that, on [0, Q̂], P

¡
·; θ̄
¢
is continuously

twice-differentiable and P 0 +QP 00 < 0.

It is well known that, under the assumptions of the model, (i) the profit function,
u
¡
q,Q; θ̄

¢
= q (P (q +Q)− c), is strictly concave in own output q; (ii) the unique

best response q∗ (Q−i) to others’ aggregate production Q−i is strictly decreasing
on [0, Q̂] with slope bounded away from 0 (i.e., ∂q∗/∂Q−i ≤ λ for some λ <

0); (iii) equilibrium outcome at tCK
¡
θ̄
¢
, s∗

¡
tCK

¡
θ̄
¢¢
, is unique and symmetric

(Okuguchi and Suzumura (1971)). We further impose Assumption 1: q∗ (Q−i; θ)
is a continuous and strictly increasing function of θ at

¡
Q−i, θ̄

¢
where Q−i =

(n− 1) s∗j
¡
tCK

¡
θ̄
¢¢
.

Lemma 3. In the Cournot oligopoly above, there exists n̄ <∞ such that for any
n > n̄ and any � > 0,

S∞
£
B
¡
s∗
¡
tCK

¡
θ̄
¢¢

, ε
¢
, tCK

¡
θ̄
¢¤
=
£
0, qM

¤n
,

where qM is the monopoly output under P
¡
·; θ̄
¢
and s∗

¡
tCK

¡
θ̄
¢¢
is the unique

equilibrium of the complete information game
©
tCK

¡
θ̄
¢ª
.

This is a straightforward extension of a result by Basu (1992) for rationalizability
to local rationalizability. The proof is in the appendix. Together with Proposition
2, this lemma yields the following.

Proposition 3. In the Cournot oligopoly above, there exists n̄ <∞ such that for
any n > n̄ and any Bayesian Nash equilibrium s∗, the minimally robust prediction
of s∗ is that no firm produces more than its monopoly output qM under P

¡
·; θ̄
¢
:

A∞,0
£
s∗, θ̄

¤
=
£
0, qM

¤n
.
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Proof. Since we can put a large upper bound on q, by (i) above, we have a
nice game. Moreover, by Lemma 3, S∞

£
B (a, ε) , tCK

¡
θ̄
¢¤
=
£
0, qM

¤n
for all

ε > 0, showing that S∞
£
s∗
¡
tCK

¡
θ̄
¢¢

, θ̄
¤
=
£
0, qM

¤n
. Hence, by Proposition 2,

A∞,0
£
s∗, θ̄

¤
⊇ S∞

£
s∗
¡
tCK

¡
θ̄
¢¢

, θ̄
¤
=
£
0, qM

¤n
. Conversely, by Proposition 1 and

the definition of A∞,0, A∞,0
£
s∗, θ̄

¤
⊆ S1

£
tCK

¡
θ̄
¢¤
⊆
£
0, qM

¤n
. ¤

Proposition 3 suggests that, with sufficiently many firms, any equilibrium pre-
diction that is not implied by strict dominance will be invalid whenever we slightly
deviate from the idealized complete information model. To see this, consider two
researchers. One is confident that it is common knowledge that θ = θ̄. The other
is slightly skeptical: he is only willing to concede that it is common knowledge
that

¯̄
θ − θ̄

¯̄
≤ ε and agrees with the kth-order mutual certainty of θ = θ̄. He is

an arbitrarily generous skeptic; he is willing to concede the above for arbitrarily
small ε > 0 and arbitrarily large finite k. Proposition 3 states that the skep-
tic nonetheless cannot rule out any output level that is implied by simple profit
maximization.

6. Extensions and Concluding Remarks

We have so far made several assumptions, such as unidimensional action spaces
and finite type spaces. In this section we will describe how our results can be
extended beyond these assumptions and comment on our modeling choices and
the literature.

6.1. Multi-dimensional Action Spaces. We have so far confined ourself to nice
games, in which action spaces are unidimensional intervals and the utility functions
are continuous and strictly concave in own action. These assumptions are made in
order to ensure two properties:

(1) the rationalizable actions are best replies to degenerate beliefs, as in point
rationalizability of Bernheim (1984), and

(2) there is always a unique best reply.

Our characterization is valid whenever these two properties hold. All of the
properties of nice games are needed to imply the first property. The second prop-
erty, though, holds even with multidimensional action spaces. More broadly, with
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unique best replies, the sensitivity of equilibrium strategies is characterized by lo-
cal point rationalizability. In order to state this formally, we define local interim
correlated point rationalizability, denoted by Ṡ∞, for incomplete information games
as follows. For any set B = B1 × · · · ×Bn ⊂ A and any i and ti, we set

Ṡ0i [B, ti] = Bi

and define sets Ṡk
i [B, ti] for k > 0 iteratively by

Ṡk
i [B, ti] = {BRi (π (·|ti, ŝ−i)) |ŝ−i : Θ×T−i → A−i, ŝ−i (θ, t−i) ∈ Sk−1

−i [B, t−i]∀ (θ, t−i)}.

We define the set of locally interim correlated point rationalizable actions with
respect to B by

Ṡ∞i [B, ti] =
∞\
k=0

∞[
m=k

Ṡm
i [B, ti] .

The following characterization holds as long as the best reply is always unique.

Proposition 4. Assume that for each finite model Θ×T , for each i ∈ N , and for
each ŝ−i : Θ × T−i → A−i, there exists a unique best response BRi (π (·|ti, ŝ−i)).
Then, for any equilibrium s∗ : T u → A and any (i, k, ti),

Ak
i [s

∗
i , ti] = Ṡk

i [s
∗ (T u) , ti] .

That is, if one fixes the first k orders of beliefs according to ti and varies the
higher-order beliefs using types from finite type spaces, then s∗i traces Ṡ

k
i [s

∗ (T u) , ti]

without going outside of it. This characterization of sensitivity of equilibrium via
local interim correlated point rationalizability holds as long as there is always a
unique best reply, e.g., when the action spaces are compact and convex sets and the
utility functions are continuous and strictly concave in own action. In particular,
it holds in generalized nice games with multidimensional action spaces.

Our proof for Proposition 1 first obtains Sk
i [s

∗ (T u) , ti] = Ṡk
i [s

∗ (T u) , ti] for all
(i, k, ti) (by Lemmas 1 and 2) and then proves the characterization for Ṡk

i [s
∗ (T u) , ti].

The latter part of the proof uses only the fact that the constructed type has a
unique best reply to s∗−i. Since the uniqueness of the best reply is already assumed
in Proposition 4, our proof of Proposition 1 also proves Proposition 4.
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6.2. Infinite Type Spaces. We have confined ourselves to finite type spaces, only
because we can ensure existence of equilibrium in the space T u of finite types. Our
main result extends to the equilibria of larger type spaces when they exist. Indeed,
in our working paper (Weinstein and Yildiz (2004)) we have proved Proposition 1
for all countable type spaces, by simply taking T u as the belief hierarchies of types
that come from countable type spaces. More importantly, Proposition 1 implies a
lower bound on the sensitivity of equilibria of larger type spaces already, extending
our main contribution to those spaces:

Corollary 2. For any type space T̂ ⊇ T u, for any equilibrium s∗ : T̂ → A on T̂ ,
for any i ∈ N , ti ∈ T u, and k ≥ 0,

Âk
i [s

∗
i , ti] ⊇ Sk

i [s
∗ (T u) , ti]

where Âk
i [s

∗
i , ti] ≡

n
s∗i
¡
hi
¡
t̃i
¢¢
|hi
¡
t̃i
¢
∈ T̂i, hmi

¡
t̃i
¢
= hmi (ti) ∀m ≤ k

o
.

Proof. Since T̂ ⊇ T u, Âk
i [s

∗
i , ti] ⊇ Ak

i [s
∗
i , ti] = Sk

i [s
∗ (T u) , ti], where the last equal-

ity is by Proposition 1 and the fact that the restriction of s∗ to T u is an equilibrium
on T u. ¤

If one enlarges the type space by including more types, equilibrium only becomes
more sensitive to higher-order beliefs because now there are more ways to vary the
higher-order beliefs. Hence, our lower bound for the sensitivity of equilibrium,
which is our main contribution, remains valid. Note, however, that as we enlarge
the type space, the equilibrium may seize to exist. In that case, our result becomes
vacuous.

None of the results mentioned here addresses the sensitivity of equilibrium strate-
gies at the types that come from uncountable type spaces, although the corollary
allows them in the space. The only reason for this is that the measurability prob-
lem in our proof cannot be avoided when uncountable types are included in our
construction without further structure. Apart from this technical problem with our
proof, there is no reason to suspect that the high sensitivity at finite and countable
types would disappear at uncountable types.

6.3. Consistency and Extension Property of Equilibria. In a genuine case
of incomplete information we have no ex ante stage, and can only work with the
players’ hierarchies of beliefs. Since Harsanyi (1967), these beliefs are modeled by
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a type in a type space. There can be multiple types from various type spaces that
model the same situation. In that case, it is natural to require that the solution is
the same for all such types, for otherwise the solution would be dependent on the
way we model the situation. This is the consistency restriction used in this paper.

Nevertheless, Friedenberg and Meier (2008) have recently shown that a type
space T may have an equilibrium that cannot be extended to a larger type space
T 0, even if T does not have any “redundant” types, which have identical belief
hierarchies. As we mentioned earlier, this cannot happen within T u: any equilib-
rium of a finite type space with no redundant types can be extended to T u (Yildiz
(2009)). When it does happen in a larger type space, consistent equilibrium se-
lections may induce a refinement on the solutions of individual games, in a way
that may not be anticipated by the researcher. For example above, one would
necessarily exclude the non-extendable equilibrium of T by fixing an equilibrium
s∗ on T 0 and considering only the solutions induced by s∗ on subspaces. In order
to analyze the sensitivity of the latter equilibria to higher-order beliefs, one needs
to consider a more liberal restriction than consistency on the equilibrium selection.

6.4. Further Literature Review. In Weinstein and Yildiz (2007b), considering
action spaces that come from a compact metric space, and assuming a global sta-
bility condition, we showed that higher-order beliefs have exponentially decreasing
impact on every Bayesian Nash equilibrium in the universal type space. In the
present context, this implies that the equilibrium strategies are not sensitive to
higher-order beliefs in nice games that satisfy the global stability condition, which
are dominance solvable. In this paper, we observe more broadly that the sensitiv-
ity of equilibrium strategies is bounded above by local rationalizability, a fact that
immediately follows from (2.1), which has been originally observed by Dekel, Fu-
denberg, and Morris (2007) for rationalizability. The contribution of this paper is
the lower bound: every equilibrium strategy has to be so sensitive to higher-order
beliefs that it traces all locally rationalizable actions. For example, while Wein-
stein and Yildiz (2007b) emphasize the decreasing impact of higher-order beliefs
in the dominance-solvable game of Cournot duopoly, here we emphasize that, in
Cournot oligopoly, the equilibrium strategies are so sensitive to higher-order beliefs
that one cannot make any non-trivial minimally robust prediction.
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Recently, several papers took complementary approaches to weakening the rich-
ness assumption in WY. First, note that fixing a non-trivial dynamic game tree
contradicts the richness assumption of WY. Chen (2008) shows, however, that
the conclusion of WY remains intact under a weaker richness assumption that
is satisfied by dynamic game trees with unrestricted payoff functions. Weinstein
and Yildiz (2009) extends this result further to the games that are continuous at
infinity, allowing uncountable action spaces in normal form. Without imposing
a richness assumption, Penta (2008a) proves that the conclusion of WY hold for
the (rationalizable) actions that can be traced back to dominance regions through
successive best responses. Penta (2008b) analyzes the sensitivity to higher-order
beliefs under common-knowledge restrictions on payoffs in a similar formulation to
that of Battigalli and Siniscalchi (2003). He proves an analogous result to WY by
using “interim sequential rationalizability”.

Appendix A. Proofs

A.1. Proof of Lemma 1. Take any ai, a0i ∈ s∗i (T
u
i ) and any a

00
i ∈ Ai with ai > a00i > a0i.

By definition, there exist finite belief-closed subspaces Θ × T and Θ0 × T 0 of Θ∗ × T u

with types ti ∈ Ti and t0i ∈ T 0i such that s
∗
i (ti) = ai and s∗i (t

0
i) = a0i. Now, for every

α ∈ [0, 1], define

(A.1) βi (α) = BRi

¡
απ
¡
·|ti, s∗−i

¢
+ (1− α)π

¡
·|t0i, s∗−i

¢¢
.

By the Maximum Theorem, βi is continuous, and since s
∗ is an equilibrium, βi (0) =

BRi

¡
π
¡
·|t0i, s∗−i

¢¢
= s∗i (t

0
i) = a0i and βi (1) = ai. Hence, by the Intermediate-Value

Theorem, there exists α∗ ∈ (0, 1) such that βi (α∗) = a00i . Now, consider the type t
∗
i ∈ T u

i

with

(A.2) κt∗i = α∗κti + (1− α∗)κt0i .

(Note that t∗i is in the finite belief-closed subspace Θ̃× T̃ where Θ̃ = Θ∪Θ0, T̃j = Tj ∪T 0j
for any j 6= i, and T̃i = Ti ∪ T 0i ∪ {t∗i }.) Clearly,

s∗i (t
∗
i ) = BRi

¡
π
¡
·|t∗i , s∗−i

¢¢
= BRi

¡
α∗π

¡
·|ti, s∗−i

¢
+ (1− α∗)π

¡
·|t0i, s∗−i

¢¢
= βi (α

∗) = a00i ,

where the first equality is due to the fact that s∗ is an equilibrium, the second equality
is by (A.2), the third is by definition of βi, and the last is by definition of α

∗.
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A.2. Proof of Lemma 2. We first prove a preliminary technical result:

Lemma 4. Suppose U(x1, x2) : [0, 1] × C → R is continuous and for each fixed x2 is
strictly concave in x1, where C ⊂ Rm is a product of finite closed intervals. Then for
any distribution π on C with π(R) = 1 for some product of (open, half-open, or closed)
intervals R, there exists x∗2 ∈ R with

argmaxx1

Z
x2

U(x1, x2)dπ = argmaxx1 U(x1, x
∗
2).

Proof. Let x∗1 = argmaxx1
R
x2
U(x1, x2)dπ. Define g(x2) = argmaxx1 U(x1, x2). Strict

concavity implies that g is singleton-valued. By the Maximum Theorem, its graph is
closed, hence it is continuous. Assume without loss of generality that C is the closure of
R. Then, since C is compact and connected, the image of C under g is a closed interval,
say [a, b]. If x∗1 < a, then U(x∗1, x2) < U(a, x2) for every x2 soZ

x2

U(x∗1, x2)dπ <

Z
x2

U(a, x2)dπ

a contradiction. By a similar argument for x∗1 > b, we conclude that x∗1 ∈ [a, b], so
there always exists x∗2 ∈ C with the desired property. It remains (by symmetry) only to
contradict the possibility that

a = x∗1 = g(x∗2) < g(x2) (∀x2 ∈ R) ,

where x∗2 is on the boundary of R.

Assume that this is so. Since C is compact and connected, the range of U is compact
and connected, so assume without loss that it is [0, 1]. Strict concavity tells us that
U has a well-defined, finite, strictly decreasing right-derivative with respect to x1 on
(0, 1]× C, which we denote U 0. Note furthermore that for each x1 > a and each x2,

U(x1, x2)− U(a, x2) > (x1 − a)U 0(x1, x2),

implying Z
x2

U(x1, x2)dπ −
Z
x2

U(a, x2)dπ > (x1 − a)

Z
x2

U 0 (x1, x2)dπ.

Hence, if we can find x1 > a for which
R
x2
U 0(x1, x2)dπ > 0 we will have succeeded

by contradicting optimality of a. Indeed, we will show that it has positive liminf as
x1 → a. We will decompose this integral into positive and negative parts. Concavity
tells us that U 0(x1, x2) > 0⇔ x1 < g(x2). Furthermore, there is a uniform lower bound
on the derivative:

U 0(x1, x2) > (U(1, x2)− U (x1, x2))/(1− x1) > −1/(1− x1).

Forthcoming in Games and Economic Behavior



SENSITIVITY TO HIGHER-ORDER BELIEFS 23

We thus haveZ
x2

U 0 (x1, x2)dπ =

Z
x2

£
U 0 (x1, x2)

¤+
dπ +

Z
x2

£
U 0 (x1, x2)

¤−
dπ

≥
Z
x2∈g−1((x1,1])

U 0 (x1, x2)dπ − π(g−1((a, x1]))/(1− x1).

The negative part goes to 0 as x1 → a by monotone convergence of probabilities. To show
that the positive part does not go to zero, observe that π ◦g−1 must assign positive mass
to some interval (c, 1] with c > a. For each x2 ∈ g−1((c, 1]) we have U(a, x2) < U(c, x2).

This means that for some δ > 0 we have π({x2 : U(a, x2) < U(c, x2) − δ}) > 0. But
on this event, concavity gives lim inf

x1→a
U 0 > δ/(c− a) > 0, bounding the positive integral

away from 0 as desired. ¤

One can easily show that every π ∈ ∆ (Θ× T−i ×A−i) with margΘ×T−iπ = κti and

π
³
a−i ∈ Sk−1−i [B, t−i]

´
= 1 is induced by type ti and a mixed belief σ−i ∈ ∆

³
Ŝk−1
−i [B]

´
where Ŝk−1

−i [B] =
Q
(θ,tj ,j)

Sk−1
j [B, tj ] is the set of all functions ŝ−i : Θ×T−i → A−i with

ŝ−i (θ, t−i) ∈ Sk−1
−i [B, t−i] for each (θ, t−i). We are ready to prove the following result,

which immediately implies Lemma 2.

Lemma 5. For any nice game, any convex B = B1 × · · · ×Bn, and for any i, ti, k, the
following are true.

(1) Sk
i [B, ti] is convex.

(2) For each aki ∈ Sk
i [B, ti], there exists ŝ−i ∈ Ŝk−1

−i [B] such that

BRi (π (·|ti, ŝ−i)) = aki .

Proof. We will use induction on k. For k = 0, part 1 is true by definition. Assume
that part 1 is true for some k − 1, i.e., Sk−1

j [B, tj ] is an interval in Aj = [0, 1] for

each j. This implies that Ŝk−1
−i [B] is connected. Moreover, by the Maximum Theorem,

βi (·; ti) that maps each s−i ∈ Ŝk−1
−i [B] to BRi (π (·|ti, s−i)) has a closed-graph and

hence is continuous. (It is a function.) Since Ŝk−1
−i [B] is connected, this implies that

βi

³
Ŝk−1
−i [B] ; ti

´
is connected, and hence it is convex as it is unidimensional. We claim

that βi
³
Ŝk−1
−i [B] ; ti

´
= Sk

i [B, ti]. This readily proves part 1. Part 2 follows from the

definition of βi
³
Ŝk−1
−i [B] ; ti

´
.

Towards proving our claim, let C be the set of functions s−i : Θ× T−i → A−i, so C
is a finite product of intervals [0, 1]. Define U : [0, 1] × C → R by setting U (ai, s−i) =R
ui (θ, ai, s−i (θ, t−i)) dκti . Since ui is strictly concave in ai and continuous in a, U is

strictly concave in ai and continuous. For every ai ∈ Sk
i [B, ti], there exists a belief
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σ−i ∈ ∆
³
Ŝk−1
−i [B]

´
such that ai = argmaxa0i

R
U (a0i, s−i) dσ−i (s−i). Since Ŝ

k−1
−i [B] ⊆

C is a product of intervals by the inductive hypothesis, Lemma 4 then implies that
there exists ŝ−i such that ai = argmaxa0i U (a

0
i, ŝ−i) = BRi (π (·|ti, ŝ−i)). Therefore,

βi

³
Ŝk−1
−i [B] ; ti

´
= Sk

i [B, ti]. ¤

A.3. Proof of Proposition 1. We proceed inductively on k, showing first Sk
i [s

∗ (T u) , ti] ⊆
Ak
i [s

∗, ti]. For k = 0, both sides are equal to s∗ (T u). For any given k and any player i,

write each h−i (t−i) as h−i (t−i) = (λ, η) where λ =
³
h1−i (t−i) , h

2
−i (t−i) , . . . , h

k−1
−i (t−i)

´
and η =

³
hk−i (t−i) , h

k+1
−i (t−i) , . . .

´
are the lower and higher-order beliefs, respectively.

Let L =
©
λ|∃η : (λ, η) ∈ T u

−i
ª
. The induction hypothesis is that

Sk−1
−i [s∗ (Tu) , λ] ≡

[
η0

Sk−1
−i

£
s∗ (T u) ,

¡
λ, η0

¢¤
⊆ Ak−1

−i [s
∗, (λ, η)] (∀ (λ, η) ∈ T u

−i).

Fix any type ti and any ai ∈ Sk
i [s

∗ (Tu) , ti]. We will construct a type t̃i such that
s∗i
¡
t̃i
¢
= ai and the first k orders of beliefs are same under ti and t̃i, showing that

ai ∈ Ak
i [s

∗, ti]. Now, by Lemmas 1 and 2, ai = BRi (π (·|ti, ŝ−i)) for some ŝ−i : Θ∗ ×
T ∗−i → A−i with ŝ−i (θ, t−i) ∈ Sk−1

−i [s∗ (Tu) , t−i]. By the induction hypothesis, for each
a−i in the image of ŝ−i, a−i ∈ Sk−1

−i [s∗ (Tu) , λ] ⊆ Ak−1
−i [s

∗, (λ, η)] for some η. Hence,
there exists a mapping μ : supp(margΘ∗×L×A−iπ (·|ti, ŝ−i))→ Θ∗ × Tu

−i,

(A.3) μ : (θ, λ, a−i) 7→ (θ, λ, η̃ (a−i, θ, λ)) ,

such that

(A.4) s∗−i (λ, η̃ (a−i, θ, λ)) = a−i.

We define t̃i by

κt̃i ≡
³
margΘ∗×L×A−iπ (·|ti, ŝ−i)

´
◦ μ−1,

the probability distribution induced on Θ∗ × Tu
−i by the mapping μ and the probability

distribution π. Notice that, since hki (ti) has finite support and ŝ−i is in pure strategies,

the set supp
³
margΘ∗×L×A−iπ (·|ti, ŝ−i)

´
is finite, in which case μ is trivially measurable.

Hence κt̃i is well-defined. By a well-known isomorphism of Mertens and Zamir (1985),
κt̃i is the belief of a type t̃i, such that

(A.5) hki
¡
t̃i
¢
= margΘ∗×Lκt̃i .
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Since supp
¡
κt̃i
¢
is finite, hi

¡
t̃i
¢
∈ T u

i (as in Footnote 6). By construction of μ, the first
k orders of beliefs (about (θ, λ)) are identical under ti and t̃i:

margΘ∗×Lκt̃i = margΘ∗×L
h³
margΘ∗×L×A−iπ

´
◦ μ−1

i
= margΘ∗×L

³
margΘ∗×L×A−iπ

´
= margΘ∗×Lπ = margΘ∗×L

³
margΘ∗×Tu−iπ

´
= margΘ∗×Lκti ,

where the second equality is by (A.3), which implies that μ leaves θ and λ intact. There-
fore, hki

¡
t̃i
¢
= hki (ti), which also implies that h

m
i

¡
t̃i
¢
= hmi (ti) for each m ≤ k. Towards

showing that s∗i
¡
t̃i
¢
= ai, let π̃ = κt̃i ◦ γ

−1 ∈ ∆
¡
Θ∗ × T u

−i ×A−i
¢
be the equilibrium

belief of type t̃i, where γ : (θ, λ, η) 7→
¡
θ, λ, s∗−i (λ, η)

¢
. By construction,

margΘ∗×L×A−i π̃ = κt̃i ◦ γ
−1 ◦ proj−1Θ∗×L×A−i

=
³
margΘ∗×L×A−iπ

´
◦ μ−1 ◦ γ−1 ◦ proj−1Θ∗×L×A−i = margΘ∗×L×A−iπ.

[By (A.4) and the definition of γ, projΘ∗×L×A−i ◦ γ ◦ μ is the identity mapping, yielding
the last equality.] Therefore,

π
¡
·|t̃i, s∗−i

¢
= margΘ∗×A−i π̃ = margΘ∗×A−iπ.

Since ai is the only best reply to these beliefs, t̃i must play ai in equilibrium s∗:

(A.6) s∗i
¡
t̃i
¢
∈ BRi

¡
π
¡
·|t̃i, s∗−i

¢¢
= BRi

³
margΘ∗×A−iπ

´
= {ai} .

To see the inclusion Ak
i [s

∗, ti] ⊆ Sk
i [s

∗ (Tu) , ti], observe that for any t̃i with hmi
¡
t̃i
¢
=

hmi (ti) for each m ≤ k, we have

s∗i
¡
t̃i
¢
∈ Sk

i

£
s∗ (T u) , t̃i

¤
= Sk

i [s
∗ (Tu) , ti] ,

where the last equality is by (2.1).

A.4. Proof of Lemma 3. Let n̄ be any integer greater than 1 + 1/ |λ|, where λ is as
in (ii). Take any n > n̄. By (iii), B = [q0, q̄0]n for some q0, q̄0 with q0 < q̄0. By (ii), for
any k > 0, Sk

£
B; tCK

¡
θ̄
¢¤
= [qk, q̄k]n, where

q̄k = q∗
³
(n− 1) qk−1

´
and qk = q∗

³
(n− 1) q̄k−1

´
.

Define Qk ≡ (n− 1) qk, Q̄k ≡ (n− 1) q̄k, and Q∗ = (n− 1) q∗, so that

Q̄k = Q∗
³
Qk−1

´
and Qk = Q∗

³
Q̄k−1

´
.

Since (n− 1)λ < 1, the slope of Q∗ is strictly less than −1. Hence Qk decreases with
k and becomes 0 at some finite k̄, and Q̄k increases with k and takes value Q∗ (0) =
(n− 1) qM at k̄ + 1. That is, Sk

£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤n for each k > k̄. Therefore,
S∞

£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤n.

Forthcoming in Games and Economic Behavior



26 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

References

[1] Basu, K.,1992. A characterization of the class of rationalizable equilibria of oligopoly games.
Econ. Letters 40, 187-191.

[2] Battigalli, P., 2003. Rationalizability in infinite, dynamic games with complete information.
Research in Economics 57, 1-38.

[3] Battigalli, P., Siniscalchi, M., 2003. Rationalization and incomplete information. Advanc.
Theoret. Econ. 3(1) Article 3.

[4] Bernheim, D., 1984. Rationalizable strategic behavior. Econometrica 52, 1007-1028.
[5] Börgers T., Janssen M., 1995. On the dominance solvability of large cournot games. Games

Econ. Behav. 8, 297-321.
[6] Brandenburger, A., Dekel, E.,1993. Hierarchies of beliefs and common knowledge. J. Econ.

Theory 59, 189-198.
[7] Carlsson, H., van Damme, E., 1993. Global games and equilibrium selection. Econometrica

61, 989-1018.
[8] Chen, Y., 2008. A structure theorem for rationalizability in dynamic games. Northwestern

University Working Paper.
[9] Dekel, E. et. al., 2006. Topologies on types. Theoretical Economics 1, 275-309.
[10] Dekel, E. et. al., 2007. Interim correlated rationalizability. Theoretical Economics 2, 15-40.
[11] Friedenberg, A., Meier, M., 2008. Context of the game. Working Paper.
[12] Mertens, J., Zamir, S., 1985. Formulation of bayesian analysis for games with incomplete

information. Int. J. Game Theory 10, 619-632.

[13] Moulin, H., 1984. Dominance solvability and cournot stability. Mathematical Social Sciences
7, 83-102.

[14] Okuguchi, K., Suzumura, K., 1971. Uniqueness of the cournot oligopoly equilibrium. Eco-
nomic Studies Quarterly 22, 81-83.

[15] Penta, A., 2008a. On the structure of rationalizability on arbitrary spaces of uncertainty.
PIER Working Paper 09-21.

[16] Penta, A., 2008b. Higher-order beliefs in dynamic environments. Working Paper.
[17] Rubinstein, A., 1989. The electronic mail game: Strategic behavior under ‘almost common

knowledge’. Amer. Econ. Rev. 79, 385-391.

[18] Weinstein, J., Yildiz, M., 2004. Finite-order implications of any equilibrium, MIT Working
Paper.

[19] Weinstein, J., Yildiz, M., 2007a. A structure theorem for rationalizability with application
to robust predictions of refinements. Econometrica, 75, 365-400.

[20] Weinstein, J., Yildiz, M., 2007b. Impact of higher-order uncertainty. Games Econ. Behav.,
60, 200-212.

[21] Weinstein, J., Yildiz, M., 2009. A structure theorem for rationalizability in infinite-horizon
games. Working Paper.

[22] Yildiz, M., 2009. Invariance to Representation of Information. MIT Working Paper.

Forthcoming in Games and Economic Behavior



SENSITIVITY TO HIGHER-ORDER BELIEFS 27

Weinstein: Northwestern University; Yildiz: MIT

Forthcoming in Games and Economic Behavior


