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Abstract

We analyze a sequential bargaining model, where players are allowed to hold different beliefs
about which player will make an offer and when. Excessive optimism about making offers in
the future can cause a delay in agreement. Despite this, the main result states that, if players
will remain sufficiently optimistic for a sufficiently long future, then in equilibrium they will

agree immediately.



1 Introduction

Considering a strict procedure that determines which player will make an offer and when, Stahl
(1972) and Rubinstein (1982) show that, when the delay is costly, in equilibrium, two players
will reach an agreement immediately. Nevertheless, when there are no such strict procedures,
players may hold any beliefs about the negotiation process, thereby holding any beliefs about
what each player will get in case of a delay. In particular, each player may be so optimistic
about what he will get in case of a delay that they may not reach an agreement at the beginning.

In this paper, we will analyze the problem of reaching an agreement in a model that
extends the Rubinstein-Stahl framework, where we will allow players to hold their own (possibly
optimistic) beliefs about the recognition process determining which player will make an offer
when. We take the lack of a common prior as the only source of the differences in beliefs.!

In our model, the recognition process is the only source of bargaining power. In equilibrium,
the recognized player at a given date extracts a non-informational rent, as he makes an offer
that can be rejected only by destroying some of the pie. These rents constitute the bargaining
power: a player’s continuation value is the present value of the rents he expects to extract
when he is recognized in the future. Therefore, our analysis will help us to explore the broader
question of when two rational individuals can reach an agreement even if they hold incompatible
beliefs about which parties will bring which advantages to the table if they keep bargaining.

In our model, we have optimism about a date t whenever each player thinks that the
probability that he will be recognized (and hence will make an offer) at ¢ is higher than what
the other player assesses. We measure the level of optimism about ¢ by y; = p; +p? — 1, where
pt is the probability player i assigns to the event that i is recognized at t.

Excessive optimism can cause a delay. To see this, consider the case where two risk-neutral
players are trying to divide a dollar, which is worth 1 at t =0, 6 € (1/2,1) at ¢t = 1, and zero
afterwards. It is also common knowledge that each player believes with probability 1 that he
will be recognized (and hence will make an offer) at ¢ = 1 independent of recognition at ¢t = 0.
Since the dollar is worth zero afterwards, at ¢ = 1, each player is willing to accept any division,
hence the recognized player takes the whole dollar. Anticipating this, at ¢ = 0, each player
expects to take the whole dollar next day, which is worth 6. Thus, they can agree on a division
at t = 0 only if each gets at least , requiring a minimum total amount of 26 > 1. Since they
have only one dollar, they cannot reach an agreement at ¢t = 0. Therefore, in equilibrium, it is
common knowledge at the beginning that players will not reach an agreement before ¢t = 1.

LIf players’ beliefs are common knowledge and the common-prior assumption holds, then they must hold the
same beliefs, as shown by Aumann (1976). Hence, the differences between players’ beliefs may be caused either
by lack of common knowledge (as in Myerson (1979) and Kennan and Wilson, 1993), or by lack of a common
prior (as in Hicks (1932), Landes (1971), Gould (1973), Posner (1974), and Farber and Bazerman, 1989). For
plausibility of the common prior assumption, see Kreps (1990), Aumann (1998) and Gul (1998).



In contrast with this Example, our main result is an Agreement Theorem. It states that,
if the players will remain sufficiently optimistic for a sufficiently long while, in equilibrium,
they will reach an agreement immediately. That is, the excessive optimism alone cannot be a
reason for a delay in agreement. The reason is simple: A player who is optimistic about the
future will not settle for a small share, even if his opponent believes that he would get even
less if they wait. Hence, when his opponent recognizes that he will remain very optimistic for
a very long while, she will lower her expectations. In equilibrium, their expectations will be so
low that they will agree immediately.

These two seemingly conflicting results share a common intuition. As in our Example,
players will delay the agreement if they are very optimistic about getting a very high rent in
the near future. But the size of this rent depends upon players’ expectations in the future.
Particularly, if their expectations about the rent at ¢+ 1 are high, the rent at ¢ will be small. If
the players will remain sufficiently optimistic for a sufficiently long while, in equilibrium, the
rents in the near future will be so small that each player will prefer to agree on his opponents
terms rather than waiting and getting these rents. Hence our Agreement Theorem.

As our Example indicates, it is crucial for our Agreement Theorem that the optimism stays
high for a long while. Generalizing this example, in Subsection 3.4 we show that, if players
are excessively optimistic for some ¢t* in the near future, while they are excessively pessimistic
for t* +1 (i.e., if y4» is very high while ys+41 is very low), then the agreement may be delayed
until ¢*. Here, t* need not be very small: the delay can be so long that almost half the gains
from trade is lost.?

In order to cause such a long delay, the change in the level of optimism must also be
abrupt. For the special case of transferrable utility and independently-distributed recognition
process, Theorem 2 states that they will reach an agreement immediately, so long as the level of
optimism does not drop substantially at any given date (i.e., so long as y; — y;+1 is sufficiently
low at each t), relaxing the hypothesis of our Agreement Theorem in this case.

Theorem 2 identifies the assumption behind the immediate agreement result in the Rubinstein-
Stahl framework. It is that the level of optimism stays constant — not necessarily that the
optimism is absent.

These results also shed some light on the deadline effect observed in some bargaining
experiments (Roth et al, 1988) and in some real-world negotiations, where players commonly
settle just before the deadline. Above, t* may be a deadline, after which players do not hope
to make any offer. Hence, if the players are very optimistic about making the final offer at
t*, by Subsection 3.4, players will settle just before the deadline, as it is observed. On the
other hand, Theorem 2 suggests a further test for our theory: when the deadline is random

?This is the theoretical bound of the length of deterministic delays. When people learn from the past, the
agreement depends upon the history, in which case the length of the delay can be unbounded (Example 1).



and players can make offers very fast, the deadline effect must disappear.

By requiring the level of optimism to stay high for a long while, our Agreement Theorem
implicitly requires that players’ beliefs are sufficiently firm. That is, they do not update their
beliefs drastically as they observe who gets a chance to make an offer and when. (We will call
such change of beliefs “learning.”) If a player ¢ is known to update his beliefs fast, the other
player, say j, may believe that, if they disagree now, in a short while ¢ will realize that he is
wrong, and thus be willing to agree on j’s terms. In that case, j’s expectation about the future
will be higher than what it would be if ¢’s beliefs were very firm. But ¢ does not find it very
likely that he will change his mind; he might even expect that j will change her mind. This
may cause a disagreement.

Furthermore, in a typical learning process, agents learn faster at the beginning, in which
case the disagreement will be at the beginning of the game, and hence we will observe a delay in
agreement on the path of equilibrium. Considering a canonical model of learning and confining
ourself to the transferrable-utility case, we show for the infinite-horizon case that there exists
some date t** such that players will never reach an agreement before ¢**, and they will always
reach an agreement thereafter. We further demonstrate that, when players’ initial beliefs are
not firm, t** can be large, generating long delays in equilibrium. It is common knowledge at
the beginning of the game that they will disagree until ¢**, distinguishing our theorem from
usual delay results in bargaining with private information.

The outline of the paper is as follows. In the next section, we lay out or model. In Section 3,
we analyze the special case of transferrable utility and independently-distributed recognition
process. There, we use only simple algebra to derive our main results. We describe the
equilibria in Section 4, and present our Agreement Theorem in Section 5. Section 6 contains
the analysis of our canonical model of learning. After discussing the impact of risk-aversion

on reaching an agreement in Section 7, we conclude in Section 8.

2 Model

In this section we will lay out our model. We will write R* for any k-dimensional Euclidean
space, N for the set of non-negative integers.

We take a grid T' = {t € N|t < t} to be our time space for some ¢ < 0o, a set N = {1,2} to
be our set of players, and a compact and convex set U C R? to be the set of all feasible expected
utility pairs. Throughout the paper, we assume that U contains 0 and at least another member
that is strictly greater than 0. We will further assume the following the following regularity
condition.

Assumption FDA  Given any (u',u?) € U, any distinct ¢, j € N, and any v € [0, u’), there

exists some v/ > u/ such that (v!,v?) € U,



That is, the frontier of U is decreasing on the non-negative quadrant. This condition is
satisfied under the free-disposal assumption with locally insatiable preferences.

We will analyze the following game, denoted by G[8, p]. At each t € T', Nature recognizes
a player i € N; i offers an alternative u = (u!,u?) € U; if the other player accepts the offer,
then the game ends yielding a payoff vector 8'u = (§'u!, §'u?) for some & € (0,1); otherwise,
the game proceeds to date t + 1, except for t = ¢t — 1, when the game ends yielding payoff
vector (0,0). We write p = {p; },p for the publicly observed stochastic process that recognizes
the players (so that they can make offers), p, = (po(w), p1(w), ... ,ps_1(w)) € N* for a generic
history of the recognized players at the beginning of date ¢, and P*(-|p,) for an agent i’s
conditional beliefs at any history p, € N*. Players recall everything happened in the past; and
everything described in this paragraph is common knowledge.

Notice that we have two sets of beliefs, one for each player; this is our only departure from
the Rubinstein-Stahl framework.?

Given any ¢« € N and any history p, € N?, we write

for the probability player ¢ assigns to the event that he is going to be recognized at date t > s.
By a belief structure, we mean any full list p = {pi (pS)}i, tp of such probability assessments.
We will also sometimes write G* [6, p] for the game where the belief structure is p.

Take any date t € T and any history p, € N® with s < t. Since we excluded the contingency
that no player is recognized, players’ probability assessments agree at (t,p,) iff p} (p,) +
p? (ps) = 1. Now, if p} (p,) + p? (p,) > 1, then each player thinks that the probability that
he is going to be recognized at t is higher than what the other player assesses. As explained
in the Introduction, being recognized is not bad; so we say that players are optimistic for t
at p, iff p! (p,) + p?(p,) > 1. Likewise, we say that players are pessimistic for t at p, iff
P (ps) + 17 (ps) < 1. We write

i (ps) =i (ps) + 17 (ps) — 1

for the level of optimism for ¢. Finally, common-prior assumption in our context corresponds
to

p=0 (Vel). (CPA)

When CPA holds, by No-trade Theorem of Milgrom and Stokey (1982), players have no

incentive to bet on p. Since we are particularly interested in the case where CPA fails (i.e.,

3With independently distributed p, our model is also isomorphic to an extension of the model of Sakovics
(1993), originally developed by Perry and Reny (1993), a bargaining model where players endogenously choose
when to make an offer.



y # 0), our players do have an incentive to bet on p; and they are precluded from doing
so merely by our imbedded assumption that the side-bets are not feasible (e.g., they are not

enforceable).*

Notation We will designate dates t,s € T, histories p, € Nt, p, € N*®, players i,5,k € N
with ¢ # j, and a belief structure p as generic members. Note that p and y are functions
defined on a large space T x (UserN®) and, for each t € T, pi and y; are stochastic processes,

whose values at any s and p, are p! (p,) and y; (p,), respectively.

3 Dividing a Dollar — An Intuitive Exposition

In this section we confine ourself to the simple bargaining problem of dividing a dollar, and
analyze the subgame-perfect equilibria of a finite-horizon game Gt_[é, p| under the following

two assumptions of transferrable utility and no learning from previous recognitions.
Assumption TU U = {u € [0,1]*|u! +u? < 1}.

Assumption NL p is independently distributed under both probability distributions P! and
P2,

Note that, according to Assumption NL, p is deterministic, i.e., p} (p,) = p; (pl/) at any
two histories p, and p, with s,s’ <t. Hence, p} € [0,1] and y; € [-1,1].

Under these two assumptions, we will first construct the equilibrium, and prove the Agree-
ment Theorem, stating that players will reach an agreement immediately, so long as the game
is sufficiently long and y > 0. Then, allowing y to take both positive and negative values, we
will present an example with a long delay, and discuss the general properties of delay in our
model. Finally, we will present another version of Agreement Theorem that requires only that
y does not drop suddenly.

3.1 Continuation values in Equilibrium

For any given finite-horizon game G'[6,p], we first construct a subgame-perfect equilibrium;
any subgame perfect equilibrium is payoff equivalent to the one we construct.
Let us write V;' for the continuation value of player i at the beginning of date ¢, and

Sy = V, + V2 for the “perceived size of the pie.” If they have not reached an agreement before

YEven if the side-bets on p were feasible, agents could make a side-bet on p, void by agreeing prior to t. On
the other hand, if there exists another contractible process B that remains publicly observable regardless what
players do and that yields p, measurable with respect to o (Bo,... , Bt), then we would simply have a general
immediate-agreement theorem similar to the one in Yildiz (1998). For they can simply emulate the side-bets on

p by some contracts on B.



t, each player will get 0; hence, we set
Vi =V2=5=0. (1)

Taking this as final values, we determine V and S, recursively. To do this, let us take any
t € T. There are two cases we need to address separately. We first consider the case §S¢+1 > 1.
If they do not agree at ¢, each i will get V/’,; at ¢ + 1, which is equivalent to 6V}, ; at t. They
will then agree on a utility pair u = (u!,u?) only if u* > 8§V}, at each i € N, which requires
that u! +u? > 6V;4; + 6V2, = 6Si41 > 1, showing that such u is not feasible. That is, they
will not reach an agreement at t. Therefore, the continuation value of each ¢ at the beginning

of date t will be:

Vti = 5Vti+1 (6Sp41>1). (2)
Adding up both sides of the equation over N, we obtain

S = 0St+1 (6841 >1). (3)

Note that their beliefs about recognition at ¢ is immaterial to the problem.

Now we consider the case 6St+1 < 1. Any player j accepts an offer iff it gives him at least
6Vtﬂr1. If the recognized player ¢ offers to give M/;]J'rl to j, he is left with 1 — (ﬂ/;{'rl, which is now
at least as high as his continuation value 6V}, ;. Thus, in equilibrium, player ¢ offers to give
6V£H to j and to take 1 — M/th to himself; and the offer is accepted. Therefore, continuation

value of player ¢ at the beginning of date ¢ is:

Vi = pi(1 =6V + (1= p)éVin
= pi(1—8Si1) + Vi, (881 <1). ()

That is, the continuation value of player i at ¢ is the present value 6V, of his continuation
value at ¢ + 1 plus the rent pi(1 — §S;41) he expects to extract when he makes an offer. By
adding equation (4) up for players, we obtain

St =1 + Yt — 6yt5't+1 (65’754,_1 S 1). (5)

Briefly, the processes V!, V2, and S defined by the equations (1-5) describes a subgame-
perfect equilibrium. Furthermore, V! and V? are the only continuation values consistent with
any subgame-perfect equilibrium; and S prescribes whether they agree at any subgame-perfect
equilibrium. Note that, in equilibrium, agreement at any date is fully determined by the
aggregate data y, 6 (and S).



3.2 Agreement and Disagreement Regimes

Our equilibrium has two regimes. The first one, which we call disagreement regime, is charac-
terized by inequality S;y1 > 1/6. In this regime, if they have not yet reached an agreement,
players do not reach an agreement at t, either. Hence, their beliefs about which player will be
recognized at t is irrelevant; and the perceived size of the “pie” shrinks geometrically as we go
back in time.

If ¢ is the first date they reach an agreement after a period of disagreement regimes,® the

perceived size of the pie at any ¢ in that period will be
S, = 618, (6)

Hence, the length of such a period will be

where operator [-] finds the smallest integer that is greater than or equal to the argument.

Since S; can be at most 2, the length of a disagreement period can be at most

- log 2
L) = [logu/éﬂ b ®)

Hence, given any §, the lengths of disagreement periods are bounded uniformly. In efficiency
terms, the length of delay can be at most as large as almost half the pie is lost, i.e., 1/2 <
§LO) < 1/(26).

The second regime is called the agreement regime, and characterized by inequality Sy <
1/6. In this regime, if they have not reached an agreement yet, players immediately agree on
a division that gives the recognized player (say i) 1 — 6th+1, which is higher than 6Vti+1; and
this is what he would get if the other player j were recognized. That is, the recognized player

extracts a rent
Ry=1-6V) | —6Viy=1-68S1.

The discrepancy among players’ beliefs on which player will get this rent causes the dis-
crepancy between the perceived size S; of the pie and its actual size of 1. In fact, we can

re-write equation (5) as
St =14y (1 —=06S+1) =1+ yRy 9)

so that the discrepancy is Sy — 1 = y;R;. Therefore, a high rent for the recognized player
aligned with excessive optimism may prevent players from reaching an agreement in some

previous dates.

®Since they agree at T — 1, there is such a date for each disagreement period.



If y¢ < 0 and we have an agreement regime at ¢, then by (9), we have an agreement regime
at t—1, as well. Thus, if y; <0 at each t € T', then we will have agreement regimes throughout
the game. In fact, this case can be imbedded in the Rubinstein-Stahl framework by recognizing
each player ¢ with probability p{, and by recognizing nobody with probability 1—p} —p?. We

will now analyze the case of y > 0.

3.3 Perpetual Optimism

Confining ourselves to long but finite games, in this section, we will show that players will

reach an agreement immediately, so long as players are optimistic throughout the game, i.e.,
ye >0  Vtel. (PO)

We start with the following Lemma, giving us an agreement regime at each date s < ¢t whenever

the pie at t 4+ 1 is perceived to be of the “right size.”

Lemma 1 Assume TU and NL. Given any t with y, > 0, if Sip1 € [1,1/6], then S; €
1,2 —¢6] C [1,1/6].

Proof. Assume that Siy1 € [1,1/6]. Then, we have an agreement regime at ¢, and hence
by (9), we have S; = 1 + y;R;, where the rent Ry = 1 — §S;41 € [0,1 — ] is bounded from
above. Since y; € [0,1], y R, € [0,1 — 6] and therefore Sy = 1 + y.R; € [1,2 — §]. Note that
2 — 6 <1/6 (with equality only at § =1). m

Under perpetual optimism (PO), Lemma 1 gives us immediate agreement for sufficiently
long games. To see this, first note that, by (PO), y;_1 > 0, hence S;_1 =1+ y;_; > 1. When
Vi1 < (1 —0) /6, we have S;_1 = 1+ y;_1 < 1/6 so that S;_; € [1,1/6]. In that case, using
Lemma 1, we can conclude via mathematical induction that Sy € [1,1/6] at each t < ¢ —1,
showing that we have an agreement regime at each t € T'.

Now we consider the case when y; 1 > (1 —§) /6. In this case, we have S;_ =1+ y; 1 >
1/6, and hence a disagreement regime at ¢ — 2. In fact, we have already shown that there is a
period of disagreement regimes with length L(S7_1,6) < L (§) ending at £ — 2. Now, assuming
that the game is sufficiently long, consider the last date with an agreement regime before ¢t — 2,
namely ¢ = £ — 2— L(S;_1,6). By definition, we have S;,; < 1/6 and S;,, > 1/8. The latter
inequality also implies that Sz, ; = 657, > 1,i.e., Sz, € [1,1/6]. Once again, using Lemma 1,
we can conclude via mathematical induction that S;11 € [1,1/8] at each t < £, showing that we
have an agreement regime at each ¢ < . To sum up, in this case, for # > L(S;_;, ) +2, we have
three periods of constant regimes: We have agreement regimes at {0,... ,t —2— L(S7_1,9)},
disagreement regimes at {t— L(S;_1,6)—1,... ,t—2}, and again an agreement regime at ¢ —1.
(This is exhibited in Figure 1 for the extreme case when y; = p; = p? =1 at each t € T.)

In either case, we have an agreement regime at each t <t — 2— L(§) <t —2— L(S;_1,6),
proving our first Agreement Theorem:
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Figure 1: The perceived size of the pie in the extreme case where y; = p} = p? = 1 at each
teT. [t=30,6=0.9.] Note that we have an agreement regime at t — 1, too.



Theorem 1 Assume TU, NL, and PO. Then, we have an agreement regime at each t € T

with t <t — L(6) — 2.

Excluding the end of the game, our Theorem states that, if players are optimistic throughout
the game, they will reach an agreement immediately, suggesting that the Example we have
given in the Introduction may be rather singular. Actually, our Example illustrated that
sequential bargaining allocates a non-negative rent for the recognized player at any date ¢; and
this rent can be very large. If players are also extremely optimistic about getting this large
rent, they may choose to wait at ¢t — 1.

Our Theorem goes one step beyond this intuition. At such an agreement regime ¢, if players
are also sufficiently optimistic for subsequent times, the rent for the recognized player will be
small, a fact that we established in Lemma 1. Our Theorem states that, in equilibrium, this
rent will be so small that the players will reach an agreement at ¢ — 1 even if they are very
optimistic about getting it.

3.3.1 Perpetual Optimism — Infinite Horizon

Theorem 1 establishes that, in case of perpetual optimism, we have agreement regimes through-
out the game except for a bounded period just before the end. Naturally, as t — oo, this period
of disagreement regimes disappears, and thus we have agreement regimes throughout the game
— like in the Rubinstein-Stahl framework.

Take any ¢ € (0,1) and any infinite belief structure p. For any sufficiently long truncation
Gt, write S [t] and £[f] for the size of the pie and the last date before any disagreement, respec-
tively. Given any t < f[t], we have an agreement regime at each s with ¢t < s < #[¢]; hence,

solving (5) on this interval, we obtain

t[f]—-1 )
s it
S} = - w0 +ys) + 7S,
s=t
where 7§ is Hj;tl (—6y;) when t < s and 1 when t = s. As £ — oo, #[t] — oo, hence Wf[ﬂ — 0;
and since 0 < Sf[ﬂ < 2, S¢[t] converges to
Siloo] =) mi (L +ys)- (10)
s=t

By Theorem 1, Si[t] € [1,1/6] for every sufficiently large ¢ so that S;[oco] € [1,1/6] at each
t € N. That is, for t = co, we have agreement regimes throughout: at any ¢, the recognized
player i gives the other player, say j, 6V£H[oo] € [0, 4], keeping 1 — 6V£H[oo] € [1—6,1] for
himself — a behavior that replicates the equilibrium behavior in the Rubinstein-Stahl frame-
work, characterized by CPA. In fact, when CPA holds (i.e., y = 0), V|{[oo] can take any value

10



n [0, 1], thus any such division is consistent with CPA; and therefore CPA (and thereby the

Rubinstein-Stahl framework) is not refutable in the case of perpetual optimism.

To see this, let y = g € [0,1] at each t € N. Now, by inserting § for each ys in (10),
one can easily compute that Sy [oo] = 11%5%, and hence Ry [oo] = 1 — 6541 [00] = 1+_17 =R

Moreover, by Proposition 2 of Section 4, we have V [oo] = >°2°, 6% 'pi Ry [oc]. Thus, V{ [oo] =
R>"%°, 6% 'pi. Since pi € [y,1] at each s € T, the range of (1 —§)> 2%, 6*"pi is [y, 1], and
therefore the range of V! [oo] is [1 550 T 6y . When CPA holds (i.e., at g = 0), this interval is
entire [0, 1], thus any outcome is consistent with CPA.

As g increases, the interval shrinks; and at § = 1 it consists of 1/(1 + ¢). That is, in
the equilibrium of the extreme case when everyone keeps believing that he will make all the
remaining offers no matter what happened so far (i.e., p; = p? = 3 = 1Vt € T), the recognized
player offers to take 1/(1 + §), leaving the other player 6/(1 + 6); and the offer is accepted.
This is the equilibrium outcome under the Alternating-Offer Procedure, analyzed by Rubinstein
(1982). Note that Rubinstein’s well-known division is the only division that is not ruled out

by any level of optimism.

3.4 A Long Delay in Agreement

Theorem 1 establishes immediate agreement for the long games where players remain opti-
mistic. Now, allowing players be pessimistic sometimes, we will create a simple example where
the agreement is delayed for a long while, no matter how long the game is. The rationale
behind this example is simple. When each player believes that he will not be able to make an
offer after a given date, they will act as if the negotiation stops there, imitating a short game.

Since the length of a period of disagreement regimes cannot be longer than L (§), we already
have an upper bound for the delay in agreement. Note that this upper bound is rather long:
sL@)+1 < 1/2, i.e., almost half the benefit is lost. Nevertheless, it is not loose, as our example
reveals:

Consider any belief structure p with y~ = 1 and y; = —1 at each t > t*, where t* is
any date with 0 < ¢* < min{L (§),f}. At t* and thereafter, thinking that he will no longer
have any other chance to make an offer, each player is willing to accept any offer. Hence, the
recognized player can extract a huge rent: we have R; = 1 at each ¢ > t*. They consider t*
an auspicious moment, each thinking that he is going to make an offer at ¢*. Amplified by the
extreme pessimism for the future, their optimism for ¢* leads them to perceive the pie at t*

very large:
St* =1 +yt*Rt* =2> 1/5
The pie at t* is perceived to be so large that they will never reach an agreement before ¢*:

Spp1 =618 =260 77 > 175, (0<t<t¥)

11



where the last inequality is due to the definition of L (§), which is defined by 257 ¢ (1,1/6].
That is, during {0,...,t* — 1}, without agreeing, players wait for the auspicious moment t*,
when all the offers are going to be accepted.

This example illustrates some key properties of delays caused by lack of a common prior.
Firstly, the delay in our model is not Pareto-optimal in general. To see this, consider the
case y1 = 1. Now, giving the dollar to the player recognized at ¢ = 1 Pareto-dominates the
equilibrium outcome, which gives the dollar to the player recognized at t*. Note that a player’s
expected utility levels under these two schemes are § and 8!, respectively. [This also shows that
the equilibrium outcome in the example presented in the Introduction was Pareto-optimal.|

Second, at the beginning of our game it is common knowledge that players will not reach
an agreement before t*; whereas the delay is only a possibility in usual bargaining models with
private information, as the types with the least advantageous information reach an agreement
immediately in any separating equilibrium in these models.

Third, there is a consensus among our players that the delay is costly and that there is a
division at t = 0 that gives each player more than what he gets in equilibrium. That is, they
agree that the size of the pie at t = 1 is only §; and each player further thinks that they both
would get more than their equilibrium consumption if they divided the dollar at ¢ = 0 by
giving 6 + (1 — 8)/2 to himself and leaving (1 — ¢)/2 to his opponent. There is no consensus,
however, on which division at ¢ = 0 dominates the equilibrium outcome.

Finally, even though there is a consensus that the delay is costly, one cannot find a mecha-
nism that would yield an agreement at the beginning and would be accepted by each player to
replace the current situation. In particular, they cannot agree on a procedure that recognizes
them with “objective” probabilities throughout the negotiation. For, if such a mechanism were
accepted by player 1, it would give him at least 6*, thus would give player 2 at most 1 — 6%,
and would be rejected by player 2.

A period of low y does not necessarily mean that they are unreasonably pessimistic; it may
simply reflect the fact that agents are not going to negotiate during this period, as happens
in bargaining with a deadline or several “bargaining sessions.” In that case, our analysis
illustrates that, if the end of the session or the deadline is sufficiently close, agents will wait
until the deadline to settle. This deadline effect is observed in laboratory experiments and the

real-world negotiations.

3.5 A sudden loss of optimism

In the previous section, we illustrated that a sudden loss of optimism may give players an
incentive to wait. Now we will establish that, whenever there is a period of disagreement
regimes, it must be followed by a sudden loss of optimism.

Towards this goal, our first lemma states that if a disagreement regime proceeds an agree-
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ment regime, there must be a substantial drop in y.

Lemma 2 Given any G'[6,p] and any t <t —1, if S; > % and Spy1 < %, then yi — ypye1 >
(1-206)/6.

Proof. Take any t < t — 1 with S; > % and Siy1 < %. Since St < %, we have an
agreement regime at ¢, and hence

S =1 +yt(1 — 6St+1) > —. (11)

(SN

Since 1 — §S¢+1 > 0, we then have y; > 0. Since Sy > 1/6 and y; > 0, by Lemma 1, we have
Siy1 < 1. In that case, we have Si1o < 1/6, for otherwise we would have a disagreement
regime at t 4+ 1, rendering S;y1 = 6Si42 > 1. Hence, we have an agreement regime at ¢ + 1,
and thus

St+1 =1+ yt+1(1 — 5St+2) <1, (12)

yielding y¢11 < 0. By combining (11) and (12), and writing A = y; — y¢+1, we obtain

1
5 < Sy =14y — 6y (L + y1) + S A + 8%ysy11Sev2. (13)

Since yeyr+1S+2 < 0, this gives us dyA > 6yA + 8%yer1Si42 > + — 1 — ye + 6yt (1 + ).

A>5iyt<%—1>—<%—1>+yt. (14)

Once can check that the expression on the right hand side is minimized at y; = %\/ % -1,
taking the value of 2, /% (% — 1) — (% — 1), which is greater than 1/6 — 1. m

By Lemma 2, if we have a disagreement regime at ¢t — 1 while we have an agreement regime
at t, we must have yx — ys41 > (1 —96) /6. Put it differently, if y+ — yi11 < (1 —6) /6 and we

Hence,

have an agreement regime at ¢ < ¢t — 1, we must also have an agreement regime at t — 1. We
already know that we have an agreement regime at some ¢ with £ —2 — L(§) <t <t — 1.
Hence, if y is smooth enough so that y; — yi+1 < (1 — ) /6 at each t € T, we would have an
agreement regime at each t <

Theorem 2 Assume TU, NL, and that y; — yer1 < (1 —0) /6 at each t € T. Then, we have

an agreement regime at each t € T with t <t — L(§) — 2.

Excluding the end of the game, Theorem 1 stated that, if players are optimistic throughout
the game, they will reach an agreement immediately. Proposition 2 establishes that, actually,

we do not need optimism stay high; all we need is that it does not drop too fast. In fact, by
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requiring perpetual optimism, Theorem 1 also bounded the drop in y: if y;, yi+1 € [0, 1], then
Yyt — Y1 < 1. Of course, this bound is much looser than that of Theorem 2; and these two
results are logically independent. We may have a disagreement regime just before the end of
the game, precisely because after the game ends y; is identically —1, and thus we may have a
substantial drop in y at the end of the game. Theorem 2 also implies that if the transition to
—1 is smooth enough, there will be no disagreement regime at the end of the game, either.
We will present our Agreement Theorem for the general case in Section 5. Beforehand, we

present some preliminary results.

4 Equilibrium and the Rents — General case

In this section, we will describe the subgame-perfect equilibria of our game. In the finite-
horizon case, all the equilibria will be payoff equivalent to each other. In the infinite horizon
case, we will only consider the limit of the equilibria of the finite-horizon truncations. In
equilibrium, at each date, the recognized player extracts a non-informational rent, and these
rents determine players’ equilibrium-payoffs.

Towards describing the subgame perfect equilibria, let us take any finite-horizon game
G [6, p], and write V [#] (p,) for the equilibrium continuation-value of a player 7 at any ¢ with

history p,. The stochastic process V [t] is defined by the recursive equation
Vi1 (p) = P (py = ilp) m'(6Vas [M] (py, 0)) + P (py = jlpy) Vs [ (P 5) - (15)
and the boundary condition
Vi[t] =0, (16)

where m* : R* — Ry is defined through m’(v) = max [{v'} U {v/| (u',u?) € U, v > v7}] at
each v € R? for i # j. Note that m!(v) is the maximum payoff player i can enjoy if he needs
the consent of player j for an agreement and if the payoff vector v would be realized in case of
a disagreement. (Of course, he will choose to disagree if it is too costly to convince the other
player, i.e., when v € U.) By Assumption FDA, when i gets m‘(v), j gets vJ. Hence, (15)
expresses that, with probability P’ (p, = i|p;), player i will be recognized, in which case he
will get the maximum payoff given that he needs to give at least 6Vt{'r1 [t] (py,17) to player j in
order to reach agreement, and with probability P*(p, = j|p;), 7 will be recognized, in which
case ¢ will get his continuation value in the case of a delay. Condition (16) simply states the
fact that players automatically get 0 at ¢.
The equilibrium strategy §; [¢] of a player i (# j) will be as follows:

Given any ¢ with p,, if ¢ is recognized at t, and if 6Viyq [t] (py,i) € U, offer
to give (ﬂ/;{'rl [t] (py,1) to j and m*(6Viyq [t] (py,7)) to i; if @ is recognized, but
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8Vir1 [t] (py,i) € U, then offer to give 0 to j and m®(0) to i; if j is recognized,
accept his offer iff he gives i at least 6V, ; [t] (p, J)-

Given any infinite-horizon game G [§, p|, for each ¢ € N, consider the finite-horizon trun-
cation G*[6, p], which agrees with G* [6, p] until £, and ends there. Defining V [f] as above,
assume that

Veltl (o) = Viloo] (p) ast—oo  (Vpy,Vi) (17)

for some V [oco]. We define the strategy profile s[oo] = (51 [00],S2 [00]) as above, by taking
t = oco. The following Proposition states that, when ¢ is finite, § [t] = (51 [t],S2 [t]) is essentially
the unique subgame perfect equilibrium; when ¢ = oo, §[00] is a subgame-perfect equilibrium,
but not necessarily unique. The proof of this Proposition is fairly straight-forward, and can
be found in Yildiz (2000).

Proposition 1 Given any G [6, p| with (17), §[o0] is a subgame-perfect equilibrium. Given
any finite-horizon game G{[(S, pl, S[t] is a subgame-perfect equilibrium. Moreover, fort < co, at
any subgame-perfect equilibrium, and at any date t with p;, the following are true: the vector of
continuation values at the beginning of t is Vi (p;); if 6Vit1(py,1) is in the interior of U, and i
is recognized, then they reach an agreement that gives 6th+1(pt,i) to j and m*(§Vii1 [t] (py, 1))
to i; and if 6Vii1(py,i) € U and i is recognized, then they do not reach an agreement at t.

In the rest of the paper, we will confine ourself to the equilibrium §; we suppress the terms
in square brackets.

In equilibrium, the recognized player extract a rent; and these rents constitutes the bar-
gaining power. To see this, observe that, given any p, and any player ¢, the difference between
his payoff at (p,,7), when he makes an offer, and his payoff at (p;,7), when he does not, is
1 (Vi1 (g 8)) =8V 1 (prs ) = [ (6Via (P 1) = 8V (s 8)] + [8Viie1 (P ) — 8Viies (ps )]-
Here, the last term is informational; that is, the identity of the recognized player at ¢ affects
players’ beliefs about the future recognitions, which in turn affect their continuation values in
equilibrium. The first term,

Riy(py) = m'(6Ver1(py, 1) — 8V (pys ), (18)

on the other hand, is caused by his opportunity to make an offer that can be rejected only by
delaying the agreement until ¢t + 1; and we call it the (non-informational) rent for i at t.
Substituting (18) in Equation (15) and carrying out the necessary algebra, we obtain

Vi(p) = E'[1p,—iy Rilp] + SE' Vi lpy), (19)

where 1g, _;y is the indicator function of {p, =i}, taking values 1 and 0 when p, = i and

p; # i, respectively. Equation (19) states that the value of the game for a player ¢ at any date
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t is his discounted expected value of the game at t 4+ 1 plus the rent he expects to extract from
being a recognized player at t. Since the value of the game at ¢ is identically nil, this gives
us the following Proposition, stating that, in equilibrium, the continuation value of a player
is the present value of all the rents he expects to extract in the future. In an agreement, the
recognized player gives the other player his continuation value, keeping the rest of the pie for
himself. Therefore, a player’s share in an agreement is itself the discounted sum of the rents

he expects to extract in the future, plus the current rent in case he is the recognized player.

Proposition 2 Given anyt € N, t €T and any p;, we have
i1
Vip) =D 8B 1y, _y Rilpy] - (20)
s=t

Using (16), (19), and the law of iterated expectations, one can easily check via mathematical
induction that (20) holds for any finite ¢. Using the fact that R is uniformly bounded, Yildiz
(2000) shows that it holds for the infinite-horizon case as well.

Proposition 2 states that the continuation value of a player is the present value of the rents
he expects to extract in the future. Since the rents themselves depend on players’ beliefs as
well as the history, it is not clear that a player would not lose if each player comes to believe
that he is more likely to make offers in the future. In fact, in Appendix A we present an
example where a player loses as he finds himself more likely to make an offer at ¢t = 1, while
everything else remains unchanged. Nevertheless, there we also show that a player will not lose
when each player comes to believe that he is more likely to make offers in the future, so long
as the recognition process is affiliated, e.g., it is exchangeable or independently distributed —
the cases that we mainly focus. In that case, our definition of optimism will be unambiguously
valid.

According to 8, players reach an agreement at any (p;,7) iff 6Vi1(p;,7) € U. In that case,

we will say that we have an agreement regime at (p;,%), and a disagreement regime, otherwise.

5 Agreement Theorem

Assuming that players do not change their beliefs as they observe who gets a chance to make
an offer and when (NL), for the case of transferrable utility (TU), Theorem 1 established that,
if the level of optimism y stays mon-negative for a sufficiently long future, players will reach
an agreement immediately. In this section, we will present an extension of this result. Our
extension will state that, if the level of optimism y stays sufficiently high for a sufficiently
long future, players will reach an agreement immediately. While Assumption TU is dropped
entirely, it will be clear that a weaker form of NL remains embedded in the assumption that y

stays sufficiently high for a sufficiently long future.
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We first present the result for the finite horizon case.

Theorem 3 Given any 6 € (0,1) and any non-negative integer t* € N, there exists some
y* € (=1,1) such that, for every finite-horizon game GU[8, p] with t > t* 4+ L(6) + 3 and with

Yyt > y* at each t € T, we have an agreement regime at every t < t*.

Theorem 3 extends Theorem 1 in a weaker form, by dropping Assumptions TU and NL.
Intuitively, if players know that their opponents will remain sufficiently optimistic, they will
adjust their expectations down so that they will reach an agreement immediately, except for
the end of the game, where we may have a period of disagreement regimes due to a large
last-mover-advantage. Under Assumptions NL and TU, Theorem 1 required only that players
do not lose their optimism, hence y* = 0 was sufficient for immediate agreement. In Example
3 we will establish that y* may need to be strictly positive with risk-averse players.

The proof of this Theorem is similar to that of Theorem 1, but less transparent, and
therefore relegated to Appendix B. The proof consists of the following steps. Firstly, we
show that, under NL, the lengths of disagreement periods are uniformly bounded. Then, we
show that our result holds with strict inequalities for the case when y is identically 1. Finally,
invoking a continuity property of equilibrium payoffs with respect to the belief structures, we
obtain our result.

We extend Theorem 3 to the infinite-horizon case as follows.

Theorem 4 Given any 6 € (0,1) and any non-negative integer t* € N, assume that
Vilt,p] = Viloo,p] ast—oo (Vi< tY) (21)

uniformly over belief structures p, where t and p indicates the underlying game. Then, there
exist some t € N and y* € (—1,1) such that, given any G*=[8, p| with y; > y* at each t <, we

have an agreement regime at every t < t*.

Assuming that equilibrium continuation-values converge uniformly over belief structures,
Theorem 4 extends Theorem 3 to infinite-horizon games, stating that, if the level of optimism
stays sufficiently high for a sufficiently long future, players will reach an agreement immediately.
Intuitively, under (21), the infinite horizon can be approximated by a finite horizon, whence
a version of Theorem 3 (with strict inequalities) would give us immediate agreement for the
infinite horizon case.

Here, a finite period of a sufficiently high level of optimism suffices for an immediate
agreement. By requiring the optimism stay high only for a finite time, we allow players’ beliefs
to merge, a plausible property exhibited by many learning models, such as the one we will

employ in Section 6.
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While Assumption TU is dropped entirely, a weaker form of NL remains embedded in
Theorems 3 and 4. By requiring that y; > y*, our Theorem also requires that pi > y* for each
i, a8 pj = y; + 1 — p] > y. Since p < 1, this further requires that |p (p;) — pi (p})| < 1 —y*
for any two histories p, and p}, bounding how much can be learned before ¢.

5.1 Discussion

If a player ¢ believes that his opponent j is very optimistic and will remain so, he will lower
his expectations. For such an optimistic opponent will not settle for little, even if ¢ thinks that
the value of continuing on bargaining for j is even lower. If the level of optimism will remain
sufficiently high for a sufficiently long future, then players’ expectation will be so low that they
will reach an agreement immediately.

If the level of optimism stays very high for a long while, it must be the case that players’
conditional beliefs do not vary much with respect to what happens so far. Since they are
Bayesian, this means that they adhere to their initial beliefs, and thus their prior beliefs are
very firm. On the other hand, if players’ prior beliefs reflect a high level of optimism for a long
future and their prior beliefs are firm, then the level of optimism will remain high. Therefore,
we can restate our theorem as follows. If players’ prior beliefs reflect a sufficiently high level
of optimism for a sufficiently long immediate-future, and if these beliefs are sufficiently firm,
then they will reach an agreement immediately.5

Our theorem asks for three conditions for an immediate agreement. Firstly, there must be
a sufficiently long future. If the game is to end very soon, and if players are very optimistic
about making an offer at the end of the game, each may choose to wait until the end, when his
opponent will know that she will get 0 if they disagree — as we demonstrated in the Introduction.

Second, they must remain sufficiently optimistic for a long while. For, even if the game is
to continue indefinitely, if each player thinks that he will never be able to make an offer after a
given date, they will act as if the game ends there, hence they may disagree at the beginning,
as they may do in a short game.”

Finally, it asks players’ initial beliefs be sufficiently firm, that is, they should not update
their beliefs drastically with a limited observation. There are three reasons for this requirement.
Firstly, it is essential for our theorems that the length of a period of disagreement regimes
is uniformly bounded under NL, as there may be a disagreement period at the end of the
game. When players update their beliefs as they observe which players are recognized and
when, whether they reach an agreement at a given date depends on which players have been

®For formal statements, see Yildiz (2000).
"Since players will wait for the end only when they are optimistic about the end, we may only need that

the level of optimism does not drop suddenly and drastically, as suggested by Theorem 2. It remains an
open question whether we can (qualitatively) extend Theorem 2 beyond Assumptions TU and NL, obtaining a

stronger theorem.
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recognized and when. The following example demonstrates that, when the beliefs are updated
drastically, the length of such a disagreement period may be unbounded, causing (possibly

long) delays.

Example 1 Consider the following belief structure: For each i € N, and for some p > 1/2,
we have p; (p;) = P at each “alternating” history p, = (pg (W), ... ,ps 1 (w)) where p, (w) #
psi1(w) at each s <t —1. On the other hand, if a player i has been recognized twice in a
row before the other agent, each player thinks that i is “blessed” so that he will be recognized
with probability P, i.e., we have PY(p, = pga (w)|p,) = P*(p, = ps (W) |p) = P at each
pe = (po(W),...,p; 1 (w)) with s* = min{s <t —1|p, (w) = pyyq (w)} > 0. Letting t = oo,
we will demonstrate for high values of & that players will never reach an agreement at an
alternating history. In that case, given any t, at the beginning of the game each player believes
that with positive probability they will not reach an agreement before t.

Consider any alternating history p,, where @ is recognized at t — 1. If v is recognized at
t, too, then he will be revealed to be blessed. In that case, by Proposition 2, we will have
Vi (prsd) = Y45, 8°7'B(1 — 6) = p and V. (py,i) = 1 — p for j #i. (Note that R=1-.)
Hence, 1 will oﬁe;‘ to take 1 — 6 (1 — p), leaving 6 (1 — p) to j, who will accept the offer. Since
Pk (p,) = P for each k € N, we now have

Vilp) = p(1=6(1—=p)+(1—p)sVi (p]) (22)
Vi (p) = BOVi(pj)+(1—p)8(1—p),

where (py,J) is again an alternating history. The subgames starting at p, and (py,j,i) are
identical so that Vi (p;) = Vi (py,J,1), hence, at any alternating history, payoffs depend only

on the last player recognized. Furthermore, our game is symmetric with respect to the players

so that Vi (p) = Viy, (P, 3) = VE(D,6) and Vi (p) = Vi, (py,5) = VF (p,8). Substituting

these values into (22), we obtain

e __ L |1 e0-p) ) (p(-6(-p) (22)
vV (p,6) 1-8p(1-p) | 6p 1 61—’ |

Letting 6 — 1, one can check from (23) that, for every p > 1/2 there exists some ¢ sufficiently
close to 1 such that V¥ (p,8) + V¥ (p,8) > 1/8, when we will have a disagreement regime at

each alternating history.

Second, when players update their beliefs drastically, we will have another form of the

deadline effect, as illustrated in the following example.

Example 2 Assuming TU, take any t* with 0 < t* < min{L () ,t}. Consider the case where
(Po» P15~ - - » py») are stochastically independent under both P! and P?, Pi(py =1i) = 1 for each
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1 €N, and py = pp= at each t > t*. If a player i is recognized at t*, the other player j will know
that he will no longer be able to make any offer, hence by Proposition 2, we have V],;H(pt*,z') =
0 at each py. In that case, we will have m* (§Viy1 (ppe,i)) = 1 — 6V;j+1 (pp,1) = 1, yielding
Vi (p=) = 1 by (15). Now, Spe(py) = Vit (p2) +ViE (=) = 2 at each py-, and (pg, py,-- - py=)
is independently distributed. As we showed in subsection 3.4, under these conditions, they will
not reach an agreement before t*. [Note that ye= = 1 and yy = 0 thereafter, consistent with

perpetual optimism.|

Example 2 also suggests the third and the most important rationale for requiring players’
beliefs be firm: When a player is known to update his beliefs substantially with limited ob-
servation, his opponent may be willing to wait and let him observe, hoping that he will be
convinced that she is right. For instance, in our example, players wait until ¢*, when their
opponents are expected to be convinced that they will no longer be able to make any offer.

To illustrate our rationale in a greater detail, consider the canonical case of affiliated p,
where each player finds a player ¢ more likely to be recognized at t if they know that she is
recognized at some s. Assume that players are very optimistic about ¢ and that they find
being recognized at s as a strong evidence of being recognized at t. In that case, they must
also be very optimistic about s. Now, player ¢ thinks that, if they disagree until s, it is very
likely that she will be recognized at s, and hence her opponent, namely j, will be convinced
that ¢ is very likely to be recognized at ¢, and will be willing to agree on ¢’s terms. Being very
optimistic about convincing her opponent by s, player ¢ will not settle at the beginning unless
she gets a high share. But her opponent is also very optimistic about convincing ¢ by s, and
thus may not be willing to give ¢ what she wants for an agreement at the beginning. In fact, if
i’s continuation value at s increases substantially as she convinces j, and if s is close enough,
then they would choose to wait until s — as we demonstrated in Example 2. Our Theorem
assumes that the rate of learning is so slow that either the impact of convincing j is not so
large, or the required time to convince him is too long to wait.

On the other hand, in canonical learning models, unless their beliefs are sufficiently firm,
players update their beliefs substantially at the beginning, whence we have disagreement
regimes at the beginning of the game, and thus a delay in reaching an agreement on the
path of equilibrium. Analyzing such a canonical learning-model, in our next section we will

show that agreement can be delayed, and will derive a strict bound on the settlement date.

6 A stylized model with learning

Without restricting how fast players update their beliefs, but assuming away the deadline
effects, we will now explore when players reach an agreement in a canonical case, characterized

by Assumption TU and Assumption XB below, which we will maintain throughout this section.
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Under these two assumptions, we will show for ¢ = oo that there exists a predetermined
date such that players will never reach an agreement before that date and will always agree
thereafter. Throughout this section, we will take T = N, i.e., ¢ = co. (Our results are also
valid for any sufficiently large ¢; see Yildiz, 2000).

Assumption XB Given any ¢,s,r7 € N with r <t < s, and any history p} of recognitions

where player 1 is recognized r times out of ¢, for each ¢ € N, we have

o kitr+1

Pilp, = 11p}) = = (24

for some k;, h € N with k; < h.

This assumption holds when each player believes that p is exchangeable, i.e., it is identically
and independently distributed with some unknown parameter p measuring the probability of
{p, = 1}, and p is distributed with a beta distribution such that as if each ¢ had a uniform
distribution on [0,1] for & and observed h (pre-bargaining) trials at an interim stage where
player 1 was recognized k; times (see Fudenberg and Levine, 1998). Of course, each player
believes that his own h trials are relevant for this bargaining. We will write K = k; — ka.
While i measures the level of conviction in players’ prior beliefs, K/ (h + 2) will be shown to
measure the initial level of optimism.

Note that, since 7 believes that p is identically distributed, his beliefs about p, does not
depend on s. Substituting (24) in definition of y, we obtain that

k1 — ko K

vt = T s S ir g - Yo (25)

at each p, € N* and s > t. Two properties of y are important for us. Firstly, since players’
beliefs about s do not depend on s, the discrepancy in beliefs about s does not depend on s,
either. It depends only on the date the beliefs are held, i.e., ys(p;) = yi(p;) for each s > t.
Therefore, we denote it by y;) — indexed only by the date the beliefs are held. Note that y
measures the discrepancy in players’ beliefs about any recognition in future at the beginning
of date ¢, while y; denotes the entire process of the discrepancy in beliefs about the recognition
at t, whose value at the beginning of ¢ is y(;). When k; < kg, we have y(;) < 0 throughout so
that we have agreement regimes throughout the game as in the Rubinstein-Stahl framework.
We will assume that k; > ko (i.e., K > 0), rendering y(; > 0 throughout.

Second, y; is deterministic, i.e., y¢ (ps) = yi (p}) for each p,, pl € N® with s < t. This is
due to our assumption that h is same for both players. This renders R and S also deterministic
— even though V is not deterministic. (Recall that S; = V! + V;? and R! (p,) = max{0,1 —
6511 (prsi)}.)

Lemma 3 Under Assumptions TU and XB, given anyt € T =N andi € N, Sy and R: are
deterministic, and hence R} = R? = Ry for some Ry € R.
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When Sy 1 is deterministic, R? is deterministic and R} = R?. In that case, S; will also be
deterministic, giving us our Lemma. Since S;;1 and § determine whether we have an agreement
regime at t € T', the event that players reach an agreement at ¢ is also deterministic.

Writing

At = Z 687tRs (26)
s=t

for the present value of all future rents, we express V and S in terms of A:

Lemma 4 Assume TU and XB. Given any p, € N' and any i € N, we have

Viip) = pi(p) M (27)
(1+yw) Ar (28)

N
)
I

The first statement, (27), is a simple application of Proposition 2, Lemma 3, and the fact
that p (p,) = pi (p,) for each s > t. Adding up (27) over the players, we obtain (28). Since pi
is stochastic, so is V;. On the other hand, both Yy and Af are deterministic, and so is S;.

Using (28), we can decouple (26), and obtain a difference equation for A. Consider any ¢
with an agreement regime. Now, R; = 1 —0S5:41, hence (28) yields Ry = 1 —6(1 +y(i41)) Aty
Moreover, by (26), we have Ay = Ry + 6A¢+1. Combining these two equations, we obtain

Ay =1—06ygynAeta. (29)

When we have a disagreement regime at t, we clearly have Ay = 6Ayyr1. These difference
equations imply that A is uniformly bounded by 1.
By (28), we have an agreement regime at any ¢t — 1 € T iff

1

AtngD(t). (30)

On the right-hand side, as ¢ gets larger, y(;) converges to zero so that D (t) approaches to 1/6.
On the left-hand side, A is uniformly bounded by 1, which is less than 1/46. Thus, inequality
(30) holds for every sufficiently large ¢, yielding an agreement regime at ¢ — 1. For instance,
whenever t > ty = %K —h =2, we have y;) < % — 1, yielding D (t) > 1, and thereby
rendering an agreement regime at ¢t — 1.

Let us write
PA={teT|As <D(s)Vs >t}

for the interval of perpetual agreement, consisting of the dates ¢ such that we have an agreement
regime at each s > t. Since tg € PA, PA C N is non-empty, and thus possesses some minimum
£ < 1.
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We will now derive a stricter upper-bound for t**, the date the period of perpetual agree-

ment starts. Writing

t) — ;
1 +6y(t)’

and using (29) repeatedly, we first obtain the following bounds for A;.

Lemma 5 Lett = co, 6 € (0,1), and assume TU and XB. Then, B(t) < Ay < B(t+1) at
each t > t**.

We plot our bounds in Figure 2. B(t) converges to 1 as t — co. Hence, for sufficiently
large t, B(t) and B (t+ 1) are arbitrarily close to each other, providing very precise bounds
for A. As shown in the Figure, our bounds are valid only when t > t**, because the recursive
equation (29) holds only at agreement regimes.

Let us compare our bounds with D, the process that determines whether we have an
agreement at any given date. Clearly, B (t) < D (t) at each ¢ so that our lower bound stays in
agreement regime throughout. In comparing our upper bound B(t + 1) with D(¢), we write

1 <
L+ 8y ~ 6 (1+y)

1-¢6
= Yu) — Y1) = — (31)

Since y(y) — Y1) = WIM’ this implies that B (t + 1) < D (t) iff

1+ 28K 1
t> bty =+—— " —h—2. (32)

2

Consequently, when ¢ > tey, inequality Ay < B (t+1) < D (t) holds, yielding an agreement
regime at t — 1.8 This gives us our bound for #**:

0 <t* <max{0, |teut] }- (33)

We exhibit some values of t** and t., for h = K = 1 at Table 1. When ¢ is sufficiently
small,? we have agreement regimes throughout, in particular at the beginning of the game.
As ¢ increases, some disagreement becomes possible; in fact, the perpetual agreement may be
delayed for a long while.

It turns out that there cannot be any agreement regime before t**, the date the period of

perpetual agreement starts. This gives us our main Theorem in this section.

8Note that this is precisely the region where Y&y — Yty < (1 —6) /8, where we also have y(s) — yst1) <
(1 —46) /6 for each s > t. This is analogous to Theorem 2, which implies under NL and TU that we will have
an agreement regime at ¢ — 1 whenever ys — ys41 < (1 — 8) /6 for each s > t.

-1
“For instance, when 6§ < ﬁ + 1] , we have |teu:| < 0 so that t** = 0.
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Figure 2: Functions D, B, B(t + 1), and A. A* denotes the solution to (29), which is valid
only on PA. Note that ¢ = 6.4624. [6 = 0.99, h =K =1, t = 500.]

§ | ltew) | | 8 |
0.95 0 1
0.99 6 6 | 0.9415
0.999 28 27 | 0.9733
1-106 996 996 | 0.9990
1—-1072 | 31619 | 31618 1
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Table 1: tey and t** vs. 8. (h =K =1, t is very large.)



Theorem 5 Lett = oo, 6 € (0,1), and assume TU and XB. Then, there exists a t** € T
such that, at each t > t**, players reach an agreement immediately if they have not reached an

agreement yet, and they do not reach an agreement before t**.

Proof. By definition, we have an agreement regime at each ¢t > t** = min PA, hence
we will only show that we have a disagreement regime at each t < t**. If ¢t** = 0, this is
vacuously true, so, we assume that ¢t** > 0. In that case, t** — 1 <t by (33); and we have a
disagreement regime at t** — 1 by definition of t**. Now we will show that, whenever we have
a disagreement regime at any t < tqut, we will have a disagreement regime at ¢ — 1, showing
by mathematical induction that we have a disagreement regime at each s < t** — 1.

To this end, take some t < t with a disagreement regime so that Siy; > 1/6. We have
R; =0, and hence Ay = 6A¢y1. By (28), this yields

Se=(1+yu) oA =

Hence, St > Siy1 whenever 1+y 1) < 6(1+y(y)), i-e., whenever y; — %y(tﬂ) > 1%‘5. But this
is always true: y(41) > 0 and ¢ < feut, hence y() — %y(tﬂ) > Yy — Yrl) = 1;5‘5. Therefore,
we have S; > Sii1 > 1/6, and hence a disagreement regime at t — 1. m

For a very canonical case, Theorem 5 states that, unless players’ initial beliefs are so firm
that our Agreement Theorems apply, reaching an agreement will be delayed for a while. For,
typically, at the beginning of a learning process players are more open to new information, in
the sense that they update their beliefs substantially as they observe which player gets a chance
to make an offer. Knowing this, each player waits, believing that the events are very likely to
proceed in such a way that his opponent will change his mind. As time passes, they become
experienced. In this way, two things occur simultaneously, both facilitating agreement. Firstly,
having similar experiences, the discrepancy in their beliefs diminishes. Secondly, they become
so closed minded that their opponents lose their hope to convince them and thus become more
willing to agree in their terms. Therefore, after a while, they reach an agreement.

At the beginning of our game it is common knowledge that they will not reach an agreement
until t**, when they will reach an agreement no matter what happens by then. How they will
share the pie at t** will depend on how many times each player will have been recognized.
Since they disagree about how many times each player is likely to be recognized by t**, there is
no consensus among our players on how they can better each of them by agreeing on a decision

t** even though there is a consensus among them

at the beginning. Therefore, they wait until
that there is an agreement at the beginning that would leave each player better off.

How long can they delay the agreement? We showed that the delay can be at most
teut(h, K,6). Now, given any K and 6, as h — 00, teut(h, K,0) — —oo, so that t** = 0

for sufficiently large values of h. There are two factors behind this limit. Firstly, as h — oo,
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players’ initial beliefs become very firm, approximating an independently distributed p in the
limit, thus by Theorem 1, they reach an agreement immediately. But more importantly, the
discrepancy in beliefs also disappears since y(;) < yoy = K/(h+2), converging to 0 as h — oo.
It would be more interesting then to set K = y,(h + 2) for some y, € (0,1] so that the initial
level of optimism is always y,. In that case, for ¢ > 0, we will have y;) = y, / (hL+1 +1) — vy,
as h — 00. Now, teyy = Vah +b— h —5/2 where a = 3,6/ (1 —6) and b = 2a+ 1/4. As h
increases, initially, t.,; also increases, possibly due to the increasing level of optimism. After a
point, however, t.,; starts decreasing, and approaches to —oo in the limit. Once again, there
will be no delay in agreement for large values of A, consistent with our Agreement Theorems.
Finally, as § — 1, tey (b, K,6) — oo. The intuition for this result is clear. Very patient players
can wait very long to find out whose beliefs are more accurate.

We will now measure how long real-time delay we can have in the continuous-time limit. We
measure index-time ¢ in terms of real time by 7 (t,n) = t/n, where n > 0 measures the fineness
of the grid. Now, discount rate is § (n) = exp (—r/n) where r > 0 is the real-time impatience.
Clearly, exp (—r7 (t,n)) = é', and thus 7 (t,n) = %log (6_t). Therefore, the maximum delay
in real time is %log 5_tcut(h’K’5)).

If h and K do not depend on n, we can measure the real-time delay in the continuous time
limit by limg_,; % log (6*t6“t(h’K"5)>. One can check from (32) that, given any h and K, as
§ — 1, 6 tet(BE8) 1 5o that there is no real-time delay in the limit. That is, given any h
and K, the delay in agreement can be bounded to be arbitrarily short by recognizing players
sufficiently fast.

It is crucial for this result that A and K are taken to be independent of n so that the
discrepancy in beliefs vanishes arbitrarily fast as n gets sufficiently large, i.e., the discrepancy
at any real time 7 is K/ (7n + h + 2), converging to 0 as n goes to oo.

In updating his beliefs, a player might take into account how fast the players are recognized.
In particular, one might attribute the recognition of a player at a given time to the player’s
innate abilities little if players are to be recognized very frequently. Therefore, in order to
measure the effect of the frequent recognition purely, one may want to adjust h and K accord-
ingly so that the discrepancy in beliefs at a given real-time does not depend on the fineness n
of the grid much. To do this, let us take h = n and K = yo(h + 2) so that the discrepancy
in beliefs at a given real time 7 is y,/(5;577 + 1), which is approximately y,/(7 + 1) for large
values of n. As n — o0, 6(n) — 1, and h and K go to oo in such a way that the initial level
of optimism stays at y, unchanged. We have already checked that, when these two limits are
taken separately, in both cases &' goes to 1, rendering immediate agreement in the limit.
When n — oo, however, we compute that

lim 7(teut(h(n), K(n),6(n)),n) = \/yo/r — 1

n—0oo
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so that, in the continuous time limit, we can have very long real-time delays if the players are
both patient (with low r) and optimistic.

7 Impact of Risk-Aversion

In this section, reinstating Assumption NL, we wish to demonstrate the impact of risk aversion
on the problem of reaching an agreement. We present a case where players disagree at the
beginning of the game even though y > 0 and the game can be arbitrarily long. That is, y*
of Theorem 3 needs to be strictly positive, and thus Theorem 1 could not be extended beyond
TU in its full strength.

Example 3 Assuming NL, take U = {u € [0,1]?|(u!)? + (v*)? <1}, ¢ > 3, § € (0.907,1),
and

»t = (1,1,1/2,0,0,...,0)

p? (0,1,1/2,1,1,...,1),

so thaty = (0,1,0,0,...,0). We will have a disagreement regime at t = 0.
Now, by Proposition 2, V3 = (0,1). Hence, att = 2, if recognized, players 1 and 2 will offer
(V1 —6%6) and (0,1), respectively. The offers will be accepted. Thus,

<2
- SR ho - (AE 1),

At the beginning of date t = 1, player 1 is certain that he will be recognized, and will offer
(1/1— (61/22)2, §ViE), which will be accepted. Thus, his continuation value will be

1/11:\/1—(61/22)2:\/1—62 <1T+6>2. (34)

Likewise,

)
V2= 1/1- (6V}) = /162 45. (35)

We have a disagreement regime at t = 0 if (V11)2+ (V12)2 > 1/6%. By (34) and (35), this is
the case when 2 — % (1+406) > 5—12 Writing f(6) =2— % (1+406)— 6%’ we observe that f(1) =0,
f(1) =—=1/2 <0, thus f(6) > 0 whenever ¢ is sufficiently close to 1. In fact, one can check
that, for any 6 € (0.907,1), we have f(8) > 0, hence we have a disagreement regime at t = 0.

10This would be the case if players were dividing a dollar and each had utility function z — +/z.
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In a game with perpetual optimism, each player adjusts his expectations down, knowing
that his opponent has very optimistic beliefs — even though he believes that his opponent is
wrong. With transferable utility this adjustment was enough for agreement. When players are
risk-averse, however, uncertainty about which player will get the rent lowers their continuation
values at the beginning of any date with an agreement regime, increasing weakly the rent for
the player recognized at the previous date. If in addition players are highly optimistic for this
date, such an increase may be high enough for preventing them from agreeing at the date

before — as our Example demonstrates.

8 Conclusion

As suggested by Edgeworth (1881), with complete information, in equilibrium, bargaining
results in an optimal outcome. Given that the delays are costly, this also implies that the
agreement is reached immediately. Yet, the agreement is delayed as a rule in real life. A
prominently proposed explanation for the delay is parties’ excessive optimism.

In this paper, we analyzed the problem of reaching an agreement in a model where players
are possibly optimistic about the recognition process, the ultimate source of bargaining power
in sequential bargaining with no outside option. In order to see the pure impact of optimism,
in our analysis we relaxed only the common prior assumption of complete information, and
adhered to the equilibrium.

We showed that the excessive optimism alone cannot be a reason for the delay. When
players are sufficiently optimistic for a long while, recognizing that his opponent will remain
optimistic for a long while, each player will lower his expectations about the future so that they
will reach an agreement immediately. In other words, presence of perpetual optimism includes
also the bad news for each player that his opponent will remain optimistic, inducing a form of
pessimism that moderates his optimism to the extent that they settle at the beginning.

Corroborating this, we further showed in a special case that we will have an immediate
agreement so long as there are no sudden jumps in the level of optimism, providing a ratio-
nale for the immediate agreement result in complete-information models, where the level of
optimism is constantly nil. It is not the absence or the presence of optimism that determines
whether we have an immediate agreement; that is determined by the change in the level of
optimism.

Relaxing the common prior assumption enriches our understanding further. Taking differ-
ences in information to be the only source of differences in beliefs, the common prior assumption
allows only one notion of convincing, namely communicating the privately known information
in a credible way. While the delays are used as a means to convince the other party in this
sense, another notion of convincing becomes salient in our model, providing a distinct rationale

for delay. When players’ beliefs are substantially different from each other, a player may be
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willing to wait so that his opponent will observe more facts and have a better understanding
of the truth, which is presumably like our player thinks.

A Appendix — Monotonicity of payoffs with respect to beliefs

Here we will show for affiliated recognition processes that a player’s equilibrium payoff increases as he
becomes more likely to make an offer in the future. We will first present an example showing that this
is not true when the recognition process is not affiliated.

Example 4 Take U = {(ul,uz) €[0,1? |u! +u? < 1}, t =00, 6 € (3—1+/5,1), and consider the
following family of recognition processes p, parametrized by player 1’s beliefs about p,. Under P, p
is independently distributed with P! (py=1) = 0, P1(p, =1) = 7w, and P*(p,=1) = 1/2 at each
s > 1. Player 2’s beliefs are similar to those of player 1, except that player 2 believes that he will not
be recognized att =1, and if he is recognized at t = 1, he will never be recognized again. That is, given

any p; = (po (W), py (W), ,pi_y (w)) with t > 2, for any s > t, we have

1/2 if py(w) =1,
0 otherwise;

P?(p, = 2lp,) = {

and P? (py=2) = 1 and P%(p, = 2|py) = 0. We will show that player 1’s continuation value at the
beginning of date 1 is decreasing with m = P (p, = 1). Hence, when m gets higher, player 2 will offer
player 1 a lower share at date 0; and the offer is to be accepted.

If player 1 is recognized at t = 1, we will have the Rubinstein-Stahl framework with identical players,
hence he will offer (1 —6/2,6/2), which will be accepted. (The continuation values att =2 are 1/2.)
Take any p, where player 2 is recognized at date 1. Now, Player 2 will always think that he will
never make an offer; hence, by Proposition 2, VEH (Pt+1) = 0. Hence at t, if recognized, player
1 offers (1,0), which is to be accepted. Thus, by (20), V! (p) = 5 -1+ 1 -6V (piyy). Since
Vit (p) = Viiy (pigy), we then have Vi (p,) = 1/ (2 —6). Therefore, if player 2 is recognized at date
1, he will offer (6/ (2 —06),1—6/(2 —0)), which is to be accepted. The continuation value of player 1
at the beginning of date 1 is then

‘ N

Vi=mn-(1-6/2)+1-m)-

>

2 —

Since § € (3 —+/5,1), §/(2—68) >1—6/2, hence Vi is decreasing with w. (Note that V2 = §/2, hence
Vit + V2 <1, thus they reach an agreement at t =0.)

Proposition 2 stated that being recognized at some ¢ contains a good news for a player that he will
extract some non-negative rent. In our example, for player 1, the recognition at date 1 comes also with
the bad news that his opponent is not excessively pessimistic, hence now it is common knowledge that,
if they wait, he will not be able to get more than half the dollar. This bad news is dominant; and being
recognized at date 1 is overall bad news for player 1. If player 1 comes to believe that he is more likely
to receive such bad news, he will have a weaker bargaining position at date 0, in which case he will get
a smaller share in the dollar.
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Now we focus on a canonical class of recognition processes, where all these news are good. A
recognition-process p is said to be (weakly) affiliated iff

P (ps = ilpty = 0005 Prys -+ 5 P1,) = P (ps = ilpug # 65 Pty Pras -+ > Pr,)

for each finite sequence (%o, %1, ... ,t,) of non-negative integers, for each ¢ € N and s € N. Note that,
if p is independently distributed or exchangeable, it is weakly affiliated. Note also that we define the
affiliation among all the members of a process, while it is usually defined between two random variables,
say ps and p, , which corresponds to the sequence with tg =t; = ... =t,. If a process p is affiliated,
then we have

P'(p, =ili,p;) > P'(p, =ilj, py) and P’ (p, = jli,p,;) < P’ (py = jlj. p;) (36)

at any two histories (¢, p,) and (j, p,) that start with distinct players ¢ and j at date 0, but continues
with identical players.

Proposition 3 Given any two games G*[8, p| and G* |8, p| with
P (p, = ilp,) = P' (p, = ilp,) and P? (b, = jlp,) < P’ (p, = jlpy) (37)
at each s and p, for some distinct players i and j, if p is affiliated, then
Vipl = Vip] and V7 [p] < V7 p], (38)
where the terms in [-] indicates the underlying recognition process.

That is, when the recognition process is affiliated, if players’ beliefs change in such a way that each
player finds a player ¢ at least as likely to make an offer as before, player ¢ (if anything) gains and his
opponent (if anything) loses. A similar proposition for the Rubinstein-Stahl framework can be found
in Merlo and Wilson (1995), where the recognition process is affiliated by their modelling assumptions.

Proof. It suffices to prove the Proposition for finite-horizon case. For, the continuation values in
an infinite-horizon game is defined as limits of the continuation values in finite-horizon games; and the
inequalities will remain to hold as we take the limit.

Assuming that ¢ € N, we will use mathematical induction on the length t. Firstly, for ¢ = 0, we
simply have V7 [p] = V{ [p] = V/ [p] = V/ [p] = 0, and our Proposition is trivially satisfied. Assume that
our Proposition holds for all games of some length  and for every (€, P!, P?). Setting f =t + 1, take
any two games G*[6, p] and G*[6, p] satisfying the hypotheses of the Proposition. Given any history
h; o = (k,uy, Reject) € N x U x {Reject}, consider subgames Gf;m [6, p] and Gf;m [6, p] starting at hy o,
which are of length t = ¢ — 1. Conditional on that k is recognized at 0, these subgames trivially satisfy
(37) and process (py, pa, - - - ,pr_1) is affiliated (for p is affiliated). Hence, by our induction assumption,
(38) holds for subgames Gf;m [6, p] and Gf;m [6,p], i.e., we have

Vi (8] (p) = Vi o) (py) and V7 [3] (p,) < V7 [p] (p,) (39)

at each t > 1 and each p,. Thus, we only need to show that Vg [p] > V{[p] and V§ [p] < V{J [p].
Recall that, by (15), we have Vi [p] = P* (pg = i) m'(8V4 [p] (i) + P* (po = j) 6V7' [p] (4) and V [p] =
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P (pg = 1) m*(6Vi [p] (4)) + P* (pg = 7) 6V7 [p] (§). Hence, we can decompose Vg [p] — Vi [o] as

Vool = Vool = P'(pg=1i) [m'(8V1[p] (1)) — m'(6V4 [p] (3))] (40)
+P"(po = 5) [V [p] (7) — 8V7 [] (7)] (41)
+ [P (P = i) = P" (po = 1)) [m"(8V1 [p] (3)) — 8VA [p] (5)] - (42)

We will show that all the terms in [-]’s are non-negative. Firstly, note that m’ (v) is non-decreasing
with v? and non-increasing with v7. Hence, by (39), m*(6V4 [p] (1)) — m*(6V4 [p] (1)) > 0. By (39), we
also have 8V [p] (j) — 6V¢ [p] () > 0; thus the terms in lines (40) and (41) are non-negative. To show
that m*(§V4 [p] (i) — 6V{ [p] () > 0, we need to compare the subgames G [6,p] and G% [8, ] starting
at histories (i, u, Reject) and (7, u, Reject), respectively. Isomorphic to each such subgame G% [6, p], we
have a game G¢~1 [6, pk] where

P (ps =l1lp) = P (ps = Uk, py)

at each p, and [ € N. (p and p* can be defined on different spaces.) Since p is affiliated, by (36), we have
Pi(p =ilp,) = P'(pl =ilp,) and P7 (pi = jlp,) < P (pl = jlp,) at each p,. Since p is affiliated,
so are p' and p/. Therefore, by our induction assumption, we have V* [p’] > V*[p’]; in particular,
Vi [6 () = Vi [] > Vi [67] = Vi o) (7). Similarly, we have V§ [o] (i) < V{ [p] (j). Since mé is non-
decreasing in v* and non-increasing in v/, it follows that m®(§V4 [p] (1)) > m*(6V1 [p] (4)) > VA [p] (4),
where the last inequality is due to m® (v) > v. Therefore, m*(6Vy [p] (i)) — 6V4 [p] () > 0, and thus the
term in line (42) is non-negative, showing that Vg [p] — V¢ [p] > 0, and thus V¥ [p] > V?[p]. Similarly,
we have V7 [p] < V7 [p]; and by induction hypothesis, the proof is complete. m

B Appendix—Proofs

Here we will present the proofs that we omitted in the text. We will present these proofs under the
titles of the sections they belong to. When it is needed, we will write the underlying parameters
in [], e.g., V[t,p], V[p], etc. We will also use the supremum metric for the functions, i.e., |p —q| =
P (ps) — 4t (p,)|, and we write p > X € R iff p (p,) > A for each (¢4, p,).

maXg,i,p,

B.1 Agreement Theorem

Now we will prove Theorems 3 and 4. Towards this goal, we will first develop our notion of measuring the
size of the pie. Then, we will show that, under NL, the lengths of disagreement periods are uniformly
bounded. Then, we will show that our result holds with strict inequalities for the case when y is
identically 1. Finally, invoking a continuity property of equilibrium payoffs with respect to the belief
structures, we will obtain a stronger version of Theorem 3, which will also imply Theorem 4.

Measuring the size of the pie Define ¥ : RZ — R, measuring the size of each payoff vector
v > 0 relative to U, by setting

[[v]]
E =
@) = Do €U A ER,T
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at each v € R%\ {0} and setting £(0) = 0, where ||| is any given norm on R%. Thus defined, ¥ is
continuous, increasing, and homogenous of degree 1, i.e., X(Av) = AX(v) at each A > 0 and v € R3.
Moreover, U NR% = {v|X(v) € [0,1]}; and the Pareto-frontier is defined by ¥(v) = 1; in particular, we
have Y (m!(v),v?) = Z(vl,m?(v)) = 1. Given any t, we write S; = 3 (V;) for the perceived size of the
pie at the beginning of date ¢; we have an agreement regime at any (p,,4) iff Si11 (py,7) < 1/6. Given

any v, we will write m (v) = (m! (v),m? (v)).

Disagreement under NL Under Assumption NL, the length of an interval of disagreement
regimes is uniformly bounded. For, if we have a disagreement regime at any given ¢, we have m(6Vy41) =
6Vi41, and hence by equation (15), we have V; = 6V, 41, yielding S; = X (V;) = £ (§Viy1) = 65 (Vig1) =
6St41. This holds at each ¢ with a disagreement regime; we must thus have Sy = (55_th at each such
t, where £ is the date of the first agreement regime after t. Hence, the length of such an interval of

disagreement regimes is

 Tog(S) log (S(m(0))] . _ -
L(Sf"”‘[loga/aﬂ‘lg{ Tog(1/0) 1‘1:“‘”’

where the inequality is due to the fact that S; < X(m/(0)).

Extreme case Writing 1 for the belief structure p with pi = 1 at each ¢ and i, we now analyze the
equilibrium of any finite-horizon game G*[6,1]. (y is also identically 1.)

Consider the end of the game. Since Vi = 0, by (15), we have Vz_; = m(0), and hence S;_; =
¥ (m(0)) > 1. When Sz _; € [1,1/¢], we have an agreement regime at ¢ —2. If Sz ; > 1/6, then we have
disagreement regimes throughout the interval {f —L(8)—1,...,T— 2}; and we have an agreement
regime at £ — L (6) — 2, where L (8) = L(S¢1,6) as Sz_y = X (m(0)). By construction, S;_z( 51 €
[1,1/6]. Together with our next lemma, this will guarantee that we have an agreement regime at each

t<t—L(6—2.

Lemma 6 Take any finite-horizon game G'[6,1]. Given any t € T, if Sgy1 € [1,1/8], then Sy €
[1,2—6] C[1,1/6).

Proof. Since Sp41 < 1/6, we have agreement regime at ¢; and thus, by (15), V; = m(6Vi41). Now,
Y (6Vig1) = 0 (Vig1) = 6Sey1 € [6, 1]; therefore, it suffices to show that ¥ (m(v)) € [1,2 — §] whenever
¥ (v) € [6,1]. Given any v € R, if ¥ (v) = 1, then m(v) = v, hence £ (m(v)) == (v) =1 € [1,2 - §].

Now take any v € R% with § < ¥ (v) < 1. By definition, m(v) > v, hence X (m(v)) > ¥ (v) > 1.
Hence, we only need to show that 3 (m(v)) < 2—4§. We accomplish this using a geometric construction.
See Figure 3 for our notation and graphical exposition. In addition, we write CON E for the convex hull
of r1 and ra. [Note that v, w1, m(v), wy € CONE.] We will show that m(v) < C. Since m(v) € CONE
and X is increasing and convex, this implies ¥ (m(v)) < max{¥ ((2 —6)wq),X((2 — 6)wa)} = 2 — 6,
completing the proof.

To prove that m(v) < C, we first note that, since v < m(v), line [ has a positive slop so that A,
B, C, v, and m(v) are all linearly ordered. In this order, clearly, we have A < B < C. Moreover, B
is the center of the rectangle defined by v, wy, m(v), and we, i.e., B =v/2 + m(v)/2 = w1 /2 + wy/2.
Hence, we have v < B < m(v). Furthermore, we have A < v. [For otherwise, we would have v < A < B
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Figure 3: An illustration for Lemma 6.
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so that A € CONE and hence A = Aow; + (1 — A)dws for some A € [0,1]. Since 6U is convex, we
would then have A € ¢U, ie., ¥(A4) < §é. But v < A also implies that § < X(v) < Z(A); we have a

contradiction.] On the other hand, since lines [, 61, and (2 — §) [ are parallel to each other, we have

1B= Al [lws — bwi] 11— 4] ]
_ - =1. (43
=B " Te-0 -] B=d=1]]w] )

Hence,
|m(v) = Bl =B —v| < |B-A| =|C- B,

where the first equality is due to B = v/2 + m(v)/2, the second one is due to B > v > A, and the last
one is due to (43). Since C' > B and since m(v) and C are ordered, this implies that m(v) < C. m
Since S7_r(s)—1 € [1,1/¢], together with mathematical induction, Lemma 6 gives us the following

Lemma.
Lemma 7 Given any G*[8,1] witht < oo, at each t < t— L (8) —3, we have Sy € [1,2 — 8] C [1,1/6).

This is Theorem 3 for the extreme case of p = 1 with strict inequalities. On the other hand,
continuation values are continuous with respect to the probability assessments p, as our next Lemma
states. Since we can also bound p to be close to 1 by bounding y from below, this gives us Theorem 3,

again with strict inequalities.

Lemma 8 Given any § € (0,1), anyt € N, t € T, and any € > 0, there exists some X > 0 such that
[Vilpl (p) = Vild] (py)| < € whenever [p —q| < A.

Proof. We use mathematical induction. Clearly, V;[p] = 0 is continuous in p. Take any ¢ € T and
py. By definition, we have Vi [p] (p,) = pi (p) m (Visa[p] (1)) + (1 — 9 (p,)) 6Via 1) (pys ) at cach
belief structure p, and each ¢ € N. Assume that both p — Viy1[p] (p,1) and p — Vi1[p] (py,2) are
continuous. Since m? : Ri — R and the projection mappings p — pt (p,) and v — v* are all continuous,
p — Vi[p| (p;) must be continuous as well. By induction hypothesis this completes the proof. m

Lemmas 7 and 8 gives us Theorem 3 with strict inequalities:

Theorem 6 Given any § € (0,1) and any finite t > 2, there exists some y* < 1 such that, for every
game G, p] with y > y*, we have Siyy (Pry1) < (2-6+1/8)/2 < 1/8 (and hence an agreement

regime) at each date t <t — L(6) —3 and each p, ;.

Proof. If #— L (6) —3 < 0, then our Theorem is vacuously true; so, assume that £ — L (§) — 3 > 0.
Define Toqriy = {t eTt<t—L(8)— 3}, which is finite and non-empty. Given any t € Teqmy, by
Lemma 7, 3 (Vi41[1]) < 2 — 6§ < 1/6; and since ¥ is continuous, there exists some ¢, > 0 such that
Y (Vigalpl (pig1)) < (2—6+1/6) /2 whenever |Viq[p] (pyy1) — Vig1[1]] < €. But by Lemma 8 there
> 0 such that |[Vipa[p] (pr41) — Vira[1]] < & whenever |[p—1] < A, ., ie,
>0and y" =1— X < 1. Take
any p with y > y*. Now, given any (s, p,, i), and any p, ; with ¢ € Teqy, we have pi(p,) >

1=pl(ps) +ys (Ps) > ys(ps) 2 y* =1—-A>1—=X, , where j # i. Therefore, at each p, ; with
t € Tearty, we have |Viy1[p] (pig1) — Vir1[1]] < &, yielding & (Viga[p] (py1)) S (2—6+1/6) /2. m

also exists some A,

pi(ps) > 1— Ap,., for each (s, pg, i). Set A = miny, | teTian, Ao,y
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Proof. (Theorem 4) Take any § > 0, and let e =1/6—(2 — 6 +1/6) /2 > 0. Since ¥ is continuous,
by (21), for each t < t*, there exists some #;, € N such that

|St41[00,p] = Sty [£p]| = [ (Viga [00,p]) =X (Vi [EpD) <er (Vp) (44)

whenever ¢ > ¢,. This is true in particular for £ > ¢ = max {t* +L (6) + 3, maxy<¢~ ft}. By Theorem
6, there also exists some y* < 1 such that, for every Gf[é,p] with y > y*, we have Sy [f, p] (Pt+1) <
(2-06+1/6)/2=1/6 — € at each p,,; with ¢t <t*. In that case, by (44), we will have S;4 [00,p] <
Sit1 [t,p] + €1 < 1/6, i.e., an agreement regime at each t <t*. m

B.2 A stylized model with learning

Now we will present the proofs omitted in Section 6. The results in this section are stated for the
infinite-horizon case. Here, we will first consider the finite-horizon case and then take the limit. We
write N = (NU {oo})\ {0}. We will first prove the following Lemma.

Lemma 9 For any 6 € (0,1) and t € N, assume TU, XB and that R} [f] = R2[t] = R [t] € R for each
s >t for some t < t. Also, write A = Zts;i 8°7'R,[t]. Then, given any p, € N* and any i € N,
Vi [t (py) = i (py) Af and S [] (p,) = (1 +y()) Al

Proof. Under our hypothesis, given any p; and s > t, we have E' [11, _yR. [f] |p;] = Rs [1] B [1{, —i}|p] =
Rs[t] P* (ps =ilp,) = Rs[t] P (p, =i|p,) = pi(p,) Rs[t], where the penultimate equality is due to
the fact that player’s beliefs about different dates are identical. Hence, by Proposition 2, we have
Vil (p) = Y46 B (1, —iy B ] Ipy] = pi (py) AL This also implies that S [f (p,) = V;! ] (p)+
VZ (8 () = pi (p) AL+ 97 () Af = (pi (p) + 17 (p) Af = (1 +l/(t)) Aj. =

Lemmas 3 and 9 imply Lemma 4 as an immediate corollary. We now prove Lemma 3.

Proof. (Lemma 3) We will prove the lemma for any £ € N. We first consider the case € N
and use mathematical induction: Firstly, R | [f] = R? | [f] = 1, which is deterministic. Assume
that R.[f] = R?[t] = R,[t] € R for each s > t + 1 for some t < . Then, by Lemma 9, Syy1[f] =
(1+yu+1)) Aly; € R and hence R} [f] = R? [t] = max{0,1 — 85,41 [t]} € R, showing by mathematical
induction that R} [{] = R?[t] = Ry [t] for some R[] € R for each t < . In that case, by Lemma 9,
Si[t] = (1 + y(t)) Al € R for each t < t, proving our Lemma for finite-horizon case. In the infinite-
horizon case, as t — oo, we will show that V; [t] — V; [oo], and hence S, [t] — S; [o0o] and Ry [t] — Ry [00]
at each ¢, showing that S; [0o] and Ry [0o] are also deterministic. m

To see that V; [f] — V; [oc], first observe that Al = 1 — 8y(,11)Al,; and Al = AL, when we have
agreement and disagreement regimes at . Using the fact that yéy(tﬂ)] < 6 < 1, one can check from
these equalities that A’ is strongly stable backwards. Since A§11 = Ry_1 [t] = 1, A* thus possesses a
pointwise limit A°. Therefore, V; [t] (p,) — V; [00] (p,) = pi (p,) AS° everywhere.

This also shows that §[oco] is an equilibrium. From now on, we will take ¢ = co and suppress ¢ in
our expressions.

Towards proving Lemma 5, let us define functions B, B, and C by setting B(t) = leu)’ B(t) =
B(t+1) and C(t) = %Wl(tm at each t € N. Note that B(t) < B(t) < C(t) at each t. For the
last inequality, one can check that

Yi-1) (1= 8yus1))
K (14 8y1) (1+6y(4))

C(t)— B(t) = > 0.
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We start with the following Lemma:
Lemma 10 Given anyt € PA, and b,c € R, we have

At+1 = B(t + ) —b <= A= (t) + 5y(t+1)b (45)
At+1 = C(t + 1) +c <— At = (t) - §y(t+1)c. (46)

Proof. Since Ay = 1 — 6y(141)A¢+1, we have

1 1 1
ANy =—"F———b = A=1-56 —_— b= —— +§ b,
EEE 0Y(t+1) ¢ YD) {1 + 0Y(t41) ] 1+ 6y(41) Yt
showing (45). Likewise,
Y Yo 1 1

+c <— At =1 —6y(t+1)

A1 = — 0Y(y1)c = = 0Y(+1)Cs

Y1) L+ 0y Y1) 1+ 0y L+ 6y

showing (46). m
Note that, whenever Ay11 > B(t + 1), we have Ayy1 = B(t + 1) — b for some b < 0, and hence we

have Ay = B(t) 4 8y(+1)b < B(t). Likewise, whenever Aypq < C(t + 1), we have Ayy1 = C(t+1) + ¢
for some ¢ < 0, and hence we have Ay = B(t) — 0y(;41)c > B(t). This gives us the following Lemma.

Lemma 11 Given anyt € PA, if Bt +1) < Ayyq < C(t+1), then B(t) < Ay < B(t).
Lemma 12 For anyt € PA, B(t) < Ay < C(t).

Proof. Take any t € PA, and write

9 — 1 ift=s
¢ H;:t-}—l (—6y(j)) ift<s

for each s > ¢. Then, using Lemma 10, we compute that

Ay =C)+ 077 [Ayor — C(t+20)] — Y 6777 [C(t+2k) — B(t + 2k)] . (47)
0<k<l-1

for each t € PA, and [ > 0. Using Lemma 10 and mathematical induction on [, one can easily check
that (47) holds.

Equation (47) implies that A; < C(¢) when [ is sufficiently large. To see this, note first that, since
|=6y)| < 1, as I — oo, 92— 0. Since we further have |Ayyo — C(t +20)| < 1 at each t,1, it
follows that, as I — oo, 872 [A;4o — C(t 4 20)] — 0. Second, :72% > 0 for each k, as it consists of
multiplication of evenly many negative numbers. Since C(t+2k)— B(t+2k) is always positive, it follows
that > gc ey 00T [C(t + 2k) — B(t + 2k)] is positive, increasing in I, and hence bounded away from
Z€ro. Th_er(;fore, there exists I’ € N such that

07 Ay —C(t+20)] — Y 077 [C(t+2k) — B(t +2k)] <0 (48)
0<k<l—1
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whenever [ > I'.
On the other hand, using (47) at ¢ + 1 and (46), one can also obtain

A = B(t) =6y 0t Mg — C(t+ 20+ 1)]
oy Y, 0T [C(t+1+2k) — B(t+1+2k)] . (49)
0<k<l—1

Of course, by (48), there exists some I € N such that

6y 0 T Ay — CE+ 2+ )]+ 6yeny 017 [C(t+2k+1) = B(t+2k+1)] >0
0<k<i—1
(50)

whenever [ > ", whence we have A; > B(t). Therefore, for any [ > max{l’,!”}, inequalities (48) and
(50) simultaneously hold, hence by (47) and (49), we have B(t) < Ay < C(t). m

We can now prove Lemma 5.

Proof. (Lemma 5) When t € PA, our Lemma is vacuously true. Take any ¢t € PA. By Lemma 12,
we have B(t + 1) < Ayp1 < C(t + 1), hence by Lemma 11, we have B(t) < A; < B(t). =
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