Reprinted from

OURNAL OF
conometrics

Journal of Econometrics 96 (2000) 1-23

A simple framework for nonparametric
specification testing

Glenn Ellison*, Sara Fisher Ellison

MIT Deparment of Economics, 50 Memorial Drive, Cambridge, MA 02139, USA 3




and
e to
ithin
hcial

n of

rsity
Jo.

ion,
all=R
DO,
y of
sity,
van;
leis
ton,
Ciel,
D.J.
sité
Sity,
Sity,

not
ipts

for
vier

are
tes

ou:
rth

ax:
ax:

ne:
elp

30X
uth

ve,

H
,:?fg.! JOURNAL OF
E Econometrics

ELSEVIER Journal of Econometrics 96 (2000) 1-23

www.elsevier.ni/locate/econbase

A simple framework for nonparametric
specification testing

Glenn Ellison*, Sara Fisher Ellison

MIT Department of Economics, 50 Memorial Drive, Cambridge, MA 02139, USA

Received 1 November 1993; received in revised form 1 April 1999

Abstract

This paper presents a simple framework for testing the specification of parametric
conditional means. The test statistics are based on quadratic forms in the residuals of the
null model. Under general assumptions the test statistics are asymptotically normal
under the null. With an appropriate choice of the weight matrix, the tests are shown to be
consistent and to have good local power. Specific implementations involving matrices of
bin and kernel weights are discussed. Finite sample properties are explored in simula-
tions. © 2000 Elsevier Science S.A. All rights reserved.

JEL classification: C14; C12

Keywords: Consistent testing; Specification testing; Nonparametric; Quadratic form

1. Introduction

Specification testing has become commonplace in econometrics, both as
a means of testing economic theories which predict specific functional forms and
as a regression diagnostic. Early specification tests,! although useful in many
settings, are not consistent, i.e., there are alternatives which they will fail to
detect regardless of the amount of data available. Partly in response to this

* Corrresponding author.
! See, for example, Ramsey (1969), Hausman (1978), Davidson and MacKinnon (1981), Newey
(1985), Tauchen (1985), and White (1987).

0304-4076/00/$ - see front matter © 2000 E’sevier Science S.A. All rights reserved.
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concern a large recent literature has examined the behavior of specification tests
which exploit nonparametric techniques.? The literature considers a variety of
techniques including series estimation, spline estimation, and kernel estimation
to test a null (parametric) model, with some of the tests having been shown to be
consistent against all alternatives.

Our approach to testing a null model y; = f(x;; «) + u; employs test statistics
based on quadratic forms in the model’s residuals, Y w;;ii;i;. One intuition is
straightforward: quadratic forms can detect a spatial correlation in the residuals
which would result from a functional form misspecification. We provide general
conditions sufficient to ensure that the test statistics will be asymptotically
normally distributed under the null and will be consistent and explore the finite
sample performance of specific implementations of the test via Monte Carlo
simulations.

Much of the previous literature on nonparametric specification testing has
been motivated as testing the orthogonality between a model’s residuals and an
alternative nonparametric model.® Our testing framework can also been seen in
this light. Consider a nonparametric estimator j = Wy, e.g., kernel, spline,
series, or other linear smoother. A Davidson-MacKinnon style test of ortho-
gonality with § as the misspecification indicator would be of the form:

T=—1”25’iai
CN

= % Z <Z w,-j(xjﬁ + ftj)>17ti
1

1
= — Z W,-jul-uj +
CN j Cn

2 a,.< Z»w,-jx,)ﬁ.

i J

The first term is a quadratic form in the residuals. The second measures the
orthogonality between the residuals and something that is of the form of an
estimate of X and should be small. Hence, we can think of a quadratic form test
with a weight matrix W as similar to an orthogonality test with Wy as the
misspecification indicator.*

2Work in this vein includes Azzalini et al. (1989), Bierens (1982, 1984, 1990), Bierens and
Ploberger (1997), de Jong and Bierens (1994), Delgado and Stengos (1994), Eubank and Spiegelman
(1990), Fan and Li (1996), Gozalo (1993), Hirdle and Mammen (1993), Hidalgo (1992), Hong and
White (1995), Horowitz and Hardle (1994), Rodriguez and Stoker (1993), White and Hong (1993),
Wooldridge (1992), Yatchew (1992), and Zheng (1996).

* This, for example, is the approach of Hong and White (1995), Eubank and Spiegelman (1990)
and Wooldridge (1992).

* A previous version of this paper showed the equivalence between a quadratic form test and an
othogonality test in some (but only some) situations.
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We hope that our approach may be seen as useful for a few reasons. The
construction is general and transparent, allowing researchers to base tests on
a variety of nonparametric estimation techniques and to easily tailor tests to
detect various types of misspecification, if desired. The tests have good local
power and in simulations appear to have reliable size in small samples. The
framework is also well-suited to the application of standard binning techniques
and thus allows for tests which are undemanding computationally.

The remainder of the paper is structured as follows. Section 2 introduces the
class of quadratic form test statistics with which we shall be concerned and
establishes their asymptotic normality with correct specification in a fairly
general environment. Several specific implementations are then discussed, in-
cluding one based on a kernel regression estimator that is similar to the test
which was independently proposed by Zheng (1996). Potential finite sample
corrections are also discussed. Section 3 contains a fairly general theorem
establishing the consistency of the tests. With an appropriate kernel implemen-
tation the local power of the tests is equal to that of the best of the prior and
contemporaneously proposed tests, e.g. Eubank and Spiegelman (1990) and
Hong and White (1995), and is superior to that of many other approaches.’
Section 4 presents the results of a set of Monte Carlo simulations which examine
the power of our tests and the reliability of the asymptotic critical values in finite
samples. In a comparison with several other tests, our tests (with the suggested
finite sample corrections) appear to have an advantage in the finite-sample
accuracy of asymptotic critical values, and perform fairly well also in terms of
power.

2. The test statistic: Definition and asymptotic distribution

We first introduce a general class of specification tests for a nonlinear
regression model and prove that the statistics are asymptotically normal under
the null. We then discuss several special cases in more detail to illustrate the
utility of the framework.

2.1. General definition and asymptotic normality

We will be concerned with testing the specification of a nonlinear regression
model of the form E(y; | X) = f(x:; o). We explore procedures consisting of two

steps. The null model is first estimated by some \/N-consistent procedure

5The one test we are aware of which has slightly better local power is that of Bierens and
Ploberger (1997) which is consistent not only against local alternatives which shrink at a rate slower
than N~ 1/2, but also against local alternatives which shrink at a rate of exactly N~ 1z,
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producing residuals . Test statistics based on a quadratic form # Wii are then
formed. Large positive values of the test statistic indicate misspecification.

We begin with a very general proposition which defines a class of test statistics
I n and gives their asymptotic distribution. Given conditions on the eigenvalues
of the weight matrix, the quadratic form test statistics are asymptotically
normal. We would like to emphasize that Proposition 1 is applicable not only to
consistent tests, but also to quadratic form tests tailored to detect particular
forms of misspecification.

To state the proposition, we need a few definitions. The matrix 4 is said to be
nonnegative if each of its elements is nonnegative. For an N x N matrix 4, we
write r(A4) for the spectral radius of A defined by

A
r(A)= sup 1 4]

veﬂ‘i", v#0 ”U” .

When 4 is symmetric with eigenvalues |y;| = |y,| = -+ = |ynl, it is well known
that n(A4) = |y,|. Define

1/2
S(4) = (Z aé) :

ij

When 4 is symmetric, it is easy to see that s(4) = (Y y?)*'2.

Proposition 1. Suppose y; = f(x;; ao) + w;, where {x;} is a sequence of i.i.d.
random variables having compact support D < R®, and {u;} is a sequence of
independent random variables with independent of x; for j#i,
E(u; | x;) =0, 0 < 0% < Var(u; | x;) <6* < o0, and B(u}|x;) <m < oo for all
i and x;. Assume also that f- D x R’ — R is twice continuously differentiable. Let
oy be a \/N -consistent estimate for oy. Define fi;y = y; — f(x;; o). Write i for
the N-vector (it y, ... fiyy), and OV for the N x N diagonal matrix with iith element
ii;n. Let Wyt DY — RY "bea function associating a symmetric N x N matrix to each
realization of (xy...xy). Suppose that wy; =0 for i=1,2...,Nr
(Wy)/S(Wy) >0 as N0, and that FSCy >0 as N> oo. Let
™ Wy

Ty = M La— oM
Y 280V W T Y

Then, Tn 5 % ~ N(0,1).6

® We take this opportunity to explain a few of the notational liberties we will take. First, we will
normally write Wy for the matrix Wx(x,, ..., xy). Note that Wy is stochastic when {x;} is stochastic.
Second, we will often drop the N subscript or superscript when no confusion will arise. For example,
the elements of the matrix Wy will be written wy;, and the vector u™ will often be simply u. Finally, to
refer to the matrix of explanatory variables in our models, we will sometimes use the notation x” and
sometimes X, depending on the context.
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Remark 1. Proposition 1 shows that 7y converges to a standard normal when
r(Wy)/s(\Wkx) 2 0. We will see in Sections 2.3 and 2.4 that this condition is
automatically satisfied given appropriate regularity conditions when W is

- a matrix of bin or kernel weights. For any other sequence of weight matrices, one

can always try to apply Proposition 1 directly. In any case, it may be useful to
compute the ratio r(Wy)/s(Wy) and see how close it is to zero to get a rough
idea of how far the statistics may be from normal in the given finite sample. In
simulations described in Ellison and Ellison (1998), we find the true size of a test
with 5% asymptotic critical values to be between 4% and 6% in each of the
specifications we tried for which r(Wy)/s(Wy) was less than 0.4.

2. The term FSCy in the test statistic is a finite-sample correction. The most
straightforward application of Proposition 1 would be to the development of
a consistent test for misspecification of a linear regression model (with a con-
stant). For such an application with X the matrix of nonconstant explanatory
variables and with Wy being a weight matrix such that Wyy is a consistent
estimator of f(such as a matrix of kernel weights) we recommend and use in our
Monte Carlo study the correction

1 + rank(X)

\/ES(WN) .

While the use of nonparametric specification tests is often motivated by
a desire for consistency, at other times an applied econometrician might want to

FSCN =

_use a nonparametric test designed to detect specific forms of misspecification.

For example, one might be particularly interested in nonlinearity in one variable
or in the presence of an omitted variable.” Our more general recommendation
for such cases would be to use the correction

Zg=0/?k
SCy = —=x=07k
= sty

where f is the coefficient on X ., (the kth explanatory variable in the null model)
in a regression of Wy X ., on X (and a constant) and f, is the constant term from
a regression of Wy 1y on X. We provide motivation for our suggested correction
in Section 2.2.

The proof of Proposition 1, as well as all other proofs, is in the Appendix.
Intuitively, the reason why a quadratic form in the residuals is asymptotically
normal is that any symmetric matrix 4 can be written as 4 = ¢'AP with

7 Chevalier and Ellison (1997), for example, use a quadratic form test to investigate whether
a regression is nonlinear in one of several independent variables.




6 G. Ellison, S.F. Ellison | Journal of Econometrics 96 (2000) 1-23

A diagonal and @ the orthogonal matrix of eigenvectors of 4. If u is a vector of
independent random variables we then have

WA =@ ADu = v'Av =Y v},

where v = @u is a vector of uncorrelated random variables. We thus have that
« Wu is a weighted sum of the squares of a set of uncorrelated random variables,
and this is asymptotically normal provided the square of the largest weight
(which is equal to r(A)?) becomes arbitrarily small compared to the sum of the
squares of the weights (which is equal to s(4)?).

2.2. Motivation for a finite-sample correction

The form of our suggested finite-sample correction, FSCy, is motivated by an
analysis of the finite sample mean of the numerator of the test statistic in the
simplest case - the parametric null being a linear regression with homoskedastic
errors estimated by OLS. In this case we have

E(@ W) = E(u'(I — Px)W(I — Px)u)
= E(uw'Wu) — E(u'Px Wu) — E(u'W Pxu) + E(u'Px W Pxu)
= — 2 THPx W)= — > TH(X'X) ' X' WX).

(The last line follows from repeatedly applying the identities E(u' Au) = 0% Tr(A)
and Tr(AB) = Tr(BA).)

Writing X for W X, the kth diagonal element of the matrix (X'X)~ XWX is
simply the coefficient on X., in a regression of X ., on X. This motivates our
more general suggested finite sample correction. When W is the weight matrix
corresponding to a consistent estimator, X ., will approach X ., as N - oo
(under appropriate conditions), and hence each of these regression coeflicients
should approach one. The simpler finite sample correction we recommend for
such W is motivated by there being 1 + rank(X) such regression coefficients
when X is augmented by a column of ones.

2.3. A special case: The kernel test

The proposition of the previous section identifies the asymptotic distribution
of a broad class of test statistics. Recall that one motivation for looking at
a statistic of the form &' Wi is that it is similar to a test of orthogonality between
i1 and the nonparametric estimate = Wy. A typical application of our frame-
work suggested by this motivation is to take the matrix W to be the weight
matrix from a kernel regression of y on X.

i Y Y
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An easy application of Proposition 1 shows that a test statistic formed from
kernel weights is asymptotically normal given very minimal restrictions on the
kernel and the rate at which the window width shrinks to zero.

Corollary 1. Let y, f, {x;}, {w:}, &, @, U, D be as in Proposition 1. Suppose also
that the distribution of x; has a twice continuously differentiable density
p(x)=p>0onD.

Let the kernel K(x) be a nonnegative function satisfying [wK(x)dx =1 and
[qeK(x)* dx < o, and define Wy by

K(1/hy - (x; = x;))
Wiin =4 e K(1/hy - (x; — X))
0

ifj#1iand Zk#iK(l/hN “(x; — x)) >0,

otherwise.

Let W$ =Wy + Wjy)/2. Suppose that for some 6 >0, N°hy -0 and
Nh&hy? - o. Then

W i 1+d <
Fy=NE L FE T g (0
S2s(OVW0Y  /2s(W%)

‘Remark 1. The test described in Corollary 1 is quite similar to the test which was

" independently proposed in Zheng (1996). The principal difference is that the

density weighting of the various terms in the quadratic form differs because we
have made each row of the weight matrix sum to one rather than using raw
kernel weights.

2. Some assumptions have been made purely for convenience. For example,
the assumption that the kernel is nonnegative is used only because it makes it
easy to conclude that ) ;;w;;w; >0 and that r(Wy) remains bounded as
N — oo. If one wanted to use a kernel which was sometimes negative, a variety
of other assumptions could be added to obtain these conclusions.®

3. The calculations in the proof illustrate our earlier comment that non-
parametric test statistics may converge to their asymptotic distributions very
slowly. In the proof we note that s(Wy) = O,(h~%?). This implies that our
recommended finite-sample correction only tends to zero like h*>. If, for
example, one is testing a model with one explanatory variable and chooses
hy = ho N3, our finite sample correction term will only vanish at the rate of

8 Without the assumption that the kernel is nonnegative, an additional assumption, e.g.
jmaIK(x)| dx < o0, would also be needed to ensure that the kernel density estimates used in the proof
are consistent.
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N~ /109 Finite sample corrections may thus be important, even when hundreds
of thousands of observations are available.

2.4. ‘Binning’ and other tests

The testing framework can accomodate a wide variety of weight matrices. For
example, W could be the weight matrix corresponding to any smoother of the
form Wyy, such as k-nearest neighbor estimators, splines, orthogonal series
estimators, and convolution smoothing.*® If one suspects nonlinearity in one of
several X variables, one could choose weights which depend only on differences
in that one variable. Such a test would not be consistent of course — misspecifica-
tions in other X variables could go undetected - but it might have better power
in detecting that particular form of misspecification.

One simple alternate implementation is a ‘bin’ version of the test.'* It may be
obtained by dividing the data into m(N) bins and setting all nondiagonal weights
equal to each other inside the bins and equal to zero outside the bins. In contrast
to a kernel test statistic, which requires O(N?h) computations, a bin test statistic
requires O(N) computations. An O(N) computation of the test statistic and
general conditions sufficient to ensure its asymptotic normality are described by
the following corollary.

Corollary 2. Let y, f, {x;}, {w:}, & i, D be as in Proposition 1. Suppose also that
each x; is drawn from a distribution with measure v on D.

Consider a sequence of partitions {Py} with D = P{yUP,yU - UP i,
PivoPiy =0, k # j, m(N) - oo, and N infyv(Pyy) — o0. Write Cyy for the ran-
dom variable giving the number of elements of {x1, ..., Xy} which lie in Pxy, Sy for
(st.t.CkNZZCkN/(CkN - 1))1/2, and Vyy(n) for Zis.t.x.-ePuv itiy. Define

T erc Vin(1)* — Vin(2)
ks t.Cin 22

T Cev — 1 L 1+4d
", Vi) — Vin@\ ' 7 /25y
st.t.c,,sz (Con — 1)2

Then Ty > % ~ A(0,1).12

9 Local power calculations presented later will suggest using window widths which shrink even
more slowly.

108ee Hirdle (1990) for a discussion of the weight matrices corresponding to the estimators
mentioned above and others.

11See Tukey (1961) and Loftsgaarden and Quesenberry (1965) for early discussions of computa-
tionally simpler smoothing estimators, such as the regressogram. These estimators would result in
a weight matrix similar to that which we suggest for the bin test.

121f one wishes to use bins which are based on finer and finer divisions of only one, or more
generally z, of the X variables, the (1 + d) term in the finite sample correction could be replaced by
(1 + 2).
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3. Consistency and local power

An important motivation for nonparametric specification testing is that
parametric tests will fail to detect departures from the null in certain directions.
In this section we verify that, given fairly general conditions on the choice of
a weight matrix, the tests described in the previous chapter are indeed consis-
tent.

As is standard, we consider whether the test can detect alternatives gy(x)
which approach f(x; #9) as N — o0, e.g., gn(x) = f(x; 09) + N~ %e(x) with & > 0
and e(x) orthogonal to the space of null functions f. The proposition shows that
if the alternatives do not approach the null too quickly, i.e., if £ < & then the test
will detect the alternative with probability one. Only two fairly weak conditions
on the weight matrix are required: that the eigenvalues satisfy (W y) = 1 and

s(Wy) B o0, and that the nonparametric estimator éy(x) = Wye(x) have
a mean squared error smaller than the function being estimated. These condi-

tions are satisfied for bin and kernel weight matrices, among others, if e(x) is
piecewise continuous.

Proposition 2. Suppose y; = gn(x;) + w; with {x;}, {w;}, &i, U, D as in Corollary I,
and gy: D — R a sequence of functions. Write X for the matrix (x; ... xy). Let
Uy, X) be an estimator for which there exists a sequence ok such that

. \/]TJ(&(y, X) — af) L >~ N0, Q) and o — 0y as N - oo for some o,. Let

Wn(X) be a sequence of matrices with wy; =0 Vi, (Wy) > 1, and
1/sW$) B 0as N - . Suppose FSCy & 0 as N — oo. Let [ be the vector
whose ith element is f(x;; &) and similarly for other functions of x;.

Let & be defined by & = sup{¢|N>'s(ZVW3, Z¥) 5 0, and suppose there exists
a constant &, 0 < & < & and a bounded function e(x) with {pe(x)*p(x)dx # 0 such
that N(gn(x) — f(x; a)) — e(x) uniformly in x. Suppose also that Wy is such that

Pr{|[Wye —el| <(1 —d)llell} > 1 as N —» oo for some 6>0.

Let

—_—
Ty =—o N | FSCy,.
S28(0"w5, OV

p
Then, Ty - o0 as N - .

It is instructive here to comment on the rate at which the local alternatives
may approach the null. Recall that in the case of the kernel test we saw (in the
proof of Corollary 1) that s(W3) = O,(hy“?). Hence, the definition of & gives
& =13+ limy., (d/2)logy hy. For example, if d = 1 and the kernel is chosen to
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be the standard ‘optimal’*3 kernel with hy = O(N ~'/*) then the test is consistent
against alternatives of order N~¢ for & <4 With a more slowly shrinking
window width, the test can be made to have power against local alternatives of
order N™¢ for any ¢ < 3. Similarly, the bin test has s(W%) = O,(m(N)) so
=14 limy_., — tlogy m(N). We again get & close to % if we let the number of
bins grow slowly.

This local power is equal to that of the best of the prior and contempor-
aneously proposed nonparametric tests, such as Eubank and Spiegelman (1990)
and Hong and White (1995), and is superior to that of many other approaches.
The only test of which we are aware that obtains slightly superior local power is
the test of Bierens and Ploberger (1997) which is consistent against local
alternatives which shrink at a rate of exactly N~ '/? as well.

4. Simulation results

Here we present a Monte Carlo study of the finite sample power of our tests
and the reliability of asymptotic critical values. A more comprehensive set of
Monte Carlo results can be found in Ellison and Ellison (1998). For easy
comparison (and to convince the reader that we had not designed the simula-
tions to highlight our tests’ attributes), we have chosen to piggyback on the work
done by Hong and White (1995) by simply adding statistics on the performance
of our tests to tables containing the results of their Monte Carlo study.

Table 1 speaks to the ability of applied researchers to rely on the asymptotic
critical values of the various tests. For this table, we used 10,000 simulations to
estimate the size of two kernel implementations of our tests when they are
performed using 5% asymptotic critical values on the null specification used in
Hong and White (1995). The specification involves a linear model with two
explanatory variables. The test labelled Ellison-Ellison1 is based on a kernel
weight matrix with h;00 = 1.0, and that labelled Ellison-Ellison2 is a kernel test
with h,0o = 1.5. The sizes of other tests are merely reprinted from Hong and
White (1995). We did not repeat their simulations. The tests labelled Bierensi,
ES&Ji, Hong-Whitei, Wooldridgei, and Yatchewi are versions of the tests of
Bierens (1990), Eubank and Spiegelman (1990) and Jayasuriya (1996), Hong and
White (1995), Wooldridge (1992), and Yatchew (1992), respectively, with the
particular smoothing parameters, series expansions, etc. described in Hong and
White (1995).

The true sizes of our tests in the six sample size-window width combinations
are 3.8%, 4.1%, 4.4%, 4.8%, 4.9%, and 4.9%, figures which are much closer to
5% than are those for any of the other tests. Several of the other tests often have

13 Here we mean optimal kernel in the context of estimation, not testing.
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Table 1
Comparison of finite-sample ACV size

Rejection rates with 5% ACV under null

Test statistic N =100 N =300 N =500
Ellison-Ellison1 49 49 4.8
Ellison-Ellison2 38 4.1 44
Bierensl 4.8 3.6 6.1
Bierens2 6.7 7.5 10.7
ES & J1 2.0 13 2.2
ES & ]2 2.7 32 30
Hong-Whitel 1.6 20 2.0
Hong-White2 2.8 2.8 2.7
Wooldridgel 8.7 53 7.5
Wooldridge2 10.0 9.7 10.5
Yatchew! 7.2 6.2 8.5
Yatchew? 104 . 9.9 13.1

Source: Figures for Ellison-Ellison tests computed from 10,000 simulations. Figures for other tests
taken from Table 2 of Hong and White (1995).

an ACYV size subtantially in excess of 5%. We noted earlier that nonparametric
test statistics tend to converge to their asymptotic distributions relatively slowly.

. Here, many of the test statistics do no better with 500 observations than they do

with 100 observations.'* Because ACV sizes improve so slowly, finite sample
performance is of great importance.

Duncan and Jones (1994) have in the course of their empirical work on labor
supply also performed a Monte Carlo study which compares our test with those
of Gozalo (1993) and Delgado and Stengos (1994). Their results also indicate
that the asymptotic critical values of our test are more reliable than those of the
other two tests in finite samples.

Table 2 compares the finite sample power of our test with that of the other
nonparametric tests mentioned above. The table reports the rejection rates of
our and other tests (using empirically estimated critical values) against the three
other alternatives mentioned in Hong and White (1995).1° For each alternative
we report rejection rates from simulations involving 100 and 300 observa-
tions.!®

14 We would guess that they would probably show little improvement even with ten thousand
observations.

!5 We have chosen to use the set of simulations with g2 = 1 for alternatives 1 and 3, and those with
6% = 4 for alternative 2 so as to make the power of the tests against the three alternatives more
comparable. Note that in the case of alternative 2 the exponent within the exponential term is 2 not
— 2, which we believe is the proper correction to a misprint in the text of Hong and White (1995).

16 The rejection rates for the tests other than ours are drawn from Hong and White’s Tables 3-5.
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Table 2
Comparison of power

Rejection rates with 5% empirical critical values

Alternative 1 Alternative 2 Alternative 3
Test statistic N =100 N =300 N =100 N =300 N =100 N =300
Ellison-Ellison1 31.2 81.2 21.8 59.0 5.5 5.1
Ellison-Ellison2 37.2 89.4 34.3 75.7 43 6.0
Bierensl 121 31.6 38.6 83.7 4.8 46
Bierens2 10.5 313 430 88.9 5.1 4.7
ES & J1 43.8 88.9 22.8 61.3 5.3 4.6
ES & J2 36.2 79.1 20.0 54.9 5.7 53
Hong-Whitel 46.5 91.6 28.0 71.1 5.4 5.0
Hong-White2 36.8 81.5 21.4 59.5 5.4 52
Wooldridgel 6.2 2.8 19.5 293 19.8 30.8
Wooldridge2 4.7 4.1 154 384 22.9 43.6
Yatchewl 8.6 9.3 7.5 8.2 6.5 5.0
Yatchew?2 8.4 10.4 7.7 7.8 6.2 5.2

Source: Figures for Ellison-Ellison tests computed from 1000 simulations. Figures for other tests
taken from Tables 3-5 of Hong and White (1995).

Looking at each of the alternatives in turn, it appears that the Hong-White
test, Eubank-Spiegelman-Jayasuriya test, and our test do much better than the
others against alternative 1. Bierens’ test appears to be most powerful against
alternative 2, followed by our test, Hong and White’s, and Eubank and Spiegel-
man and Jayasuriya’s. Only Wooldridge’s test does at all well against alternative
3 1t should be noted, of course, that assessing power from performance against
so few alternatives may be misleading. This is particularly true here because the
power of the tests based on series expansions is greatly affected by the degree to
which the alternatives and the included series terms are collinear and because all
of the alternatives in Hong and White’s study are similar in that they involve low
frequency misspecifications.

5, Conclusion

In this paper, we have presented a framework for specification testing which
involves working directly with quadratic forms in a model’s residuals. The
framework allows one to construct asymptotically normal test statistics exploit-
ing a variety of nonparametric techniques, and we have seen that these tests can
be consistent and have good local power.
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We hope that several factors may make our tests attractive to applied
researchers. First, the tests are very intuitive, which we feel is important not only
because one is always more comfortable with a test which one understands well,

. but because this understanding makes it easy to adapt the test to the particular

situation one is facing. Second, because the null distributions of nonparametric
tests tend to converge slowly to their asymptotic limits, and computational
concerns make simulating null distributions undesirable, it is particularly im-
portant that the asymptotic approximation to the null distribution of a non-
parametric test be accurate in small samples. Using the finite sample correction
we suggest, our test does substantially better on this count than other tests in
our Monte Carlo simulation. Finally, it is easy to construct computationally
undemanding versions of the test.

As for future extensions, we see the greatest loose end in the current formula-
tion as being the need for a choice of a smoothing parameter. While simulations
can provide some guidance, it would be interesting to explore criteria for
choosing the smoothing parameter autamatically. A preliminary idea is to base
a test on choosing the smoothing parameter to maximize a quadratic form test
statistic. Given the success of Bierens and Ploberger (1997), we hope that such
a construction might both eliminate an arbitrary choice and improve local
power.
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Appendix A

Proof of Proposition 1. To begin, we note that an elementary probabilistic
argument shows that it suffices to prove that the result holds whenever {x;} is
nonstochastic and n(Wy)/s(Wy) -0 as N — oo. To see this, apply Lemma A.1
below with ay (x") = r(Wy)/s(Wy) and ty(x",u") = Ty.

To show that 7, % % ~ 4 (0,1) when {x;} is nonstochastic and
W y)/s(Wy)—0, note first that Theorem 1.1 of Mikosch (1991) (using
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Ay = Z¥W 2V implies that
N §2") imp The
WM W
28V Wy V)

where =V is an N x N diagonal matrix with X = Var(y;)}/%. Two additional
lemmas then let us conclude that Jy also converges in distribution to a stan-
dard normal. The conclusion of Lemma A.2 is that

4 7~ /(0,1),

av'w iy — u Wyu"

- 0,
J28(ZVW IV
e witl
which implies that N
~N’ ~N onv
EWxt 4 g 40,). that
J28(ENWy ZN) ' onls
. if w
Lemma A.3 establishes that mar
ZijwizjﬁizNﬁfN o1 dist
TNy Mz b (
S(ZVWET) .
dist
which implies that witl
~N’W ~N
AN 2 7~ H(01).
280wy T and
We have assumed that FSCy % 0 so this implies L ¥~ (01 O }\;5] Q
1t
Lemma A.1. Let {u;} and {x;} be as above. Write u® for (uy,...,uy) X" for (x1)
(xy ... xy) and )_cNfor a realization of x". Let ax(x") and tn(xN, u") be measurable -
functions. If Len.
N x
an(e™ > 0= ty(x¥, 1Y) S Z ~ #(0.1), 1fo
and
aN(XN) -}; 07
Pro

then ty(xN, u¥) 5 Z ~ #(0,1).

Proof of Lemma 1. As a first step we note that the result follows easily from the
first condition in the lemma and ay (xN)a—'i' 0 using the Dominated Convergence
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Theorem. Under those assumptions

lim Prob{ty(x", u") <z} = lim J Prob{ty(x", u") < z}du(x)

N—-ow N—o

J lim Prob{ty(x", u") < zjdu(x)

N-ow

= J P(z)du(x) = P(z)

with the last line following from the almost sure convergence of ay(x").

Next we show that only convergence in probability of ay(x"), not almost sure
onvergence, is necessary. To see this, let Gy(z) = Prob{ty(x", u") < z}. Note
that Gy(z) depends on the joint d1str1but10n of the sequence of matrices {x"u M
only through the distribution of x"u". Hence the sequence {Gy(z)} is unchanged
if we choose any other joint d1str1but10n on the sequence {x"u"} with the same
marginal distribution on each x"u". It is always possible to choose such a joint

distribution so that aN(xN)a—'i' 0 and hence we know Gy(z) — @(2).

(To see that such a joint distribution exists, write Hy for the cumulative
distribution function of ay(x"), let iy: DV — DV*! be a sequence of mappings
with

Hy.y (hN(xN)) = HN(XN),

and let the joint distribution on {x"} be the distribution of{x*, hy(x"),

hy(hi(xY), ...}, with the u} being related to the x¥ in the obvious way.
With thlS constructlon any realization x x x , has ay(x M =Hy'(H,
()_cl))—>0.) 4

Lemma A.2. Let {Wy} be a sequence of symmetrzc matrlces (with Wy being
N x N) such that W y)/s(Wy) »>0as N — oo.Letu N and @Y be as in Proposition
1 for a given sequence {x;}. Then,

ﬁN'WNﬁN — uN’WNuN p
- 0.
J28(ZNW y ZN)

Proof of Lemma 2. To begin, note that

o

1kJ

i —u; = —% (xi; OCO)(& - OCO) i

kJ

(i 0(x;,8))

(G — OCOk)(&j - O‘Oj),
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for some a(x;, &) between o, and &. Let

0
B, =sup ‘I (x; o)
il (0%
2 2
B,(x) = su (x; gt + (1 — 1)) =
(%) 1e[0, 1], JED,k,j Ooy, 0o ° ( ) 2

Because f has two continuous derivatives and D is compact, B; and B, (o) exist,
and B,(«) is continuous. If we write

~

i — u; = 01(& — o) + D,
we immediately have |vy;| < By and [0 < B, (&)@ — o) (& — o).
Now, consider the expansion,
FW it — W Wy = WWyu + 2t —u)y Wyu + (i —u) Wyl —u)) —u'Wyu
= 2((3 — oo vy Wyt) + 2B, Wt) + (& — o) s W1 (8 — o)

+ 2(& — OC()),U& WNT)Z -+ 5,2 WNT)2.

We now show that (Wil — u Wyu)/s(ZVWyZ") > 0 by showing that each
of the five terms on the right-hand side of the expression above have plim zero
when divided by s(Wy) (which suffices because s(Z¥ Wy ™) = a?s(Wy))

1 (1s(W ))& — o) vy Wit = /NG — o) 11/ NSIW ))o's W
\/N (8 — 0,0) has an asymptotic distribution. The vector it is multiplied by has

=2

’ O- ’
Uy WNM> < WUI WN WNvl.

1
VvV [ —
ar(/ﬁs(WN)

Each column of v, is an N x 1 vector of norm < \/NBI, so each column of

W yvy has a norm of at most r(WN)\/NBl. Each element of v} Wy W yv; is then
at most Nr{W y)?B}, and the variance-covariance matrix thus goes to the zero
matrix.

2. |(1/S(W y))os Wy ul® < (1/s(W )it W al*llull* < (W )2/ S(W 325211l
Var(y;) < 62 and E(uf) < m implies that |[ull/N = O,(1). Also,
N|B2]1* < NNB,(8)*(& — o)/ (8 — oto) " (& — o0) (& — %o)
As N - o0, By(&)* 2 B,(0t0)* and (& — &) (& — 2o)N is bounded in probability
so N|5,]|? = O,(1). Hence, (W y)/sS(Wy) — 0 implies that term 2 has plim 0.
3. (1/S(W W) — %) 0y Wyv1 (& — 0) = /N(& — 20) (s W w1 /NS(Wx)

VNG — o).

—

2
Bin

Lem
N x

1 fo

Pro.

and

that
ijth
haw

We
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The middle term is a £ x £ matrix, and as in 1, each term is bounded by
B2 (W y)/s(W y) so the matrix converges in probability to zero.
4. The fourth term has

1

S @ %) Wyt <IN = ol Pl Wl

Ns(Wy)*

N|I5, |
N

1
<IV/N@— ol gy VB VY
20,
5. (1/s(Wy)?)fiy Wys | < (1/N2 Wy ))I5: 1 NI 32 N(iB: )1 S 0. O

Lemma A.3. Let {Wy} be a sequence of symmetric matrices (with Wy being
N x N) such that (Wy)/s(Wy)— 0 as N — 0. Let u" and " be as in Proposition
1 for a given sequence {x;}. Then,

Z?{: 1 Zjv= 1 WiZjN aizN afN p 1
S(ZN WNEN)Z

Proof. We show this in two steps: showing first that

Ywhuiui — s(ENW N P 0
_)
S(ENW yZN)?

and then that

Z lNuJN ZWLZJ“ZZ ;

S Wy ZN)Z

For the first step, let z be a vector with ith element z; = u? — Var(u;). Note
that E(z;) = 0 and Var(z;) = E(uf) — Var(y;)?2 < m. Let W, be a matrix with
ijth element equal to wj. Let v be a vector with ith element Var(u;). We then
have

Z wiuiu? — S(ZVWaEM? = (z + ) W,(z + v) — oW 0

=7Wyz +2ZW,u0.

We now show that each of the terms on the right-hand side of this expression
has plim zero when divided by s(ZVW 22,
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b
:

First, note that z;,...,Zy are independent random variables with E(z;) = 0
and Var(z;) <m. 17 For any symmetric nonnegative matrix with zeros on the W
diagonal we then have E(z'Az) =0 and :

ijke

Var(z' Az) = Var(Z ai,-z,-zj> =Y a;;ar, Cov(ziz;, ZeZy)
i

F
=2Y a;Var(zizj) < 2m*s(4)*.
ij

Hence, E(zW,z) = 0 and Var(z W,2) < 2m*y;wi, and whe
7W,z 2m* Wi Wi 2 2m? (max;;wi)Y ;Wi z f?
S(ZNW ZN)Z 8 (ZUWU)Z = 8 (zijwizj)z firs

< 2m? ’(WN)2

a S(W )
1

Second, we similarly have EQ2v'W,z) =0 and

WW,z 4 45*m 2
Var(S(ZNWNZN)2> < _O_'BS(WN)4var(izj Wizjvizf> 8S(WN)4Z (2 >
45*m h
< (g T (509)

45*m not
< ESS(WN)4 I(WN)ZS(WN)Z - 0.

Turning now to the second main step, note that
S Wity — S whuiu; W, — ur Wl wit
(VW y 2N T s WY ma
2@ Wy W | (@ YWl u?) ;
T s(EN WY STIWyEY? CZO;
where we have wr1tten 712 for the vector with ith element 712 and u? for the vector E(
with ith element u?. To show that both of the terms on the right -hand side of this A
expression have plim 0 it will suffice to show that () |1#* — u?|| = 0,(1), (1) Pr
HW ,)/s(W y)* — 0, and (i) [|W>u 2/s(W )l = ho
Result (i) is standard: a2 — u?|| is just the difference between the sum of :::)c]
squared residuals and the sum of squared errors. fol

A

17 Here as in Lemma A.2 the sequence {x;} is taken to be fixed and thus we write E(z;) rather than
E(z;|x;) and similarly for other expectations and variances.
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To derive result (i) note that for any symmetric matrix 4, r(4) < s(A4). Hence,
r(Wz)/s(WN)2 < S(W,)/s(W y)?, and (ii) follows from

SW,)?  Yuwh _ (max wi)y,wi MW )2 s(W y)?
—_— = Y < % < 7 -0
s(Wy)t  s(Wy) S(Wn) (W)

Finally, to derive result (i) note that

||W2“2/3(WN)2H < || Wav/s(Wy )|l + \W 2 z/s(Wy)?l,

where again we have written v for the vector with ith element v; = Var(y;) and
» for u?> — v. Using calculations similar to those above it is easy to see that the
first of these terms converges to zero.

2 - 6_4Zi(zjwi2j)2 - 6'4S(WN)2I’(WN)2 _)0
swy)t T s(Wy)* ’

To see that the second term has plirri 0 also we write

” Wzl)
sS(Wy)?

N
HWZZ/S(WN)2H2 =s(Wy) *ZW,W;yz = S(Wy) ™ *z'Byz + Z Nzt
i=1

where By is the N x N matrix with b;y = 0 and by = (W4 W,),; for i #j and
¢;y 1s the iith element of W5 W ,/s(Wy)*. To see that s(Wy) *zByz 5 0 we

. note as before that E(z'Byz) = 0 and

' 2 2 2 ’ 2 2 4
Var( ZBNZ >< 2m S(BN) < 2m S(W2 Wz) < 2m S(Wz) __)0,

SWa)) S sWyE T sy T s(Wy)°

with the second to last conclusion following from the fact that for any symmetric
matrix A, S(A'A)? =Yit < (XA} = s(A)*. Finally, to see that
YN ezt B 0 as N— oo we note that Theorem 3.4.9 of Taylor (1978)

concludes that a weighted sum of independent random variables of the form
zﬁvzlcmei has plim zero provided that five conditions hold: (1) E(e;) = 0; (2)
E(le;)) < c0; (3) max;lciy] >0 as N — o0 (4) there exists a C such that
Zf’zdcml < C for all N; and (5) there exists a random variable e such that
Prob(le;| > t) < Prob(le| = ¢) for all t > 0 and all N. Each of these hypotheses
holds for e; = z2 — E(z?): the first is trivial; the second and fifth are immediate
consequences of z7 being nonnegative and the assumed uniform bounds on the
second and fourth moments of the u; conditional on x;; the third and fourth
follow from the facts that ¢y = s(Wy) *Y,wiy is nonnegative and
YX iy = S(Wy)*s(W,)* -0 as N — 0. Applying the theorem gives that

N

Y cin(z? — E(z))) 20,

i=1
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and the desired result follows from noting that YN ewB(z) < my ;ciy — 0 as
well. [

Proof of Corollary 1. Clearly w§ =0, so it suffices to show that
Wy)/s(Wy) 5 0and (1 + d)/\/is(Wi,) P, 0. Note first that because W and
W' have the same eigenvalues,
1w W, 1 W 1 W
) —sup MO = WRL L Wl L [P
v20 2 lloll 2 o0 Il 2 peo [0

1 ’
=3 (HWy) + (W) = (W)
Also, because K is nonnegative

wy w21 1 L
iyt = £ (M) = g 00 5 Do 25 oV
ij ij

Hence it suffices to show that (Wy)/s(Wy) 5 0and 1/s(Wy) 5 0.Let W§ be

the N x N matrix with wj =1 if the ith row of Wy is identically zero and
w =w; for all other i j. W% is a Markov transition matrix so

HW y) < (W%) = 1. Hence, we need only show s(Wy) > co. This follows

directly from standard results.
To see this, note that when the model y = m(x) + & (with m(x) continuous and
e and i.id (0, 6?) error) is estimated by y = Wyy, the average conditional

variance of y is
]i\f Z Var(§; | Xi, .- Xn) = % Z Var(Z Wijyj>
i i 7

o’ o’
- NI 2w = s
i J

The fact that the average conditional variance of the kernel estimator in this
environment is O,(N~'h~“) thus implies that s(Wy) =0,(h~%). O

Proof of Corollary 2. Note that T y is of the same form as the test statistic in
Proposition 1 where Wy is the symmetric matrix given by

1 e e s
Wi = {Com — 1 if i #Jj, x;, Xj € P,
0 otherwise.

Again Wy is non-negative with all rows summing to at most one, so Wy) <1
with equality holding provided that not all bins are empty. Hence, we need only

show 1/s(Wy) > 0.

whe

The

Proc
e(x),
shoy
Zero

Wrii
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To see this, note that (W y)* > Y, a,y, where a,y is a random variable given
byakN =OlkaN <1, akN=1ikaN>2,

E@%?) Z ZEZ; ll:f E(akN) = lll;lf(l - ((1 — vk)N + va(l _ vk)N—l)) N 1’

where we have written v, for v(P,y).

Var<zkakN> < sup Var(aw) < sup E[(axy — 1)?]
m(N) k k

=sup (1 — v)" + Nvi(1 —v)¥ "D = 0.
k

Therefore, AW y)/s(Wy) = O,(1/\/m(N)), as desired. []

Proof of Proposition 2. Given the bounds on the error moments and on
e(x), N3 1s(Z"W% 2% 5 0 implies that N2~ 's(U"W$,0") 5 0. Hence, to
show that 7y = oo it suffices to show that N2¢™ 15’ Wyii is bounded away from
zero (in probability) as N — oo . To see this note that

i =y — f(xi; &) = u; + gn(x;) — fxi5 af) + f(xi; af) — f(xi; &)

~ Writing ey for gy — f* we have

N2 Wit = N2 Wyu + 2U Wy(f* —f) + 2u'Wyey
+(f* =YWy (f*—f)

~

+ 2(f* —fYWyen + exWyen]

From the proof of Lemma A.2 and N* 's(Z"W42") 5 0, we know that

N2 YW Wyu, N2~ Wa(f* —F), and N27Y(f* — fYW(f* —f) each have
plim zero.

To see that N2~ 1(f* — )Wyeny > 0we write (f* — ) = (& — o)V + 05 as
in the proof of Lemma A.2, and first note that N**~ (& — a%)v), Wyey =
\/N(& — a) vy, WyN°eyN*™32 which has plim zero because \/ﬁ(& — a¥) has
an asymptotic distribution and

' _ 1 ~
”01 WNNéeNNf 3/2“2 </2B% N “NéeN“2N2§ 1

N*¢71%, Wyey has plim zero because

5, WienlIN71 < N2 [llenll = N2 10,(1//N)O, (/N - N79).
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Finally,

N*"leyWyen = N2~ Yjeyl|? + N** 7 len(Wyen — en)-

The first term 1s

N> lewll” = (Neen(x))* — Le(X)Zp(X) dx.

1

N 5
The second term has magnitude at most N2 Lley|lWyen — exll
< N2¢71(1 — d)|len||* with probability approaching one. Hence,

Pr{N*"'u'Wi > §/2J e(x)?p(x)dx} — 1
D

as desired. [
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