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Abstract

We consider the robustness of extensive form mechanisms to deviations from common knowl-

edge about the state of nature, which we refer to as information perturbations. First, we show

that even under arbitrarily small information perturbations the Moore-Repullo mechanism does

not yield (even approximately) truthful revelation and that in addition the mechanism has se-

quential equilibria with undesirable outcomes. More generally, we prove that any extensive form

mechanism is fragile in the sense that if a non-Maskin monotonic social objective can be imple-

mented with this mechanism, then there are arbitrarily small information perturbations under

which an undesirable sequential equilibrium also exists. Finally, we argue that outside options

can help improve effi ciency in asymmetric information environments, and that these options can

be thought of as reflecting ownership of an asset.
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1 Introduction

The literature on “complete-information”implementation supposes that players know the payoff-

relevant state of the world, and asks which mappings from states to outcomes, i.e., which social

choice rules, can be implemented by mechanisms that respect the players’ incentives. Although

only Maskin monotonic social rules are “Nash implementable”(Maskin, 1999), a larger class of

social choice rules can be implemented in extensive form games provided that a more restrictive

equilibrium notion is used.1

This paper considers the robustness of subgame-perfect implementation to arbitrarily small

amounts of incomplete information about the state of nature θ, which we refer to as “information

perturbations”.2 It is known that refinements of Nash equilibrium are not robust to general small

perturbations of the payoff structure (Fudenberg, Kreps and Levine (1988), henceforth FKL), but

our results do not follow from theirs as we consider a more restrictive class of perturbations: We

fix the map from states to payoffs and perturb the prior distribution over the states of the world

and signal structure, so in particular the messages in the mechanism remain cheap talk and do not

enter directly into the payoff functions.

Our starting point is the Moore and Repullo (1988, henceforth, MR) result which roughly says

that for any social choice rule, one can design a mechanism that yields unique implementation in

subgame-perfect equilibria (i.e., for all states of nature, the set of all subgame-perfect equilibria of

the induced game yields the desired outcome). In particular, in environments with money, Moore

and Repullo propose a simple mechanism (which we call an MR mechanism) inducing truth-telling

as the unique subgame-perfect equilibrium. As in MR, our focus is on exact implementation, where

“exact implementation”means that we require the set of equilibrium outcomes to exactly coincide

with those picked by the rule.3

The requirement of exact implementation can be decomposed into the following two parts: (1)

there always exists an equilibrium whose outcome coincides with the given rule; (2) there are no

equilibria whose outcomes differ from those of the rule.

Our first result shows that MR mechanisms can only robustly satisfy the first requirement of

exact implementation if the rule that is implemented is Maskin monotonic. That is, whenever an

1Recall that a social choice rule or function f is Maskin monotonic if for any pair of states θ and θ′ such that
a = f(θ), and a never goes down in the preference ranking of any agent when moving from state θ to state θ′, then
necessarily a = f(θ′).

2 It follows from Theorem 14.5 of Fudenberg and Tirole (1991a, p.567) that under our small informational pertur-
bations, for each profile of signals that has strictly positive probability under complete information, some state of
nature is common p-belief (Monderer and Samet (1989)) with p arbitrarily close to one. That is, everybody believes
this is the true state with probability at least p, everybody believes with probability at least p that everybody believes
this is the true state with probability at least p etc...

3Much of the implementation literature studies exact implementation. Virtual implementation (Matsushima
(1988) and Abreu and Sen (1991)) uses non-deterministic mechanisms, and only requires that social choice rules
be implemented with high probability. As pointed out by Jackson (2001), unlike exact implementation, virtual
implementation is not robust to introducing a small amount of nonlinearity in preferences over lotteries. In addition,
virtual implementation provides incentives for renegotiation on the equilibrium path: As Abreu and Matsuhima (1992)
acknowledge, virtual implementation supposes that the social planner can commit ex ante to outcomes that will be
known at the time of implementation to be highly ineffi cient.

2



MRmechanism implements a non-Maskin monotonic social choice rule, the truth-telling equilibrium

ceases to be an equilibrium in some nearby environment. More specifically, we show that an

MR mechanism which implements a social choice rule f under common knowledge (or complete

information4) about the state of nature does not yield even approximately truthful revelation under

arbitrarily small information perturbations, if this f is not Maskin monotonic.5

We then move beyond MR mechanisms to consider any extensive-form mechanism. Our second

result is concerned with the non-robustness of the second requirement of exact implementation:

namely, whenever any mechanism implements a non-Maskin monotonic social choice rule, there

exists an undesirable equilibrium in some nearby environment. More specifically, restricting atten-

tion to environments with a finite state space, and to mechanisms with finite strategy spaces,6 then

given any mechanism that “subgame-perfect ”implements a non-Maskin monotonic social choice

rule f under common knowledge (i.e., whose subgame-perfect equilibrium outcomes in any state θ

is precisely equal to f(θ)), we can find a sequence of information perturbations (i.e., of deviations

from complete information about the state of nature) and a corresponding sequence of sequential

equilibria for the mechanism under the corresponding information perturbations, whose outcomes

do not converge to f(θ) for at least one state θ. In other words, there always exist arbitrarily small

information perturbations under which an “undesirable”sequential7 (and hence Perfect Bayesian)

equilibrium exists.

Three insights underlie our analysis. The first is that even a small amount of uncertainty about

the state at the interim stage, when players have observed their signals but not yet played the

game, can loom large ex post once the extensive form game has started and players can partly

reveal their private signals through their strategy choice at each node of the game. The second

insight is that arbitrarily small information perturbations can turn the outcome of a non-sequential

Nash equilibrium of the game with common knowledge of θ into the outcome of a sequential

equilibrium of the perturbed game. In particular, we know that any extensive-form mechanism

that “subgame-perfect” implements a non-Maskin monotonic social choice rule under common

knowledge has at least one Nash equilibrium which is not a subgame-perfect equilibrium; we prove

that this undesirable Nash equilibrium can be turned into an undesirable sequential equilibrium

by only introducing small information perturbations. The third insight is that there is a role for

asset ownership to mitigate the investment and trade ineffi ciencies that arise when the contracting

parties have private information ex post about the state of nature θ.

Our results are not a straightforward application of those on the robustness of refinements of

Nash equilibrium because we consider a smaller class of perturbations. While FKL consider several

nested classes of perturbations, even the most restrictive form they analyze allows a player’s payoff

in the perturbed game to vary with the realized actions in an arbitrary way. In the mechanism

4Throughout the paper, we use “complete information”and “common knowledge” interchangeably.
5As we shall stress in Section 2.5 below, Maskin monotonicity is precisely the property that the social choice rules

usually considered in contract theory do not satisfy.
6The Appendix extends the result to the case of countable message spaces.
7We remind the reader of the formal definition in Section 4.2.1.
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design setting, this implies that some (low-probability) “crazy types” might have a systematic

preference for truthtelling. Since the messages and outcome functions of the mechanism are not

primitives, but rather endogenous objects to be chosen by the social planner, it may seem natural

to restrict the perturbations to be independent of the messages and depend only on the allocation

that is implemented.

Our paper contributes most directly to the mechanism design literature, starting with Maskin’s

(1999) Nash implementation result and Moore-Repullo’s (1988) subgame-perfect implementation

analysis, by showing the non-robustness of subgame-perfect implementation to information per-

turbations.8 Our paper is also related to Chung and Ely’s (2003) study of the robustness of un-

dominated Nash implementation. Chung and Ely show that if a social choice rule is not Maskin

monotonic but can be implemented in undominated Nash equilibrium 9 under complete information,

then there are information perturbations under which an undesirable undominated Nash equilib-

rium appears. In contrast, we consider extensive-form mechanisms and show that only Maskin

monotonic social choice rules can be implemented in the closure of the sequential equilibrium cor-

respondence. In general, the existence of a bad sequential equilibrium in the perturbed game

neither implies nor is implied by the existence of a bad undominated Bayesian Nash equilibrium,

as undominated Nash equilibria need not be sequential equilibria, and sequential equilibria can use

dominated strategies.10 Hence, although our paper has a similar spirit to Chung and Ely (2003),

our argument is quite distinct from theirs.

Our paper also relates to the literature on the hold-up problem. Grossman and Hart (1986)

argue that in contracting situations where states of nature are observable but not verifiable, asset

ownership (or vertical integration) could help limit the extent to which one party can be held up

by the other party, which in turn should encourage ex ante investment by the former. However,

vertical integration as a solution to the hold-up problem has been questioned in papers which

use or extend the subgame-perfect implementation approach of Moore and Repullo (1988).11 In

particular, Maskin and Tirole (1999a), henceforth MT, show that the non-verifiability of states of

nature can be overcome by using a 3-stage subgame-perfect implementation mechanism that induces

truth-telling by all parties as the unique equilibrium outcome, and does so in pure strategies. We

contribute to this debate in two ways. First we show that the introduction of even small information

perturbations greatly reduces the power of subgame-perfect implementation. This suggests that

the introduction of incomplete information can significantly change the insights obtained by MT.

8Other related mechanism design papers include Cremer and McLean (1988), Johnson, Pratt and Zeckhauser
(1990), and Fudenberg, Levine and Maskin (1991). These papers show how one can take advantage of the correlation
between agents’ signals in designing incentives to approximate the Nash equilibrium under complete information.
These papers consider static implementation games with commitment, and look at fairly general information struc-
tures, as opposed to our focus on the robustness of subgame-perfect implementation to small perturbations from
complete information.

9An undominated Nash equilibrium is a Nash equilibrium where no player ever uses a weakly dominated action.
10Trembling-hand perfect equilibria cannot use dominated strategies, and sequential and trembling-hand perfect

equilibria coincide for generic assignments of payoffs to terminal nodes (Kreps and Wilson [1982]), but the generic
payoffs restriction rules out our assumption that messages are cheap talk.
11For example, see Aghion-Dewatripont-Rey (1994) and Maskin-Tirole (1999a, 1999b).
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Secondly, we show that when there is asymmetric information ex post about the good’s valuation,

an outside option for the seller permits a more effi cient outcome. We argue that this option can be

seen as corresponding to ownership of an asset.

The paper is organized as follows. Section 2 uses a simple buyer-seller example to introduce

the MR mechanism, to show why truthful implementation using this mechanism is not robust to

small information perturbations, and why such perturbations generate an undesirable sequential

equilibrium. Section 3 extends our analysis to general MR mechanisms with n states of nature

and transferable utility, and shows that for a given social choice rule f , truth-telling equilibria are

only robust to small information perturbations if this f is strategy-proof (which in turn implies

Maskin monotonicity under weak assumptions on preferences).12 In Section 4, we ask whether any

extensive form mechanism is robust to small information perturbations. There we prove that for

any social choice rule that is not Maskin-monotonic one can find small information perturbations

under which an undesirable sequential equilibrium exists. Section 5 considers the case of full

informational asymmetry ex post, and shows that asset ownership, by providing outside options,

can lead to approximately effi cient ex ante investments, whereas contracts or mechanisms with no

outside option, cannot. Finally, Section 6 concludes with a few remarks and also suggestions for

future research.

2 A Hart-Moore example of the Moore-Repullo mechanism

2.1 Basic setup

Consider the following simple example from Hart and Moore (2003), which captures the logic of

Moore and Repullo (1988)’s subgame-perfect implementation mechanism.

There are two parties, a B(uyer) and a S(eller) of a single unit of an indivisible good. If trade

occurs then B’s payoff is

VB = θ − p,

where p is the price and θ is the good’s quality. S’s payoff is

VS = p,

thus we normalize the cost of producing the good to zero.

The good can be of either high or low quality. If it is high quality then B values it at θH = 14,

and if it is low quality then B values it at θL = 10.We seek to implement the social choice function

whereby the good is always traded ex post, and where the buyer always pays the true θ to the

seller.
12 If f is strategy-proof, it is always a weakly dominant strategy for each agent to tell the truth in the direct

mechanism associated with f . See also Definition 1 for a precise definition of strategy-proofness.
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2.2 Common knowledge

Suppose first that the quality θ is observable and common knowledge to both parties. Even though

θ is not verifiable by a court, so no initial contract between the two parties can be made credibly

contingent upon θ, truthful revelation of θ by the buyer B and the implementation of the above

social choice function can be achieved through the following Moore-Repullo (MR) mechanism:

1. B announces either a “high”or “low”quality. If B announces “high”then B pays S a price

equal to 14 and the game stops.

2. If B announces “low”and S does not “challenge”B’s announcement, then B pays a price equal

to 10 and the game stops.

3. If S challenges B’s announcement then:

(a) B pays a fine F = 9 to T (a third party)

(b) B is offered the good for 6

(c) If B accepts the good then S receives F from T (and also a payment of 6 from B) and

the game stops.

(d) If B rejects at 3b then S pays F to T

(e) B and S each get the item with probability 1/2.

When the true value of the good is common knowledge between B and S, this mechanism yields

truth-telling as the unique subgame-perfect (and also sequential) equilibrium. To see this, consider

first the case θ = θH . If B announces “high”then B pays 14 and we stop. If, however, B announces

“low”then S will challenge because at stage 3a, B pays 9 to T and, this cost being sunk, B will

still accept the good for price of 6 at stage 3b (since by rejecting he will end up at stage 3e and get

14/2=7, but since the good is worth 14 he gets 14-6=8 by accepting). Anticipating this, S knows

that if she challenges B, she will receive 9 + 6 = 15, which is greater than 10 that she would receive

if she did not challenge. Moving back to stage 1, if B lies and announces “low”when the true state

is high, he gets 14− 9− 6 = −1, whereas he gets 14− 14 = 0 if he tells the truth, so truthtelling is

the unique equilibrium here. Truthtelling is also the unique equilibrium when θ = θL : In that case

S will not challenge B when B (truthfully) announces “low”, because now B will refuse the good

at price 6 (accepting the good at 6 would yield surplus 10 − 6 = 4 to B whereas by refusing the

good and relying on the lottery which assigns the item randomly instead B can secure a surplus

equal to 10/2 = 5). Anticipating this, S will not challenge B because doing so would give her a net

surplus equal to 10/2 − 9 = −4 which is less than the payment of 10 she receives if she does not

challenge B’s announcement.

This mechanism (and more generally, the Moore-Repullo mechanisms we describe in Section 3)

has two nice and important properties. First, it yields unique implementation in subgame-perfect

equilibrium, i.e., for any state of nature, there is a unique subgame-perfect equilibrium which yields
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the right outcome. Second, in each state, the unique subgame-perfect equilibrium is appealing from

a behavioral point of view since it involves telling the truth. In what follows, we will show that

both of these properties fail once we introduce small information perturbations.

2.3 The failure of truth-telling with perturbed beliefs about value

2.3.1 Pure strategy equilibria

As in the example above, we continue to suppose that the good has possible values θ ∈ {θH , θL}
with θH = 14 (the high state) and θL = 10 (the low state). However, we now suppose that the

players have imperfect information about θ. Specifically, we suppose they have a common prior µ,

with µ(θH) = 1 − α, µ(θL) = α for some α ∈ (0, 1), and that each player receives a draw from a

signal structure with two possible signals sh or s`, where sh is a high signal that is associated with

θH , and s` is a low signal associated with θL. We use the notation sB = shB (resp. sB = s`B) to

refer to the event in which B receives the high signal sh (resp. the low signal s`) and similarly we

use the notation sS = shS (resp. sS = s`S) to refer to the event in which S receives the high signal

sh (resp. the low signal s`). The following table shows the joint probability distribution νε over θ,

the buyer’s signal sB, and the seller’s signal sS :

(∗)
νε shB, s

h
S shB, s

`
S s`B, s

h
S s`B, s

`
S

θH (1− α)
(
1− ε− ε2

)
(1− α)ε (1− α)ε2/2 (1− α)ε2/2

θL αε2/2 αε2/2 αε α
(
1− ε− ε2

)
Note that for all ε, the marginal probability distribution of νε on θ coincides with µ,and that

as ε converges to zero, νε assigns probability converging to 1 to the signals being correct. Note

also that the buyer’s signal becomes infinitely more accurate than the seller’s signal as ε→ 0. This

special feature implies that when deciding whether or not to challenge the buyer if S and B were

informed of both signals, and the signals disagree, they will conclude that with high probability

the state corresponds to B’s signal.

We will now show that there is no equilibrium in pure strategies in which the buyer always

reports truthfully. To simplify the exposition of this example, we keep the payments under the

perturbed mechanism the same as in the MR mechanism under common knowledge of the previous

subsection, and assume that B must participate in the mechanism. This is equivalent to assuming

that B’s participation constraint is slack, which in turn can be arranged by a constant ex ante

payment and so does not influence the incentives for truthtelling. By way of contradiction, suppose

there is a pure strategy equilibrium in which B reports truthfully, and consider B’s play when sB =

shB. Then B believes that, regardless of what signal player S gets, the expected value of the good

is greater than 10. So B would like to announce “low”if he expects that S will not challenge the

announcement. If B does announces “low,”then in a fully revealing equilibrium, S will infer that

B must have received the low signal, i.e., sB = s`B. But under signal structure (∗), S thinks that
B’s signal is much more likely to be correct, so S now believes that there is a large probability that

θ = θL; therefore S will not challenge.
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But then, at stage 1, anticipating that S will not challenge, B will prefer to announce “low”when

he receives the high signal shB. Therefore, there does not exist a fully revealing equilibrium in pure

strategies and consequently, the above social choice function can no longer be implemented through

the above MR mechanism in pure strategies.

2.3.2 Allowing for mixed strategies

The result that there are no truthful equilibria in pure strategies leaves open the possibility that

there are mixed strategy equilibria in which the probability of truthful announcement goes to one

as ε goes to zero. This is close to the way that the pure-strategy Stackelberg equilibrium can be

approximated by a mixed equilibrium of a “noisy commitment game”(van Damme and Hurkens

(1997)). We show below that this is not the case under the signal structure (∗).
Let σhB denote the probability that B announces “low”after receiving the high signal shB, and

let σ`B be the probability B announces “high”after receiving the low signal s`B , as in the following

table:

High Low

shB 1− σhB σhB
s`B σ`B 1− σ`B

The corresponding mixing probabilities for player S are

Challenge Don’t Challenge

shS 1− σhS σhS
s`S σ`S 1− σ`S

Then for mixed strategy equilibria of the mechanism to converge to the equilibrium under com-

plete information where the buyer announces the valuation truthfully, we should have σε,hB , σε,`B , σ
ε,h
S

and σε,`S all converge to 0 as ε→ 0. However, this is not the case, as shown by the following:

Proposition 1. Under the information perturbations corresponding to (∗), there is no sequence of
equilibrium strategies σεB, σ

ε
S such that σ

ε,h
B , σε,`B , σ

ε,h
S and σε,`S all converge to 0 as ε→ 0.

Proof of Proposition 1. Suppose to the contrary that there is a sequence of equilibrium strategies

σεB, σ
ε
S such that σ

ε,h
B , σε,`B , σ

ε,h
S and σε,`S all converge to 0 as ε→ 0. In Stage 1, the expected payoff of

player B who received the low signal s`B and plays “High (H)”tends to −4 while the expected payoff

of player B who received the low signal s`B and plays “Low (L)”tends to 0 (here, player B makes

use of the signal distribution (∗) together with the expectation that the seller’s strategies σε,hS and

σε,`S converge to 0 as ε→ 0, B believes with high probability that S does not “Challenge”). Now, in

Stage 1, the expected payoff of player B who received the high signal shB and plays “High (H)”tends

to 0 while the expected payoff of player B who received the high signal shB and plays “Low (L)”in

the limit is below max{14− 6− 9, 7− 9} = −1 (recall that B believes with high probability that S

chooses “Challenge”). So for ε small, there is no σ that makes player B indifferent between H and
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L, so player B plays in pure strategies in Stage 1. And as in argument above about pure-strategy

equilibrium, the fact that B’s signal is much more accurate than S’s implies that such a strategy

profile is not an equilibrium.

This shows that one appealing property of the unique equilibrium in the MR mechanism under

common knowledge (namely, a good equilibrium is a truthful one) can disappear once we introduce

small information perturbations. In the next subsection we show the non-robustness of another

appealing property of the MR mechanism under common knowledge, namely that it uniquely

implements any desired social choice function.

2.4 Existence of persistently bad sequential equilibria

So far we have shown that truth-telling is not a robust equilibrium outcome of the MR mech-

anism when allowing for information perturbations. But in fact one can go further and exhibit

arbitrarily small information perturbations for which the above MR mechanism also has a “bad

equilibrium”where the buyer reports “Low”regardless of his signal, which in turn leads to a sequen-

tial equilibrium outcome which remains bounded away from the sequential (or subgame-perfect)

equilibrium outcome under complete information.

Consider the same MR mechanism as before, with the same common prior µ(θH) = 1− α and
µ(θL) = α, but with the following perturbation νε of signals about θ:

(∗∗)
νε shB, s

h
S shB, s

`
S s`B, s

h
S s`B, s

`
S

θH (1− α)(1− ε2) (1− α)ε2/3 (1− α)ε2/3 (1− α)ε2/3

θL αε2 αε/2 αε/2 α(1− ε− ε2)

With this signal structure, both agents believe with high probability that if they receive different

signals, the signal corresponding to the low state is correct.

In what follows, we shall construct a sequential equilibrium of the perturbed game with prior

νε whose outcome differs substantially from that with complete information.

Consider the following strategy profile of the game with prior νε. B announces “Low”regardless

of his signal. If B has announced “Low,”S does not challenge regardless of her signal. Off the

equilibrium path, i.e., if B announced “Low”and S subsequently challenged, then B always rejects

S’s offer. These are our candidate strategies for sequential equilibrium. To complete the description

of the candidate for sequential equilibrium, we also have to assign beliefs over states and signals

for each signal of each player and any history of play. Before playing the game but after receiving

their private signals, agents’beliefs are given by νε conditioned on their private signals. Similarly,

if S has the opportunity to move (which in turn requires that B would have played “Low”), we

assume that her posterior beliefs are based on νε together with her private signal. Finally, out of

equilibrium, if B is offered the good for price of 6 (which requires that S will have challenged), we

assume that B always believes with probability one that the state is θL and that S has received

the low signal s`S .
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So what we want to show is that for ε > 0 suffi ciently small, the above strategy profile is

sequentially rational given the beliefs we just described and that, conversely, these beliefs are

consistent given the above strategy profile. Here we shall check sequential rationality (the basic

intuition for the belief consistency part of the proof is given in footnote 13 below). To establish

sequential rationality, we solve the game backwards. At Stage 3, regardless of his signal, B believes

with probability one that the state is θL. Accepting S’s offer at price of 6 generates 10−9−6 = −5

and rejecting it generates 5 − 9 = −4. Thus, it is optimal for B to reject the offer. Moving back

to Stage 2, if S chooses “Challenge,”S anticipates that with probability one, her offer at price of

6 will be rejected by B in the next stage, thus S anticipates that, as ε becomes small, the payoff

is approximately equal to 7 − 9 = −2 if her signal is high (equal to shS) and to 5 − 9 = −4 if the

signal is low (equal to s`S). On the contrary, if S chooses “Not Challenge,”S guarantees a payoff of

10. Thus, regardless of her signal, it is optimal for S not to challenge. Moving back to Stage 1, B

“knows”that S does not challenge regardless of her signal. Now, suppose that B receives the high

signal shB. Then, as ε becomes small, B believes with high probability that the true state is θH
so that his expected payoff approximately results in 14 − 10 = 4. This is larger than 0, which B

obtains when announcing “High.”Therefore, it is optimal for B to announce “Low.”Obviously, this

reasoning also shows that when B has received the low signal s`B, it is optimal for her to announce

“Low.”13

As we will see in the next section, the fact that the MR mechanism cannot induce even approx-

imate truth-telling under information perturbations is closely related to the fact that the social

choice function we tried to implement is not Maskin monotonic. But before we turn to a more

general analysis of the non-robustness of subgame-perfect implementation using MR mechanisms,

we review Maskin’s necessity result on Nash implementation, and explain why the social choice

function we try to implement in this example is not Maskin monotonic.

2.5 This example does not satisfy Maskin-monotonicity

2.5.1 Maskin’s Necessity Result on Nash implementation

Recall that a social choice function f on state space Θ is Maskin monotonic if for all pair of states

of nature (preference profiles) θ
′
and θ

′′
if a = f(θ

′
) and{

(i, b)
∣∣∣ui(a; θ

′
) ≥ ui(b; θ

′
)
}
⊆
{

(i, b)
∣∣∣ui(a; θ

′′
) ≥ ui(b; θ

′′
)
}

13To establish belief consistency, we need to find a sequence of totally mixed strategies that converges toward the
pure strategies described above and so that beliefs obtained by Bayes’rule along this sequence also converge toward
the beliefs describe above. It is easy to see that under any sequence of totally mixed strategies converging toward
the pure strategies described above, the induced sequence of beliefs about θ will converge toward νε conditioned on
private signals along the equilibrium path of the pure-strategy equilibrium. When B is offered the good at price of 6,
S has deviated from the equilibrium path due to the “trembles.”Beliefs about θ are then determined by the relative
probability that S has trembled after the different signals. For instance, if one chooses a sequence of totally mixed
strategies under which it becomes infinitely more likely that S has trembled after receiving s`S rather than when
receiving shS , then B will assign probability close to one to S receiving signal s`S .
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(i.e., no individual ranks a lower when moving from θ
′
to θ

′′
), then a = f(θ

′′
). Here ui(a; θ)

denotes player i’s utility from outcome a in state θ. A social choice function (SCF) f is said to

be Nash implementable if there exists a mechanism Γ = (M, g) where m = (m1, . . . ,mn) ∈ M =

M1 × · · · ×Mn denotes a strategy profile and g : M → A is the outcome function (which maps

strategies into outcomes), and if for any θ the Nash equilibrium outcome of that mechanism in

state θ is precisely f(θ). Then, Maskin (1999) shows that if f is Nash implementable, it must be

Maskin monotonic.

Let us summarize the proof, which we shall refer to again below. By way of contradiction, if f

were not Maskin monotonic, then there would exist θ
′
and θ

′′
such that for any player i and any

alternative b

ui(f(θ
′
); θ
′
) ≥ ui(b; θ

′
) =⇒ ui(f(θ

′
); θ
′′
) ≥ ui(b; θ

′′
) (I)

and nevertheless f(θ
′
) 6= f(θ

′′
). But at the same time if f is Nash-implementable there exists a

mechanism Γ = (M, g) such that f(θ
′
) = g(m∗

θ
′ ) for some Nash equilibrium m∗

θ
′ of the game Γ(θ

′
).

By definition of Nash equilibrium, we must have

ui(f(θ
′
); θ
′
) = ui(g(m∗

θ
′ ); θ

′
) ≥ ui(g(mi,m

∗
−i,θ′ ); θ

′
),∀mi.

But then, from (I) we must also have

ui(f(θ
′
); θ
′′
) = ui(g(m∗

θ
′ ); θ

′′
) ≥ ui(g(mi,m

∗
−i,θ′ ); θ

′′
), ∀mi,

so that f(θ
′
) is also a Nash equilibrium outcome in state θ

′′
. But then if the mechanism implements

f, we must have f(θ
′
) = f(θ

′′
); a contradiction.

2.5.2 The social choice function in our example is not Maskin monotonic

It is easy to show that the social choice function in our Hart-Moore example is not Maskin

monotonic. The set of social outcomes (or alternatives) A is defined as:14

A =
{

(q, yB, yS) ∈ [0, 1]× R2 such that yB + yS ≤ 0
}
,

where q is the probability that the good is traded from S to B; yB, yS are the transfers of B and

S respectively; and the utility functions of the seller and the buyer are respectively:

uS(q, yB, yS ; θ) = yS

and

uB(q, yB, yS ; θ) = θq + yB.

The two states of the world are θH and θL, which correspond respectively to the good being

14The sum yS + yB can be negative to allow for penalties paid to a third party.
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of high, and of low quality. We have just seen that if an SCF f under which trade occurs with

probability one is Maskin monotonic, then we must have:

f (θH) = f (θL) .

The social choice function we seek to implement requires that

f (θL) = (1,−10, 10),

f (θH) = (1,−14, 14).

Clearly f (θL) 6= f (θH) , but the buyer ranks outcome (1,−10, 10) at least as high under θL as

under θH , while the seller has the same preferences in the two states. Thus, f is not Maskin

monotonic, so Maskin’s result implies that this f is not Nash implementable. It is implementable

by a Moore-Repullo (MR) mechanism under common knowledge, but it is not implementable by

this mechanism under information perturbations.

Our analysis in the next two sections is motivated by the following questions: (1) Is the nonex-

istence of truth-telling equilibria in arbitrarily small information perturbations of the above MR

mechanism linked to the SCF f being non Maskin monotonic? (2) Is the existence of a sequence of

bad sequential equilibria in arbitrarily small information perturbations of the above MR mechanism,

directly linked to f being non-Maskin monotonic?

In Section 3, we consider a more general version of the MR mechanism and link the failure

of MR mechanisms to implement truth-telling in equilibrium under information perturbations to

the lack of Maskin monotonicity of the corresponding SCF. Then in Section 4, we consider any

sequential mechanism that implements a non-Maskin monotonic SCF (more generally, social choice

correspondences (SCC), formally defined in Section 4.2.1) under common knowledge, and show that

for an arbitrarily small information perturbation of the game there exists a bad sequential equi-

librium whose outcome remains bounded away from the good equilibrium outcome under common

knowledge, even when the size of the perturbation tends to zero.

3 More general Moore-Repullo mechanisms

Moore and Repullo (1988) consider a more general class of extensive form mechanisms, which

we shall refer to as “MR mechanisms”. Under complete information, Moore and Repullo (1988)

consider environments where utilities are transferable and show that truth telling is a unique sub-

game perfect equilibrium in the MR mechanisms. Since this is the most hospitable environment

for subgame-perfect implementation, and because most contracting settings are in economies with

money, we focus on it.

12



3.1 Setup

Let there be two players 1 and 2, whose preferences over a social decision d ∈ D are given by

(θ1, θ2) ∈ Θ1 × Θ2 = Θ where Θi =
{
θ1
i , ..., θ

n
i

}
for each i = 1, 2.15 The players have utility

functions

u1((d, t1, t2); θ1) = U1 (d; θ1)− t1

and

u2((d, t1, t2); θ2) = U2 (d; θ2) + t2,

where d is a collective decision, t1 and t2 are monetary transfers.16 Preference characteristics (θ1, θ2)

are common knowledge between the two parties, but not verifiable by a third party.

Let f = (D,T1, T2) be a social choice function where for each (θ1, θ2) ∈ Θ1× Θ2 the social

decision is d = D (θ1, θ2) and the transfers are (t1, t2) = (T1 (θ1, θ2) , T2 (θ1, θ2)) .

Moore and Repullo (1988) propose the following class of mechanisms. These mechanisms involve

two phases, where phase i is designed so as to elicit truthful revelation of θi. Each phase in turn

consists of three stages. The game begins with phase 1, in which player 1 announces θ1 and then

carries on with phase 2 in which player 2 announces θ2. Phase 1 proceeds as follows:

1. Player 1 announces a preference θ1, and we proceed to stage 2.

2. If player 2 announces φ1 and φ1 = θ1, then phase 1 ends and we proceed to phase 2. If player

2’s announcement φ1 does not agree, (i.e., φ1 6= θ1) then player 2 “challenges”and we proceed

to stage 3.

3. Player 1 chooses between

{x; tx + ∆}

and

{y; ty + ∆} ,

where x = x(θ1, φ1) and y = y(θ1, φ1) depend on both θ1 and φ1 and ∆ is a positive number

suitably chosen (see below) and (x, y, tx, ty) are such that

U1 (x; θ1)− tx > U1 (y; θ1)− ty

and

U1 (x;φ1)− tx < U1 (y;φ1)− ty.

If player 1 chooses {x; tx + ∆} , which proves player 2 wrong in his challenge (in the Hart-
Moore example above, this corresponds to the buyer refusing the offer at price 6), then player

15Moore and Repullo (1988) allow for an infinite state space but impose bounds on the utility functions.
16Because we do not assume that the prior on Θ is a product measure, the product structure of Θ = Θ1 × Θ2 is

not crucial to our results. To see this, note that given any finite set of states of nature Θ and utility functions ui :
Θ×A→ R for each player i, we can identify Θi with the collection of {ui(·, θ)}θ∈Θ. Now, define ũi : Θ1×Θ2×A→ R
as follows: for θi = ui(·, θ) we set ũi(·, θi) := ui(·, θ). This setting is equivalent to the former one.
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1 pays t1 = tx + ∆ and player 2 receives t2 = tx−∆ and a third party receives 2∆. However,

if player 1 chooses {y; ty + ∆}, which confirms player 2’s challenge (in the above Hart-Moore
example, this corresponds to the buyer taking up the offer at price 6), then player 1 pays

t1 = ty + ∆ and player 2 receives t2 = ty + ∆. The game ends here.

Phase 2 is the same as phase 1 with the roles of players 1 and 2 reversed (i.e., with player 2

announcing θ2 in the first stage of that second phase). We use the notation stage 1.2, for example,

to refer to phase 1, stage 2.

The Moore-Repullo argument applies as follows when the state of nature θ is common knowledge:

If player 1 lies at stage 1.1, then player 2 will challenge, and at stage 1.3 player 1 will find it optimal

to choose {y; ty + ∆} . If ∆ is suffi ciently large, then at stage 1, anticipating player 2’s subsequent

challenge, player 1 will find it optimal to announce the truth and thereby implement the social

choice function f . Moreover, player 2 will be happy with receiving ty +∆. If player 1 tells the truth

at stage 1.1 then player 2 will not challenge because she knows that player 1 will choose {x; tx + ∆}
at stage 1.3 which will cause player 2 to pay the fine of ∆.

3.2 Perturbing the information structure

We now show that this result does not hold for small perturbations of the information structure

of the following form: Each agent i = 1, 2 receives a signal sk,li where k and l are both integers in

{1, ..., n}; the set of signals of player i is denoted Si. We assume that the prior joint probability
distribution νε over the product of signal pairs and state of nature is such that, for each (k, l) :

νε(sk,l1 , sk,l2 , θk1, θ
l
2) = µ(θk1, θ

l
2)[1− ε− ε2]

(∗ ∗ ∗)
νε(sk,l11 , sk2,l

2 , θk1, θ
l
2) = µ(θk1, θ

l
2)

ε

n2 − 1
for (k2, l1) 6= (k, l)

νε(sk1,l1
1 , sk2,l2

2 , θk1, θ
l
2) = µ(θk1, θ

l
2)

ε2

n4 − n2
for k1 6= k or l2 6= l

where µ is a complete information prior over states of nature and signal pairs (i.e., a prior satisfying

µ(sk1,l1
1 , sk2,l2

2 , θk1, θ
l
2) = 0 whenever (ki, li) 6= (k, l) for some player i). In the above expressions, we

abuse notation and write: µ(θk1, θ
`
2) for the margΘ(µ)(θk1, θ

`
2). This corresponds to an information

perturbation such that each player i’s signal is much more informative about his own preferences

than about those of the other player. Note that in an intuitive sense the prior νε is close to µ when

ε is small; this is also true in a formal sense.17

17For concreteness we specify the supremum-norm topology when discussing the convergence of the priors. That
is, let P denote the set of priors over Θ× S with the following metric d : P × P → R+: for any µ, µ

′ ∈ P,

d(µ, µ
′
) = max

(θ,s)∈Θ×S
|µ(θ, s)− µ

′
(θ, s)|.

So, when we say νk → µ, we mean that d(νk, µ)→ 0 as k →∞.
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We begin by considering pure strategy equilibria. For this purpose, we make use of the concept

of strategy-proofness:

Definition 1. An SCF f is strategy-proof if for each player i and each θi,

ui(f(θi, θ−i), θi) ≥ ui(f(θ′i, θ−i), θi) for all θ
′
i and θ−i.

In other words, a social choice function f is strategy-proof if telling the truth is a weakly

dominant strategy through a direct mechanism associated with f whereby the players are asked

to announce their preference parameter. Strategy-proofness implies a weak version of Maskin

monotonicity, namely, that for any θ, θ′ such that

∀i ∈ N and ∀b ∈ A\{f(θ)} : ui(f(θ); θi) ≥ ui(b; θi)⇒ ui(f(θ); θ′i) > ui(b; θ
′
i),

we have f(θ) = f(θ′).18 As a corollary, strategy-proofness also implies the usual Maskin monotonic-

ity condition when preferences over outcomes in f(Θ) are strict, where f(Θ) denotes the range of

f .

Theorem 1. Suppose that a non strategy-proof SCF f is implementable by a MR mechanism under
complete information. Fix any complete information prior µ. There exists a sequence of priors

{νε}ε>0 that converges to the complete information prior µ such that there is no pure equilibrium

strategies under which player 1 tells the truth in phase 1 and player 2 tells the truth in phase 2.

Proof of Theorem 1. Under the signal structure (∗ ∗ ∗), if player 2 sees that player 1’s announce-
ment about θ1 is different from her signal, and she believes player 1 is reporting “truthfully,” she

disregards her own information on Θ1 and follows player 1’s announcement (and symmetrically for

player 1 vis-a-vis player 2 regarding signals over Θ2).

Now, suppose that f is not strategy-proof. Then there is a player, say player 1, and states

θh1 , θ
k
1, θ

l
2 such that

u1(f(θh1 , θ
l
2); θh1) < u1(f(θk1, θ

l
2); θh1).

We claim that there is no pure strategy equilibrium in which player 1 reports truthfully in phase

1 and player 2 reports truthfully in phase 2. By way of contradiction, suppose there is such an

equilibrium, and suppose that player 1 gets signal sh,l1 and player 2 gets signal sh,l2 . Player 1 would

like to announce “θk1”if she expects that subsequent to such an announcement, player 2 agrees with

“θk1”as well and then tells the truth in phase 2 so that the outcome is f(θk1, θ
l
2). But this is precisely

18 If f(θ) 6= f(θ′), it must be that there is some player i and some θ̂−i such that f(θi, θ−i) = f(θi, θ̂−i) 6= f(θ′i, θ̂−i),
and so in particular θi 6= θ′i. Hence, strategy-proofness of f implies that for this player i, ui(f(θi, θ−i); θi) =
ui(f(θi, θ̂−i); θi) ≥ ui(f(θ′i, θ̂−i); θi) and ui(f(θi, θ−i); θi) = ui(f(θi, θ̂−i), θ

′
i) ≤ ui(f(θ′i, θ̂−i); θ

′
i), and setting b =

f(θ′i, θ̂−i) yields the weak monotonicity condition. Finally, note that if preferences over outcomes in f(Θ) are
strict, then ui(f(θi, θ−i), θ

′
i) = ui(f(θi, θ̂−i), θ

′
i) < ui(f(θ′i, θ̂−i); θ

′
i) and therefore the above argument yields the

usual Maskin monotonicity condition. Our weak monotonicity is closely related to conditions proposed by Dasgupta,
Hammond, Maskin (1979). In that paper, strategy-proof social choice functions are characterized via the concept of
“independent person-by-person monotonicity”which is stronger than our condition of weak Maskin monotonicity.
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what will happen: In a fully revealing equilibrium, player 2 will infer that player 1 must have seen a

sk,l̃1 -type signal, therefore player 2 will believe with high probability that the state must be (θk1, θ
l
2).

Consequently, player 2 will not challenge player 1’s announcement. But then, anticipating this,

player 1 will announce “θk1”and thereby receive f(θk1, θ
l
2) instead of f(θh1 , θ

l
2). This in turn shows

that there does not exist a truthfully revealing equilibrium in pure strategies.

Theorem 1 links the non-robustness of the MR mechanism to the failure of Maskin monotonicity

of the social choice function to be implemented. For instance, in the Hart-Moore example in Section

2, the social choice function is not Maskin monotonic and preferences over f(Θ) are strict, so the

social choice function in that example is not strategy-proof.

Note that the above result does not preclude the existence of mixed strategy equilibria where

truth-telling by one or two players in each phase is robust to small information perturbations.

Moreover, the above result provides a necessary condition for the robustness of truth-telling by

player i in phase i, without requiring truth-telling by player j as well.

Next, we turn attention to mixed-strategy equilibrium. If we require that both players tell

(at least, approximately) the truth in each of the two phases, then no social choice function f =

(D,T1, T2) can be implemented by the general MR mechanism in such a way that truth-telling

by both players in each phase, is a sequential equilibrium outcome which is robust to information

perturbations.

More formally, in the Appendix we prove the following:

Theorem 2. Suppose that an SCF f is implementable by a MR mechanism under complete

information. Fix any complete information prior µ. There exists a sequence of priors {νε}ε>0

that converges to the complete information prior µ such that there is no sequence of sequential

equilibrium strategy profiles that converges to truth-telling.

Here is an intuition for why requiring approximate truth-telling by both players in each phase

precludes robust implementation by the MR mechanism. Suppose that both players receive a signal

which is highly correlated with the true state. Player 1 plays first in phase 1, so if player 1 announces

a signal that is highly correlated with some state θ̂, then player 2 (playing second in phase 1) will

believe that player 1 has told the truth (because by assumption player 1’s announcement is close to

truthful). But the mechanism is built in such a way that player 2 never wants to challenge player

1 if she thinks that player 1 is telling the truth (otherwise at stage 3 player 2 will be punished), so

player 2, if she is not challenging, will also announce θ̂ and so will not follow her private signal and

thus she is not reporting truthfully.

Let us make two remarks at this stage. First, the non-robustness of truth-telling as a sequential

equilibrium outcome of the MR mechanism is of interest because truth-telling is cognitively simple,

and also because the non-existence of a truthful sequential equilibrium implies the non-existence

of a desirable pure equilibrium, and implementation theory has mainly focused on pure-strategy

equilibria. Second, neither of the non-robustness results of this section rule out the possibility that

some SCF f can be implemented as the limit of mixed-strategy (non-truthful) sequential equilibrium
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outcomes.19 However, in the next section, we will show that if f is not Maskin monotonic but yet can

be implemented by the MR or by any other extensive form mechanism under common knowledge,

then there always exist arbitrarily small information perturbations under which there also exist

sequential equilibria with undesirable outcomes.

4 Any mechanism

In this section, we go beyond MR mechanisms and consider the set of all extensive form mechanisms.

Suppose a non-Maskin monotonic SCF is implemented by a (not necessarily MR) mechanism under

complete information. Then, we show that there always exists a “bad”sequential equilibrium in

arbitrarily small information perturbations of that mechanism. We begin by presenting the argu-

ment in a nutshell, using the Hart-Moore example to illustrate our point. Finally, we proceed to

state and establish a more general result.

4.1 Overview of the main result

In this subsection we state the main result and provide the reader with an intuition for the proof.

The main idea is that introducing just a small amount of incomplete information markedly enlarges

the set of (sequential) beliefs that are consistent with Bayesian rationality. As a result, one can

turn an arbitrary Nash equilibrium of an extensive-form mechanism that implements a non-Maskin

monotonic SCF f under common knowledge into a sequential equilibrium of the perturbed game.

More specifically, suppose there are n players, and each player i has a state dependent utility

function ui(a; θ) over outcomes (or alternatives) a ∈ A. In the perturbations we consider, players
do not observe the state of nature θ directly, but are informed about it through private signals. An

extensive form mechanism Γ together with a state θ ∈ Θ defines an extensive form game Γ(θ); Let

SPE(Γ(θ)) denote the set of subgame-perfect equilibria of the game Γ(θ). A SCF f is said to be

subgame-perfect implementable if there exists a mechanism Γ = (M, g) such that for each state θ,

every subgame-perfect equilibrium outcome coincides with f(θ). Here is an informal statement of

the main result:

Main Result: Assume finite state space and finite strategy spaces.20 Assume, further, that a

mechanism Γ subgame-perfect implements a non-Maskin monotonic SCF f under complete infor-

mation. Then there exists a sequence of information perturbations parametrized by some ε and a

corresponding sequence of sequential equilibria of the games induced by Γ under this sequence of

perturbations, whose outcomes do not converge to f(θ) in some state θ as ε→ 0.

In particular, under the usual additional conditions where Maskin monotonicity is suffi cient for

Nash implementation, this result implies the following: whenever an SCF cannot be implemented
19For conditions under which the unique subgame perfect equilibrium outcome of a perfect information game

remains an equilibrium outcome in perturbed games, see Takahashi and Tercieux (2011).
20 In the Appendix we extend the result to the case of countable strategy sets.
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using static mechanisms (with Nash equilibrium as the solution concept), there is no hope of im-

plementing it using sequential mechanisms if we want such mechanisms to be robust to information

perturbations.

Intuition for the proof: Suppose that the SCF f is not Maskin monotonic. Then, there exist
θ′ and θ′′ such that for any player i ∈ N and any alternative b ∈ A

ui(f(θ′); θ′) ≥ ui(b; θ′) =⇒ ui(f(θ′); θ′′) ≥ ui(b; θ′′) (I)

and nevertheless f(θ′) 6= f(θ′′). At the same time, since the extensive form mechanism Γ implements

f, there exists a subgame-perfect equilibrium (SPE) mθ′ in state θ
′
such that g(mθ′) = f(θ′). But

then using the same argument as in the proof of Maskin’s theorem summarized in Section 2 above,

mθ′ is also a Nash equilibrium in state θ′′, and necessarily a “bad”Nash equilibrium since f(θ′) 6=
f(θ′′).

The remaining part of the proof follows from the fact that one can use information perturbations

to “rationalize”this bad Nash equilibrium and turn it into a sequential equilibrium of the perturbed

games, in the same way as the construction in Section 2 above showed the non-robustness of the

particular MR mechanism considered in that section.

As a concrete example, consider again the MR mechanism studied in Section 2. Under common

knowledge of the state, it is a Nash equilibrium for B to announce θL at Stage 1 and for S to

never challenge at Stage 2. However, this is a bad Nash equilibrium and it is “not”a sequential

equilibrium. In particular, if Stage 3 were to be reached under common knowledge, then B would

just infer that S deviated from the equilibrium, but never update his beliefs about the true valuation

θ or about S’s perception of θ.

However, perturbing the signals about θ changes the picture radically. Now, if stage 3 is reached,

then B updates his beliefs about which signal S might have seen. In particular, if B’s updating puts

enough weight on S having received the low signal s`S , then B will not take the offer at price 6; then,

anticipating this at stage 2, S will indeed not challenge in equilibrium. Note that by perturbing

the signal structure we have enlarged the set of consistent beliefs: under common knowledge it

could not be a consistent belief that S saw the low state θL if B “knew”that the state was θH , but

this can become consistent under the perturbation. This is the key to how the perturbation turns

a bad (non-sequential) Nash equilibrium of the game with complete information into a sequential

equilibrium in the perturbed game.

4.2 A more formal statement of the main result

Now, we move from intuition and examples to the formal statement of the result, and refer the

reader to the Appendix for the formal proof. In the first reading, the reader can skip the rest of

Section 4 here and go directly to Section 5 without loosing much of the main idea of the paper.
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4.2.1 The environment

In what follows, we consider a more general environment, with a finite set N = {1, ..., n} of players,
with n ≥ 2, and a set A of social alternatives, or outcomes. From now on, we no longer assume that

agents have quasi-linear preferences with transferable money, as was needed for MR mechanisms.

Each player i has a state dependent utility function ui : A×Θ→ R, where Θ is a finite set of states

of nature.21 Players do not observe the state directly, but are informed of the state via signals.

Player i’s signal set is Si which, for simplicity, we identify with Θ. A signal profile is an element

s = (s1, ..., sn) ∈ S ≡ ×i∈NSi. When the realized signal profile is s, each player i observes only his
own signal si. We let µ denote the prior probability over Θ×S. We write µ(·|si) for the probability
measure over Θ × S conditional on si. Let sθ be the signal profile in which each player’s signal is
θ. Complete information refers to the environments in which µ(θ, s) = 0 whenever s 6= sθ (µ will

be then referred to as a complete information prior). Under complete information, the state, and

hence the full profile of preferences, is always common knowledge among players.

We will assume for each i and θ, the marginal distribution on i’s signals places strictly positive

weight on each of i’s signals in every state, i.e., µ(sθi ) ≡ [margSiµ](sθi ) > 0, so that Bayes’rule is

well-defined. Note that in case µ is a complete information prior, this implies in particular that for

each (θ, sθ) ∈ Θ× S : µ(θ, sθ) > 0.

A social choice correspondence (SCC) is a set-valued mapping F : Θ ⇒ A. We have focused on

social choice functions (SCFs) in the previous sections. In this section, we generalize our arguments

to encompass social choice correspondences (SCCs).

Since we consider more general extensive form mechanisms than MR mechanisms, we need to

introduce some notation. Most of the notation used here is consistent with Moore and Repullo

(1988). The reader is referred to that paper for the definition and notation of extensive form

mechanisms. We restrict attention to mechanisms that are multi-stage games with observed actions,

meaning at each history h, all players know the entire history of the play, and if more than one

player moves at h, they do so simultaneously.22 We also assume that the mechanism has a finite

number of stages. The class of mechanisms we consider in the present paper is exactly the same

as the one Moore and Repullo (1988) allowed. A mechanism is then an extensive game form

Γ = (H,M,Z, g) where: (1) H is the set of all histories; (2)M = M1×· · ·×Mn, Mi = ×h∈HMi(h)

for all i where Mi(h) denotes the set of available messages for i at history h; (3) Z describes the
history that immediately follows history h given that the strategy profile m has been played; and

(4) g is the outcome function that maps the set of terminal histories (denoted HT ) into the set of

outcomes (A).

The following notation will be useful: An element of M(h) = M1(h)× · · ·×Mn(h), say m(h) =

(m1(h), ...,mn(h)) is a message profile at h while mi(h) is i’s message at h. If #Mi(h) > 1 and

#Mj(h) > 1 then players i and j move simultaneously after history h, whereas if #Mi(h) > 1 and

21One can always interpret a partition over Θ as corresponding to a particular player i’s set of types Θi. Thus the
set up considered in the previous sections is indeed a special case of that analyzed in this section.
22This includes games of perfect information (sequential and observed moves) as a special case.
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#Mj(h) = 1 for all j 6= i then player i is the only one to move. Histories and messages are tied

together by the property that M(h) = {m : (h,m) ∈ H}. An element of Mi is a pure strategy; and

an element of M is a pure strategy profile.

There is an initial history ∅ ∈ H, and ht =: (∅,m1,m2, ...,mt−1) is the history at the end of

period t, where for each k, mk ∈ M(hk). If for t′ ≥ t + 1, ht′ = (ht,m
t, ...,mt′−1), then ht′ follows

history ht. As Γ contains finitely many stages, there is a set of terminal histories23 HT ⊂ H such

that HT = {h ∈ H :there is no h′ following h}. Given any strategy profile m and any history

h, there is a unique terminal history denoted by hT [m,h]. Formally, let Z : M × H → H be the

mapping where

Z[m,h] =

{
(h,m(h)) if h /∈ HT

h otherwise

is the history that immediately follows h whenever possible given that strategy profile m has

been played; and so hT [m,h] = limk→∞Zk[m,h] where Zk[m,h] = Z[m,Zk−1[m,h]]. Finally, the

outcome function g : HT → A specifies an outcome for each terminal history. We will also denote

g(m;h) the outcome that obtains when players use strategy profile m starting from history h, i.e.,

g(m;h) = g(hT [m,h]). In what follows, we only consider finite mechanisms:

Assumption A1. Mi (h) is finite for each i and h.

Remark 1.: This assumption is useful when using sequential equilibrium and avoids technical

complications due to the use of countably infinite (or uncountable) spaces. In the Appendix, we

provide additional assumptions on the class of mechanisms so that our result can be extended to

countable message spaces. This extension is important because the literature often uses integer

games (i.e., games where one dimension of the message space is the set of positive integers) as part

of implementing mechanisms.24

A mechanism Γ together with a state θ ∈ Θ defines an extensive game Γ(θ). A (pure strategy)

Nash equilibrium for the complete information game Γ(θ) is an element m∗ ∈M such that, for each

player i, ui(g(m∗; ∅)); θ) ≥ ui(g((mi,m
∗
−i); ∅); θ) for allmi ∈Mi. A (pure strategy) subgame-perfect

equilibrium for the game Γ(θ) is an element m∗ ∈M such that, for each player i, ui(g(m∗;h); θ) ≥
ui(g((mi,m

∗
−i);h); θ) for all mi ∈ Mi and all h ∈ H\HT . Recall that SPE(Γ(θ)) denotes the set

of subgame-perfect equilibria of the game Γ(θ) and NE(Γ(θ)) denotes the set of Nash equilibria of

the game Γ(θ). We say that a mechanism implements an SCC F in subgame-perfect equilibrium,
or simply SPE-implements F , if for each (θ, sθ) ∈ Θ× S, we have g(SPE(Γ(θ)); ∅) = F(θ).

Given a prior µ, the mechanism determines a Bayesian game Γ(µ) in which each player’s type is

his signal, and after observing his signal, player i selects a (pure) strategy from the setMi. In what

follows, whenever players face uncertainty about the state and other player’s signals, they possess

23Note that M(h) = {m : (h,m) ∈ H} = ∅ for any h ∈ HT .
24Our results do not critically depend on the countability assumption. We believe that our results would hold

for arbitrary mechanisms if we were to use perfect Bayesian equilibrium (Fudenberg and Tirole (1991b)) instead of
sequential equilibrium as the solution concept.
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a probabilistic belief over this uncertainty and with respect to this belief, they aim to maximize

expected utility.25 A strategy profile σ = (σ1, ..., σn) lists a strategy for each player i where

σi : Si →Mi and σi(ht, si) is a message in Mi(ht) given history ht and signal si. Alternatively, we

will sometimes let σi be a (mixed) behavior strategy, i.e., a function that maps the set of possible

histories and signals into the set of probability distributions over messages: σi(·|ht, si) ∈ ∆(Mi(ht))

is the probability distribution over Mi(ht) given history ht and signal si.

With this notation in place we can re-state the definition of sequential equilibrium as spe-

cialized to these multi-stage games of observed actions. A sequential equilibrium is a profile of

assessment (or beliefs) φ and strategies σ which satisfy both consistency and sequential rationality.

Here consistency is the requirement that there exists a sequence of totally mixed strategy profiles

σn converging to σ such that the beliefs φn computed from σn using Bayes’rule converge to φ;

Sequential rationality means that for each period t and history ht−1 up to t − 1, the continuation

strategies are optimal for each player i given the opponents’strategies and his belief φi. A more

formal definition of sequential equilibrium can be found in the Appendix (Section 7.2).

4.2.2 The existence of a bad sequential equilibrium with almost-perfect information

Although we already introduced the definition of Maskin monotonicity for social choice functions

in Section 2, we need to extend it to social choice correspondences. A social choice correspondence

F on a payoff relevant state space Θ is Maskin monotonic if for all pair of states of nature θ′ and

θ′′ if a ∈ F(θ′) and

{(i, b)
∣∣ui(a; θ′) ≥ ui(b; θ′)} ⊆ {(i, b)

∣∣ui(a; θ′′) ≥ ui(b; θ′′)} (∗)

(i.e., no individual ranks a lower when moving from θ′ to θ′′) then a ∈ F(θ′′). Henceforth, we

assume that A is a Hausdorff topological space. We are now in a position to provide a more formal

statement of our main theorem.

Theorem 3. Assume A1. Suppose that a mechanism Γ SPE implements a non-Maskin monotonic

SCC F . Fix any complete information prior µ. There exists a sequence of priors {νε}ε>0 that

converges to a complete information prior µ and a corresponding sequence of sequential equilibrium

assessments and strategy profiles {(φε, σε)}ε>0 such that as ε tends to 0, g(σε(sθ); ∅) → a /∈ F(θ)

for some θ ∈ Θ and some outcome a ∈ A.

Proof. See Appendix.

Remark 2. The above theorem shows the following: under the usual conditions ensuring that

Maskin monotonicity is suffi cient for Nash implementation, whenever a SCC cannot be implemented

using static mechanisms, this SCC cannot be implemented using an extensive-form mechanism that

is robust to the introduction of a small amount of incomplete information.

25All the results extend to more general representations for preferences under uncertainty. The interested reader
is referred to Kunimoto and Tercieux (2009) for details.
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Remark 3. While non-Maskin monotonic SCFs cannot be robustly implemented, things are quite
different for Maskin monotonic SCFs. Here we restrict our focus to SCF’s rather than SCCs. In

the Appendix we extend the argument to the case of SCCs.

What appears as a natural candidate for “robust implementation”of a SCF amounts to con-

structing a Nash implementable mechanism with the following two properties: (1) there exists at

least one strict Nash equilibrium; and (2) the map from information structures to Nash equilibria

has a closed graph, so adding a small amount of incomplete information only slightly increases

the set of Nash equilibria. In the Appendix, we formalize the above two properties and propose a

definition of robust Nash implementation.

To see this, note that the first property ensures that the strict Nash equilibrium continues to

be a strict (Bayesian) Nash equilibrium for any nearby environment and hence that there is always

a good equilibrium for any nearby environment. The second property in turn ensures that all Nash

equilibria will continue to have outcomes that are close to the desired outcome for any nearby

environment.

Regarding the first property, the existence of a strict Nash equilibrium in a mechanism that

implements a SCF can easily be ensured under a slight strengthening of Maskin monotonicity,

namely strong Maskin monotonicity. In the Appendix, we show that this is also the case for SCCs.

As to the second property, in many situations, Nash implementation of Maskin monotonic SCFs

can be achieved using finite mechanisms (see Saijo (1988)). Routine arguments then imply that

the second property is satisfied.26

For the case of infinite mechanisms, the argument is relegated to the Appendix, which provides

suffi cient conditions under which one can ensure that properties (1) and (2) above are satisfied.

There we take care of SCCs as well as SCFs. Interestingly, these suffi cient conditions are satisfied

by any Maskin monotonic SCF in quasi-linear environments with money.

5 Outside options and the hold-up problem

Thus far, we have shown that the mechanisms used by proponents of the “implementation critique"

of the property right theory of the firm (e.g., Maskin and Tirole, 1999a) are themselves not robust to

small deviations from perfect information and common knowledge. That leaves open the question of

what role outside options (e.g., as induced by asset ownership as in Grossman and Hart (1986)) can

play in alleviating the hold-up problem in situations that depart more significantly from complete

or just symmetric information.

As a first step in this direction, we consider an environment with an ex ante investment stage

and where ex post bargaining takes place under one-sided asymmetric information. We present

an example where the presence of an outside option allows mechanisms that approximate ex ante

effi ciency. Moreover, we argue that static or sequential mechanisms without an outside option

26This property comes from the following two facts. First, a small change in the prior probability corresponds to a
small change in ex ante payoffs. Second, the pure Nash equilibrium correspondence is upper hemi continuous in the
space of payoffs.
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cannot do as well, which, in turn, we see as a justification for the role of ownership allocation in

contracting under incomplete information.

5.1 The set-up

Suppose there is a buyer (B) and a seller (S) of a single unit of an indivisible object with utility ṽ

to the buyer, where ṽ ∈ {v, v̄} and v̄ > v > 0. The utility of the seller for the object is assumed

to be always zero. Time is discrete, with a contracting period 0 where the good is offered to the

buyer at a prespecified price, an investment period 1/2 whereby the seller can increase the buyer’s

valuation for the good; and a trading period 1. Investment is unobservable as in Grossman-Hart

(1986). Moreover, we shall allow for the possibility that an outside option can be exerted in period

2 by one party if trade does not occur in period 1, and focus attention on the case where the outside

option yields utility v to whoever has the good at that point. A natural interpretation is that v̄ is

the value the buyer and the seller can generate in their relationship and v is the default value that

can be generated outside of the relationship. The timing of the events is as follows:

t = 0 t = 1/2 t = 1 t = 2

Contract Investment i Trade specified by contract Outside Option (if any)

The seller may make an investment in period 1/2 that increases the probability that the good

is high quality, as in Che and Hausch (1999). Specifically, suppose that at cost c(i) the seller

achieves v = v̄ with probability i, where c(·) is continuous, twice differentiable, and satisfies c′(i) >
0, c

′′
(i) > 0, c(0) = 0, c′(1) = +∞, and c′(0) < v̄− v. The buyer will know the value of the good at

the beginning of period 1, while the seller will not, so there is one-sided asymmetric information.

5.2 Outside options as ownership

One can relate the outside option to the idea of ownership by taking the owner of the good to be

the party with the right to exercise the outside option. Thus, under seller ownership, if the seller

makes an offer to the buyer but the buyer refuses the offer, then the seller can always choose to

always exert his outside option and gets v.

This interpretation as ownership is consistent with other works in the property rights literature,

starting with Grossman and Hart (1986), where ownership of the assets of a firm allows the owner

to make alternative use of these assets in case of disagreement in the ex post bargaining with the

other party(ies). This in turn enhances the owner’s ex post bargaining power and therefore it

increases the fraction of the ex post production surplus the owner can secure in this bargaining,

which, in turn, enhances the owner’s investment incentives. In our setting too, ownership of the

good will allow the seller to extract a higher price from a high-valuation buyer, and anticipating

this, the seller will invest a higher i in the relationship. What we show below is that no mechanism
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(contract) without an outside option can do as well as a contract with outside option to the seller

in inducing effi cient investment by the seller in period 1/2.

5.3 Ex Ante effi ciency and outside options

Under our assumptions, the ex-ante effi cient outcome is to trade whenever the good is high quality,

consume the outside option when the good is low quality,27 and set investment equal to i∗, where

i∗ ∈ (0, 1) is the solution to the following first-order condition:

v̄ − v = c
′
(i∗).

The resulting total surplus is then

W ∗ = i∗v̄ + (1− i∗)v − c(i∗).

We will now show how a mechanism with an outside option can come arbitrarily close to this payoff.

In this setting, a mechanism takes as input the buyer’s announced value for the good, and

specifies a trade probability q, transfers yS and yB to the seller and buyer respectively, a probability

zS that the seller gets to keep the good if there is no trade, a probability zB that the buyer gets the

good in that case, and therefore the probability 1−zB−zS ≥ 0 that the good is destroyed when it is

not traded (the mechanism does not specify an investment level, nor condition other outcomes on it,

as investment is not observable). Thus the mechanism maps the buyer’s announcement ṽ ∈ {v, v̄}
into A where A = {(q, yB, yS , zB, zS) ∈ [0, 1] × R4

+| yS + yB ≤ 0, zB + zS ≤ 1}. In what follows,
we consider the case zS ≡ 1 (so that the seller gets the outside option whenever there is no trade,

regardless of the buyer’s announcement), and therefore the mechanism boils down to a mapping

f(ṽ) such that f(v) = (q, y
B
, y
S

) (when the buyer announces v) and f(v) = (q̄, ȳB, ȳS) (when the

buyer announces v̄).

Given that zS ≡ 1, for ε > 0 small enough, the mechanism that implements (1,−(v̄− ε), v̄− ε))
when the buyer announces valuation v̄, and (0, 0, 0) when the buyer announces v satisfies incentive

compatibility (it is a strictly dominant strategy for the buyer to report her valuation v truthfully),

individual rationality, and ex post effi ciency, i.e., trade occurs if and only if there are social gains

from trade.

Now suppose that the buyer and the seller agree on this mechanism with the outside option

v allocated to the seller at the contracting stage. Then, moving back to time t = 1/2, the seller

chooses the level of investment to maximize

i(v̄ − ε) + (1− i)v − c(i).

Given our assumptions, the optimal investment level i∗ (for ε > 0 small enough) is determined by

27From the viewpoint of social welfare it does not matter which party gets to use the outside option.
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the first-order condition:

v̄ − ε− v = c
′
(i∗).

From the concavity of the problem, this is approximately the same as the first-best investment

when ε is small. Thus, a simple contract with seller’s ownership can exactly implement an out-

come whose total surplus is arbitrarily close to the first best level; this is what we will mean by

“approximate ex ante effi ciency.”

5.4 Ex ante effi ciency cannot be approximated without outside options

As in the complete information case, a crucial question is: what exactly can be achieved with

contracts/mechanisms that do not use outside options, so that zS = zB = 0. Below, we show that

under buyer’s private information, any “outside-option-free” contract between the buyer and the

seller leads to an outcome which remains bounded away from ex ante effi ciency.

First, note that if an SCF f that maps the true buyer’s valuation ṽ onto a triplet f(ṽ) =

(q̃, ỹB, ỹS), and yields zero continuation utility to both parties if trade does not occur, is to be

implemented by some (static or sequential28) mechanism in Bayesian Nash equilibrium, it must be

at least weakly incentive compatible for the buyer to report truthfully. It is simple to show that f

is incentive compatible if and only if

v(q̄ − q) ≤ y
B
− ȳB ≤ v̄(q̄ − q). (1)

Below we prove that one cannot find SCFs with zS = zB = 0 that are incentive compatible and

approximately ex ante effi cient. To show this, suppose to the contrary that for any ε > 0 there is

an incentive compatible mechanism f ε whose ex ante total surplus is at least W ∗ − ε. Then, the
associated probabilities iε of high quality must converge to i∗ ,the probabilities of trade qε and q̄ε

must both converge to 1, and the difference in transfers (i.e. money “burnt”) |yε
S
−yε

B
| and |ȳεS− ȳεB|

must both converge to 0. The incentive compatibility condition (1) then implies that |yε
B
− ȳεB| → 0,

and this, plus the fact that both |yε
S
− yε

B
| and |ȳεS − ȳεB| → 0, implies that |ȳεS − yεS | → 0 as well.

Moving back to time t = 1/2, the seller will choose investment i to maximize

iȳεS + (1− i)yε
S
− c(i) = yε

S
+ i(ȳεS − yεS)− c(i).

Because |ȳεS − yεS | → 0 and c′ > 0, the solution iε to this problem converges to 0, so investment

falls far short of the first-best level, which is not consistent with the assumption that the ex ante

total surplus converges to W ∗. We conclude that ex ante surplus must be bounded away from

effi ciency.

28Approximate ex ante effi ciency cannot be achieved by virtual implementation either, since incentive compatibility
is also necessary for virtual implementation to work. But precisely we show below that without outside options, one
cannot find SCFs that are both, approximately ex ante effi cient and incentive compatible.
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This establishes our claim that no approximately ex ante effi cient SCF can be implemented

by a mechanism that does not include an outside option (or some other change to the economic

environment), which, in turn, we see as a justification for the role of ownership allocation in

contracting under incomplete information.

5.5 Summary

Analyzing the hold-up problem in a setting with ex post asymmetric information, as we have done

in this section, yields an interesting new insight: outside options such as those induced by asset

ownership can help relax incentive compatibility constraints and thereby improve ex ante effi ciency

compared to what can be achieved through “ownership-free”contracts/mechanisms.

6 Concluding remarks

We conclude by making a few additional remarks. First, the bad sequential equilibria in Section 4

survives a standard equilibrium selection criterion. Cho (1987) defines forward induction equilib-

rium, which is an extension of the Cho and Kreps (1987) intuitive criterion in signaling games to

more general games. The key restriction in this equilibrium concept is that the belief system assigns

probability 0 to nodes in some information set h if this node can be reached only by “bad”deviations,

provided that other nodes in h can be reached by non-bad deviations. Here, “bad deviations”are

deviations with the following property: suppose that at any information set where the deviating

player can reach by deviating, players are playing best-responses against some arbitrary belief that

is consistent with that information set being reached. Then the deviation makes the deviating

player strictly worse off compared to his equilibrium payoff. In the Hart-Moore example developed

in Section 2, we can show that “Challenge” is never a bad deviation for the seller. To see this,

note that when deviating to “Challenge,”the seller may think that an information set under which

B believes that the state θH may occur with positive probability. Thus we can always pick an

appropriate belief (for instance, one that would assign probability 1 to θH) under which it is a best

reply for B to accept S’s offer if S challenges. But we know that in such a case “Challenge”by the

seller makes her strictly better off compared to the equilibrium, proving that “Challenge”cannot

be a bad deviation.

Our second remark is that the non-robustness of subgame-perfect implementation does not

mean that implementation is hopeless, but, rather, suggests that we should further explore the

implications of Nash implementation. It is well-known that in many important contexts, Nash

implementation (or Maskin monotonicity) is quite demanding. For instance, a well-known result

by Muller and Sattherthwaite (1977) states that any onto and ex post effi cient social choice function

defined on the domain of all strict preferences is dictatorial when there are at least three outcomes.

Maskin (1999) shows that with only two players, this result extends to social choice correspondences.

However, it has also been shown that, under some mild domain restrictions, for any social choice

function f , there is a stochastic social choice function that puts probability close to one on the same
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outcomes as f and that is Maskin monotonic (See Abreu and Sen (1991) and Matsushima (1988)

for the details of this approach).29 Indeed, we saw that the social choice function f we sought to

implement in this Hart-Moore example was not Maskin monotonic since f (θL) = (1,−10, 10) 6=
f (θH) = (1,−14, 14), and therefore not Nash implementable. However, the ε-approximation of

that SCF defined by

f ε (θL) = (1− ε,−10, 10) 6= f (θH) = (1− ε,−14, 14),

is Maskin monotonic since for example, B strictly prefers (1−ε,−10, 10) to (1,−10−11ε, 10) when

θ = θL = 10 but the reverse is true when θ = θH = 14. Hence, even if f is not Maskin monotonic and

therefore not Nash implementable, we can find an ε-close stochastic SCF that is Maskin monotonic

and therefore Nash implementable for instance in the Moore and Repullo’s setting.30 However, the

stochastic nature of this mechanism is problematic in terms of renegotiation-proofness. For example,

if we consider the above social choice function f ε: with probability ε, the planner must induce a

bad outcome under which trade does not occur.31 Given that there are gains from trade, agents will

definitely have incentives to renegotiate. If this possibility is explicitly taken into account by the

contracting parties, then the social choice function is not going to be Nash implementable anymore.

Thus, stochasticity (or randomness) can help to robustly implement nearby effi cient social choice

functions but it also raises serious renegotiation-proofness issues.

Finally, we feel that laboratory experiments can be useful in assessing the importance of the

effect of information perturbations on the likelihood that truth-telling will still occur in equilib-

rium. Preliminary work by Aghion, Fehr, Holden and Wilkening (2009) suggests that the effect is

potentially large.32

29Here preferences are defined on lotteries over outcomes and agents are assumed to be expected utility maximizers,
so typically the restrictions to domains of strict preferences in Muller and Satterthwaite (1977) or in Maskin (1999)
are not going to be satisfied.
30Note that in the Moore-Repullo setting (i.e., with quasi-linear utilities and arbitrary large transfers), for any

social choice function f , we have the existence of a bad outcome (i.e., an outcome which, in each state of nature, is
strictly worse for all players than any outcome in the range of the social choice function). In addition, because for
each agent, there is no most preferred outcome, f also satisfies no-veto-power. Thus by Moore and Repullo (1990,
Corollary 3, p.1094) f is Nash implementable if and only if f is Maskin monotonic. The stochastic approximation
of f can therefore be implemented with a canonical Maskin mechanism, although since the mechanism uses integer
games it is less appealing than the simple MR mechanism.
31Renegotiation is less problematic in the case of “exact”Nash implementation since renegotiation then only occurs

out of equilibrium.
32Aghion, Fehr, Holden and Wilkening (2009) conduct a laboratory experiment testing the robustness of a Moore-

Repullo mechanism to information perturbations. The experiment is meant to mimic the Hart-Moore example spelled
out in Section 2. Subjects are randomly allocated to the buyer and seller roles, and play the mechanism ten times
in a row. In one treatment there is complete information, in the other the subjects each receive a conditionally
independent private signal which is 90% accurate-generated by the subjects drawing different colored balls from an
urn. In the complete information treatment the proportion of buyers who announce low despite having a high signal
declines from around 40% to 10% over the ten rounds. By contrast, in the incomplete information treatment buyers
continue to lie more than 40% of the time. In periods 6-10 the average number of lies in the complete information
treatment is 24%, whereas it is 42% in the incomplete information treatment.
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7 Appendix

7.1 Proof of Theorem 2

We fix a SCF f which is implemented under complete information by the MR mechanism ΓMR. We

let µ be a complete information prior and show that for the sequence of priors νε (indexed by ε > 0)

as specified in (∗∗∗) of Section 3.2, there is no sequence of equilibrium strategy profiles converging to
truth-telling. Let ΓMR(νε) be an incomplete information game associated with the MR mechanism

and a prior νε. By way of contradiction, assume that for each ε > 0, there exists a profile of mixed

equilibrium strategies of the game ΓMR(νε) such that as ε goes to 0, the probability that both

players report their signals truthfully converges to 1. Fix such a sequence of mixed equilibrium

strategy profiles. We then use the following notation to describe equilibrium play in the games

ΓMR(νε):

• σε,jk,l denotes the probability that player 1 with signal s
k,l
1 announces θj1 at Stage 1 of Phase 1;

• λε,jk,l [θ̂1] denotes the probability that player 2 with signal sk,l2 announces θj1 at Stage 2 of Phase

1 given that at Stage 1 of Phase 1, player 1 has announced θ̂1

• ρε,jk,l denotes the probability that player 2 with signal s
k,l
2 announces θj2 at Stage 1 of Phase 2;

and

• τ ε,jk,l [θ̂2] denotes the probability that player 1 with signal sk,l1 announces θj2 at Stage 2 of Phase

2 given that at Stage 1 of Phase 2, player 2 has announced θ̂2.

Using the above notation, our hypothesis to derive a contradiction is summarized as follows:

for all k 6= j, all l and all announcements θ̂1, σ
ε,j
k,l and λ

ε,j
k,l [θ̂1] converge to 0 as ε → 0; and for all

l 6= j, all k and all announcement θ̂2, ρ
ε,j
k,l and τ

ε,j
k,l [θ̂2] converge to 0 as ε→ 0.

We will use the following claim about the properties of the MR mechanism under complete

information:

Claim 1. For truthtelling to be the unique subgame-perfect equilibrium of the MR mechanism under
complete information), it must be that for each θ = (θ1, θ2) and each φ1,

u1(f(θ1, θ2); θ1) > U1(y(φ1, θ1); θ1)− ty(φ1,θ1) −∆, (2)

and

u2(f(θ1, θ2); θ2) > U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆. (3)

Proof of Claim 1. Suppose first that the inequality (2) goes the other way, that is for some θ =

(θ1, θ2) and some φ1, we have

u1(f(θ1, θ2); θ1) < U1(y(φ1, θ1); θ1)− ty(φ1,θ1) −∆.
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Then, under complete information where the true state is θ, we claim that truthtelling is not a

subgame-perfect equilibrium: player 1 has an incentive to deviate by claiming some φ1 6= θ1 (and

player 2 challenges player 1’s report at Stage 2 under truthtelling) in order to reach Stage 3 where he

would pick {y(φ1, θ1), ty(φ1,θ1) + ∆}. This contradicts the hypothesis that truthtelling is a subgame
perfect equilibrium of the MR mechanism under complete information.

Now, suppose instead that for some θ = (θ1, θ2), and some φ1 6= θ1, we have

u1(f(θ1, θ2); θ1) = U1(y(φ1, θ1); θ1)− ty(φ1,θ1) −∆.

In this case, we claim that there is a subgame-perfect equilibrium at θ = (θ1, θ2) where player 1

does not report truthfully. To see this, we propose the following strategy profile σ∗: At Stage 1 of

Phase 1, player 1 reports φ1 6= θ1; player 2 reports the true state θ1 at Stage 2 irrespective of player

1’s announcement; and at Stage 3, player 1 always plays his optimal action. Note here that player

1’s optimal play at Stage 3 depends on what he reported at Stage 1. In Phase 2, both players always

report truthfully and player 2 plays his optimal action at stage 3. Here again, player 2’s optimal

action at Stage 3 depends on what he reported at Stage 1. Given the continuation strategy profile

from Stage 2 induced by σ∗, player 1 is indifferent between reporting φ1 and θ1 at Stage 1, and so

(if truthtelling is a subgame perfect equilibrium) this σ∗ is indeed a subgame-perfect equilibrium

at θ = (θ1, θ2). This contradicts the uniqueness of truthtelling as a subgame perfect equilibrium of

the MR mechanism under complete information.

Similarly, we must have that for each θ = (θ1, θ2) and each φ1,

u2(f(θ1, θ2); θ2) > U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆.

By way of contradiction, we argue why this must be the case. Suppose first that for some θ = (θ1, θ2)

and some φ1, we have

u2(f(θ1, θ2); θ2) < U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆.

Then, under complete information where the true state is θ = (θ1, θ2), we claim that truthtelling is

not an equilibrium: player 2 has an incentive to deviate by claiming some φ1 6= θ1 in order to reach

stage 3 where player 1 would pick {x(θ1, φ1), tx(θ1,φ1) + ∆}. This contradicts the hypothesis that
truthtelling is a subgame perfect equilibrium of the MR mechanism under complete information.

Now, suppose instead that for some θ = (θ1, θ2), and some φ1 6= θ1, we have

u2(f(θ1, θ2); θ2) = U2(x(θ1, φ1); θ2) + tx(θ1,φ1) −∆.

In this case, we claim that there is a subgame-perfect equilibrium at θ = (θ1, θ2) where player 2

does not report truthfully. To see this, we construct the following strategy profile σ∗∗: At Stage 1

of Phase 1, player 1 always reports θ1 truthfully; player 2 reports a false state φ1 if player 1 has

claimed θ1 and otherwise challenges with θ1; and at Stage 3, player 1 always plays his optimal
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action. Note here that player 1’s optimal play at Stage 3 depends on what he reported at Stage

1. In Phase 2, both players always report truthfully and player 2 plays his optimal action at stage

3. Here again, player 2’s optimal action at Stage 3 depends on what he reported at Stage 1. Since

player 1 would choose {x(θ1, φ1), tx(θ1,φ1) + ∆} at Stage 3, player 2 is indifferent between reporting
θ1 and φ1 at Stage 2 after player 1 reported θ1. This shows that (if truthtelling is a subgame

perfect equilibrium) σ∗∗ is a subgame perfect equilibrium where player 2 does not report truthfully.

However, this contradicts the uniqueness of truthtelling as a subgame perfect equilibrium of the

MR mechanism under complete information. This completes the proof of the claim.

Now, let us fix the prior νε (as defined in (∗ ∗ ∗) of section 3.2.). Consider the case where
player 1 receives sk,l1 . Clearly, ν

ε(θk1, θ
l
2, s

k,l
2 |s

k,l
1 )→ 1 as ε→ 0. Hence, at stage 1, by continuity of

expected payoffs with respect to beliefs, the expected equilibrium payoff of player 1 for announcing

θk1 converges (as ε vanishes) to

u1(f(θk1, θ
l
2); θk1),

while if he lies by claiming φ1 6= θk1 at Stage 1, his expected equilibrium payoff converges to

something (weakly) smaller than

U1(y(φ1, θ
k
1); θk1)− ty(φ1,θ

k
1) −∆.

By Equation (2) and choosing ε > 0 small enough, there is no way that the equilibrium strategies

{σε,jk,l , λ
ε,j
k,l [θ̂1], ρε,jk,l , τ

ε,j
k,l [θ̂2]}k,l,j,θ̂1,θ̂2

can make player 1’s best response indifferent at Stage 1. Hence,

for ε > 0 small enough, player 1 with signal sk,l1 plays pure strategies at Stage 1 of Phase 1. This

reasoning holds for an arbitrary choice of sk,l1 so that player 1 plays in pure strategies irrespective

of his signal.

Note now that player 1 with signal sk,l1 could deviate and claim that θk
′

1 is the true state where

k′ 6= k. In this case, because player 1 plays in pure strategies (and hence, the equilibrium is fully

revealing), in the first phase, after observing θk
′

1 , player 2 believes with probability one that player

1 has received a signal of the form sk
′,l
′

1 for some l
′
. We claim that player 2 with signal sk,l2 will

not challenge: indeed, by construction of νε, player 2 with signal sk,l2 believes with high probability

that θ = (θ1, θ2) where θ2 = θl2 is the true state. If player 2 challenges with θ
k
1, by construction

of νε, he expects player 1 to choose {x(θk
′

1 , θ
k
1), t

x(θk
′

1 ,θ
k
1)

+ ∆} at Stage 3. On the other hand, if
he does not challenge, his expected payoff would tend to u2(f(θk

′
1 , θ

l
2); θl2) as ε vanishes. Hence, by

Equation (3), for ε > 0 small, player 2 will be better off by not challenging. Thus, we get that

λε,kk,l [θ
k′
1 ] = 0, which is a contradiction. This completes the proof of Theorem 2.

7.2 Proof of Theorem 3

We first introduce some notation. Given a prior µ over Θ× S, we write µ(θ) for [margΘµ](θ), and

given s−i ∈ S−i, we will write µ(s−i) as [margS−iµ](s−i). Finally, given an arbitrary countable

space X, δx will denote the probability measure that puts probability 1 on {x} ⊂ X.
Let µ be any complete information prior, and assume that a mechanism Γ SPE-implements a
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non-Maskin monotonic SCC F . By hypothesis F is not Maskin monotonic, so there are θ′, θ′′ and
a ∈ F(θ′) satisfying (∗) in the definition of Maskin monotonicity while a /∈ F(θ′′). We now fix this

particular θ′, θ′′ and a throughout.

Since the mechanism Γ SPE-implements F , there exists a pure strategy subgame-perfect equi-
librium m∗

θ′ in Γ(θ′) such that g(m∗
θ′) = a. Fix one such equilibrium. Clearly, m∗

θ′ is a Nash

equilibrium of Γ(θ′). From (∗) in the definition of Maskin monotonicity, it follows that m∗
θ′ is also

a Nash equilibrium of Γ(θ′′). Recall that H denotes the set of all possible histories. For each t ≥ 0,

let h∗t be the history induced by m
∗
θ′ up to date t and let H

∗ denote the set of all such histories for

any t. In addition, for each player i, let H∗−i be the set of histories h along which every player j 6= i

has chosen the message m∗
θ′,j(h) ; formally, H∗−i ≡ {h ∈ H : h = (∅,m1,m2, ...,mt−1) for some t

and mt′
j = m∗,t

′

j,θ′
for all t′ ≤ t− 1 and all j 6= i}. Note that h∗t ∈ H∗−i for each t ≥ 1.

Consider the following family of information structures νε. For each player i, let τ i represent

the profile of signals s = (s1, ..., sn) defined by si = sθ
′′
i and sj = sθ

′
j for all j 6= i. For all i, νε is

given by33

νε(θ′, τ i) =
ε

n
µ(θ′, sθ

′
);

νε(θ′, sθ
′
) = (1− ε)µ(θ′, sθ

′
); and

νε(θ̃, sθ̃) = µ(θ̃, sθ̃) ∀θ̃ 6= θ′.

In this information structure when the state is anything other than θ′ or θ′′, the state is common

knowledge. Furthermore, when a player observes sθ
′
, he knows that the state is θ′. Obviously,

νε → µ as ε→ 0. The support of νε is denoted

supp(νε) = {(θ̃, sθ̃) : θ̃ ∈ Θ} ∪ {(θ′, τ i) : i ∈ N}.

Before we prove Theorem 3, we introduce some notation and the formal definition of sequential

equilibrium. A system of beliefs of agent i is defined as a function φi : Si ×H → ∆(Θ× S−i). Let
φi[(θ, s−i) | si, ht] denote agent i’s belief that (θ, s−i) is realized when agent i’s signal is si and the

observed history is ht. We will henceforth abuse notation and sometimes consider φi[(θ, s−i) | si, ht]
as an element of ∆(Θ×S). We also say a vector of beliefs φ = (φ1, . . . , φn) is Bayes consistent with

a strategy profile σ if beliefs are updated from one stage to the next using Bayes’rule whenever

possible (see Fudenberg and Tirole (1991a) for its precise definition). An assessment is a pair (φ, σ)

consisting of a profile of beliefs and a pure behavior strategy profile. We formally define sequential

equilibrium.

Definition 2. A sequential equilibrium is an assessment (φ, σ) that satisfies condition (S) and (C):

33This sequence of perturbations is similar to that used by Chung and Ely (2003). However, because sequential equi-
librium requires verifying sequential rationality conditions that are not imposed by undominated Nash equilibrium,
the body of proof is very different from that in Chung and Ely (2003).
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(S) Sequential rationality: for all i ∈ N, si ∈ Si, ht ∈ H :∑
(θ,s−i)∈Θ×S−i

φi[θ, s−i|si, ht]
{
ui(g(σ(s);ht); θ)− ui(g((σ′i(si), σ−i(s−i));ht); θ)

}
≥ 0

for each σ′i.

(C) Consistency: there exists a sequence of totally mixed strategy profiles (σk1, ..., σ
k
n) converging

to (σ1, ..., σn) with Bayes consistent beliefs φk converging to φ.34

Now we come back to the proof and in particular, build a sequential equilibrium (φε, σε) of

Γ(νε) where g(σε(sθ
′′
); ∅) = a for each ε > 0 small enough. This will show that there exist a

sequence of priors {νε}ε>0 that converges to µ and a corresponding sequence of sequential equilibria

{(φε, σε)}ε>0 such that g(σε(sθ
′′
); ∅)→ a /∈ F(θ′′) as ε goes to 0. This will complete the proof.

In the sequel, we will omit the dependence of σε with respect to ε and simply write σ for

σε. In the following lines, we define a strategy σ and a family of systems of beliefs Φ so that

g(σ(sθ
′′
); ∅) = a. In addition, we will show that (φ, σ) is a sequential equilibrium of Γ(νε) for some

φ ∈ Φ. We define Φ and σ as follows:

Definition of σ:

Σ1. For any player i and any ht ∈ H∗ or ht /∈ H∗−i, σi(ht, sθ
′′
i ) = m∗

i,θ′(ht);
35

Σ2. For any player i, any ht ∈ H∗−i\H∗, σi(ht, sθ
′′
i ) = m̄i(ht) where m̄i satisfies for any ht,

ht ∈ H∗ or ht /∈ H∗−i ⇒ m̄i(ht) = m∗i,θ′(ht);

ht ∈ H∗−i\H∗ ⇒ m̄i(ht) ∈ arg max
∑
θ̃

νε(θ̃|sθ′′i )ui(g((m′i,m
∗
−i,θ′);ht); θ̃),

where the max is taken over all pure messages m′i ∈Mi that differs from m̄i only at h.36 By

A1 there exists such m̄i;

Σ3. For any player i and any ht ∈ H, σi(ht, sθ
′
i ) = m∗

i,θ′(ht);

Σ4. And for any ht ∈ H, σi(ht, sθ̃i ) = m∗
θ̃,i

(ht) for θ̃ 6= θ′, θ′′ where m∗
θ̃′
is an arbitrary pure

strategy subgame-perfect equilibrium of Γ(θ̃). (This is well-defined since F is implementable
in subgame-perfect equilibrium under complete information.)

34Convergence in the definition of consistency is taken uniformly over messages and histories. Given that the set
of messages (and so the set of histories) can be countably infinite, two natural convergence notions can be used:
point-wise convergence or uniform convergence. The set of sequential equilibria is smaller when one assumes uniform
convergence. Hence, the use of uniform convergence strengthens our main result.
35Note that players here send the messages that m prescribes for state θ′ when their signal suggests that the state

is θ′′.
36Note that the maximization above is over all pure messages m′i ∈ Mi that differs from m̄i only at h. Hence,

since player i may be playing at several stages, it might be the case that this maximization depends on what player
i is playing at further histories, and these further histories may be outside H∗−i\H∗ (for instance in case a player j
different of i does not play according to m∗j,θ′ at some subsequent history). This is why we also have to define m̄i

outside H∗−i\H∗.
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Definition of Φ:

φ ∈ Φ if and only φ satisfies the following three properties.

Φ1. Fix any i ∈ N , any ht /∈ H∗−i,
φi

[
·
∣∣sθ′′i , ht] = δ

(θ′,sθ
′
−i)

and

supp
(
φi

[
·
∣∣sθ′i , ht]) ⊆ supp(νε [·∣∣sθ′i ])

and for all l 6= i with ht ∈ H∗−l\H∗−i
(i.e., player l has deviated from the path prescibed by m∗

θ′)

φi[(θ
′, τ l) | sθ

′
i , ht] = 0.

Φ2. For any i ∈ N , any ht ∈ H∗−i, any si ∈ {sθ
′
i , s

θ′′
i },

φi[·|si, ht] = νε(·|si).

Φ3. For any i ∈ N , any ht ∈ H and any sθ̃i /∈ {sθ
′
i , s

θ′′
i }, φi

[
·
∣∣sθ̃i , ht] = δ

(θ̃,sθ̃−i)
where δx denotes

the probability measure that puts probability 1 on {x}.

Note that hT [σ(sθ
′′
), ∅] = hT [m∗

θ′ , ∅] and so, σ generates g(σ(sθ
′′
); ∅) = g(m∗

θ′ ; ∅) = a. Hence,

it only remains to show that (φ, σ) constitutes a sequential equilibrium for some φ ∈ Φ. In Sec-

tion 7.2.1, we show that (φ, σ) satisfies sequential rationality for any φ ∈ Φ; and we establish that

(φ, σ) satisfies consistency for some φ ∈ Φ in Section 7.2.2.

7.2.1 Sequential rationality

Fix any φ ∈ Φ. Sequential rationality of (φ, σ) will be proved by Claims 2 and 3 below.

Claim 2. For any i ∈ N, si 6= sθ
′′
i , ht ∈ H :∑

(θ̃,s−i)

φi[(θ̃, s−i)|si, ht]
[
ui(g(σ(s);ht); θ̃)− ui(g(σ′i(si), σ−i(s−i);ht); θ̃)

]
≥ 0

for each σ′i.

This claim 2 states that for any player i with any signal si 6= sθ
′′
i , σi is a best response to

σ−i given his belief φi. This will be checked by considering three classes of histories: (1) Histories

where all players have played according to the equilibrium m∗
θ′ (i.e., in H

∗); (2) histories where

player i has not played according to m∗
i,θ′ but all other players have (i.e., in H

∗
−i\H∗); and finally

(3) histories where some player other than i has not played according to m∗
θ′ (i.e., outside H

∗
−i).

In particular, in the non-trivial case where si = sθ
′
i , we will show that for any of these histories

ht, whenever player i follows σi against σ−i, player i believes with probability one that the outcome
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will be given by g(m∗
θ′ ;ht), while if player i deviates from σi(si) to some m′i , player i believes

with probability one that the outcome will be given by g(m′i,m
∗
−i,θ′ ;ht). Because m

∗
θ′ is a subgame-

perfect equilibrium in the complete information game Γ(θ′) and player i with signal sθ
′
i believes

with probability one that θ′ is the true state, this will prove the claim.

Proof of Claim 2. Fix any player i. Claim 1 is obvious for sθ̃i 6= sθ
′
i because by Φ3, φi

[
·
∣∣sθ̃i , ht] =

δ
(θ̃,sθ̃−i)

and so state θ̃ is common knowledge. By Σ4, we can further conclude that σ(sθ̃) = m∗
θ̃
is a

subgame-perfect equilibrium in the complete information game Γ(θ̃). Hence, we focus on the case

where si = sθ
′
i . By construction, ν

ε(θ′|sθ′i ) = 1 and so this player knows the state is θ′, and he

knows the profile of signals is either sθ
′
or τk for some k 6= i. We partition the set of all histories

into three classes H∗; H∗−i\H∗ and H\H∗−i and consider the following three cases: Case (1) ht ∈ H∗;
Case (2) ht ∈ H∗−i\H∗; and Case (3) ht /∈ H∗−i.

• Case (1): ht ∈ H∗

In this case, each player has played according to m∗
θ′ and if players j 6= i received signals of

either sθ
′
j or s

θ′′
j , by Σ1 and Σ3, this will continue to be the case as long as all players conform

to σ. So when players are playing strategy σ, and the profile of signals received is sθ
′
or τk, for

k 6= i any subsequent history also falls intoH∗. Thus, g(σ(sθ
′
);ht) = g(σ(τk);ht) = g(m∗

θ′ ;ht).

Now suppose player i deviates to a strategy σ′i so that σ
′
i(s

θ′
i ) = m′i. Clearly, since m

′
i 6=

σi(s
θ′
i ), there is a date at which player i does not play according to m∗

i,θ′ . Thus, by Σ1 and

Σ3, when the profile of signals received is either sθ
′
or τk for k 6= i, any subsequent history of

ht either falls in H∗ (player i has played according to m∗i,θ′ so far) or does not fall in H
∗
−k for

each k 6= i (at some point in this history, player i has not played according to m∗
i,θ′). In each

of these cases, again by Σ1 and Σ3, player i’s opponents are playing according to m∗−i,θ′ . So

we get 37

g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht) = g(σ′i(s

θ′
i ), σ−i(τk);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Here again, since m∗
θ′ is a subgame-perfect equilibrium in the complete information game

Γ(θ′), we have

ui(g(m∗θ′ ;ht); θ
′) ≥ ui(g(m′i,m

∗
−i,θ′ ;ht); θ

′).

Thus, we get ui(g(σ(sθ
′
);ht); θ

′) ≥ ui(g(σ′i(s
θ′
i ), σ−i(sθ

′
−i);ht); θ

′) and ui(g(σ(τk);ht); θ
′) ≥

ui(g(σ′i(s
θ′
i ), σ−i(τk);ht); θ

′) for each k 6= i. Now since by Φ2, φi[· | sθ
′
i , ht] may assign strictly

positive weight only to (θ′, sθ
′
−i) and (θ′, τk) for each k 6= i, we can conclude∑

(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′
i , ht]

[
ui(g(σi(s

θ′
i ), σ−i(s−i);ht); θ̃)− ui(g(σ′i(s

θ′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (2): ht ∈ H∗−i\H∗

37We abuse notation because we should use σ−i(τ l\sθ
′
i ) instead of σ−i(τ l).
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Since ht ∈ H∗−i and ht /∈ H∗, only player i has not played according to m∗i,θ′. Then, it is
clear that ht does not fall in H∗−k for each k 6= i (recall that H∗−k is the set of histories under
which every player j other than k has played according to m∗

j,θ′). It is also clear that any
subsequent history does not fall in H∗−k for each k 6= i. By Σ1 and Σ3, we thus obtain

that each player k other than i will play according to m∗
k,θ′ at any subsequent history when

receiving signal sθ
′
k or s

θ′′
k . Hence,

g(σ(sθ
′
);ht) = g(σ(τk);ht) = g(m∗θ′ ;ht).

Consider the case where player i deviates to a strategy σ′i so that σ
′
i(s

θ′
i ) = m′i. Here, since

(by a similar argument as above) any history that player i can achieve by deviating does not

fall in H∗−k for each k 6= i, each player k other than i will be playing according to m∗
k,θ′ at

any subsequent history whether he receive sθ
′
k or s

θ′′
k , which implies

g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht) = g(σ′i(s

θ′
i ), σ−i(τk);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Sincem∗
θ′ is a subgame-perfect equilibrium in the complete information game Γ(θ′), we already

have ui(g(m∗
θ′ ;ht); θ

′) ≥ ui(g(m′i,m
∗
−i,θ′ ;ht); θ

′). Thus, we also get

ui(g(σ(sθ
′
);ht); θ

′) ≥ ui(g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht); θ

′) and

ui(g(σ(τk);ht); θ
′) ≥ ui(g(σ′i(s

θ′
i ), σ−i(τk);ht); θ

′) for each k 6= i.

Now, since by Φ2 we know that φi[·|sθ
′
i , ht] assigns a strictly positive weight only to (θ′, sθ

′
−i)

and (θ′, τk) for each k 6= i, we can conclude∑
(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′
i , ht]

[
ui(g(σ(sθ

′
i ), σ−i(s−i), ht); θ̃)− ui(g(σ′i(s

θ′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (3): ht /∈ H∗−i
In this case, at least one player j 6= i has not played according to m∗

j,θ′ .

By Σ3, we know that when each player j receives signal sθ
′
j , then these players play according

to m∗
j,θ′ , so σ(sθ

′
) = m∗

θ′ . Thus, at history ht, the outcome achieved by playing σ when the

profile of signals is sθ
′
must be the same as the one when playing m∗

θ′ , i.e.,

g(σ(sθ
′
);ht) = g(m∗θ′ ;ht).

In addition, for each l 6= i with ht /∈ H∗−l, by definition, some player j other than l has not
played according to m∗

j,θ′ and obviously this will continue to be the case at any subsequent

histories. Hence, any subsequent histories does not belong to H∗−l either. At any such

histories, we know by Σ1, that player l will be playing according to m∗
l,θ′ when he receives s

θ′′
l

while when players j other than l receive signal sθ
′
j , by Σ3 they will also be playing according
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to m∗
j,θ′ . Hence, we get that the outcome achieved from history ht when playing σ and when

the profile of signals received is τ l is equal to the outcome achieved from history ht when

playing m∗
θ′ . Otherwise stated, for each l 6= i with ht /∈ H∗−l, we have

g(σ(τ l);ht) = g(m∗θ′ ;ht).

Now, when player i deviates say to a strategy σ′i so that σ
′
i(s

θ′
i ) = m′i, using the argument

above, when the other players receive signal profile sθ
′
−i, we know that the outcome achieved

is

g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht) = g(m′i,m

∗
−i,θ′ ;ht).

while for each l 6= i with ht /∈ H∗−l, we know that

g(σ′i(s
θ′
i ), σ−i(τ l);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Since m∗
θ′ is a subgame-perfect equilibrium in the complete information game Γ(θ′), we have

ui(g(m∗
θ′ ;ht); θ

′) ≥ ui(g(m′i,m
∗
−i,θ′ ;ht); θ

′). Thus, we get

ui(g(σ(sθ
′
);ht); θ

′) ≥ ui(g(σ′i(s
θ′
i ), σ−i(s

θ′
−i);ht); θ

′)

and for each l 6= i such that ht /∈ H∗−l, ui(g(σ(τ l);ht); θ
′) ≥ ui(g(σ′i(s

θ′
i ), σ−i(τ l);ht); θ

′).

Because by Φ1, φi[·|sθ
′
i , ht] may assign strictly positive weight only to (θ′, sθ

′
−i) and (θ′, τ l) for

each l 6= i such that ht /∈ H∗−l, we can conclude∑
(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′
i , ht]

[
ui(g(σ(sθ

′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

This completes the proof of that claim.

Claim 3. For any i ∈ N, si = sθ
′′
i , and ht ∈ H :∑

(θ̃,s−i)

φi[(θ̃, s−i)|si, ht]
[
ui(g(σ(s);ht); θ̃)− ui(g(σ′i(si), σ−i(s−i);ht); θ̃)

]
≥ 0

for each σ′i.

This claim 3 states that for any player i with signal sθ
′′
i , σi is a best response to σ−i given his

belief φi. Here again we consider the same partition of histories as in Claim 2. When ht is a history

where each player has played according to m∗
θ′ (i.e., ht ∈ H

∗), player i assigns positive probability

to both θ′′ and θ′. However, we will show that here again player i believes with probability one

that the other players will be playing according to m∗−i,θ′ , whether he deviates or not. Hence, if he

does not deviate and ht ∈ H∗, he gets a while if he deviates to m′i he gets g(m′i,m
∗
−i,θ′ ;ht). Because
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m∗
θ′ is a subgame-perfect equilibrium in Γ(θ′), we know that the deviation is not profitable if θ′ is

the true state, and Maskin monotonicity (condition (∗)) implies that this is also not profitable if
the state is θ′′. Since these are the only states to which player i assigns strictly positive probability,

this will complete the argument for this class of histories.

The easy case occurs when ht is a history where a player other than i has not played according

to m∗
θ′ (i.e., ht /∈ H

∗
−i). In such a case, player i believes with probability one that θ

′ is the true

state. In addition we will check that whenever player i uses σi against σ−i, player i believes with

probability one that the outcome will be given by g(m∗
θ′ ;ht), while if player i deviates from σi(si) to

m′i, player i believes with probability one that the outcome will be given by g(m′i,m
∗
−i,θ′ ;ht). Here

again, the fact thatm∗
θ′ is a subgame-perfect equilibrium in the complete information game will lead

to the desired result. Finally, in the last case where player i has not played according to m∗
θ′ while

all other players have (i.e., ht ∈ H∗−i\H∗), we will also check that player i assigns probability one
to his opponent playing m∗−i,θ′ . But σi has been constructed (see Σ2) so that playing σi is better

than any one-shot deviation. Then the one-shot deviation principle for sequential equilibrium will

complete the proof of Claim 3. Taken together, Claims 2 and 3 establish sequential rationality of

(φ, σ).

Proof of Claim 3. This claim will be proved by studying three different cases depending on the

type of history we consider: (1) ht ∈ H∗; (2) ht /∈ H∗−i; and (3) ht ∈ H∗−i\H∗.

• Case (1): ht ∈ H∗

In this case, each player has played according to m∗
θ′ . Note that, by Σ1 and Σ3, if each player

j received signals of either sθ
′
j or s

θ′′
j , this will continue to be the case as long as all players

conform to σ. So when players are playing strategy σ, and player i′s opponents received

either signal profile sθ
′
−i or s

θ′′
−i, any subsequent history also falls into H∗. Thus,

g(σ(sθ
′′
i , s

θ′′
−i);ht) = g(σ(sθ

′′
i , s

θ′
−i);ht) = g(m∗θ′ ;ht).

Now suppose that player i deviates to a strategy σ′i so that σ
′
i(s

θ′′
i ) = m′i. Since m

′
i 6= σi(s

θ′′
i ),

there must exist a date at which player i does not play according to m∗
i,θ′ . Thus, by Σ1 and

Σ3, when player i’s opponents receive signal sθ
′
−i or s

θ′′
−i, any subsequent history of ht either

falls in H∗ (player i has played according to m∗
i,θ′ so far) or does not fall in H

∗
−k for each k 6= i

(at some point in this history, player i has not played according to m∗
i,θ′). In each of these

cases, by Σ1 and Σ3, player i’s opponents are playing according to m∗−i,θ′ . So we get

g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht) = g(σ′i(s

θ′′
i ), σ−i(s

θ′′
−i);ht) = g(m′i,m

∗
−i,θ′ ;ht). (4)

Here again, since m∗
θ′ is a subgame-perfect equilibrium in the complete information game

Γ(θ′), we have

ui(g(m∗θ′ ;ht); θ
′) ≥ ui(g(m′i,m

∗
−i,θ′ ;ht); θ

′).
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Thus, we also get

ui(g(σ(sθ
′′
i , s

θ′
−i);ht); θ

′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht); θ

′). (5)

The above inequality, together with (4), also implies

ui(g(σ(sθ
′′
i , s

θ′′
−i);ht); θ

′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′′
−i);ht); θ

′).

Since g(σ(sθ
′′
i , s

θ′′
−i);ht) = g(m∗

θ′ ;h
∗
t ) = a and we have assumed that θ′ and θ′′ are two states

satisfying (∗) in the definition of Maskin monotonicity, we get that

ui(g(σ(sθ
′′
i , s

θ′′
−i);ht); θ

′′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′′
−i);ht); θ

′′). (6)

Now, since by Φ2, φi[·|sθ
′′
i , ht] assigns a strictly positive weight only to (θ′, sθ

′
−i) and (θ′′, sθ

′′
−i),

we conclude (5) and (6) imply that:∑
(θ̃,s−i))

φi[(θ̃, s−i)|sθ
′′
i , ht]

[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (2): ht /∈ H∗−i
In this case, at least one player j 6= i has not played according to m∗

j,θ′ ; This is still the

case for any subsequent histories, so that they all fall outside H∗−i. By Σ1, if player i plays

according to σi, from ht, he will play according to m∗i,θ′ . Now, by Σ3, we know that when

player j other than i receives signal sθ
′
j , then he plays according to m

∗
j,θ′ . Thus, the outcome

achieved when the profile of signals is (sθ
′′
i , s

θ′
−i) must be the same as the outcome achieved

when m∗
θ′ is played. That is, we obtain

g(σ(sθ
′′
i , s

θ′
−i);ht) = g(m∗θ′ ;ht).

Suppose player i deviates to a strategy σ′i so that σ
′
i(s

θ′′
i ) = m′i. Since, if the other players

are receiving signal profile sθ
′
−i, they will all be playing according to m

∗
−i,θ′ , we obtain

g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht) = g(m′i,m

∗
−i,θ′ ;ht).

Since m∗
θ′ is a subgame-perfect equilibrium in the complete information game Γ(θ′), we have

ui(g(m∗
θ′ ;ht); θ

′) ≥ ui(g(m′i,m
∗
−i,θ′ ;ht); θ

′). Thus, we also get

ui(g(σ(sθ
′′
i , s

θ′
−i);ht); θ

′) ≥ ui(g(σ′i(s
θ′′
i ), σ−i(s

θ′
−i);ht); θ

′).
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Because by Φ1, φi[(θ
′, sθ

′
−i)|sθ

′′
i , ht] = 1, so we can conclude∑

(θ̃,s−i)

φi[(θ̃, s−i)|sθ
′′
i , ht]

[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0.

• Case (3): ht ∈ H∗−i\H∗

Since ht ∈ H∗−i and ht /∈ H∗, only player i has not played according to m∗i,θ′ . Then ht does not
fall in H∗−k for each k 6= i (recall that H∗−k is the set of histories under which every player j
other than k has played according to m∗

j,θ′). It is also clear that any subsequent history does
not fall in H∗−k for each k 6= i. By Σ1 and Σ3, whether player i’s opponents have received

sθ
′
−i or s

θ′′
−i, they all play according to m

∗
−i,θ′ . By Φ2 we know that φi[·|sθ

′′
i , ht] = νε(·|sθ′′i )

assigns a strictly positive weight only to (θ′, sθ
′
−i) and (θ′′, sθ

′′
−i). In addition, we have that for

any h ∈ H∗ or h /∈ H∗−i : σi(h, s
θ′′
i ) = m∗

i,θ′(h, s
θ′′
i ). Since ht ∈ H∗−i\H∗, we conclude with Σ2

that: ∑
(θ̃,s−i)

νε(θ̃, s−i|sθ
′′

i )
[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0

for any σ
′
i that differs from σi only at ht. By this and case (1) and (2), we know that at any

history players have no profitable one-shot deviation, by the one-shot deviation principle (see

Hendon, Jacobsen, and Sloth (1996)38) this yields:∑
(θ̃,s−i)

νε(θ̃, s−i|sθ
′′

i )
[
ui(g(σ(sθ

′′
i , s−i);ht); θ̃)− ui(g(σ′i(s

θ′′
i ), σ−i(s−i);ht); θ̃)

]
≥ 0

for any σ′i. This completes the proof.

7.2.2 Consistency

In this section, we show that for some φ ∈ Φ, (φ, σ) satisfies consistency.

To show this part, we first fix σ as defined above and consider the following sequence {(φk, σk)}∞k=0

of assessments. Let ηk > 0 for each k and ηk → 0 as k →∞. For each player i, ht ∈ H, and signal
si, let ξi(ht, si, ·) be any strictly positive prior over Mi(ht)\{σi(si, ht)} and define σki as

σki (m
t
i|ht, sθ

′′
i ) =

{
1− ηT×nk if mt

i = σi(ht, s
θ′′
i );

ηT×nk × ξi(ht, sθ
′′
i ,m

t
i) otherwise

38Hendon, Jacobsen, and Sloth (1996) assume that for each i and h, Mi(h) is finite, which is our A1. It is easy to
check that their argument goes through in case Mi(h) is countably infinite. This fact is implicitly used in Section
7.3.
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where T is the (finite) length of the longest final history, and for any signal si 6= sθ
′′
i :

σki (m
t
i|ht, si) =

{
1− ηk if mt

i = σi(ht, si);

ηk × ξi(ht, si,mt
i) otherwise

.

Let φk be the unique consistent belief associated with each σk. It is easy to check that σk converges

to σ and also that φk converges.39 Let φ ≡ limk→∞ φ
k. In what follows, we show that φ satisfies

Φ1, Φ2 and Φ3. This will show that (φ, σ) satisfies consistency, and φ ∈ Φ as claimed.

To do so, we explicitly compute each φk and study its limit as k tends to infinity. In general

for each (θ̃, s̃−i) ∈ Θ× S−i, each ht = (m1, ...,mt−1) ∈ H, and each s̃i ∈ Si, we have

φki [(θ̃, s̃−i)|s̃i, ht] =
νε(θ̃, s̃−i, s̃i)×

∏t−1
t′=1

[
σk(mt′ |ht′ , s̃)

]
∑

(θ̂,s′−i)

νε(θ̂, s′−i, s̃i)×
∏t−1
t′=1

[
σk(mt′ |ht′ , s′−i, s̃i)

] .
In the above formula for each t′ ≤ t, ht′ stands for the truncation of ht to the first t′ elements, i.e.,
ht′ = (m1, ...,mt′−1).

Claim 4. φ satisfies Φ1.

Claim 4 says that, for any player i who sees signal sθ
′′
i and has an opportunity to play after some

other player has not played according to m∗
θ′ (i.e., ht /∈ H

∗
−i), then under φ ≡ limk→∞ φ

k, player i

believes with probability one that the state is θ′, and that the other players have received sθ
′
−i. In

order to show that, we observe that if every player other than i has received a signal sj ∈ {sθ
′
j , s

θ′′
j },

then at such a history some player j other than i has deviated from σ. Then, since under the

sequence of totally mixed strategies built above, it is (infinitely) more likely (as ηk tends to 0) that

a deviation occurred at sθ
′
j rather than at s

θ′′
j . In the limit, Bayes’rule will then put probability

one on sθ
′
j and given that the prior ν

ε assigns strictly positive weight only to (θ′′, sθ
′′
−i) and (θ′, sθ

′
−i),

Bayes rule will then put probability arbitrarily close to one on (θ′, sθ
′
−i). In case player i received

the private signal sθ
′
i , if ht is a history under which all players other than l have played according

to m∗
θ′ (i.e. ht ∈ H

∗
−l), then the deviating player is l and again using a similar argument as above,

we show that player i must assign probability 0 to player l receiving sθ
′′
l and so to τ l.

Consider player i at history ht /∈ H∗−i. The proof is reduced to checking the following two cases:

Proof of Claim 4. Case 1: si = sθ
′′
i

39As will become clear from the proof, the sequence {φk}k does converge. Moreover, convergence in the definition
of consistency is taken uniformly over messages and histories. In the case where Mi(h) is countably infinite (we will
discuss this case in Section 7.3 in the Appendix), two natural convergence notions can be used: point-wise convergence
or uniform convergence. The set of sequential equilibria is smaller when one assumes uniform convergence. Hence,
the use of uniform convergence strengthens our result.
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Recall that νε(·, sθ′′i ) assigns a strictly positive weight only to (θ′′, sθ
′′
−i) and (θ′, sθ

′
−i). Hence,

φki [(θ
′, sθ

′
−i)|sθ

′′
i , ht]

=

νε(θ′, sθ
′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )

νε(θ′, sθ
′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j ) + νε(θ′′, sθ

′′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′′
j )

=
νε(θ′, sθ

′
−i, s

θ′′
i )

νε(θ′, sθ
′
−i, s

θ′′
i ) + νε(θ′′, sθ

′′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (mt
′
j |ht′ ,sθ

′′
j )

∏
j 6=i

t−1∏
t′=1

σkj (mt
′
j |ht′ ,sθ

′
j )

.

We now show that the ratio below converges to 0 as k →∞:

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′′
j )

/∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )→ 0 as k →∞.

This will show that φki [(θ
′, sθ

′
−i)|sθ

′′
i , ht]→ 1 and φki [(θ

′′, sθ
′′
−i)|sθ

′′
i , ht]→ 0 as k →∞.

Note first that in case every player j other than i receives signal sj ∈ {sθ
′
j , s

θ′′
j }, there must exist

a player ̂ 6= i and a date t̂ ≤ t − 1 so that ̂ has not played according to σ̂, i.e. σ̂(ht̂, s̂) 6= mt̂
̂.

To see this, we proceed by contradiction and assume that σ−i(ht′ , s−i) = mt′
−i for all t

′ ≤ t − 1.

This implies that whenever ht′−1 ∈ H∗−i, we must have ht′ ∈ H∗−i, because ht′−1 ∈ H∗−i implies
that either ht′−1 ∈ H∗ (i.e., no player has deviated) or ht′−1 /∈ H∗−j for all j 6= i (i.e., player i has

deviated). In either case, σ−i(ht′−1, s−i) = m∗−i,θ′(ht′−1) is obtained by Σ1 and Σ3. Since we have

assumed that σ−i(ht′−1, s−i) = mt′−1
−i , we get m

t′−1
−i = m∗−i,θ′(ht′−1), which proves that ht′ ∈ H∗−i.

Since h1 = ∅ ∈ H∗ ⊆ H∗−i, this simple inductive argument shows that ht ∈ H∗−i, a contradiction.
By construction of σk, this implies that for some ̂ 6= i and t̂ ≤ t− 1 :

σk̂ (m
t̂
̂|ht̂, s

θ′′
̂ ) = ηT×nk ξ ̂(ht̂, s

θ′′
̂ ,m

t̂
̂). (7)

Now, we have:

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′′
j )∏

j 6=i

∏t−1
t′=1 σ

k
j (m

t′
j |ht′ , sθ

′
j )
≤
ηT×nk × ξ ̂(ht̂, sθ

′′
̂ ,m

t̂
̂)× 1∏

j 6=i

∏t−1
t′=1 ηkξj(ht′ , s

θ′
j ,m

t′
j )

=
ηT×nk

η
(t−1)(n−1)
k

×
ξ ̂(ht̂, s

θ′′
̂ ,m

t̂
̂)∏

j 6=i

∏t−1
t′=1 ξj(ht′ , s

θ′
j ,m

t′
j )
→ 0 (as k →∞).

Here, the inequality is assured by (7) and the construction of σk that, for all j and t′ ≤ t − 1,

σkj (m
t′
j |ht′ , sθ

′
j ) ≥ ηk × ξj(ht′ , sθ

′
j ,m

t′
j ).
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Case 2: si = sθ
′
i

Recall that νε(·, sθ′i ) assigns a strictly positive weight only to (θ′, sθ
′
−i) and (θ′, τ l) for each l 6= i.

Hence,

φki [(θ
′, τ l)|sθ

′
i , ht]

=

νε(θ′, τ l)×
∏
j 6=l,i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )×

t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′′
l )

∑
z 6=i

νε(θ′, τ z)×
∏
j 6=z,i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j ) + νε(θ′, sθ

′
−i, s

θ′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )

=
νε(θ′, τ l)∑

z 6=i
νε(θ′, τ z)× cz(k) + νε(θ′, sθ

′
−i, s

θ′
i )×

t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′
l )
/ t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′′
l )

for some positive functions cz(k). We now show that if ht ∈ H∗−l, then the ratio below converges
to +∞ as k →∞:

t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′
l )

/
t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′′
l )→ +∞ as k →∞.

This will show that φki [(θ
′, τ l)|sθ

′
i , ht] → 0 for all l if ht ∈ H∗−l; and hence that φ satisfies Φ1.

Assume that ht ∈ H∗−l for some l, as we already claimed, if every player j other than i has received
a signal sj ∈ {sθ

′
j , s

θ′′
j }, there is a player ̂ 6= i and a date t̂ ≤ t−1 so that ̂ has not played according

to σ̂, i.e., σ̂(ht̂, s̂) 6= mt̂
̂. Now, since ht ∈ H∗−l, we claim that ̂ = l. Indeed, ht ∈ H∗−l means that

any player j other than l has played according to m∗
j,θ′ . So if player l had played according to σl

(i.e., for all t′ : σl(ht′ , sl) = mt′
l ), repeated applications of Σ1 and Σ3 would yield to ht = h∗t ∈ H∗−i

which is false by assumption.

By construction of σk, this implies that there exists t̂ ≤ t− 1 such that σl(ht̂, sl) 6= mt̂
l and so:

σkl (m
t̂
l |ht̂, s

θ′′
l ) = ηT×nk ξl(ht̂, s

θ′′
l ,m

t̂
l). (8)

Now, we have

t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′
l )

t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′′
l )

≥
ηt−1
k

t−1∏
t′=1

ξl(ht′ , s
θ′
l ,m

t′
l )

ηT×nk ξl(ht̂, s
θ′′
l ,m

t̂
l)× 1

→∞ (as k →∞).

Where the inequality is assured by (8) and (assuming without loss of generality that ηk is small)

we use the fact that by construction, for all t′ ≤ t− 1, σkl (m
t′
j |ht′ , sθ

′
l ) ≥ ηk × ξl(ht′ , sθ

′
l ,m

t′
l ).

Claim 5. φ satisfies Φ2.
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Claim 5 says that if a player i gets signal sθ
′
i or s

θ′′
i then at a history ht under which each of his

opponent has played according to m∗
θ′ , φ is the same as his beliefs given only by his private signal.

To prove this, we show that if every player j 6= i has received a signal sj ∈ {sθ
′
j , s

θ′′
j } then at

histories where all players other than i have played according to m∗
θ′ , each player other than i has

played according to σ at each previous stage. This ensures that for any ht ∈ H∗−i, no player other
than i has deviated from the candidate for sequential equilibrium strategy σ and so player i’s beliefs

must be given by his private signal.

Proof of Claim 5. Consider player i at history ht ∈ H∗−i. Here again, the proof is reduced to

checking the following two cases.

Case 1: si = sθ
′′
i

Recall that νε(·, sθ′′i ) assigns a strictly positive weight only to (θ′′, sθ
′′
−i) and (θ′, sθ

′
−i). Hence,

φki [(θ
′′, sθ

′′
−i)|sθ

′′
i , ht]

=

νε(θ′′, sθ
′′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′′
j )

νε(θ′′, sθ
′′
)×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′′
j ) + νε(θ′, sθ

′
−i, s

θ′′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )

=
νε(θ′′, sθ

′′
−i, s

θ′′
i )

νε(θ′′, sθ
′′
) + νε(θ′, sθ

′
−i, s

θ
′′

i )×

∏
j 6=i

∏t−1
t′=1

σkj (mt
′
j |ht′ ,sθ

′
j )∏

j 6=i

∏t−1
t′=1

σkj (mt
′
j |ht′ ,sθ

′′
j )

We now show that the ratio below converges to 1 as k →∞:

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )
/∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′′
j )→ 1 as k →∞.

This will show that φki [(θ
′′, sθ

′′
−i)|sθ

′′
i , ht]→ νε((θ′′, sθ

′′
−i)|sθ

′′
i ) and φki [(θ

′, sθ
′
−i)|sθ

′′
i , ht]→ νε((θ′, sθ

′
−i)|sθ

′′
i ).

Note now that if players j 6= i receive signal sj ∈ {sθ
′
j , s

θ′′
j }, then for all t′ ≤ t− 1, σj(ht′ , sj) =

mt′
j . To see this, note that for any t

′ ≤ t − 1 : ht′ ∈ H∗−i, thus, either every player has played
according to m∗

θ′ (i.e., ht′ ∈ H
∗) or player i has not played according to m∗

i,θ′ (i.e., ht′ /∈ H
∗
−j for

all j 6= i). In each of these cases we know, by Σ1 and Σ3, that σj presribes to play according to

m∗
j,θ′ . Since ht′ ∈ H

∗
−i this implies that σj(ht′ , sj) = m∗

j,θ′(ht′) = mt′
j .

By construction of σk, this in turn implies that for all j 6= i and t′ ≤ t− 1 :

σkj (m
t′
j |ht′ , sθ

′
j ) = 1− ηk and σkj (mt′

j |ht′ , sθ
′′
j ) = 1− ηT×nk .
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Thus, ∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )

/∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′′
j )→ 1 as k →∞.

Case 2: si = sθ
′
i

Recall that νε(·, sθ′i ) assigns a strictly positive weight only to (θ′, sθ
′
−i) and (θ′, τ l) for l 6= i.

Hence,

φki [(θ
′, sθ

′
−i)|sθ

′
i , ht]

=

νε(θ′, sθ
′
−i, s

θ′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )

νε(θ′, sθ
′
−i, s

θ′
i )×

∏
j 6=i

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j ) +

∑
l 6=i
νε(θ′, τ l)×

∏
j 6=i,l

t−1∏
t′=1

σkj (m
t′
j |ht′ , sθ

′
j )×

t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′′
l )

=
νε(θ′, sθ

′
−i, s

θ′
i )

νε(θ′, sθ
′
−i, s

θ′
i ) +

∑
l 6=i
νε(θ′, τ l)×

∏t−1
t′=1

σkl (mt
′
l |ht′ ,sθ

′′
l )∏t−1

t′=1
σkl (mt

′
l |ht′ ,sθ

′
l )

We now show that for each l 6= i, the ratio below converges to 1 as k →∞:

t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′′
l )

/ t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′
l )→ 1 as k →∞.

This will show that φki [(θ
′, sθ

′
−i)|sθ

′
i , ht]→ νε((θ′, sθ

′
−i)|sθ

′
i ) and similar reasoning shows that for each

l 6= i : φki [(θ
′, τ l)|sθ

′
i , ht]→ νε((θ′, τ l)|sθ

′
i ), and hence, φ satisfies Φ2.

Now, by similar reasoning as in the case above, we get that for all l 6= i and t′ ≤ t− 1 :

σkl (m
t′
l |ht′ , sθ

′
l ) = 1− ηk and σkl (mt′

l |ht′ , sθ
′′
l ) = 1− ηT×nk .

Thus,
t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′′
l )

/
t−1∏
t′=1

σkl (m
t′
l |ht′ , sθ

′
l )→ 1 as k →∞.

Finally, observing that for sθ̃i /∈ {sθ′i , sθ
′′
i }, νε(·, sθ̃i ) assigns a weight one to (θ̃, sθ̃−i), we have

established the following claim, which completes the proof of Theorem 3.

Claim 6. φ satisfies Φ3.

7.3 Theorem 3 extends to countable messages

Here we extend Theorem 3 to mechanisms that have countably infinite message spaces. This ex-

tension is important because some of the literature on implementation theory uses “integer games”

where each player has to announce an integer and becomes the dictator when his integer is the
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largest one, as in Maskin (1999) and in Moore and Repullo (1988).

Assumption A2. Mi (h) is countable for each i and h.

The next assumption says that against any profile of strategy in the complete information game,

in the neighborhood of complete information, each player i has a non-empty set of best responses.

This condition is vacuously satisfied under A1, so Theorems 3 and 4 show that if a mechanism

can implement a non-Maskin monotonic social choice correspondence (SCC) both under complete

information and under small information perturbations, then under this mechanism players must

not have well-defined best responses. In addition, we show in the supplemental materials that when

the state space is finite (this is our case), Moore and Repullo’s general mechanism has well-defined

best-responses (under weak assumptions) and so our argument also applies there.

Assumption A3. The sequential mechanism Γ has well-defined best replies: for any player i,

any θ ∈ Θ, any m−i ∈ M−i, there exists ξ̄ (i, θ,m−i) > 0 such that for any β ∈ ∆ (Θ) with

β (θ) ≥ 1− ξ̄ (i, θ,m−i) , for any mi ∈Mi we have for all h ∈ H :

arg max
∑
θ̃

β(θ̃)ui(g
((
m′i,m−i)

)
;h
)

; θ̃) 6= ∅

where the max is taken over all pure messages m′i ∈Mi that differ from mi only at h.

Remark 1. If the mechanism is not finite but the set of outcomes is, A3 is also vacuously satisfied.
We also note that A3 is not needed for sequential mechanisms in which each player moves only

once.40

Theorem 4. Assume A2 and A3. Suppose that a mechanism Γ SPE-implements a non-Maskin

monotonic SCC F . Fix any complete information prior µ. There exist a sequence of priors {νε}ε>0

that converges to µ and a corresponding sequence of sequential equilibria {(φε, σε)}ε>0 such that as

ε tends to 0, g(σε(sθ); ∅)→ a /∈ F(θ) for some θ ∈ Θ and some a ∈ A.

Proof. The proof is essentially the same as the proof of Theorem 3 where we only consider finite

mechanisms. So, we claim that there are essentially only two changes we need to extend the proof

of Theorem 3 to the case of countably infinite message spaces. First, in the beginning of the proof

of Theorem 3, we have to choose ε > 0 small enough to apply A3. Second, we will show that A3

guarantees that Σ2 (which is introduced in the proof of Theorem 3) is well defined. This will be

proved in the next subsection.

7.3.1 A3 guarantees that Σ2 is well-defined

Fix ε > 0 small enough so that νε(θ
′ |sθ

′

i ) ≥ 1 − ξ̄(i, θ,m∗−i,θ). We shall claim that A3 guarantees

that one can construct m̄i needed for Σ2. First, for any ht ∈ H∗ or ht /∈ H∗−i, we set m̄i(ht) =

40One can directly check this in the definition of strategy σ (Σ2) used in the proof of Theorem 3. More specifically,
it can be checked there that for each player, A3 is only used at histories where this player has to choose a message
and at which he has previously deviated from the equilibrium. By construction, there is no such a history.
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m∗i,θ(ht). Second, we define m̄i by induction on the set of histories in H∗−i\H∗. Take any history
ht ∈ H∗−i\H∗ so that there is no subsequent history that falls into H∗−i\H∗. Since we already
defined m̄i(ht) = m∗i,θ(ht) for any ht /∈ H∗−i\H∗, m̄i has been defined for any subsequent histories.

By A3 we obtain

arg max
∑
θ̃

νε(θ̃|sθ
′

i )ui(g
((
m′i,m

∗
−i,θ)

)
;ht
)

; θ̃) 6= ∅

where the max is taken over all pure messages m′i ∈ Mi that differ from m̄i only at ht and are

identical at any subsequent histories (what happens before ht is obviously irrelevant).

Now set

m̄i(ht) ∈ arg max
∑
θ̃

νε(θ̃|sθ
′

i )ui(g
((
m′i,m−i)

)
;ht
)

; θ̃).

This establishes that one can inductively construct m̄i so that m̄i satisfies the properties needed

for Σ2.

7.3.2 A3 is satisfied in the Moore-Repullo canonical mechanism

We will review some of the main results of Moore and Repullo (1988) here.

Definition 3 (Moore and Repullo (1988)). A social choice correspondence F satisfies Condition

C if, for every pair of profiles θ, φ ∈ Θ with a ∈ F(θ)\F(φ), there exists a finite sequence

σ(θ, φ; a) ≡ {a0 = a, a1, . . . , ak, . . . , al, al+1} ⊂ A,

with l = l(θ, φ; a) ≥ 1, such that:

1. for each k = 0, . . . , l − 1, there is some particular player j(k) = j(k|θ, φ; a), for whom

uj(k)(ak; θ) ≥ uj(k)(ak+1; θ);

2. there is some player j(l) = j(l|θ, φ; a) for whom

uj(l)(al; θ) ≥ uj(l)(al+1; θ) and uj(l)(al+1;φ) > uj(l)(al;φ).

Further, l(θ, φ; a) is uniformly bounded by some l̄ <∞.

Assuming Condition C holds, let Q(F) be a class of subsets Q of A. A typical Q is defined as

follows:

For each pair of profiles θ and φ in Θ, and for each a ∈ F(θ)\F(φ), select one

sequence σ(θ, φ; a) satisfying (1) and (2) in Condition C. Then let Q be the union of

the elements in these sequences.

Q(F) comprises the Q’s constructed from all possible selections.
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Definition 4. A social choice correspondence F satisfies Condition C+ if it satisfies Condition

C and the following condition as well: there exists a particular Q+ ∈ Q(F), and a particular set

B ⊆ A containing Q+, such that the following is true for each θ ∈ Θ:

• Each player i has nonempty maximal set B∗i (θ) ⊆ B under θ, i.e., B∗i (θ) = arg maxa∈B ui(a; θ).

• B∗i (θ) ∩B∗j (θ) = ∅ for each θ ∈ Θ and each i, j ∈ N with i 6= j

• B∗i (θ) ∩Q+ = ∅ for each i and each θ.

Let the selected sequences σ(θ, φ; a) ∈ Q+ be labelled σ+(θ, φ; a). Define the Moore-Repullo

canonical mechanism ΓMR = (M, g) as follows.

Stage 0: each player i announces some triplet mi,0 = (θi, ai, ni0), where θi ∈ Θ, ai ∈ F(θi), and ni0
is a nonnegative integer. There are three possibilities to consider:

1. all n players agree on a common profile θ and outcome a ∈ F(θ), then outcome a is chosen.

STOP

2. If only n−1 players agree on a common profile θ and outcome a ∈ F(θ), and if the remaining

player i announces a profile φ, and

(a) if a ∈ F(φ), then outcome a is implemented; STOP

(b) if a /∈ F(φ) but i is not the agent j(0) prescribed in σ+(θ, φ; a), then outcome a is

implemented; STOP

(c) if a /∈ F(φ) and i = j(0), then go to Stage 1.

3. If neither (1) nor (2) apply, then the player with the highest integer ni0 is allowed to choose an

outcome from B. Ties are broken by selecting from the players who announced the highest

number according to who has the smallest i. STOP

Stage k = 1, . . . , l: each player i can either raise a “flag,”or announce a nonnegative integer

nik ∈ N, i.e., mi,k ∈Mi,k ∈ {flag} ∪ N. Again there are three possibilities to consider:

1. If n− 1 or more flags are raised, then the agent j(k − 1) prescribed in σ+(θ, φ; a) is allowed

to choose an outcome from B. STOP

2. If n− 1 or more players announce zero, and

(a) if the player j(k) prescribed in σ+(θ, φ; a) is one of those who announce zero, then

implement outcome ak from sequence σ+(θ, φ; a); STOP

(b) if j(k) does not announce zero, then

i. if k < l, go to Stage k + 1;
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ii. if k = l, implement outcome al+1 from sequence σ+(θ, φ; a). STOP

(c) If neither (1) nor (2) apply, then the player who announces the highest integer nik is

allowed to choose an outcome from B. STOP

Theorem 5 (Moore and Repullo (1988)). If a social choice correspondence F satisfies Condition

C+, and n ≥ 3, then F can be implemented in subgame-perfect equilibrium.

Moore and Repullo (1988) show the above theorem by using the mechanism described above.

We note that this mechanism satisfies A3 if the set of outcomes A is finite or when each player’s

preferences over A are strict and utilities are bounded. Furthermore, the above mechanism satisfies

A3 whenever (i) the set B given in Condition C+ is a compact set of outcomes; (ii) ui : A×Θ→ R
is continuous in a.41 ,42 It is worth noting that many researchers assume (i) and (ii) after appealing

to Moore and Repullo’s (1988) result. This is the case for instance in Moore and Repullo (1988)’s

examples of risk-sharing (Section 6.1) or the production contract example (Section 6.2). More im-

portantly, it is also the case in Maskin and Tirole (1999a)’s proof of the irrelevance Theorem. Hence

our non-robusntess result (Theorem 4) also apply to Maskin and Tirole’s irrelevance Theorem.

7.4 Suffi ciency for Robust Implementation: The Case of Social Choice Corre-
spondences (SCCs)

In Remark 3 of Section 4, we argue that Maskin monotonic social choice functions are robustly

implementable. Here we extend this argument to the case of social choice correspondences.

We need to strengthen Maskin monotonicity to the following:

Definition 5. An SCC F satisfies strong Maskin Monotonicity if for every SCF f selected

from F and every pair of states θ′ and θ′′ such that

{(i, b)
∣∣ui(f(θ′); θ′) > ui(b; θ

′)} ⊆ {(i, b)
∣∣ui(f(θ′); θ′′) ≥ ui(b; θ′′)}

then f(θ′) ∈ F(θ′′).

Strong Maskin monotonicity is equivalent to Maskin monotonicity in many economic environ-

ments.43 For example, consider environments in which there is a private good that is both desirable

and continuously transferable. Another example is an environment in which agents have strict pref-

erences. The next definition is the no-veto-power condition, which is widely used in the literature.

41Then, for any β ∈ ∆(Θ), arg maxa∈B
∑
θ̃ β(θ̃)ui(a; θ̃) 6= ∅. We note that a one-shot deviation of player i at stage

k in ΓMR allows player i possibly to fall into an integer game at stage k where he can get any outcome in B; if he
cannot fall into this integer game, he can only induce a finite number of outcomes, say Bk, by deviating. In any
case, he has a most preferred deviation, i.e., arg maxa∈B

∑
θ̃ β(θ̃)ui(a; θ̃) 6= ∅, arg maxa∈B∪Bk

∑
θ̃ β(θ̃)ui(a; θ̃) 6= ∅,

and arg maxa∈Bk
∑
θ̃ β(θ̃)ui(a; θ̃) 6= ∅. Then A3 is satisfied whenever (i) and (ii) hold.

42Note that A2 need not be satisfied for these mechanisms since B need not be countable. A2 was introduced only
to define sequential equilibrium in a simple manner. If one uses perfect Bayesian equilibrium instead, we believe
that A2 is not required.
43What we mean by “strong”is that we replace the first weak inequality of (∗) in the definition of Maskin monotonic-

ity with a strict one. This notion also appears in Chung and Ely (2003).
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Definition 6. An SCC F satisfies no-veto-power if whenever there is an alternative c ∈ A such

that for at least n− 1 players i, ui(c; θ) ≥ ui(b; θ) for every b ∈ A, we have c ∈ F(θ).

We need one extra condition together with strong Maskin monotonicity and no-veto power.

This is the no-worst-alternative condition as defined by Cabrales and Serrano (2011):

Definition 7. An SCC F satisfies the no-worst-alternative (NWA) condition if for each agent
i ∈ N , θ ∈ Θ and f selected from F , there exists z(i, θ, f) ∈ A such that ui(f(θ); θ) > ui(z(i, θ, f); θ).

Let P denote the set of priors over Θ × S with the following metric d : P × P → R+: for any

µ, µ
′ ∈ P,

d(µ, µ
′
) = max

(θ,s)∈Θ×S
|µ(θ, s)− µ′(θ, s)|.

So, when we say νk → µ, we mean that d(νk, µ)→ 0 as k →∞. When Θ×S is a finite state space,
Theorem 14.5 of Fudenberg and Tirole (1991a) shows that when νk → µ as k → ∞, there exists
{pk}∞k=1 such that (1) p

k → 1 as k → ∞; (2) νk({(θ, sθ)}θ∈Θ) ≥ pk for each k; and (3) for each k,

it is common pk-belief at any profile of signals sθ that θ has realized.44

We propose the following definition of robust implementation:

Definition 8. An SCC F is robustly implementable under the complete information prior µ if
there exists a mechanism Γ = (M, g) satisfying the following two properties: for any SCF f selected

from F and any sequence of priors {νε}ε>0 converging to µ, (1) there is a sequence of sequential

equilibria {σε}ε>0 in {Γ(νε)}ε>0 satisfying limε→0 g(σε(sθ); ∅) = f(θ) for every θ ∈ Θ; and (2) for

any sequence of sequential equilibria {σε}ε>0 in {Γ(νε)}ε>0, we have limε→0 g(σε(sθ); ∅) ∈ F(θ) for

every θ ∈ Θ.

Remark 4.: The first requirement of robust implementation says that for any SCF f selected from
a given SCC F and any environment near µ, there is an equilibrium whose outcome is close to that

given by f whenever a signal profile s has strictly positive probability under µ (i.e., s = sθ for some

θ). The second requirement says that for any environment near µ, whenever a signal profile s has

strictly positive probability under µ, equilibrium outcomes are close to that of F . Both requirements
are robust analogs of the two standard requirements of implementation.45 Roughly speaking, the

first requirement embodies a version of lower hemi-continuity of the equilibrium correspondence and

the second embodies a version of upper hemi-continuity.46 As is clear from the proof of Theorem

3, to show that Maskin monotonicity is necessary for SCCs to be robustly implemented, we only

used the second property of robust implementation and do not exploit the full strength of robust

implementation. Finally, the subsequent argument provides suffi cient conditions under which a

44See Monderer and Samet (1989) and/or Fudenberg and Tirole (1991a) for the precise definition of common
p-belief.
45See, for instance, Maskin (1999) for the definition of Nash implementation.
46Property (2) in our definition says that the correspondence from priors to equilibrium outcomes has a closed graph.

In general, this is not equivalent to upper hemi-continuity. However, the closed graph property of the equilibrium
outcomes correspondence implies upper hemi-continuity if the range of the correspondence is compact (see Aliprantis
and Border (1999)).
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static mechanism yields robust implementation. Hence, the result would hold if we were to replace

sequential equilibrium by Nash equilibrium in the above statement.

We are now ready to state the result:

Theorem 6. Suppose there are at least three players, i.e., |N | = n ≥ 3. If an SCC F satisfies strong
Maskin monotonicity, no-veto-power and the NWA condition, then F is robustly implementable.

Proof. We construct an implementing mechanism Γ = (M, g).47 For each i ∈ N , letMi = (Θ×F)∪
(Z+ ×A) where Z+ is the set of nonnegative integers. That is, each agent is asked to report either

a state and a social choice function or an integer and an alternative. Let mθ,f denote the message

profile ((θ, f), (θ, f), . . . , (θ, f)), and mθ,f\mi the profile obtained from mθ,f by substituting mi for

agent i. We set g(mθ,f ) = f(θ). If mi = (θ′, f ′), and if there exists an alternative c ∈ A such that
ui(c; θ

′
) > ui(f(θ); θ

′
) but ui(f(θ); θ) > ui(c; θ), then we set g(mθ,f\mi) = c. (If there is more than

one such c, select one arbitrarily). For all other cases, we set g(mθ,f\mi) = z(i, θ, f(θ)) as defined

for the NWA condition.

Consider any other profile of messages m. If each mi consists of a state and a social choice

function, then choose g(m) to be an arbitrary element of F(Θ). If at least one agent has announced

an integer and an alternative, set g(m) to be the alternative named by the agent whose named

integer is the greatest (breaking ties by choosing the lowest index among those who announced the

greatest integer).

The rest of the proof can be completed by the following three steps: in Step 1, we show that for

any SCF f selected from F , there exists a good equilibrium whose outcome coincides with that of

f for any nearby environment. In Step 2, we show that any Nash equilibrium outcome is socially

desirable. In Step 3, we show that this continues to be the case in nearby environments.

For any complete information prior µ, let U(µ) denote a neighborhood around µ with respect

to metric d.

Step 1: Let µ be a complete information prior. For each SCF f selected from F , there exists a
neighborhood U(µ) for which there exists a strict Bayesian Nash equilibrium σ of the game Γ(ν)

for each ν ∈ U(µ) such that g(σ(sθ)) = f(θ) for every θ ∈ Θ.

For each SCF f selected from F and θ ∈ Θ, consider the truthful strategy of agent i as

mθ,f
i = (θ, f). This yields g(mθ,f ) = f(θ). By construction, if in state θ, agent i sends message

mi 6= mθ,f
i ,

ui(g(mθ,f ); θ) > ui(g(mθ,f\mi); θ).

Hence, mθ,f is a strict Nash equilibrium of the game Γ(θ). Define σi(sθi ) = (θ, f) for each sθi ∈ Si as
agent i’s strategy of the game Γ(µ). Then σ is a strict Nash equilibrium of the game Γ(µ). Define

A[σ−i] =
{
a ∈ A

∣∣∣ ∃s−i ∈ S−i, ∃σ′i such that g(σ
′
i(si), σ−i(s−i)) = a

}
as the set of possible outcomes that can be induced by agent i’s strategy σ

′
i against σ−i. By

47The proof here is a modification of that of Theorem 2 of Chung and Ely (2003).
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construction of Γ and the finiteness of S, A[σ−i] is finite. It is important to note that each agent

can only induce a finite number of outcomes, while the set of strategies may be infinite. By the

continuity of expected utility and the finiteness of S, N , and A[σ−i], there is a neighborhood U(µ)

such that σ continues to be a strict Bayesian Nash equilibrium of the game Γ(ν) for every ν ∈ U(µ).

Step 2: Let µ be a complete information prior and σ be a Nash equilibrium of the game Γ(µ).

Then, g(σ(sθ)) ∈ F(θ) for every θ ∈ Θ.

Suppose σ is a Nash equilibrium of Γ(µ). Assume further that in σ(sθ), each player announces

the same state and SCF (θ
′
, f
′
). Then, g(σ(sθ)) = f

′
(θ
′
). In this case, we claim that f

′
(θ
′
) ∈ F(θ).

If this is not the case, by strong Maskin monotonicity, there exist a player i and an alternative a

such that ui(a; θ) > ui(f
′
(θ
′
); θ) but ui(f

′
(θ
′
); θ
′
) > ui(a; θ

′
). By construction of Γ, we can conclude

that g(σ(sθ)\(θ, f ′)) = a. Thus, σ(sθ) would not be a Nash equilibrium of Γ(θ). For any other

profile σ(sθ), there must be at least n − 1 agents who can deviate from σ(θ) and bring about a

profile in which there are at least 3 distinct messages. Thus, by construction of Γ, each of these

agents could dictatorially choose his most preferred alternative from A in state θ. But since σ(sθ)

is a Nash equilibrium of Γ(θ), it must be that for each of these players i, ui(g(σ(sθ)); θ) ≥ ui(a; θ)

for every a ∈ A. Since F satisfies no-veto-power, g(σ(sθ)) ∈ F(θ).

Step 3: Let µ be be a complete information. Suppose that σ is a strategy profile such that

g(σ(sθ)) /∈ F(θ) for some θ ∈ Θ. It is enough for our purpose to show that there must exist a

neighborhood U(µ) such that σ is not a Bayesian Nash equilibrium of the game Γ(ν) for every

ν ∈ U(µ).

Suppose σ is given such that g(σ(sθ)) /∈ F(θ) for some θ ∈ Θ. This implies that σ is not a Nash

equilibrium of Γ(θ). Hence, there exists an agent i and a strategy σ
′
i such that

ui(g((σ
′
i, σ−i)(s

θ)); θ) > ui(g(σ(sθ)); θ).

By the continuity of expected utility and the finiteness of N,S, and A[σ−i], there exists a neigh-

borhood U(µ) such that for any ν ∈ U(µ),∑
θ̃∈Θ

∑
s−i∈S−i

ν(θ̃, s−i|sθi )
[
ui(g(σ

′
i(s

θ
i ), σ−i(s−i)); θ̃)− ui(g(σi(s

θ
i ), σ−i(s−i)); θ̃)

]
> 0.

This implies that σ is not a Bayesian Nash equilibrium of Γ(ν) for every ν ∈ U(µ).
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