
B Supplement to “Limit Points of Endogenous Mis-

specified Learning”

B.1 Omitted Lemmas and Examples

Lemma 1. For every a P A and ε ą 0, Θ̂paq defined in equation (1), Θ̂apaq, Θ̂εpaq defined

in equation (2), and ∆pΘ̂paqq are compact.

Proof. Compactness of Θ̂paq follows from Assumption 1 and Theorem 2.43 of Aliprantis and

Border (2013). Since the projection map is continuous, and Θ̂apaq is the projection of Θ̂paq,

Θ̂apaq is compact as well. Since Θ̂apaq is closed, it immediately follows that Θ̂εpaq is closed

as well, henceforth compact. Given the compactness and separability of Θ̂paq, ∆pΘ̂paqq is

compact by, e.g., Theorem 6.4 in Parthasarathy (2005).

Lemma 7. Fix q P ∆ pY q with supp q Ď supp p˚a and a compact set C Ď ∆ pY q such that all

the elements of C are absolutely continuous with respect to p˚a. Then there exists a K ą 0

such that for every f 1 P Uεpq, p
˚
a, ηq with supp f Ď supp p˚a

|min
q1PC

H pp1´ ηqp˚a ` ηq, q
1
q ´H pp1´ ηqp˚a ` ηq, qq ´min

q1PC
H pf, q1q `H pf, qq | ď Kε .

Proof. First, notice that by the Maximum Theorem,

Ĉpη, εq :“
ď

fPUεpq,p
˚
a ,ηq:supp fĎsupp p˚a

argmin
q1PC

H pf, q1q

is a compact-valued and upper-hemicontinuous correspondence. So, if we let

Ĉ :“
ď

εPr0,1s

ď

ηPr0,1s

Ĉpη, εq,

there is a K1 ą 0 such that maxyPsupp p˚a maxq1PĈ | log q1 pyq | ă K1.

Then we have that for every η P r0, 1s, ε ą 0, and f P Uεpq, p
˚
a, ηq : supp f Ď supp p˚a

|min
q1PC

H pp1´ ηqp˚a ` ηq, q
1
q ´H pp1´ ηqp˚a ` ηq, qq ´min

q1PC
H pf, q1q `H pf, qq |

ď |min
q1PC

H pp1´ ηqp˚a ` ηq, q
1
q ´min

q1PC
H pf, q1q | ` 2ε max

yPsupp p˚a
| log q pyq |

ď |2K1ε| ` 2ε max
yPsupp p˚a

| log q pyq |,
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where the inequalities follows from ||f ´ p1´ ηqp˚a ` ηq|| ď ε, and the definition of K1. Thus

K : “ 2pK1 `maxyPsupp p˚a | log q pyq |q ą 0 satisfies the statement of the lemma.

Computations for Example 1

The monopolist’s payoff function when valuation are uniformly distributed on r0, 8s is Erupa, yqs “
8´a

8
a, so the unique optimal price from the set t3, 4, 5, 6, 7u equals a “ 4. If valuations are

uniformly distributed on r2, 10s, the payoff function is 10´a
8
a, so the unique optimal price is

a “ 5.

Let pL “ p8´a
8
qaPt3,4,5,6,7u be the vector of conditional probabilities when the demand is

low and pH “ p10´a
8
qaPt3,4,5,6,7u be the vector of conditional probabilities when the demand is

high. It is easy to check that the KL minimizers are given by

Θ̂p3q “ tpHu; Θ̂p4q “ tpHu; Θ̂p5q “ tpL, pHu; Θ̂p6q “ tpLu; Θ̂p7q “ tpLu .

Thus a “ 5 is the only pure BN-E. Note that a “ 5 is not a uniform BN-E, because at the

low belief the myopically optimal action is 4.

Example 6. This example shows that Theorem 1 does not hold without Assumption 1(ii). Let

the action space be ta, bu, the outcome space be t0, 1u, and suppose the agent correctly believes

that the action has no impact on the outcome distribution, so that each action dependent

outcome distribution is indexed by a number in p0, 1q corresponding to the probability of

outcome 1. Finally, let p˚ “ 1
2
.

Assume that the agent assigns positive probabilities to the following countable set:

"

3

4

*

Y

"

1

4
´

1

n2
: n ě 3

*

,

where distributions are indexed by the probability that they assign to outcome 1. Note that 1
4

is in Θ even though it doesn’t exactly correspond to any of the agent’s conceivable outcome

distributions. Let ppnq “ 1
4
´ 1

n2 .

Finally, suppose that the agent’s utility function is given by upa, 0q “ 0 “ upb, 1q, upa, 1q “

1, upb, 0q “ 4{5. Then b is not preferred to a for any beliefs with ν pt3{4uq ą 1{2 and it is

strictly preferred to a if ν pt3{4uq ă 1{3. Then a is a BN-E but not a uniform BN-E, yet play

can converge to it with positive probability from a prior µ0 we specify below.
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In the claim below we show that for every n P N there exists a ln ą 0 such that

1 ď p˚ p1q

ˆ 3
4

ppnq p1q

˙ln

` p˚ p0q

ˆ 1
4

ppnq p0q

˙ln

.

Then by Dubins’ upcrossing inequality30, for all K1, and K2 there exists Cn ď
1
n2

2
ř8
n“3

1
n2

such that if µ0 pppnqq ď Cn and µ0

`

3
4

˘

ą 1
2
, the probability that lim supt

µtpppnqq

µtp 3
4q

ą 1
n2K1 is

smaller then 1
n2K2. Let µ0 pppnqq “ Cn and µ0

`

3
4

˘

“ 1 ´
ř8

n“3Cn ą
1
2
, K2 ă

1
ř8
n“3

1
n2

and

K1 ă
1

2
ř8
n“3

1
n2

. By the union bound with probability

1´K2

8
ÿ

n“3

1

n2
ą 0

we have that

lim sup
t

ř8

n“3 µt pppnqq

µt
`

3
4

˘ ď

8
ÿ

n“3

lim sup
t

µt pppnqq

µt
`

3
4

˘ ď K1

8
ÿ

n“3

1

n2
ă

1

2
.

Claim 3. Notice that the outcome distribution most favorable to action b and least favorable

to action a is pp3q “ 1{4´ 1{9 “ 5{36. Therefore, if νt pt3{4uq ą 1{2,

ż

∆pY q

Ep rupa, yqs dνppq ě
8
ÿ

n“3

ppnqupa, 1qνptppnquq `
3

4
upa, 1qνpt3{4uq

ě
5

36
upa, 1qp1´ νpt3{4uqq `

3

4
upa, 1qνpt3{4uq ą 4{9

and

ż

∆pY q

Ep rupb, yqs dνppq ď

8
ÿ

n“3

p1´ ppnqqupb, 0qνptppnquq `
1

4
upb, 0qνpt3{4uq

ď
31

36
upb, 0qp1´ νpt3{4uqq `

1

4
upb, 0qνpt3{4uq ă 4{9.

30See, e.g., page 27 of Neveu (1975)
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If νt pt3{4uq ă 1{3,

ż

∆pY q

Ep rupa, yqs dνppq ď

8
ÿ

n“3

ppnqupa, 1qνptppnquq `
3

4
upa, 1qνpt3{4uq

ď
1

4
upa, 1qp1´ νpt3{4uqq `

3

4
upa, 1qνpt3{4uq ă

5

12

and

ż

∆pY q

Ep rupb, yqs dνppq ě

8
ÿ

n“3

p1´ ppnqqupb, 0qνptppnquq `
1

4
upb, 0qνpt3{4uq

ě
3

4
upb, 0qp1´ νpt3{4uqq `

1

4
upb, 0qνpt3{4uq “

7

15
.

Finally, notice that

1 ď p˚ p1q

ˆ 3
4

ppnq p1q

˙ln

` p˚ p0q

ˆ 1
4

ppnq p0q

˙ln

“
1

2

ˆ 3
4

1
4
´ 1

n2

˙ln

`
1

2

ˆ 1
4

3
4
` 1

n2

˙ln

where

ln “
log

´

1´ 1
4
n2`3

¯

log
´

1
1´ 4

n2

¯

` log 3
ą 0.

B.2 The Role of Assumption 1(i)

All results in the paper except the non-myopic part of Theorem 1 continue to hold under a

weaker version of Assumption 1(i):

Assumption 1(i1q For all p P Θ and ε ą 0, there exists p1 P Θ with ||p1 ´ p|| ă ε such that

for all a P A, if p˚apyq ą 0 then p1apyq ą 0.

Assumption 1(i1) implies that the support of the belief does not change after a finite number

of observations. This is the only consequence of Assumption 1(i) that is used in any of the

proofs, except for establishing Claim 1 in the proof of Theorem 1 when the agent is not

myopic.31

The next example shows that without Assumption 1(i1), limit points need not be BN-E.

31When the agent is myopic Claim 1 continues to hold under Assumption 1(i1).
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Example 7 (Role of Assumption 1(i1)). Suppose there are two actions a and b, and two

outcomes Y “ t0, 1u, and let upa, 0q “ upb, 1q “ 1 ´ upa, 1q “ 1 ´ upb, 0q. Identify the

elements of ∆pY q with the probability they assign to outcome 1, and let p˚a “
2
3

and p˚b “ 1.

Suppose that the agent believes that the outcome distribution does not depend on the action,

and that Θ “ t1
3
, 1u. Here b is the unique BN-E, and it is uniformly strict. However, if

the prior assigns sufficiently high probability to 1{3, the agent will start playing a, and with

positive probability they will observe outcome 0 in the first period. But after this observation,

the posterior assigns probability 1 to p “ 1{3 and the action converges to a.

When we weaken Assumption 1(i) to (i1) and allow the supports the various outcome

distributions to differ, we need to generalize the definition of observational equivalence as

follows:

Definition 14. Two outcome distributions p and p1 are observationally equivalent under

action a if papyq “ p1apyq for all y P supp p˚a.

Thus we now say that two beliefs are observationally equivalent under a if they assign

the same probability to each outcome that realizes with positive probability. This definition

is equivalent to the one in the main text under Assumption 1(i).

The reason Theorem 1 only holds for myopic agents when we weaken (i) to (i1) is that

Claim 1 can fail. The intuition is that even if the agent plays a many times, they may still

think that playing a again will give them a non-trivial amount of information, as in the next

example.

Example 8. Let A “ ta, b, cu, Y “ t0, ȳ, y1u, and Θ “ tp̄, p1u. Suppose that p̄c pȳq “

1´ p̄c p0q “ 0.9 “ 1´ p1c p0q “ p1c py
1q and that u pc, yq “ ´0.1 for all y P Y . Thus, the agent

thinks that by playing c they pay a small cost, and with a very high probability they discover

the correct model for sure, and otherwise receive an uninformative signal.

For action b suppose that p̄b p0q “ 1 “ p1b p0q and u pb, yq “ 0 for all y P Y . That is, the

agent thinks that action b is uninformative but safe.

Finally the agent thinks that action a produces the same information of action c but its

payoffs are riskier: p̄a pȳq “ 1 ´ p̄a p0q “ 0.9 “ 1 ´ p1a p0q “ p1a py
1q u pa, ȳq “ ´100 and

u pa, y1q “ 1.

Here, c is not a a BN-E, because it is weakly dominated by action b, and it is never a

myopic best reply. However, suppose that p˚c p0q “ 1, that the agent starts with a uniform

prior over Θ, and the discount factor β “ 1
2
. Then every optimal policy prescribes starting

with action c to get information, and then switching to a forever after observing y1, to b
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forever after observing ȳ and trying c again after observing 0. Since p˚c p0q “ 1, the agent

will continue to use c forever, because the believe that with high probability the true outcome

distribution will be revealed next period.

Assumption 1(i) guarantees that when beliefs concentrate around a set of of outcome

distributions that are observationally equivalent under a, i.e. ν P ∆pEpaqppqq for some

p P Θ, the experimentation value of a is weakly lower than that of some other action.

This fact is used in Claim 1 to show that Gpνq ą 0 for every ν P ∆pEpaqppqq. Claim 1

holds under Assumption 1(i1) for myopic agents because for these agents all actions have 0

experimentation value.

Assumption 1(i1) is still sufficient for all the problems considered in Section 4.2. More

generally, (i1q is sufficient when paired with with this additional assumption:

Assumption 2. p, p1 P Epaqppq ñ papyq “ p1apyq for all y P Y .

This assumption is trivially satisfied if all beliefs in the support of the agent’s subjec-

tive prior assign positive probability only to signals which objectively occur with positive

probability, i.e. papyq ą 0 ñ p˚apyq ą 0 for all p P Θ, a P A.

B.3 Extensions to Signals

Here we expand the probability space of our basic model in the obvious way: The sample

space Ω “ S8ˆpY 8qA consists of infinite sequences of signal and action dependent outcome

realizations psk, xa,s1,kqkPN,aPA,s1PS and xa,s1,k determines the outcome when the agent takes

the action a for the k-th time after s. Formally, we consider the probability space pΩ,F ,Pq,
where F is the discrete sigma algebra and the probability measure P is the product measure

induced by independent draws (across signal, actions, and time) according to p˚.

We denote the outcome observed by the agent in period t after action at by yt “ xat,st,k,

where k is the number of times the agent has taken action at after signal st up and including

period t. A (pure) policy π :
Ť8

t“0 S
t`1 ˆ At ˆ Y t Ñ A specifies an action for every history

ps1, a1, y1, s2, a2, y2, . . . , st, at, yt, st`1q, and an initial action a1. Throughout, we denote by

at`1 “ πpst`1, at, ytq the action taken in period t where pst`1, at, ytq is a sequence of realized

signals, actions, and outcomes. For every p, p1 P Θ Y tp˚u, denote the supnorm distance

between p and p1:

||p´ p2|| “ max
sPS,aPA,yPY

|pa,spyq ´ p
1
a,spyq|.
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Given our finite dimensionality assumption, the maximand depends on s only through the

finite partition Ξ, so the supremum is attained. In this setting, a policy π converges to a

strategy σ if there exists a T such that for all t ě T , ξ P Ξ, p P ΘY tp˚u and y P Y

ÿ

aPA

ζ
` 

s P ξ : π
`

aT , yT , s
˘

“ a
(˘

pa,s pyq “
ÿ

aPA

ζ pts P ξ : σ psq “ auq pa,s pyq

that is, there is finite time convergence over the behavior in the finite dimensional partition

of signals considered by the agent. This restriction is without loss of generality if S is finite.

Lemma 10. For every σ P AS and ε ą 0, Θ̂pσq and Θ̂εpσq are compact.

Proof of Lemma 10. Compactness of Θ̂pσq follows from the generalization of Weierstrass

Theorem to lower-semicontinuous functions (see e.g. Theorem 2.43 in Aliprantis and Border

(2013)). Since the projection map is continuous it follows that Θ̂εpσq is closed, so it is

compact.

Now we extend Lemma 2 to the case where the agent observes signals and has finite-

dimensional beliefs. Since we restricted the policy function of the agent to be measurable in

their beliefs, the set of policy functions is

Π “
`

AS
˘

Ť8
t“0pA

tˆY tˆΞtq
.

We endow the set AS of measurable maps from S to A with the metric

dζ pσ, σ
1
q “ ζ pts P S : σ psq ‰ σ1 psquq .

Then Π is the (countable) product space of measurable maps with index set
Ť8

t“0 pA
t ˆ Y t ˆ Ξtq.

Lemma 11. Π is compact in the product topology, and for every ν P ∆pΘq, V p¨, νq is

continuous with respect to the product topology.

Proof. By Tychonoff’s theorem AS is compact in the product topology. Suppose that

pσnqnPN converges pointwise to σ, and let Cn “ ts P S : @m ě n, σm psq “ σ psqu. We have

that Cn Ò S,

dζpσn, σq “ ζ pts P S : σn psq ‰ σ psquq ď 1´ ζpCnq

and so dζpσn, σq Ñ 0. Thus the product topology is finer than the topology induced by dζ ,

and so AS is also compact in pAS, dζq. Applying Tychonoff’s theorem again, Π is compact
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in the product topology. Continuity follows from the fact that for every period t P N the set

pAt ˆ Y t ˆ Ξtq is finite, and discounting.

We next generalize a couple of definitions given in the text to allow for signals. For every

strategy σ and action contingent outcome distribution p, we let

pσ “

ż

S

p˚σpsq,sp¨qdζpsq

denote the distribution over outcomes induced by the use of strategy σ. Let Θ̂εpσq denote

the conceivable outcome distributions that are ε close to one of the elements of Θpaq:

Θ̂ε
pσq “ tp P Θ : Dp1 P Θ̂pσq, ||p1σ ´ pσ|| ď εu.

Similarly, we denote the set of beliefs over conceivable distributions that assign at least

probability 1´ ε to Θ̂εpσq by

Mε,a “ tν P ∆pΘq : νpΘ̂ε
pσqq ě 1´ εu.

Next we extend Lemma 3 to this setting.

Lemma 12. If σ is a uniformly strict BN-E, then for every optimal policy π and every

λ P R`` there exists an ε̂ ą 0 such that for all ε ă ε̂

ν PMε,σ ùñ |ζ pts P S : π pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ă λ. (5)

Proof. Fix a belief ν P Mε,σ. Let πσ denote the policy that always plays σ, and let Πλ

denote the set of policy functions π̃ such that:

|ζ pts P S : π̃ pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ě λ

Define Gpεq as the gain from playing σ forever instead of using (one of) the best policies

π̃ P Πλ

Gpεq “ min
π̃PΠλ

min
νPMε,a

pV pπa, νq´V pπ̃, νqq .

Notice that by Lemma 11 the space of the policy functions endowed with the product topol-

ogy is compact. Since the subset of policy functions that satisfy 5 is closed, this subset is

compact as well. Moreover, given that β P p0, 1q, the value function is continuous at infin-
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ity, and therefore V pπa, νq´V p¨, νq is a continuous function of the policy. Notice also that

since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπa, ¨q ´V pπ̃, ¨q is continuous in ν, so

since ε Ñ Mε,σ is an upper hemicontinuous and compact valued correspondence, from the

Maximum Theorem G is continuous in ε. Since σ is a uniformly strict BN-E, Gp0q ą 0, and

there is an ε̂ such that if ε ď ε̂, G pεq ą 0. This implies that for any optimal policy π it must

be such that ν PMε,σ implies that π satisfies equation (5), which proves the lemma.

Lemma 13. Fix a strategy σ and ε ą 0. There exists an l ą 0 such that for all l ď l for

every KL minimizer q P Θ̂pσq, every p1 R Θ̂εpσq, and every σ1 P Blpσq we have

fl pσ
1, q, p1q :“

ÿ

yPY

pσ1pyq

ˆ

qσ1pyq

p1σ1pyq

˙l

ą 1 .

Proof. As noted by FII in their Lemma 3, for each KL minimizer q P Θ̂pσq and every

outcome distribution p1 R Θ̂pσq there exists an l pσ, q, p1q such that flpσ, q, p
1q ą 1 for all

l ď l pσ, q, p1q. They also pointed out that for all q, q1 P Θ, and σ1 P AS, if l̂ ą l and

flpσ
1, q, q1q ď 1, then fl̂pσ

1, q, q1q ď 1. We will now prove that there exists a uniform l that

works for every q P Θ̂pσq and p1 P Θ̂εpσq, and every strategy σ1 sufficiently close to σ.

Suppose by way of contradiction that there was no l ą 0 such that for all l ď l,

flpσ
1, q, p1q ą 1 for all q P Θ̂pσq and p1 R Θ̂εpσq, σ1 P Blpσq. Then we can define a sequence

pσn, qn, p
1
nq such that f 1

n
pσn, qn, p

1
nq ď 1, and σn P B1{npσq. The sequential compactness of

AS ˆ Θ̂pσq ˆ cltp P ∆pΘq : pa R Θ̂εpσqqu derived in Lemma 10 guarantees that this sequence

has an accumulation point pσ, q, p1q. However, for, n ą 1
lpp̄,p1q

, f 1
n
pσn, qn, p

1
nq ď 1 implies

flpq,p1qpσn, qn, p
1
nq ď 1, but then the lower semicontinuity of flpq,p1q at pσ, q, p1q leads to a

contradiction with flpq,p1q pσ, q, p
1q ą 1.

Lemma 14. Let p, p1, p˚ P ∆ pY q, and l P p0, 1q be such that

ÿ

yPY

p˚pyq

ˆ

ppyq

p1pyq

˙l

ą 1. (6)

Then there is ε1 ą 0 such that for all ν P ∆ p∆ pY qq, if we let

νpC | yq “

ş

qPC
qpyqdνpqq

ş

qP∆pY q
qpyqdνpqq

,
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then
ÿ

yPY

rpyq

«

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l
ff

ě

ˆ

νpBε1 ppqq

νpBε1 pp1qq

˙l

for all r P Bε1pp
˚q.

Proof. The lemma is trivially true if νpBε pp
1qq “ 0 for some ε. Therefore, without loss

of generality, we can assume that νpBε pp
1qq ą 0 for all ε. Let Cε “ Bε pp

˚q ˆ ∆pBε ppqq ˆ

∆pBε pp
1qq and define G : R` Ñ R by

Gpεq “ min
pr,ν̄,ν1qPCε

ÿ

yPY

rpyq

˜ ş

Bεppq
q̄pyqdν̄ pq̄q

ş

Bεpp1q
qpyqdν 1 pqq

¸l

.

By the Maximum Theorem, the compactness of ∆ pBε pp
1qq and ∆ pBε ppqq (see, e.g, Theorem

6.4 in Parthasarathy (2005)) and the fact that Gp0q ą 1 by equation (6), there is ε1 ą 0 such

that for all r, ν 1, ν̄ P Cε1

ÿ

yPY

rpyq

˜ ş

Bε1 ppq
q̄pyqdν̄ pq̄q

ş

Bε1 pp
1q
qpyqdν 1 pqq

¸l

ě 1. (7)

Then,

ÿ

yPY

rpyq

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l

“
ÿ

yPY

rpyq

˜ ş

Bε1 ppq
νpBε1 ppqqq̄pyqd

νpq̄q
νpBε1 ppqq

ş

Bε1 pp
1q
ν pBε1 pp1qq qpyqd

νpqq
νpBε1 pp

1qq

¸l

“
ÿ

yPY

rpyq

˜ ş

Bε1 ppq
q̄pyqd νpq̄q

νpBε1 ppqq
ş

Bε1 pp
1q
qpyqd νpqq

νpBε1 pp
1qq

¸l
ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

ě

ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

where the inequality follows from equation (7).

Theorem 11. Suppose the agent’s beliefs are finite dimensional. If σ is a limit strategy, then

σ is a uniform BN-E.

Proof. If σ is not a uniform BN-E, there is p̄ P Θ̂pσq such that if supp ν Ď Eσpp̄q, then σ is

not a myopic best reply to ν. We fix such a p̄ throughout this proof.
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Claim 4. There exists ε ą 0 such that if

ν
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ ν
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯ ą

1´ ε

ε
,

then σ is not a myopic best reply to ν.

Proof. Define

G pνq “ max
π
V pπ, νq ´ max

π̃:π̃pνq“σp¨q
V pπ̃, νq .

From the definition of p̄, if

supp ν Ď tp P Θ: @s P S, @y P supp p˚σpsq,s, pσpsq,spyq “ p̄σpsq,spyqu,

then G pνq ą 0. By Lemma 11 the space of policy functions is compact and the value

function is continuous in the policy, so V p¨, νq´V p¨, νq is a continuous function of the policy,

and since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπ, ¨q is continuous in ν. Therefore,

we can conclude by the Maximum Theorem that G is continuous.

Now suppose that in contradiction to the claim, for every n there exists a νn such that

νn

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă 1{nu
¯

1´ νn

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă 1{nu
¯ ě

1´ 1{n

1{n

and σ P π pνnq. Because ∆ pΘq is sequentially compact, pνnqnPN has a converging subsequence

pνniqiPN Ñ ν˚. Thus, ν˚
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, pσpsq,spyq “ p̄σpsq,spyqu
¯

“ 1 and

G pν˚q “ 0, which would imply that σ P π pν˚q, a contradiction.

Now fix such an ε. Because the agent’s beliefs are finite dimensional, the agent believes

that the outcome distribution depends on the signals only via the partition Ξ. We now define

a finer partition of signals Ξσ such that for every two signals in the same cell i) the agent

thinks they induce the same outcome distribution, i.e., they belong to the same cell of Ξ,

and ii) σ prescribes the same action. Formally, Ξσ is the collection of subsets of signals of

the form

ts P ξi X σ
´1
paq for some ξi P Ξ and a P Au.

With a small abuse of notation, for every ξ P Ξσ let σ pξq denote the action that strategy σ

prescribes after every signal in ξ, and let pa,ξ be the probability distribution over outcomes
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induced under p after action a and any signal in ξ. Set W “ Ξσ ˆ Y , and for each p P Θ, let

pσ be the unique probability measure over W that satisfies

pσ pξ, yq “ ζ pξq ppσpξq,ξq pyq @ξ P Ξσ, y P Y.

For every η P p0, 1q, let

fη “ p1´ ηqp
˚σ
` ηp̄σ.

Linearity of H in its first argument implies that for every η P p0, 1q,

p P argmin
pPΘ

Hpfη, p
σ
q ùñ pσ “ p̄σ.

Let g be defined as in the main text with W replacing Y . By the same argument, we

still have

2g pp1´ ηqp˚σ ` ηp̄σ, εq ě 2η pεq2 .

For every t P N, let ηt “ 2t´
1
2 . If the empirical frequency is fηt after t periods, and only

strategy σ has been used, then from Lemma 8 and part (ii) of Assumption , there exists

ḡ ą 0

µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

“
µ̄t ptp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă εuq

1´ µ̄t ptp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă εuq

ě µ0

ˆ

tp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă ε2 2

ḡt
1
2

u

˙

exp
`

tηtε
2
˘

ě Φ

ˆ

ε2 2

ḡt
1
2

˙

exp
´

t
1
2 ε2

¯

.

By Lemma 7 there exists a K̂,K 1 ą 0 such that if the empirical frequency is ft after t

periods and ||fηt ´ ft|| ă ||p̄
σ ´ p˚σ||t´

1
2 {K 1 then

µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯ ě Ψ

ˆ

K̂ε2 2

ḡt
1
2

˙

exp
´

K̂t
1
2 ε2

¯

.

Fix an outcome w0 P supp p˚σ, and let ft be the empirical frequency of the other | supp p˚σ|´1

outcomes in the support of p˚σ. Denote by p˚σt the true probabilities of the same | supp p˚σ|´
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1 outcomes.

An argument that mimics the proof of Claim 2 shows that ft ¨ t´ p
˚σt is a | supp p˚σ| ´ 1

dimensional random walk with nonsingular covariance matrix Σw,w1 for the increments.

By the Central Limit Theorem pft´ p
˚σq
?
t converges to a Normal random variable with

mean 0 and covariance matrix Σw,w1 . Let Ft “ B ||p̄σ´p˚σ ||{K1
?
t

´

p˚σ ` 1?
t
pp̄σ ´ p˚σq

¯

. We have

that

P rft P Fts “ P
”?

tpft ´ p̄
˚
q P B||p̄σ´p˚σ ||{K1 pp̄

σ
´ p˚σq

ı

.

Taking the limit tÑ 8 yields that

lim
tÑ8

P rft P Fts “ P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄
σ
´ p˚σq

ı

where Z̃ is a random variable that is Normally distributed with mean ~0 and covariance

matrix Σw,w1 . Consequently, if we denote as Et the event that ft P Ft, it follows that
ř8

t“1 P rEts “ 8. Moreover,

lim inf
tÑ8

řt
s“1

řt
r“1 P rEs and Ets

`
řt
s“1 P rEss

˘2 “ lim inf
tÑ8

1
t2

řt
s“1

řt
r“1 P rEs and Ers

`

1
t

ř8

t“1 P rEts
˘2 ď lim inf

tÑ8

1
t2

řt
s“1

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2

“ lim inf
tÑ8

1
t

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2 “
1

limtÑ8 P rEts
“

1

P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄σ ´ p˚σq
ı .

It thus follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise

2.3.20 in Durrett (2008)) that

P

«

8
č

t“1

8
ď

s“t

Es

ff

ě P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄
σ
´ p˚σq

ı

ą 0 .

The event
Ş8

t“1

Ť8

s“tEs is invariant under finite permutations of the increments
`

1wt“w1 , ...,1wt“w| supp p˚σ |´1 ´ p˚σ
˘

with different time indices, so the Hewitt-Savage zero-one

law (see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event
Ş8

t“1

Ť8

s“tEs must equal zero or one. As the probability is strictly positive it must equal

one.

This implies that ft P Ft infinitely often with probability 1. It follows that the agent will

eventually want to take an action different from σ:

P rat ‰ σ pstq for some ts “ 1 .
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Thus the strategy can not converge to σ with positive probability.

Theorem 21. Suppose σ is a uniformly strict BN-E. Then there is a belief ν P ∆ pΘq such

that for every κ P p0, 1q there exists an ε1 ą 0 such that starting from any prior belief in

Bε1 pνq:

Pπ

«

lim
tÑ8

1

t` 1

t
ÿ

r“0

1πpar,yr,sr`1q“σpsr`1q ě 1´ κ

ff

ą 1´ κ .

Proof. Consider a uniformly strict BN-E σ, an optimal policy π and κ P p0, 1q. By Lemma

12, for every λ P p0, 1q there exists an ε such that if νpΘ̂εpσqq ě 1´ ε, then

|ζ pts P S : π pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ă λ.

For every l P p0, 1q, define the function fl,σ : P ˆ P Ñ R̄ is defined by

flpσ
1, p̄, p1q “

ÿ

yPY

p˚σ1pyq

ˆ

p̄σ1pyq

p1σ1pyq

˙l

.

By Lemma 13, since Θ̂εpσq is compact by Lemma 10, and since fl is lower semicontinuous,

there exists ε1 P p0, εq such that p̄ P Θ̂ε1pσq implies that flpσ, p̄, p
1q ą 1 for all p1 with

p1 R Θ̂εpσq. Let K “
`

ε
1´ε

˘l
. Then

¨

˝

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂ε1paq
¯

˛

‚

l

ă K ùñ

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂εpσq
¯ ă

ε

1´ ε

ùñ ν
´

Θ̂ε
pσq

¯

ą 1´ ε ùñ π pνq “ a.

By Lemma 10, Θ̂εpσq is compact, so it has a finite cover tp P Θ : ||qia ´ pa|| ď εuni“1, where

qi P Θ̂εpσq.

Let ε̄ be such that ν
´

Θ̂ε̄pσq
¯

ą 1´ ε̄ implies that

¨

˝

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂εpσq
¯

˛

‚

l

ă
K p1´ κq

n
.

Then if the agent starts with a belief ν0 with ν0pΘ̂pσqq ą ε̄, σ is the unique best reply ν
1

0.

Moreover, by Lemma 14, Dubins’ upcrossing inequality, and the union bound, there is a
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probability p1´ κq that the positive supermartingale

¨

˝

1´ ν 1t

´

Θ̂εpσq
¯

ν 1t

´

Θ̂εpσq
¯

˛

‚

l

never rises above K, and with probabilty p1´ κq

|ζ pts P S : π pµ1t, sq “ auq ´ ζ pts P S : σ psq “ auq | ď λ,

for all t P N. Then the statement follows from the Hewitt-Savage 0 ´ 1 Law (see, e.g.,

Theorem 8.4.6 in Dudley (2018)).

Theorem 41. If signals are finite and subjectively uninformative and outcomes are subjec-

tively exogenous, then any uniformly strict BN-E σ is positively attractive.

Proof. Under the assumptions of the theorem, Θ Ď ∆ p∆ pY qq. Consider a uniformly strict

BN-E σ. By an obvious extension of Lemma 1 to the case with signals, ∆
´

Θ̂pσq
¯

is compact.

Similarly, since S is compact and σ is the unique optimal best reply strategy at the beliefs

in ∆
´

Θ̂pσq
¯

, Lemma 3 can be extended to guarantee that there exists ε ě 0 such that if

ν pcl pQε pp̄σqqq ě p1´ εq

then the myopic best reply to ν is σ. By the same argument of the proof of Theorem 2, there

exists an l P p0, 1q and ε1 P p0, ε̂q, such that if p P Qε1 pp̄σq and p1 R Qε̂ pp̄σq then flpp, p
1q ě 1.

Using the Maximum Theorem again we can find a sequence of outcome realizations yt

such that if p̂t is the corresponding empirical frequency, it is sufficiently close to p̄σ to have

Qε̂{2 pp̂tq Ď Qε̂ pp̄σq .

Therefore by Proposition 1, there exists a time period T such that for all t1 ą T , if the

empirical frequency p̂t1 “ p̂t, the agent assigns a relative probability higher than K to an ε̂

Ball around p̄. That is,

µt1pQε̂ pp̄σqq

1´ µt1pQε1 pp̄σqq
ě

µt1pQε̂{2 pp̄σqq

1´ µt1pQε1 pp̄σqq
ą 2

p1´ ε̂q

ε̂
.

Notice that replicating the outcome realizations yt sufficiently many time yields a sequence
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yt
1

such that the empirical frequency p̂t1 “ p̂t and t1 ą T . Since supp p˚a,s “ Y for all

pa, sq P A ˆ S, this sequence of outcomes has positive probability, and after it occurs the

agent plays σ. By Lemma 4 and the law of iterated expectations, conditional on a being

played
´

1´µt1 pQε1 pp̄σqq

µt1 pQε̂pp̄σqq

¯l

is a positive supermartingale.

Then, by Dubins’ upcrossing inequality, there is positive probability that this positive

supermartingale never rises above ε̂
p1´ε̂q

, that in turns imply that µt1pQε1{2 pp̂tqq never goes

below p1´ ε̂q and therefore σ is always played after the sequence yt.

Corollary 4. Let α be a strongly uniform mixed BN-E in a problem pA, Y, p˚, u,Θq. There

is a sequence of strategies pσnqnPN such that each σ1{n is a uniformly stable BN-E of a p1{nq

perturbation of pA, Y, p˚, u,Θq and

lim
nÑ8

ζpts : σnpsq “ auq “ αpaq @a P A.

If pA, Y, p˚, u,Θq is subjectively exogenous and p˚ has full support, the σ1{n can be chosen to

be also positively attractive.

Proof. Let α be a mixed BN-E in a problem pA, Y, p˚, u,Θq. For every n P N, let S “ suppα,

ζpaq “ αpaq, and ũpa, y, sq “ upa, yq ` 1
n
1a“s, and let p̃˚, Θ̃ be as given in part (ii) and (iii)

of the definition of a perturbed environment.

Consider the strategy σpaq “ a. We have that for every p P Θ

ÿ

sPS

ζpsqH
`

p̂˚σpsq,s,Φppqσpsq,s
˘

“
ÿ

aPA

α paq p˚a pyq log pa pyq

by (ii) and (iii) of the definition of a perturbed problem. Therefore, Θ̂pσq “ ΦpΘ̂ pαqq. Fix

a signal s P S, and consider any action a1 ‰ σpsq. Since α is a strongly uniform BN-E

Epσpsq rupσpsq, yqs ě Epa1 rupa
1, yqs @p P Θpαq

and by definition of ũ

Epσpsq rũpσpsq, y, sqs ě Epa1 rũpa
1, y, sqs ` 1{n @p P Θpαq

proving that σ is a strictly uniform BN-E. By construction

ζpts : σnpsq “ auq “ αpaq @a P A.
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Then the result follows by Theorems 21 and 41.

B.4 Additional Examples

Example 9 (A uniformly strict BN-E that isn’t positively attractive). In this example the

prior has support tp1, p2, p3u. Here a “ 3 is the only BN-E and is uniformly strict. However,

if the agent takes an action a P t1, 2u then the subjective likelihood assigned to p3 goes down

and thus play never converges to a “ 3 if the prior assigns sufficiently low probability to p3.

The details are in the following table:

a a “ 1 a “ 2 a “ 3
Hpp˚a, ¨q

Ampδp¨qqy 1 2 3 1 2 3 1 2 3

u 1 0 0 0 1 0 0 0 1 a “ 1 a “ 2 a “ 3

p˚ 0.1 0.9 0 0.9 0.1 0 0.1 0.1 0.8

p1 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2 1.15 0.74 2.03 a “ 1

p2 0.3 0.5 0.2 0.3 0.5 0.2 0.3 0.5 0.2 0.74 1.15 2.03 a “ 2

p3 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 2.3 2.3 0.64 a “ 3

Example 10 (Signal Neglect). A seller in a physical marketplace can hire one shop assistant

to work for the day aH or not hire anyone aN . The outcome y P Y is the percentage of

consumers in the marketplace that buy the good, with two possibilities, yh ą yl.

Before choosing whether to hire, the agent observes the number of people at the market

that day s P tsh, slu, with sh ą sl. The payoff function is upa, y, sq “ sy ´ 1a“aH . The

seller realizes that the signal is payoff relevant, but falsely believes that it does not provide

any information about the outcome. The agent is uncertain about how useful it is to hire a

shop assistant, and in particular they do not know whether hiring is ineffective, i.e., for all

a P A, y P Y , papyq “ 1{2, or if it is not, i.e., p1aH pyHq “ 3{4 and p1aN pyHq “ 1{4.

The fraction of consumers who buy varies with the signal: On days with fewer consumers,

the ones that actually come to the market are more likely to purchase the good. Formally:

p˚sH ,aH pyHq “ 1{2, p˚sH ,aN pyHq “ 1{4, p˚sL,aH pyHq “ 3{4, p˚sL,aN pyHq “ 1{2.

Let slpyh´ylq
4

ă 1 ă shpyh´ylq
4

, so that it is not objectively optimal to hire a shop assistant

after sL, and it is objectively optimal to hire an assistant after sH . The following argument
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shows that the only BN-E is that the shop assistant is never hired: If the agent followed

the objectively optimal strategy, they would observe the same frequency of sales in days with

s “ sH and with the shop assistant hired as in days with s “ sL and without the shop

assistant: p˚sH ,aH pyHq “ 1{2 “ p˚sL,aN pyHq. This holds because the shop assistant offsets

the lower per-customer demand on days with high attendance. However, this observation

supports the belief that the shop assistant is useless. Since the myopic best reply to δp is to

never hire the shop assistant, by Theorem 1’ this suboptimal action is the only possible limit

action.

Example 11 (A Uniform BN-E that is not Stable). There are two actions, a and b, two

outcomes, 0 and 1, and two action-dependent outcome distributions, Θ “ tp, p1u. The utility

of the agent is equal to the outcome, i.e., u pa, yq “ y, and pa p1q “ p1a p1q “ p˚a p1q “
1
2
,

pb p1q “
1
2
ă p1b p1q “ p˚b p1q “

3
4
. Here, a is a myopic best reply to the belief δp, so it is a

BN-E. Moreover, there is a unique class of observationally equivalent outcome distributions

under a: Ea ppq “ Θ, so a is a uniform BN-E. However, it is not stable: under every optimal

policy of the agent and starting from every belief that assigns positive probability to p1, the

agent will play action b forever with probability 1.
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