B Supplement to “Limit Points of Endogenous Mis-

specified Learning”

B.1 Omitted Lemmas and Examples

Lemma 1. For every a € A and € > 0, ©(a) defined in equation (1), ©,(a), ©°(a) defined
in equation (2), and A(©(a)) are compact.

Proof. Compactness of @(a) follows from Assumption 1 and Theorem 2.43 of Aliprantis and
Border (2013). Since the projection map is continuous, and ©,(a) is the projection of ©(a),
O, (a) is compact as well. Since O,(a) is closed, it immediately follows that ©¢(a) is closed
as well, henceforth compact. Given the compactness and separability of ©(a), A(©(a)) is
compact by, e.g., Theorem 6.4 in Parthasarathy (2005). [ |

Lemma 7. Fiz g€ A (Y) with supp ¢ < supp p¥ and a compact set C < A (Y') such that all
the elements of C' are absolutely continuous with respect to pk. Then there exists a K > 0

such that for every f' € U.(q,p*,n) with supp f < supp p?

\{InggH((l —mps +nq,¢) — H (L —n)ps +14g,q) —{Ir,leigH(f,Q’) +H(f,q)| < Ke.

Proof. First, notice that by the Maximum Theorem,
Cn,e) = § argmin H (f, ¢)
feUc(q,p¥ m):supp fSsupp pi 7eC

is a compact-valued and upper-hemicontinuous correspondence. So, if we let

= U U ctmo.

e€(0,1] ne[0,1]

there is a K; > 0 such that max s max,.o |logq (y) | < Ki.

YESUPP Pa

Then we have that for every n € [0,1], € > 0, and f € U.(q,p*,n) : supp f < supp p*

|min A ((1 —n)p; +nq,q") — H (1 —n)p; +ng,9) — minH (f,d)+H(fq)]

q'eC
< |min H (1 =n)p; +19,¢") —min H (f,¢') | +2¢ max Ilogq( )|
q'eC q'e yesupp p

< |2Kie| +2¢ max |logq(y)],

yesupp pi



where the inequalities follows from || f — (1 —n)p} + ng|| < e, and the definition of K;. Thus
K: = 2(K1 + max,cqpp x| logq (y) |) > 0 satisfies the statement of the lemma. n

Computations for Example 1

The monopolist’s payoff function when valuation are uniformly distributed on [0, 8] is E[u(a, y)] =

%a, so the unique optimal price from the set {3,4,5,6,7} equals a = 4. If valuations are

10—a

uniformly distributed on [2, 10], the payoff function is =5

a=>o.
Let p~ = (%)%{3,4,5,6,7} be the vector of conditional probabilities when the demand is

low and p? = (%) (345,673 be the vector of conditional probabilities when the demand is

a, so the unique optimal price is

high. It is easy to check that the KL minimizers are given by
0B) ="} M) =p"; er) =" s e.) =" e ="}

Thus a = 5 is the only pure BN-E. Note that a = 5 is not a uniform BN-E, because at the

low belief the myopically optimal action is 4.

Example 6. This example shows that Theorem 1 does not hold without Assumption 1(ii). Let
the action space be {a, b}, the outcome space be {0, 1}, and suppose the agent correctly believes
that the action has no impact on the outcome distribution, so that each action dependent
outcome distribution is indexed by a number in (0,1) corresponding to the probability of
outcome 1. Finally, let p* = %

Assume that the agent assigns positive probabilities to the following countable set:

7N i VR

where distributions are indexed by the probability that they assign to outcome 1. Note that }—1
1s 1 O even though it doesn’t exactly correspond to any of the agent’s conceivable outcome
distributions. Let p(n) = 1 — 5.

Finally, suppose that the agent’s utility function is given by u(a,0) = 0 = u(b,1),u(a, 1) =
1,u(b,0) = 4/5. Then b is not preferred to a for any beliefs with v ({3/4}) > 1/2 and it is
strictly preferred to a if v ({3/4}) < 1/3. Then a is a BN-E but not a uniform BN-E, yet play

can converge to it with positive probability from a prior py we specify below.



In the claim below we show that for every n € N there exists a l,, > 0 such that

t<pm ) <W) 70 (5 <0>)ln'

Then by Dubins’ upcrossing inequality’®, for all Ky, and K, there exists C, < ssh—T
n=3

P

e

~—

1

such that if po (p(n)) < Cy and po (3) > 1, the probability that lim supt % > LK is

4
smaller then K. Let po (p(n)) = C, and uo( )=1-3r.C,>1 Ky < -+ and
Ky <

7
2 n=3 2

2200— By the union bound with probability
n=3 p2

1—K22—>O
n=3

we have that

lim sup Zos Mt lim sup 3
t Mt — t Nt 1

l\')lr—t

Ms

ij;
—n?
Claim 3. Notice that the outcome distribution most favorable to action b and least favorable
to action a is p(3) = 1/4 —1/9 = 5/36. Therefore, if v, ({3/4}) > 1/2,

J o Bl 01 dtp) > 3 ployuta Dotp(m}) + e (134

w

> 2, 1)1 - ({3/41) + Sula Du((3/4)) > 4/9

4
and
Lm E, [u(b )] dvlp) < D)1~ p(m)u(b, 0)w({p(n)}) + Julb. O)w({3/4})

< Lo, 0001 - v((3/a1) + %lu(b, 0)w({3/4}) < 4/9.

30See, e.g., page 27 of Neveu (1975)



Ifre({3/4}) < 1/3,

p(n)u(a, Nr({p(n)}) + ZU(% Dy ({3/4})

)
s

[ E )
A(Y)

3

u(a, 1)(1 = v({3/4})) + Z%U(a, Dr({3/4}) <

N
»bIHﬁ

and

L(Y)E [u(b,y)] > )0~ (0,0)v({p(n)}) + iu(b, 0)r({3/4})

3
Il

(b, 0)(1 — v({3/41)) + Julb. Ow(13/4}) = =

Finally, notice that

where
!
o 10g<1 —4—?+3> .
log (ﬁ)—klogi’;

B.2 The Role of Assumption 1(i)

All results in the paper except the non-myopic part of Theorem 1 continue to hold under a

weaker version of Assumption 1(i):

Assumption 1(i") For all p € © and € > 0, there exists p’ € © with ||p’ — p|| < e such that
for all a € A, if p¥(y) > 0 then p/(y) > 0.

Assumption 1(i") implies that the support of the belief does not change after a finite number
of observations. This is the only consequence of Assumption 1(i) that is used in any of the
proofs, except for establishing Claim 1 in the proof of Theorem 1 when the agent is not
myopic.3!

The next example shows that without Assumption 1(i’), limit points need not be BN-E.

3'When the agent is myopic Claim 1 continues to hold under Assumption 1(i’).
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Example 7 (Role of Assumption 1(I")). Suppose there are two actions a and b, and two
outcomes Y = {0,1}, and let u(a,0) = u(b,1) = 1 —u(a,1) = 1 — u(b,0). Identify the
elements of A(Y') with the probability they assign to outcome 1, and let p = % and py = 1.
Suppose that the agent believes that the outcome distribution does not depend on the action,
and that © = {%, 1}. Here b is the unique BN-E, and it is uniformly strict. However, if
the prior assigns sufficiently high probability to 1/3, the agent will start playing a, and with
positive probability they will observe outcome 0 in the first period. But after this observation,

the posterior assigns probability 1 to p = 1/3 and the action converges to a.

When we weaken Assumption 1(i) to (i’) and allow the supports the various outcome
distributions to differ, we need to generalize the definition of observational equivalence as

follows:

Definition 14. Two outcome distributions p and p’ are observationally equivalent under

action a if p,(y) = pl,(y) for all y € supp pk.

Thus we now say that two beliefs are observationally equivalent under a if they assign
the same probability to each outcome that realizes with positive probability. This definition
is equivalent to the one in the main text under Assumption 1(i).

The reason Theorem 1 only holds for myopic agents when we weaken (i) to (i) is that
Claim 1 can fail. The intuition is that even if the agent plays a many times, they may still
think that playing a again will give them a non-trivial amount of information, as in the next

example.

Example 8. Let A = {a,b,c}, Y = {0,49,9'}, and © = {p,p'}. Suppose that p.(y) =
1—-p.(0)=09=1-p.(0) =p.(y) and that u(c,y) = —0.1 for all y € Y. Thus, the agent
thinks that by playing c they pay a small cost, and with a very high probability they discover
the correct model for sure, and otherwise receive an uninformative signal.

For action b suppose that p, (0) = 1 = p, (0) and u (b,y) = 0 for ally € Y. That is, the
agent thinks that action b is uninformative but safe.

Finally the agent thinks that action a produces the same information of action ¢ but its
payoffs are riskier: p,(y) = 1 —p,(0) = 0.9 = 1 —p/ (0) = pl,(¢¥) u(a,y) = —100 and
u(a,y’) =1.

Here, ¢ 1s not a a BN-E, because it is weakly dominated by action b, and it is never a
myopic best reply. However, suppose that p% (0) = 1, that the agent starts with a uniform

1

prior over ©, and the discount factor 8 = 5. Then every optimal policy prescribes starting

with action ¢ to get information, and then switching to a forever after observing y', to b



forever after observing y and trying ¢ again after observing 0. Since p% (0) = 1, the agent
will continue to use ¢ forever, because the believe that with high probability the true outcome

distribution will be revealed next period.

Assumption 1(i) guarantees that when beliefs concentrate around a set of of outcome
distributions that are observationally equivalent under a, i.e. v € A(E(a)(p)) for some
p € O, the experimentation value of a is weakly lower than that of some other action.
This fact is used in Claim 1 to show that G(v) > 0 for every v € A(E(a)(p)). Claim 1
holds under Assumption 1(i’) for myopic agents because for these agents all actions have 0
experimentation value.

Assumption 1(i’) is still sufficient for all the problems considered in Section 4.2. More

generally, (') is sufficient when paired with with this additional assumption:
Assumption 2. p,p’ € £(a)(p) = pa(y) = pl(y) for all y e Y.

This assumption is trivially satisfied if all beliefs in the support of the agent’s subjec-
tive prior assign positive probability only to signals which objectively occur with positive

probability, i.e. pa(y) > 0= pi(y) >0 for all pe ©,a € A.

B.3 Extensions to Signals

Here we expand the probability space of our basic model in the obvious way: The sample
space 2 = S x (Y®)4 consists of infinite sequences of signal and action dependent outcome
realizations (i, Ta s k)keNaed,ses and T,y determines the outcome when the agent takes
the action a for the k-th time after s. Formally, we consider the probability space (2, F,P),
where F is the discrete sigma algebra and the probability measure P is the product measure
induced by independent draws (across signal, actions, and time) according to p*.

We denote the outcome observed by the agent in period ¢ after action a; by y: = 4, s, k-
where £ is the number of times the agent has taken action a, after signal s; up and including
period t. A (pure) policy 7 : | J,—, S x A’ x Y* — A specifies an action for every history
(S1,a1, Y1, S2, A2, Y2, - - -, St, Gy, Yp, Sev1), and an initial action a;. Throughout, we denote by

t+1

atr1 = m(s' al, y) the action taken in period t where (s'™!, af, yt) is a sequence of realized

signals, actions, and outcomes. For every p,p’ € © U {p*}, denote the supnorm distance

between p and p':

”‘ | = max ’pa,s (y) - p;,s (y) | :

Hp P s€S,aeA,yeY



Given our finite dimensionality assumption, the maximand depends on s only through the
finite partition =, so the supremum is attained. In this setting, a policy 7 converges to a

strategy o if there exists a T" such that forallt > T, €=, pe O u {p*} andye Y
dMc({se&:m(ay" s) = a}) pas(y) = D C({s€&:0(s) = a}) pas (v)
aceA acA

that is, there is finite time convergence over the behavior in the finite dimensional partition

of signals considered by the agent. This restriction is without loss of generality if S is finite.

Lemma 10. For every o € AS and ¢ > 0, O(0) and ©°(c) are compact.

Proof of Lemma 10. Compactness of é(a) follows from the generalization of Weierstrass
Theorem to lower-semicontinuous functions (see e.g. Theorem 2.43 in Aliprantis and Border
(2013)). Since the projection map is continuous it follows that ©°(¢) is closed, so it is

compact. ]

Now we extend Lemma 2 to the case where the agent observes signals and has finite-
dimensional beliefs. Since we restricted the policy function of the agent to be measurable in

their beliefs, the set of policy functions is

I = (A5)Umolan =)

We endow the set A of measurable maps from S to A with the metric
de (0,0") =C({seS:0(s)#0'(s)}).

Then IT is the (countable) product space of measurable maps with index set | J;—, (A* x Y x =*).

Lemma 11. II is compact in the product topology, and for every v € A(O), V (-, v) is

continuous with respect to the product topology.

Proof. By Tychonoff’s theorem A® is compact in the product topology. Suppose that
(0n)nen converges pointwise to o, and let C,, = {s € S : ¥Ym = n,0,, (s) = o (s)}. We have
that C), 1 5,

d¢(om,0) = C({s €S :0n(s) # 0 (s)}) <1—¢(C)

and so d¢(o,,0) — 0. Thus the product topology is finer than the topology induced by dc,
and so A% is also compact in (A%, d;). Applying Tychonoff’s theorem again, II is compact

7



in the product topology. Continuity follows from the fact that for every period ¢ € N the set

(A" x Y' x Z') is finite, and discounting. u

We next generalize a couple of definitions given in the text to allow for signals. For every

strategy o and action contingent outcome distribution p, we let
o = | Phioa(1C(6)
S

denote the distribution over outcomes induced by the use of strategy o. Let @5(0) denote

the conceivable outcome distributions that are € close to one of the elements of O(a):
O(0) = {pe ©:3p' € 0(0), |lp, —psll < ).

Similarly, we denote the set of beliefs over conceivable distributions that assign at least
probability 1 — e to ©¢(c) by

M., ={veA©O): v(6°(0)) =1 —¢}.

Next we extend Lemma 3 to this setting.

Lemma 12. If ¢ is a uniformly strict BN-E, then for every optimal policy m and every

A e R, there exists an € > 0 such that for all e < ¢

veM., = |(({seS:m(v,s)=a})—C({seS:0(s)=a})| <A\ (5)

Proof. Fix a belief v € M, ,. Let m° denote the policy that always plays o, and let II,

denote the set of policy functions 7 such that:
C{seS:m(r,s)=a}l)—C({seS:0o(s)=a})|=A

Define G(¢) as the gain from playing o forever instead of using (one of) the best policies
e H)\
G(e) = min min (V (7% v) =V (7,v)).

welly veEMe o
Notice that by Lemma 11 the space of the policy functions endowed with the product topol-

ogy is compact. Since the subset of policy functions that satisfy 5 is closed, this subset is

compact as well. Moreover, given that § € (0, 1), the value function is continuous at infin-



ity, and therefore V (7% v) —V (-,v) is a continuous function of the policy. Notice also that
since B, - [>2, [ u(ar, y:)]] is continuous in p, V (7%,) =V (7, is continuous in v, so
since € — M., is an upper hemicontinuous and compact valued correspondence, from the
Maximum Theorem G is continuous in €. Since o is a uniformly strict BN-E, G(0) > 0, and
there is an € such that if ¢ < &, G (¢) > 0. This implies that for any optimal policy 7 it must

be such that v € M., implies that 7 satisfies equation (5), which proves the lemma. |

Lemma 13. Fiz a strateqgy o and € > 0. There exists an | > 0 such that for all 1 < 1 for

every KL minimizer q € O(0), every p' ¢ ©°(0), and every o’ € By(o) we have

' a#) = e (éﬁ)l“‘

yeY

Proof. As noted by FII in their Lemma 3, for each KL minimizer ¢ € é)(a) and every
outcome distribution p’ ¢ @(0) there exists an [ (o, q,p’) such that fi(o,q,p") > 1 for all
| < 1(0,q,p"). They also pointed out that for all ¢,¢ € ©, and o’ € A5, if [ > [ and
file’,q,q") <1, then fi(0’,q,¢') < 1. We will now prove that there exists a uniform [ that
works for every ¢ € é(o) and p’ € (:)5(0), and every strategy o’ sufficiently close to o.
Suppose by way of contradiction that there was no [ > 0 such that for all | < I,
file’,q,p') > 1 for all ¢ € é(a) and p’ ¢ (;)5(0), o' € Bi(o). Then we can define a sequence
(0n, G, p,,) such that fi(on,qn,p},) < 1, and o, € By,(0). The sequential compactness of
AS x O(0) x cl{p e A(é): Pa ¢ ©°(0))} derived in Lemma 10 guarantees that this sequence
has an accumulation point (o,q,p’). However, for, n > m, fi (On, Gn,P,,) < 1 implies
fitgp)(Ons Gn, P) < 1, but then the lower semicontinuity of fiq,» at (o,q,p’) leads to a
contradiction with fyq) (0,¢,p") > 1. [ |

Lemma 14. Let p,p',p* € A(Y), and l € (0,1) be such that

5o (ji) =

yey

Then there is €' > 0 such that for allv e A(A(Y)), if we let

§,.0a()dv(a)
foao d0)d()

v(Cly) =



then

for all r € Ba(p*).

Proof. The lemma is trivially true if v(B. (p')) = 0 for some . Therefore, without loss
of generality, we can assume that v(B. (p')) > 0 for all e. Let C. = B. (p*) x A(B:(p)) x
A(B: (p')) and define G : Ry — R by

) SBE q(y)dv (q) :
G(g):(r,ur%})%ch (SBE q(y)d (q)) '

By the Maximum Theorem, the compactness of A (B. (p')) and A (B: (p)) (see, e.g, Theorem
6.4 in Parthasarathy (2005)) and the fact that G(0) > 1 by equation (6), there is ¢’ > 0 such
that for all r,v/, v e C.

§5 0 @W)7 (@) '
2,7 (SBE,(p/)Q(y)dV’ (CI)> -t 7

Then,

$5. ) (Ber (0))(y)d V(;% )
$o 0 ¥ (Be (1) a(v)dp s

S0 Tty \ ( v(Bo () !
= ZT(?J)< () ( (q()))> < p/ )

SBsz(m 1) doE,

> (1) )

where the inequality follows from equation (7). |

Theorem 1'. Suppose the agent’s beliefs are finite dimensional. If o is a limit strategy, then

o 18 a uniform BN-E.

Proof. If ¢ is not a uniform BN-E, there is p € @(0) such that if suppv < &,(p), then o is
not a myopic best reply to v. We fix such a p throughout this proof.

10



Claim 4. There exists € > 0 such that if

v <{p € O©: Vs €S, Yy € supp pi iy o [Po(s).s(4) = Pois)s(4)] < 6}> 1—¢
>

L= v ({pe©: Vs e Sy e suppply e [prost) —Poou®) <€})  ©

then o 1s not a myopic best reply to v.

Proof. Define
G (v) = maxV (m,v) — max V (7,v).

™ mr(v)=o(-)

From the definition of p, if

supp v < {p €0:Vse Sa V’y € Suppp;(s),supa(s),s<y) = pa(s),s(fy)}v

then G (v) > 0. By Lemma 11 the space of policy functions is compact and the value
function is continuous in the policy, so V' (-, v) =V (-, v) is a continuous function of the policy,
and since E, [Z;il [B u(ay, yt)]] is continuous in p, V' (7, ) is continuous in v. Therefore,
we can conclude by the Maximum Theorem that G is continuous.

Now suppose that in contradiction to the claim, for every n there exists a v, such that

Un, ({p € 0: Vs e S, Vy € supppy Do (s),s(Y) — Do(s),s(Y)] < 1/”}) 1—1/n
>
1/n

=

1— Un ({p €0O:Vse Sa vy € Suppp:(s)7sa |p0(s),s(y) - po(s),S(yN < 1/%})

and o € 7 (v,,). Because A (0©) is sequentially compact, (v,), .y has a converging subsequence

(Vni)sew — V. Thus, v* ({p €EO:Vse S, Vye Suppp:(s)’s,po(s)75(y) = ﬁ(,(s)vs(y)}> = 1 and
G (v*) = 0, which would imply that o € 7 (v*), a contradiction. u

Now fix such an €. Because the agent’s beliefs are finite dimensional, the agent believes
that the outcome distribution depends on the signals only via the partition =. We now define

g

a finer partition of signals =7 such that for every two signals in the same cell i) the agent

thinks they induce the same outcome distribution, i.e., they belong to the same cell of =,
and ii) o prescribes the same action. Formally, =7 is the collection of subsets of signals of
the form

{se& not(a) for some & e = and a € A}.

With a small abuse of notation, for every £ € =7 let o () denote the action that strategy o

prescribes after every signal in £, and let p, ¢ be the probability distribution over outcomes

11



induced under p after action a and any signal in £. Set W = = x Y, and for each p € ©, let

p° be the unique probability measure over W that satisfies

P’ (&) = C&)Puig (y) VEEETyeY.

For every n € (0, 1), let
fo = (L=m)p™ +np”.

Linearity of H in its first argument implies that for every n € (0, 1),

g ~O

p € argmin H(f,,p°) = p° = p°.
ped®

Let g be defined as in the main text with W replacing Y. By the same argument, we

still have

29 (1 —n)p*® +np°,¢) = 2 (c)*.

For every t € N, let n, = 2t~2. If the empirical frequency is f,, after ¢ periods, and only
strategy o has been used, then from Lemma 8 and part (ii) of Assumption , there exists

g>0

Lt ({p €0O:Vse S7 Vy € Suppp:(s),y |pU(s),s<y) - ﬁo(s),s(yﬂ < 8})

1 - Mt <{p €0:Vse Sa vy € Suppp:(s)ﬁ’ ’pcr(s),S(y) _ﬁo(s),S(y)’ < 5})
i ({p € ©: Yw € supp p*’, [p** (w) — p7(w)| < €})
1 — iy ({p € ©: Yw € supp p*?, |p**(w) — p7(w)| < €})

2 2
> o ({p € O: Yw e supp p*, [p** (w) — p° (w)| < & I }) exp (tntsQ) >0 <52 ‘tl) exp (t%52> .
gtz gtz

By Lemma 7 there exists a K,K' > 0 such that if the empirical frequency is f; after ¢
periods and || f,, — fil| < |[p” = p**[[t2 /K’ then

it <{p €©: Vs e S, Vy €supppy ) [Po(s)s(¥) = Pos),s ()| < €}>

N 2 N
> (K52 1) exp (Kt%52> .
7

1- Mt ({p €0O:Vse Sv Vy € Suppp:(5)757 |p0(s),s(y> - ﬁa(s),s(y” < 8}

Fix an outcome w® € supp p*?, and let f; be the empirical frequency of the other | supp p*7|—1

outcomes in the support of p*?. Denote by p*?t the true probabilities of the same | supp p*7|—

12



1 outcomes.

An argument that mimics the proof of Claim 2 shows that f; -t — p*t is a | supp p*7| — 1
dimensional random walk with nonsingular covariance matrix ¥, ,, for the increments.

By the Central Limit Theorem (f; — p*?)+/t converges to a Normal random variable with
mean 0 and covariance matrix X, .. Let F} = B||ﬁafi;k{awx' (p*g + \/% (p° — p*")). We have
that

Plfie ] =P [ﬂ(ft — ") € Bjpo—proyyxr (P7 — p*")] :

Taking the limit ¢ — oo yields that
tlinoloP [ft € Ft] =P [Z € BHﬁc;_p*aH/K/ (ﬁa — p*o)]

where Z is a random variable that is Normally distributed with mean 0 and covariance
matrix ¥,,. Consequently, if we denote as £, the event that f, € Fj, it follows that
Yr P[E,;] = . Moreover,

t t 1 t t 1 t t
= P[E, and E, s> > _PE,
lim inf 2s=1 Z’"t:l PLE, ar;d 2 — liminf £ ZS:llz”;l [ ar21 ] < lim inf 2 1 s_t1 21 Pl . |
o (X PLED) o (7 2 PLE]) e (12 PLE)
= liminf % Zi:l P [ET] . 1 _ 1

— 2 ~ _ °
oo (AN PR el PIE] p [Z € Bjjpr —pro ||k (P7 — p*")]

It thus follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise
2.3.20 in Durrett (2008)) that

> P [Z S BHﬁa,p*aH/K/ (ﬁa — p*a)] > 0.

The event (,—, i, Es is invariant under finite permutations of the increments
(1wt:w1, ey Ly lsuppptoi—1 — p*") with different time indices, so the Hewitt-Savage zero-one
law (see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event
ﬂfoz 1 Uzozt E, must equal zero or one. As the probability is strictly positive it must equal
one.

This implies that f; € F; infinitely often with probability 1. It follows that the agent will

eventually want to take an action different from o:

Pla; # o (s¢) for some t] = 1.

13



Thus the strategy can not converge to o with positive probability. [ ]

Theorem 2'. Suppose o is a uniformly strict BN-E. Then there is a belief v € A (©) such

that for every k € (0,1) there exists an € > 0 such that starting from any prior belief in
BE/ (l/) N

t

i P T yT" . sT = 2 - - .
P tILHOé P 2 Lraryrsrty=a(s,) = 1 — K| >1—kK

Proof. Consider a uniformly strict BN-E ¢, an optimal policy 7 and « € (0,1). By Lemma
12, for every X € (0,1) there exists an ¢ such that if #(©°(¢)) = 1 — ¢, then

IC({seS:m(vs)=a})—C({seS:0o(s)=a})| <\

For every [ € (0, 1), define the function f;, : P x P — R is defined by

fi@ 5 = 3 o) (p”’(?”)l.

/
= Py (y)

By Lemma 13, since @5(0) is compact by Lemma 10, and since f; is lower semicontinuous,
there exists ¢ € (0,&) such that 5 € ©(0) implies that f;(o,7,p') > 1 for all p’ with
P ¢ ©°(0). Let K = (é)l Then

1—v ((;)6(0)) l 1—v (@5(0)) c
v (é#a)) v (@5(0)> l—¢

= V(é5(0)> >1—¢ = 7(v) =a.

By Lemma 10, ©¢(0) is compact, so it has a finite cover {p € © : [|¢% — pa|| < €}, where
q e @6(0).
Let & be such that v <é5(0)> > 1 — & implies that

l

1-v(00)) _Ka-n

<

v <é€(0')> n

Then if the agent starts with a belief vy with 1o(©(c)) > &, ¢ is the unique best reply ;.

Moreover, by Lemma 14, Dubins’ upcrossing inequality, and the union bound, there is a

14



probability (1 — k) that the positive supermartingale

l

11—y (é)a(a))
ACIG)

never rises above K, and with probabilty (1 — k)

C{seS:m(u,s) =a}) —C({seS:o(s)=ah)[ <A

for all t € N. Then the statement follows from the Hewitt-Savage 0 — 1 Law (see, e.g.,
Theorem 8.4.6 in Dudley (2018)). u

Theorem 4'. If signals are finite and subjectively uninformative and outcomes are subjec-

tively exogenous, then any uniformly strict BN-E o s positively attractive.

Proof. Under the assumptions of the theorem, © € A (A (Y')). Consider a uniformly strict
BN-E ¢. By an obvious extension of Lemma 1 to the case with signals, A (@(0)) is compact.
Similarly, since S is compact and o is the unique optimal best reply strategy at the beliefs
in A <é(0)), Lemma 3 can be extended to guarantee that there exists € > 0 such that if

v (cl(Q: (po))) = (1 —¢)

then the myopic best reply to v is . By the same argument of the proof of Theorem 2, there
exists an [ € (0,1) and &’ € (0, ), such that if p € Q. (p,) and p’ ¢ Q¢ (py) then fi(p,p') = 1.
Using the Maximum Theorem again we can find a sequence of outcome realizations y*

such that if p; is the corresponding empirical frequency, it is sufficiently close to p, to have

Qz/2 (Pr) S Q: (Do) -

Therefore by Proposition 1, there exists a time period T' such that for all ¢ > T, if the
empirical frequency py = p;, the agent assigns a relative probability higher than K to an ¢
Ball around p. That is,

pr(Qe (Po))  _  1w(Qepa (Po)) - 2(1 —£)
1- Mt’(QE’ (130» - I Mt’(Qe’ (po)) 3 .

Notice that replicating the outcome realizations 3 sufficiently many time yields a sequence
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y" such that the empirical frequency py = p, and ¢ > T. Since supp Py = Y for all

(a,s) € A x S, this sequence of outcomes has positive probability, and after it occurs the

agent plays ¢. By Lemma 4 and the law of iterated expectations, conditional on a being

N
played (%) is a positive supermartingale.

Then, by Dubins’ upcrossing inequality, there is positive probability that this positive
supermartingale never rises above ﬁ,
below (1 — &) and therefore o is always played after the sequence 3. ]

that in turns imply that py(Q /2 (D)) never goes

Corollary 4. Let a be a strongly uniform mized BN-E in a problem (A,Y,p* u,0). There
is a sequence of strategies (0p)nen such that each oy, is a uniformly stable BN-E of a (1/n)
perturbation of (A,Y,p*,u,0) and

lim (({s: o,(s) =a}) = ala) Vae A.

n—0o0

If (A, Y, p*,u,©) is subjectively exzogenous and p* has full support, the oy, can be chosen to

be also positively attractive.

Proof. Let a be a mixed BN-E in a problem (A, Y, p*, u, ©). For every n € N, let S = supp «,
((a) = a(a), and u(a,y,s) = u(a,y) + %lazs, and let §*,© be as given in part (ii) and (iii)
of the definition of a perturbed environment.

Consider the strategy o(a) = a. We have that for every p € ©

D H (Pre)0 ®(D)oiss) = X0 (@) P () log pa (y)

seS acA

by (i) and (iii) of the definition of a perturbed problem. Therefore, O(c) = ®(O (a)). Fix

a signal s € S, and consider any action a’ # o(s). Since « is a strongly uniform BN-E
Ep, () [ulo(s),y)] = By, [uld’,y)]  ¥peO(a)
and by definition of «
Ep, o) [W(o(s),y,5)] = E,, [a(a’,y,s)] +1/n  VpeO(a)
proving that o is a strictly uniform BN-E. By construction
C({s:on(s) =a}) =ala) Yace A.
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Then the result follows by Theorems 2" and 4’. [ ]

B.4 Additional Examples

Example 9 (A uniformly strict BN-E that isn’t positively attractive). In this example the
prior has support {p', p* p3}. Here a = 3 is the only BN-E and is uniformly strict. However,
if the agent takes an action a € {1,2} then the subjective likelihood assigned to p* goes down

and thus play never converges to a = 3 if the prior assigns sufficiently low probability to p>.

The details are in the following table:

a a=1 a=2 a=3 .
H(pa7 ) m
y| 1 1 3 1 3 A (5(.))
ul| 1 0 0 0 1 a=1 a=2 a=3
p*101 09 0 (09 01 0 |01 01 08
pt 105 03 02]05 03 0205 03 02 1.15 0.74 2.03 a=
p2 03 05 02103 05 02103 05 021 0.74 1.15 2.03 a =
p3 0.1 0.1 0801 01 08]0.1 01 0.8 2.3 2.3 0.64 a =

Example 10 (Signal Neglect). A seller in a physical marketplace can hire one shop assistant
to work for the day ag or not hire anyone ay. The outcome y € Y 1is the percentage of
consumers in the marketplace that buy the good, with two possibilities, y, > y;.

Before choosing whether to hire, the agent observes the number of people at the market
that day s € {sp,si}, with s, > s;. The payoff function is u(a,y,s) = sy — lo—a,. The
seller realizes that the signal is payoff relevant, but falsely believes that it does not provide
any information about the outcome. The agent is uncertain about how useful it is to hire a
shop assistant, and in particular they do not know whether hiring is ineffective, i.e., for all
aceAyeY, pa(y) = 1/2, or if it is not, i.c., p,, (yu) = 3/4 and p),, (yu) = 1/4.

The fraction of consumers who buy varies with the signal: On days with fewer consumers,

the ones that actually come to the market are more likely to purchase the good. Formally:

Pepan W) =1/2, 0l anm) = 1/4, pl, o, () = 3/4, 05, on(yn) = 1/2.

Let W <1< W, so that it is not objectively optimal to hire a shop assistant

after sp, and it is objectively optimal to hire an assistant after sg. The following argument
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shows that the only BN-E is that the shop assistant is never hired: If the agent followed
the objectively optimal strategy, they would observe the same frequency of sales in days with
s = sy and with the shop assistant hired as in days with s = s; and without the shop
assistant: pi. .. (yn) = 1/2 = pi . (yu). This holds because the shop assistant offsets
the lower per-customer demand on days with high attendance. However, this observation
supports the belief that the shop assistant is useless. Since the myopic best reply to 6, is to
never hire the shop assistant, by Theorem 1’ this suboptimal action is the only possible limit

action.

Example 11 (A Uniform BN-E that is not Stable). There are two actions, a and b, two
outcomes, 0 and 1, and two action-dependent outcome distributions, © = {p,p'}. The utility
of the agent is equal to the outcome, i.e., u(a,y) =y, and p, (1) = p,, (1) = pi(1) = %,
po(1) = 2 <p,(1) = p; (1) = 3. Here, a is a myopic best reply to the belief &,, so it is a
BN-E. Moreover, there is a unique class of observationally equivalent outcome distributions
under a: &, (p) = ©, so a is a uniform BN-E. However, it is not stable: under every optimal
policy of the agent and starting from every belief that assigns positive probability to p’, the

agent will play action b forever with probability 1.

18



	Supplement to ``Limit Points of Endogenous Misspecified Learning'' 
	Omitted Lemmas and Examples
	The Role of Assumption 1(i)
	Extensions to Signals
	Additional Examples


