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Supporting Information Text10

1. Monte Carlo Examples11

Table 1 reports Monte Carlo mean and standard deviation for the estimator δ̂ of the drift parameter δ0, where the12

true boundary is constant at −1 and 1, δ0 ∈ {.25, .5, 1.0}, pK(G) = (1, G,G2, G3)′, 1000 Monte Carlo replications,13

and sample sizes n = 100 and n = 1000. The code for these results and for those in the Appendix is available at14

https://www.dropbox.com/sh/hopgdabw9dohiw4/AADtxHeGkwIyzSOFGsIWP7-oa?dl=0.15

Table 1: Mean and Std Dev of δ̂

δ = .25 δ = .50 δ = 1.0

n = 100 .31
(.10)

.55
(.10)

1.07
(.14)

n = 1000 .26
(.03)

.50
(.03)

1.02
(.04)

16

Here we see that δ̂ is slightly upward biased for n = 100 but the bias disappears for n = 1000. The drift parameter17

is quite precisely estimated for n = 1000. We expect that this small variance results from averaging over observed18

τi values. The delta method implies that averaging lowers the sample variance to be equal to the estimator of the19

unconditional log odds, which is smaller than the variance of the log odds for the regression.20

Table 2 gives additional Monte Carlo results for δ̂ when p̂(t) is piecewise linear in G(τ), as in Table 3 of the21

Appendix, the true boundary is constant at −1 and 1, δ0 = .5, n = 1000, and there are 1000 Monte Carlo replications.22

It also reports the median (Med) and median absolute deviation (MED) of δ̂ to avoid problems from the possible23

nonexistence of the population mean and standard deviation; these give about the same results.24

Table 2: Additional Monte Carlo Results for δ̂

Boundary Estimate Mean Med SD MAD
Constant .500 .500 033 .026

Linear .501 .501 .033 .026
1 Slope Change .502 .502 .033 .026
2 Slope Changes .504 .503 .033 .026

25

The bias is slightly larger for richer p̂(t) specifications but still less than one percent of δ0 = .5, and overall the26

specification of p̂(t) has little effect on the properties of δ̂.27

The large size of the quantile bands for the boundary estimator in Figure 2 are consistent with delta method28

calculations. When estimating a constant boundary the numerator and denominator of the boundary estimator b̂(t)29

are highly positively correlated leading to a precise boundary estimator. When the boundary is allowed to depend30

on t the variance of the slope is much larger than the variance of a constant when t is far from the middle of the31

distribution of τ. Furthermore, the variance of the slope is magnified by the fact that the boundary depends on a32

log odds ratio. Note that ∂ ln(p/[1− p])/∂p = 1/[p(1− p)] ≥ 4 so that the standard deviation of a log odds ratio is33

at least 4 times the standard deviation of an estimator of p. If δ = .5, n = 1000, the true probability is constant, is34

estimated by a linear regression of γi on G(τi), and G(τi) is approximately uniformly distributed as in the simulation,35

then in the tails of the distribution of τi the boundary estimator has standard deviation of about
√

12/1000 ≈ .11,36

with a corresponding distance between upper and lower quantiles of about .44, consistent with Figure 2. Thus we see37

that both Monte Carlo results and delta method calculations deliver the conclusion that the boundary estimator is38

quite variable. We do not think this results from the choice of the least squares estimator of the probability, as other39

estimators would have similar variances. The high variance of the boundary seems to come instead from the fact it40

depends directly on a log odds ratio, which is quite variable.41

2. Proofs from Section 442

A. Proof of Lemma 1. Dividing Eq. (1) in the paper by α and observing that inf{t ≥ 0 : |Zt| ≥ b(t)} = inf{t ≥ 0 :43

|Zt
α
| ≥ b(t)

α
} yields that p∗

(
δ(x, y), b, 0, α

)
= p∗

(
1
α
δ(x, y), b

α
, 0, 1

)
and thus the result. Q.E.D.44

B. Proof of Theorem 1. As stated in the text, we restrict attention to cases where F c(0) = 0, F c admits a density and45

is strictly increasing with limt→∞ F
c(t) = 10 < pc(t) < 1 for all t. We call (pc, F c) a choice process.46

Consider a continuous and eventually bounded boundary b : R+ → R+, i.e. there exists T, b̄ such that for all t ≥ T47

the boundary satisfies b(t) ≤ b̄. Let τ = inf{t : |Zt| ≥ b(t)} and48

Zt = δt+Bt . [1]49
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We denote by F (t) = F ∗(t, δ, b) the distribution of stopping times τ ∼ F and assume throughout that F admits a50

positive density f > 0. We suppose that there exists a regular conditional distribution (Pr ·τ = t)t≥0. We denote51

p(t) = PrZτ = b(τ)τ = t.52

Lemma 2 We have that p(t) ∈ (0, 1) for all t > 0 and53

2 δ b(t) = log
(

p(t)
1− p(t)

)
. [2]54

Proof : Let Pδ be the probability measure under which Z is a Brownian motion with drift δ. Girsanov’s Theorem
implies that Wt = Bt+ 2δt is a Brownian motion under the probability measure P−δ that has density Lt = exp(−2δZt)
with respect to the original probability measure Pδ under which B is a Brownian motion (1, Theorem 5.1 in Chapter
3.5). We thus have that

Pδ [τ ∈ (t− ε, t+ ε) and Zτ = b(τ)] = Eδ
[
1τ∈(t−ε,t+ε) and Zτ=b(τ)

]
= Eδ

[
Lt e

2δZt1τ∈(t−ε,t+ε) and Zτ=b(τ)
]

= E−δ
[
e2δZt1τ∈(t−ε,t+ε) and Zτ=b(τ)

]
= Eδ

[
e2δZt1τ∈(t−ε,t+ε) and Zτ=−b(τ)

]
,

where the last step follows by considering the process −Zt. As p(t) is well defined in the support of F

p(t) = lim
ε→0

Pδ [τ ∈ (t− ε, t+ ε) and Zτ = b(τ)]
Pδ[τ ∈ (t− ε, t+ ε)] = lim

ε→0

Eδ
[
e2δZt1τ∈(t−ε,t+ε) and Zτ=−b(τ)

]
Pδ[τ ∈ (t− ε, t+ ε)]

≤ lim
ε→0

(
maxs∈(t−ε,t+ε) e

2δb(s))Eδ [1τ∈(t−ε,t+ε) and Zτ=−b(τ)
]

Pδ[τ ∈ (t− ε, t+ ε)]

= e2δb(t) lim
ε→0

Eδ
[
1τ∈(t−ε,t+ε) and Zτ=−b(τ)

]
Pδ[τ ∈ (t− ε, t+ ε)] = e2δb(t)(1− p(t)) .

By a symmetric argument we have that p(t) ≥ e2δb(t)(1− p(t)) and thus55

p(t) = e2δb(t)(1− p(t)) .56

Note that this equation can not be satisfied if p(t) ∈ {0, 1}. Dividing by 1− p(t) and taking the logarithm yields the57

result. Q.E.D.58

Lemma 3 We have that59

2δ2 =

∫∞
0 [2 p(t)− 1] log

(
p(t)

1−p(t)

)
dF (t)∫∞

0 t dF (t)
.60

Proof : By the definition of τ and the continuity of b we have almost surely61

Zτ = sgn(Zτ )b(τ) . [3]62

By Eq. (1), we have that Zτ = δτ + Bτ . Combining these two equations and taking expectations, it follows from
Doob’s optional sampling theorem that for every n ≥ 0

E
[
Zmin{τ,n}

]
= E

[
δmin{τ, n}+ Bmin{τ,n}

]
= E [δmin{τ, n}] . [4]

Recall that we require that b is eventually bounded, i.e. there exists T, b̄ such that b(t) ≤ b̄ for all t ≥ T . For t ≤ T we63

can bound |Zt| by64

|Zt| ≤ |δ|T + max
s∈[0,T ]

|Bs| .65

We can thus bound |Zτ |66

|Zτ | ≤ max{|δ|T + max
s∈[0,T ]

|Bs|, b̄} ≤ |δ|T + max
s∈[0,T ]

|Bs|+ b̄ =: C .67

As the quadratic variation of the Brownian motion is given by [B]t = t, the Burkholder-Davis-Gundi inequality68

(Theorem 4.1 in Chapter IV 2) implies that E
[
maxs∈[0,T ] |Bs|

]
≤ c
√
T <∞ and thus that the random variable C has69

finite expectation70

E
[
|δ|T + max

s∈[0,T ]
|Bs|+ b̄

]
= |δ|T + b̄+ E

[
max
s∈[0,T ]

|Bs|
]
<∞ .71

3



We can thus apply the dominated convergence theorem to get that

E [Zτ ] = E
[

lim
n→∞

Zmin{τ,n}

]
= lim
n→∞

E
[
Zmin{τ,n}

]
= lim
n→∞

E [δmin{τ, n}] = δ lim
n→∞

E [min{τ, n}] . [5]

We note that

P [τ > t] ≤ P [|Zt| < b(t)] ≤ P
[
|Zt| < b̄

]
= P

[
−b̄ < Zt < b̄

]
= P

[
−b̄ < δt+Bt < b̄

]
= Φ

(
b̄− δt√

t

)
− Φ

(
−b̄− δt√

t

)
.

Taking the limit t → ∞ yields limt→∞ P [τ > t] = 0 and τ < ∞ almost surely. As τ < ∞ a.s. we have that72

τ = limn→∞min{τ, n} a.s. and the monotone convergence theorem implies that73

E[τ ] = E
[

lim
n→∞

min{τ, n}
]

= lim
n→∞

E[min{τ, n}] .74

Combining the above equation with Eq. (3) and Eq. (5) yields75

δ E [τ ] = E [sgn(Zτ )b(τ)] [6]76

We can plug Eq. (2) into Eq. (6) and get that

δ E [τ ] = E
[
sgn(Zτ ) 1

2δ log
(

p(τ)
1− p(τ)

)]
Dividing by E [τ ] and multiplying by 2δ yields

2δ2 =
E
[
sgn(Zτ ) log

(
px(τ)

1−p(τ)

)]
E [τ ] =

E
[
[1Zτ>0 − 1Zτ<0] log

(
px(τ)

1−p(τ)

)]
E [τ ]

=
E
[
E
[
[1Zτ>0 − 1Zτ<0] log

(
p(t)

1−p(t)

)
| τ
]]

∫∞
0 t dF (t)

=

∫∞
0 E

[
[1Zτ>0 − 1Zτ<0] log

(
p(t)

1−p(t)

)
| τ = t

]
dF (t)∫∞

0 t dF (t)

=

∫∞
0 [p(t)− (1− p)(t)] log

(
p(t)

1−p(t)

)
dF (t)∫∞

0 t dF (t)
=

∫∞
0 [2 p(t)− 1] log

(
p(t)

1−p(t)

)
dF (t)∫∞

0 t dF (t)
.

Q.E.D.77

Recall that we call a function b : R+ → R a valid boundary if b(t) ≥ 0 for all t, b is continuous, and b it is eventually78

bounded. We defined the revealed drift δ̃c for a choice process (pc, F c) by79

δ̃c =

√
Īc

2T̄ c
=

√√√√∫∞0 [2 p(t)− 1] log
(

p(t)
1−p(t)

)
dF (t)

2
∫∞

0 t dF (t)
[7]80

and the revealed boundary b̃c by81

b̃c(t) = ln(pc(t))− ln(1− pc(t))
2δ̃c

. [8]82

Theorem 1 For c with δ̃c 6= 0 the choice process (pc, F c) admits a DDM representation if and only if b̃c is a valid83

boundary, and for all t ≥ 084

F c(t) = F ∗(t, δ̃c, b̃c).85

Moreover, if such a representation exists, it is unique (up to the choice of α) and given by (δ̃c, b̃c).86

Proof : Lemmas 2 and 3 established that (δ̃c, b̃c) is the unique candidate for a DDM representation. To show
sufficiency, consider the DDM model with parameters (δ̃c, b̃c). By the assumption of the Theorem b̃c is, non-negative,
eventually bounded, and continuous and hence a valid boundary. It follows from the assumption of the Theorem that
F c equals the distribution over stopping times in the DDM model with boundary b̃c and drift δc. Finally, we will
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show that this DDM model also generates the correct conditional stopping probabilities pc. By Lemma 2 and Eq. (7)
and Eq. (8), the conditional probability of stopping in the DDM model p∗(t, δ̃c, b̃c) satisfies for each t ≥ 0

p∗(t, δ̃c, b̃c)
1− p∗(t, δ̃c, b̃c)

= exp
(
2δ̃c b̃c(t)

)
= pc(t)

1− pc(t) .

This shows that (δ̃c, b̃c) is a DDM representation of (pc, F c) and completes the proof. Q.E.D.87

3. Construction of V̂88

To construct V̂ we use the fact that there are three asymptotically independent sources of variation in m̄− m̂. These
sources are the variation in τi, the variation in β̂, and the variation from simulation. The variation in τi affects both m̄
and δ̂ and the variation in δ̂ has an effect through m̂. Generally m̂ will not be differentiable in δ̂ so we use a difference
quotient to estimate the derivative of m̂ with respect to δ. To describe how this source of variation can be estimated let

τs(δ, β) = inf{t ≥ 0 : |δt+Bst | ≥
1
δ

ln
[

qK(G(t))′β
1− qK(G(t))′β

]
}, m̂(δ, β) = 1

S

S∑
s=1

mJ(τs(δ, β)).

denote one simulation τs(δ, β) of τs when δ is the true drift and qK(G(t))′β the true p(t) = pxy(t) and m̂(δ, β) denote89

the average over S simulations. Let90

M̂δ = m̂(δ̂ + ∆, β̂)− m̂(δ̂ −∆, β̂)
2∆

be the difference quotient that serves as an estimator of the derivative of the the expectation of the model moments
with respect to the drift. Then

ψ̂i1 = mJ(τi)− m̄− M̂δ
1

2δ̂τ̄
[Î(τi)− Ī − δ̂2{τi − τ̄}]

will estimate the influence of τi on the difference of moments coming from the effect of τi on the sample moments as
well as on δ̂. An estimator of the variance of the moment differences due to variation in τi is then

V̂1 = 1
n

n∑
i=1

ψ̂i1ψ̂
′
i1.

To estimate the component of the variance due to β̂ we use

M̂k = m̂(δ̂, β̂ + ek∆)− m̂(δ̂, β̂ − ek∆)
2∆ , M̂β = [M̂1, ..., M̂K ].

to estimate the derivative of E[mJ(τs(δ, β))] with respect to β at δ̂ and β̂, where ek is the kth unit vector. Let91

p̂i = p̂(τi) and d(p) = d ln[p/(1− p)]/dp = p−1(1− p)−1. Accounting also for the effect of β on δ̂, an estimator of the92

Jacobian of E[mJ(τs(δ, β))] with respect to β is93

D̂β = M̂δ
1

2δ̂τ̄n

n∑
i=1

d(p̂i)qKi ′ + M̂β .

The variation in m̄− m̂ due to β̂ can then be estimated by

V̂2 = D̂βΣ̂−1

[
1
n

n∑
i=1

qKi q
K′
i (γi − p̂i)2

]
Σ̂−1D̂′β , Σ̂ = 1

n

n∑
i=1

qKi q
K′
i .

This is a delta method estimator of the asymptotic variance of E[mJ(τs(δ, β))] due to the β̂ in the nonparametric94

estimator p̂(t). As in (3), it is formed by treating m̂ as depending on the vector of parameters β̂ and applying the95

delta method as if K were fixed and not growing with the sample size.96

The variation due to simulation is easy to estimate as V̂3 = (n/S2)
∑S

s=1 [mJ(τ̂s)− m̂] [mJ(τ̂s)− m̂]′ . In the theory97

we assume that the number of simulations is large enough so that we can replace this V̂3 by zero without affecting the98

results. Computing V̂3 in practice may still be a good idea check whether the number of simulations is large enough99

to make V̂3 negligible.100
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The estimators of the variance from independent sources of variation can then be combined into an asymptotic
variance estimator for

√
n[m̄− m̂S ] as

V̂ = V̂1 + V̂2 + V̂3.

We give conditions in Theorem 3 sufficient for the chi-squared approximation to the distribution of Â to be correct for101

n, J , and S growing and ∆ shrinking in specific ways.102

4. Lemmas for Theorem 3103

We will use two Lemmas on the asymptotic behavior of quadratic forms to prove the properties of the test statistic.
For the first Lemma let hi be a J × 1 vector of random variables with E [hi] = 0 and h1, . . . , hn i.i.d. Let

Ω = E
[
hih
′
i

]
, h̄ = 1

n

∑
i

hi.

Consider ĥ that is approximately equal to h̄ in the sense that ĥ− h̄ is small. Also consider an estimator Ω̂ of Ω and104

let ‖A‖ =
√
tr (A′A) be the L2 norm on matrices.105

Lemma 4: If i) λmin (Ω) ≥ c > 0, ii) J−1/2√ntr (Ω)1/2 ∥∥ĥ− h̄∥∥ p−→ 0, iii) J−1/2tr (Ω)
∥∥Ω̂− Ω

∥∥ p−→ 0, and iv)
E
[
(h′ihi)

2]
/nJ −→ 0 then for the 1− α quantile c (α, J) of a chi-square distribution with J degrees of freedom

Pr
(
nĥ′Ω̂−1ĥ ≥ c (α, J)

)
−→ α.

Proof : By i) we have λmin (Ω) ≥ c, so that J−1/2tr (Ω)1/2 ≥ c. Then iii) implies
∥∥Ω̂− Ω

∥∥ p−→ 0 and hence w.p.a.1,

λmin
(
Ω̂
)
≥ c.

Since this event occurs w.p.a.1 we can assume it is true henceforth. Define

T1 = n′ĥ
(
Ω̂−1 − Ω−1) ĥ, T2 = n

[
ĥ′Ω−1ĥ− h̄′Ω−1h̄

]
Note that E[n

∥∥h̄∥∥2] = nE[h̄′h̄] = tr(Ω).Then by the Markov inequality we have

√
n
∥∥h̄∥∥ = Op(tr(Ω)1/2).

Also by ii)
√
n
∥∥ĥ− h̄∥∥ ≤ CJ−1/2tr(Ω)1/2√n

∥∥ĥ− h̄∥∥ p−→ 0. Then by the triangle inequality

√
n
∥∥ĥ∥∥ ≤ √n∥∥h̄∥∥+

√
n
∥∥ĥ− h̄∥∥ = Op(tr(Ω)1/2).

It therefore follows that106

|T1| =
∣∣nĥ′Ω̂−1 (Ω− Ω̂

)
Ω−1ĥ

∣∣ ≤ ∥∥√nĥ′Ω̂−1∥∥∥∥Ω̂− Ω
∥∥∥∥√nĥ′Ω−1∥∥ ≤ cn∥∥ĥ∥∥2 ∥∥Ω̂− Ω

∥∥107

= Op(tr(Ω))
∥∥Ω̂− Ω

∥∥ = op(J1/2).108

Similarly we have109

|T2| = n

∣∣∣(ĥ− h̄)′ Ω−1ĥ+ h̄′Ω−1 (ĥ− h̄)∣∣∣ ≤ n(
∥∥ĥ− h̄∥∥ (

∥∥ĥ∥∥+
∥∥h̄∥∥))110

= Op(tr(Ω)1/2√n
∥∥ĥ− h̄∥∥) = op(J1/2).111

It then follows by the triangle inequality that

n′ĥΩ̂−1ĥ− nh̄Ω−1h̄ = T1 + T2 = op(J1/2).

In addition, by iv) and Lemma A.15 of (4),

nh̄′Ω−1h̄− J√
2J

d−→ N (0, 1) .
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Also, by standard results for the chi-squared distribution, as J →∞ we have (c (α, J)− J) /
√

2J converges to the
1− α quantile of a N (0, 1). Hence

Pr
(
nh̄′Ω−1h̄ ≥ c (α, J)

)
= Pr

(
nh̄′Ω−1h̄− J√

2J
≥ c (α, J)− J√

2J

)
−→ α.

The conclusion then follows by the Slutzky Lemma. Q.E.D.112

The next Lemma gives a rate of growth for the number of simulation draws to ensure that the limiting distribution113

of the test statistic based on m̂S is the same as that based on m̂ =
∫
m
(
τs
(
δ̂, b̂
))
dF (s) .114

Let hs be simulated moments. Then we have:115

Lemma 5: If max
1≤j≤J

sup
τ>0
|mjJ (τ)| ≤ C

√
J and nJtr (Ω) /S −→ 0 then

J−1/2√ntr (Ω)1/2 ‖m̂S − m̂‖
p−→ 0,

Proof: Let Z = ((γ1, τ1) , . . . , (γn, τn)) denote the data. Note that by definition, E[m̂S |Z] = m̂. Then for any
constant `

limProb (‖m̂S − m̂‖ > `) = E [Pr (‖m̂S − m̂‖ > ` | Z)] .
By the Markov inequality

Pr (‖m̂S − m̂‖ > ` | Z) = Pr
(
‖m̂S − m̂‖2 > `2 | Z

)
≤ E

[
J∑
j=1

(m̂Sj − m̂j)2 | Z

]
/`2

≤ 1
S

J∑
j=1

E
[
m̂j

(
τs
(
δ̂, β̂
))2 | Z] /`2 ≤ C2J2

S`2
.

By iterated expectations we then have

Pr (‖m̂S − m̂‖ > `) ≤ C2J2

S`2
.

Let ` = J1/2tr (Ω)−1/2 n−1/2ε. Then

Pr
(
J−1/2tr (Ω)1/2√n ‖m̂s − m̂‖ ≥ ε

)
= Pr (‖m̂s − m̂‖ ≥ `) ≤ C2J2 [SJtr (Ω)−1 n−1ε2]−1

= J2tr (Ω)n
SJε2 = nJtr (Ω)

S

1
ε2 −→ 0.

Q.E.D.116

We next give a uniform convergence rate for p̂(t). For notational simplicity we let p(t) := pxy(t).117

Lemma 6: If Assumptions 2 and 3 are satisfied then

sup
t

|p̂(t)− p(t)| = Op(

√
K ln(K)

n
+K−s).

Proof: Follows from (5), Theorem 4.3 and Comments 4.5 and 4.6. Q.E.D.118

We next give an asymptotic expansion for δ̂. Define119

I (p) = p ln
(

p

1− p

)
+ (1− p) ln

(
1− p
p

)
= (1− 2p) ln

(
1− p
p

)
,120

ψδi = 1
2E[τi]δ

{
I(pi)− I0 + Ip(pi)(γi − pi)− δ2(τi − E[τi])

}
.121

Lemma 7: If Assumptions 2 and 3 are satisfied and
√
nε2

pn −→ 0 then

δ̂ − δ = 1
n

∑
i

ψδi +Op(ε2
pn) = 1

n

∑
i

ψδi + op(1/
√
n) = Op(1/

√
n).
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Proof: Equation (4) and Assumption 3 imply that p(t) is bounded away from zero and one. It then follows from
Lemma 6 that with probability approaching one (w.p.a.1) there is ε > 0 with ε ≤ p̂(t) ≤ 1− ε. It is straightforward to
check that I(p) is twice continuously differentiable in p ∈ (0, 1) with first and second deriatives that are bounded
when p is bounded away from zero and one. It then follows by an expansion and Lemma 6 that

I (p̂i) = I (pi) + Ip(pi) (p̂i − pi) + R̂i,
∣∣R̂i∣∣ ≤ C|p̂i − pi|2.

Therefore we have
Î = 1

n

∑
i

I (p̂i) = 1
n

∑
i

[I (pi) + Ip (pi) (p̂i − pi)] + R̂, R̂ = Op(ε2
pn).

Define122

Γ = (γ1, ..., γn)′, P = (p1, ..., pn)′, Q = [qK(G1), ..., qK(Gn)]′, Ip = (Ip(p1), ..., Ip(pn)),123

H = I −Q(Q′Q)−Q.124

Note that derivatives of Ip(p) to any order are bounded on [ε, 1− ε], so that by the fact that the approximation rate
of a general s differentiable function by a b-spline of at least order s− 1 is K−s we have

1
n
P ′HP = O(K−2s), 1

n
I ′pHIp = O(K−2s).

Note also that
1
n

∑
i

Ip (pi) (p̂i − pi)−
1
n

∑
i

Ip (pi) (γi − pi) = − 1
n
I ′pHΓ

Furthermore,

E[− 1
n
I ′pHΓ|τ1, ..., τn] = − 1

n
I ′pHP = O(K−2s), V ar(− 1

n
I ′pHΓ|τ1, ..., τn) ≤ 1

n2 I
′
pHIp = O(K

−2s

n
).

Then by 2K−s/
√
n ≤ 1/n+K−2s ≤ ε2

pn it follows that

1
n

∑
i

Ip (pi) (p̂i − pi)−
1
n

∑
i

Ip (pi) (γi − pi) = Op(
K−s√
n

+K−2s) = Op(ε2
pn).

Then by the triangle inequality

Î = 1
n

∑
i

I (p̂i) = 1
n

∑
i

[I (pi) + Ip (pi) (γi − pi)] +Op(ε2
pn).

Note that for δ(I, τ) =
√
I/τ ,

∂δ(I, τ)
∂I

= 1
2δ(I, τ)τ ,

∂δ(I, τ)
∂τ

= −δ(I, τ)
2τ .

The conclusion then follows by the usual delta method argument. Q.E.D.125

Next for any α(τ) define

ψαi = −δ−1{E[α(τi)b(τi)]ψδi + α(τi)
p(τi)[1− p(τi)]

(γi − pi)}.

The next result gives a rate of convergence for the boundary estimator b̂(t) and a uniform expansion for a mean126

square continuous linear functional of b̂(t)127

Lemma 8: If there is a constant C such that α(G−1(g)) is continuously differentiable of order s with
∣∣dα(G−1(g))/dg

∣∣ ≤
C on [0, 1], then supt |b̂(t)− b(t)| = Op(εpn) and∫

α(τ){b̂(τ)− b(τ)}F0(dτ) = 1
n

∑
i

ψαi +Op(ε2
np),

uniformly in α.128
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Proof: Note that for b(δ, p) = δ−1 ln(p/[1− p]),

∂b(δ, p)
∂δ

= −b(δ, p)
δ

,
∂b(δ, p)
∂p

= 1
δp(1− p) .

Then by Lemma 7, a delta method argument similar to that used in the proof of Lemma 7, and δ̂ = δ +Op(1/
√
n) we

have
b̂ (t) = b(t)− b(t) [δ̂ − δ]

δ
+ 1
δp(t)[1− p(t)] [p̂(t)− p(t)] + R̂(t), sup

t

∣∣R̂(t)
∣∣ = Op(ε2

pn).

The first conclusion then follows by b(t) bounded, which implies p(t) is bounded away from zero and one, and by
Lemma 7. To show the second conclusion note that for any bounded a(t) it follows by the proof of Corollary 10 of (6)
that ∫

a(τ)[p̂(τ)− p(τ)]F0(dτ) = 1
n

∑
i

a(τi)[γi − pi] +Op(ε2
pn),

uniformly in a(τ) with uniformly bounded derivatives to order s. Let a(τ) = α(τ)/{δp(t)[1− p(t)]}. By plugging in129

the above expansion for b̂(t) and using boundedness of α(τ) we obtain130 ∫
α(τ){b̂(τ)− b(τ)}F0(dτ)131

= −δ−1{E[α(τi)b(τi)](δ̂ − δ) +
∫
a(τ)[p̂(τ)− p(τ)]F0(dτ) +

∫
α(τ)R̂(τ)F0(dτ).132

= 1
n

∑
i

ψαi +Op(ε2
np) +

∫
α(τ)R̂(τ)F0(dτ) = 1

n

∑
i

ψαi +Op(ε2
np).Q.E.D.133

5. Proof of Theorem 3134

We first show that conditions i)-iv) of Lemma 4 are satisfied. Let135

hji = mji − E[mji] +Mδjψ
τ
i + αj0(τi)(γi − pi),136

ψτi = 1
2δE[τi]

{I(pi)− I0 − δ2(τi − E[τi])},137

Mδj =
√
J(Dδ

0τj+1 −D
δ
0τj − δ

−1E[{α0,τj+1 (τi)− α0,τj (τi)}b(τi)])138

αj0(τi) = Mδj
1

2E[τi]δ
Ip(pi) +

√
J [α0,τj+1 (τi)− α0,τj (τi)]

δpi[1− pi]
.139

Also let140

hi = (hi1, ..., hiJ)′ = mi − E[mi] +Mδψ
τ
i + α0(τi)(γi − pi),141

Mδ = (Mδ1, ...,MδJ)′, α0(τ) = (α10(τ), ..., αJ0(τ))′,142

Ω = E[hih′i], V1 = V ar(mi +Mδψ
τ
i ), V2 = E[α0(τi)α0(τi)′V ar(γi|τi)].143

Note that Ω = V1 + V2 by E[γi|τi] = p(τi).144

To show condition i) of Lemma 4 it suffices to show that λmin(V1) ≥ C, which we now proceed to show. Let

m̃i = (
√
J + 1ψτi ,m′i)′.

It follows in a straightforward way from Assumption 5 d) that

λmin(E[m̃im̃
′
i]) ≥ C.

Also, for B = [Mδ, I] we have
V1 = BE[m̃im̃

′
i]B′.

Therefore for any conformable vector λ with λ′λ = 1,

λ′V1λ = λ′BE[m̃im̃
′
i]B′λ

λ′BB′λ
λ′BB′λ ≥ Cλ′BB′λ ≥ Cλmin(BB′) ≥ Cλmin(I) = C.
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We next show that condition ii) of the Lemma 4 is satisfied. Recall that

mjJ(t) =
√
J1(τj,J ≤ t < τj+1,J), (j = 1, ..., J).

Then taking expectations over the simulation,145

E[mjS(δ, b)] = m̄j(δ, b) =
∫
mjJ(τs(δ, b))Fs(ds)146

=
√
J [F (τj+1,J |δ, b)− F (τj,J |δ, b)], (j = 1, ..., J).147

From Assumption 5 let
D̂j(δ̃, b̃) = D(δ̃, b̃; δ̂, b̂, τj), Dj(δ̃, b̃) = D(δ̃, b̃; δ, b, τj).

By Assumption 5 a) and Lemma 7,148

m̄j(δ̂, b̂)− m̄j(δ, b) =
√
J [Dj+1(δ̂ − δ, b̂− b)−Dj(δ̂ − δ, b̂− b)] + R̂j ,149 ∣∣R̂j∣∣ ≤ √
J2C[(δ̂ − δ)2 + sup

t

|b̂(t)− b(t)|2] = Op(
√
Jε2

pn),150

uniformly in j. By Assumption 5 b) and Lemmas 7 and 8,151

√
J [Dj+1(δ̂ − δ, b̂− b)−Dj(δ̂ − δ, b̂− b)]152

=
√
J [(Dδ

0τj+1 −D
δ
0τj )(δ̂ − δ) +

∫
{α0,τj+1 (τ)− α0,τj (τ)}{b̂(τ)− b(τ)}F0(dτ)]153

=
√
J [(Dδ

0τj+1 −D
δ
0τj ){

1
n

∑
i

ψδi +Op(ε2
pn)}]154

−
√
Jδ−1E[{α0,τj+1 (τi)− α0,τj (τi)}b(τi)])

(
1
n

∑
i

ψδi

)
155

+
√
J

1
n

∑
i

[α0,τj+1 (τi)− α0,τj (τi)]
δpi[1− pi]

(γi − pi) +
√
JOp(ε2

pn)156

= 1
n

∑
i

hji +Op(
√
Jε2

pn)157

Then by tr(Ω)1/2 = O(J) we have

J−1/2√ntr (Ω)1/2 ∥∥ĥ− h̄∥∥ ≤ CJ1/2√n
∥∥ĥ− h̄∥∥ ≤ C√n√JOp(√Jε2

pn).

Hypothesis ii) of Lemma 4 then follows by
√
nJε2

pn −→ 0, and by Lemma 5 and nJ3/S −→ 0.158

Next we verify hypothesis iii) of Lemma 4. Note that

M̂δj = m̂j(δ̂ + ∆, β̂)− m̂j(δ̂ −∆, β̂)
2∆

Let m̄j (δ, β) =
∫
mj (τs (δ, β))F (ds) and

M̄δj =
m̄j

(
δ̂ + ∆, β̂

)
− m̄j

(
δ̂ −∆, β̂

)
2∆ .

By the simulations i.i.d. given δ̂, β̂ and mjJ(τ) ≤ C
√
J,

E
[(
M̂δj − M̄δj

)2 | δ̂, β̂] ≤ CJ

S∆2 .

Then for M̄δ = (M̄δ1, ..., M̄δJ)′ the Markov inequality gives

E
[∥∥M̂δ − M̄δ

∥∥2
]
≤ CJ2

S∆2 ,
∥∥M̂δ − M̄δ

∥∥ = Op

(
J√
S∆

)
.
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Note that replacing δ̂ with δ̂ + ∆ in the boundary estimator b̂ gives [δ̂/(δ̂ + ∆)]b̂ and replacing δ̂ with δ̂ −∆ gives
[δ̂/(δ̂ −∆)]b̂. Also,

δ̂

δ̂ + ∆
− 1 = −∆

δ̂ + ∆
,

δ̂

δ̂ −∆
− 1 = ∆

δ̂ −∆
Let D̂j(δ, b) = D(δ, b; δ̂, b̂, j) and Dj(δ, b) = D(δ, b; δ0, b0, j) for true values δ0 and b0. Then by Assumption 5 a),159

M̄δj =
m̄j

(
δ̂ + ∆, β̂

)
− m̄j(δ̂, β̂)− [m̄j

(
δ̂ −∆, β̂

)
− m̄j(δ̂, β̂)]

2∆160

=

√
J [D̂j+1(∆, −∆

δ̂+∆ b̂)− D̂j+1(−∆, ∆
δ̂−∆ b̂; )]

2∆ −

√
J [D̂j(∆, −∆

δ̂+∆ b̂)− D̂j(−∆, ∆
δ̂−∆ b̂)]

2∆ + R̂j161 ∣∣R̂j∣∣ ≤ C
√
J∆−1(∆2 +

∣∣∣∣ ∆
δ̂ + ∆

b̂

∣∣∣∣2 +
∣∣∣∣ ∆
δ̂ −∆

b̂

∣∣∣∣2) ≤ C
√
J∆(1 +

∣∣b̂∣∣2).162

We also have163

√
J

1
∆ D̂j+1(∆, −∆

δ̂ + ∆
b̂) =

√
JD̂j+1(1, −1

δ̂ + ∆
b̂),164

√
J |D̂j+1(1, −1

δ̂ + ∆
b̂)−Dj+1(1, −1

δ̂ + ∆
b̂)| ≤ C

√
J

∣∣∣∣ b̂

δ̂ + ∆

∣∣∣∣ (|δ̂ − δ|+ |b̂− b|) ≤ C√JOp(εpn).165

Also,166

√
J

∣∣∣∣Dj+1(1, −1
δ̂ + ∆

b̂)−Dδ
0τj+1 + 1

δ

∫
α0,τj+1 (τ)b(τ)F0(dτ)

∣∣∣∣167

≤ C
√
J(|δ̂ − δ|+ |b̂− b|) =

√
JOp(εpn).168

Applying an analogous set of inequalities to other terms and collecting remainders gives∣∣M̄δj −Mδj

∣∣ ≤ C√J(∆ +Op(εpn)).

Combining results and stacking over j then give∥∥M̂δ −Mδ

∥∥ = Op(J( 1√
S∆

+ ∆ + εpn)).

Next, for ψ̂τi =
(
2δ̂τ̄
)−1 [Î(τi)− Ī − δ̂2{τi − τ̄}] it follows straighforwardly that

1
n

n∑
i=1

(
ψ̂τi − ψτi

)2 = Op(ε2
pn).

Let Ṽ1 = n−1∑n

i=1 ψ1iψ
′
1i and ψ1i = mi − E[mi] +Mδψ

τ
i . Note that169

1
n

n∑
i=1

∥∥ψ̂1i − ψ1i
∥∥2 ≤ ‖m̄− E[mi]‖2 +

∥∥M̂δ −Mδ

∥∥2 1
n

n∑
i=1

∥∥ψ̂τi ∥∥2 + ‖Mδ‖2
1
n

n∑
i=1

(ψ̂1i − ψ1i)2
170

= Op(
J2

n
) +Op(J2( 1√

S∆
+ ∆ + εpn)2) +Op(J2ε2

pn)171

= Op(J2( 1√
S∆

+ ∆ + εpn)2).172

Then by the Cauchy-Schwartz and triangle inequalities,173

∥∥V̂1 − Ṽ1
∥∥ ≤ 1

n

n∑
i=1

∥∥ψ̂1i − ψ1i
∥∥2 +

√√√√ 1
n

n∑
i=1

∥∥ψ̂1i − ψ1i
∥∥2

√√√√ 1
n

n∑
i=1

‖ψ1i‖2174

= Op(J2( 1√
S∆

+ ∆ + εpn)).175
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It follows similarly that
∥∥Ṽ1 − V1

∥∥ = Op(J3/2/
√
n), so by the triangle inequality,∥∥V̂1 − V1
∥∥ = Op(J2( 1√

S∆
+ ∆ + εpn)).

176

Next we derive a convergence rate for
∥∥V̂2 − V2

∥∥ . Let177

Dβ = E[α0(τi)qKi ′], Σ = E[qKi qKi ′], αK(τi) = DβΣ−1qKi ,178

Λ = E[qKi qKi ′(γi − pi)2], V̄2 = DβΣ−1ΛΣ−1D′β = E[αK(τi)αK(τi)′(γi − pi)2].179

Note that by Assumption 5 b) and standard approximation properties of splines

E[{(α0j(τi)− αKj(τi))(γi − pi)}2] ≤ CE[{α0j(τi)− αKj(τi)}2] ≤ CK−2sα ,

for a constant C that does not epend on j. Then we have180

∥∥V̄2 − V2
∥∥2 =

J∑
j,`=1

{E[αKj(τi)αK`(τi)(γi − pi)2]− E[α0j(τi)α0`(τi)(γi − pi)2]}2181

=
J∑

j,`=1

{E[{αKj(τi)− α0j(τi)}αK`(τi)(γi − pi)2] + E[α0j(τi){αK`(τi)− α0`(τi)}(γi − pi)2]}2182

≤ C

J∑
j,`=1

{
√
E[{αKj(τi)− α0j(τi)}2]

√
E[αK`(τi)2]183

+
√
E[{αK`(τi)− α0`(τi)}2]

√
E[α0j(τi)2]}2184

≤ C

(
J∑
j=1

E[{αKj(τi)− α0j(τi)}2]

)(
J∑
j=1

{E[α0j(τi)2] + E[αK`(τi)2]}

)
≤ CJ2K−2sα .185

Taking square roots we have ∥∥V̄2 − V2
∥∥ ≤ CJK−sα .

Define

M̄βjk =
m̄j

(
δ̂, β̂ + ek∆

)
− m̄j

(
δ̂, β̂ − ek∆

)
2∆ .

It follows similarly to
∥∥M̂δ − M̄δ

∥∥ =
∥∥M̂δ − M̄δ

∥∥ = Op
(
J/
√
S∆
)
that∥∥M̂β − M̄β

∥∥ = Op
(
J
√
K/
√
S∆
)
.

Next, let p̂∆k(t) = p̂(t)+∆qkK(G(t)) and b̂∆k(t) = δ̂−1 ln(p̂∆k(t)/[1−p̂∆k(t)]). By ∆
√
K −→ 0 and supG∈[0,1] |qkK(G)| ≤

C
√
K it follows that supt ∆qkK(G(t)) −→ 0. Then w.p.a.1 we have

b̂∆k(t) = b̂(t) + ∆qkK(G(t))
δ̂p̂(t)[1− p̂(t)]

+ R̂k(t,∆),
∣∣R̂k(t,∆)

∣∣ ≤ C∆2K.

Then we have186

M̄βjk =
m̄j

(
δ̂, β̂ + ek∆

)
− m̄j(δ̂, β̂)− [m̄j

(
δ̂, β̂ − ek∆

)
− m̄j(δ̂, β̂)]

2∆187

=
√
J [D̂j+1(0, b̂∆k − b̂)− D̂j+1(0, b̂−∆k − b̂)]

2∆188

−
√
J [D̂j(0, b̂∆k − b̂)− D̂j(0, b̂−∆k − b̂)]

2∆ + R̂jk189 ∣∣R̂jk∣∣ ≤ C
√
J∆−1(

∣∣b̂∆k − b̂∣∣2 +
∣∣b̂−∆,k − b̂

∣∣2) ≤ C
√
J∆K.190
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We also have191

√
J

1
∆ D̂j+1(0, b̂∆k − b̂) =

√
JD̂j+1(0, b̂∆k − b̂∆ ),192

√
J |D̂j+1(0, b̂∆k − b̂∆ )−Dj+1(0, b̂∆k − b̂∆ )| ≤ C

√
J

∣∣∣∣ b̂∆k − b̂∆

∣∣∣∣ (|δ̂ − δ|+ |b̂− b|) ≤ C√J√KOp(εpn).193

In addition194

√
JDj+1(0, b̂∆k − b̂∆ ; δ, b, τj+1) =

√
JD(0, qkK(G(·))

δ̂p̂(·)[1− p̂(·)]
; δ, b, τj+1) +

√
J∆D(0, R̂k(·,∆); δ, b, τj+1)195

=
√
JD(0, qkK(G(·))

δp(·)[1− p(·)] ; δ, b, τj+1) + R̂jk,196 ∣∣R̂jk∣∣ ≤ √
J
√
KOp(εpn) +

√
JK∆.197

Combining terms we have ∥∥M̂β −Mβ

∥∥ = Op(J
√
K/
√
S∆ + JKεpn + JK3/2∆)

Next, we have198 ∥∥∥∥∥M̂δ
1

2δ̂τ̄n

n∑
i=1

Ip(p̂i)qKi ′ −Mδ
1

2δE[τi]
E[Ip(pi)qK′i ]

∥∥∥∥∥199

≤
∥∥M̂δ −Mδ

∥∥ 1
2δ̂τ̄

(
1
n

n∑
i=1

Ip(p̂i)2

)1/2(
1
n

n∑
i=1

qKi
′qKi

)1/2

200

+ ‖Mδ‖

∥∥∥∥∥ 1
2δ̂τ̄n

n∑
i=1

Ip(p̂i)qKi ′ −
1

2δE[τi]
E[Ip(pi)qK′i ]

∥∥∥∥∥201

= Op(J
√
K( 1√

S∆
+ ∆ + εpn)) +Op(JKεpn) = Op(J

√
K( 1√

S∆
+ ∆ +

√
Kεpn)).202

Combining terms we then have203 ∥∥D̂β −Dβ∥∥ = Op(J
√
K/
√
S∆ + JKεpn + JK3/2∆).

Next, for π̂ = Σ̂−1D̂β and π = Σ−1Dβ note that V̂2 = π̂′Λ̂π̂ and V̄2 = π′Λπ. Also we have

V̂2 − V̄2 = (π̂ − π)′Λ̂(π̂ − π) + 2π′Λ̂(π̂ − π) + π′(Λ̂− Λ)π.

By the law of large number for symmetric matrices,
∥∥Σ̂− Σ

∥∥
op

= Op
(√

n−1K lnK
)

= op(1), where ‖·‖op denotes204

the operator norm on symmetric matrices. Then by the eigenvalues of Σ bounded and bounded away from zero,205

λmax(Σ̂) = Op(1) and 1/λmin(Σ̂) = Op(1). Let Λ̃ = 1
n

∑
i
qKi q

K′
i (γi − pi)2. Note that206

Λ̂− Λ̃ = 1
n

∑
i

qKi q
K′
i

[
(γi − p̂i)2 − (γi − pi)2] ≤ 1

n

∑
i

qKi q
K′
i

∣∣(γi − p̂i)2 − (γi − pi)2∣∣207

≤ CΣ̂ max
i
|p̂i − pi| = Σ̂Op (εpn) , Λ̂− Λ̃ ≥ −CΣ̂Op(εpn).208

Also by the law of large numbers for symmetric matrices
∥∥Λ̃− Λ

∥∥
op

= Op
(√

n−1K lnK
)
. Therefore by the triangle

inequality, ∥∥Λ̂− Λ
∥∥
op

= Op (εpn) .

It follows that λmax(Λ̂) = Op(1), 1/λmin(Λ̂) = Op(1), and for Υ̂ = Λ̂− Λ,∥∥Υ̂
∥∥ =

√
tr(Υ̂2) ≤ C

√
J
∥∥Λ̂− Λ

∥∥
op

= Op(
√
Jεpn).

Similarly we have
∥∥Σ̂− Σ

∥∥ = Op(K
√

ln(K)/n). We also have ‖Dβ‖ ≤ CJ
√
K.Then it follows that for εDn =

J
√
K/
√
S∆ + JKεpn + JK3/2∆

‖π̂ − π‖ ≤
∥∥(D̂β −Dβ)′Σ̂−1∥∥+

∥∥Dβ ′Σ̂−1(Σ− Σ̂)Σ−1∥∥ ≤ Op(εDn) +Op(JK
√

ln(K)/n) = Op(εDn).
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It then follows by the triangle inequality that209 ∥∥V̂2 − V̄2
∥∥ ≤ Op(1)(‖π̂ − π‖2 + ‖π‖ ‖π̂ − π‖+ ‖π‖2

∥∥Λ̂− Λ
∥∥)210

= Op(J
√
KεDn + J2K2

√
ln(K)/n) = Op(J2K/

√
S∆ + J2K3/2εpn + J2K∆).211

By the triangle inequality we then have∥∥Ω̂− Ω
∥∥ = Op(J2K/

√
S∆ + J2K∆ + J2K3/2εpn + JK−sα)

It then follows that Assumption iii) is satisfied by Assumption 5 e).212

Finally, for Assumption iv) of Lemma 4, note that

(
h′ihi

)2 =

(
J∑
j=1

h2
ij

)2

=
J∑
j=1

K∑
k=1

h2
ijh

2
ik ≤ CJ

J∑
j=1

h4
ij ≤ CJ4,

so that
E
[(
h′ihi

)2]
/nJ ≤ CJ3/n −→ 0.

Therefore condition iv) is satisfied. Q.E.D.213
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