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ABSTRACT

A unifying framework to test for causal effects in non-linear models is proposed. We consider

a generalized linear-index regression model with endogenous regressors and no parametric

assumptions on the error disturbances. To test the significance of the effect of an endogenous

regressor, we propose a test statistic that is a kernel-weighted version of the rank correlation

statistic (tau) of Kendall (1938). The semiparametric model encompasses previous cases con-

sidered in the literature (continuous endogenous regressors (Blundell and Powell (2003)) and

a single binary endogenous regressor (Vytlacil and Yildiz (2007)), but the testing approach

is the first to allow for (i) multiple discrete endogenous regressors, (ii) endogenous regressors

that are neither discrete nor continuous (e.g., a censored variable), and (iii) an arbitrary

“mix” of endogenous regressors (e.g., one binary regressor and one continuous regressor).
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1 Introduction

Endogenous regressors are frequently encountered in econometric models, and failure to cor-

rect for endogeneity can result in incorrect inference. With the availability of appropriate

instruments, two-stage least squares (2SLS) yields consistent estimates in linear models with-

out the need for making parametric assumptions on the error disturbances. Unfortunately,

it is not theoretically appropriate to apply 2SLS to non-linear models, as the consistency of

2SLS depends critically upon the orthogonality conditions that arise in the linear-regression

context.

Until recently, the standard approach for handling endogeneity in non-linear models

has required parametric specification of the error disturbances (see, e.g., Smith and Blun-

dell (1986), Rivers and Vuong (1988), or the treatment in Wooldridge (2002, Section 15.7)).

A more recent literature in econometrics has developed methods that do not require para-

metric assumptions, which is more in line with the 2SLS approach in linear models. In the

context of the model considered in this paper, existing approaches depend critically upon

the form of the endogenous regressor(s).1

For continuous endogenous regressors, a “control-function approach” has been proposed

by Blundell and Powell (2003, 2004) (see also Aradillas-Lopez, Honoré, and Powell (2005)).

A linear model specifies a relationship between the continuous endogenous regressors and

the full set of exogenous covariates (including the instruments). The first-stage estimation

yields estimates of the residuals from this model, which are then plugged into a second-

stage estimation procedure to appropriately “control” for the endogenous regressors.2 The

control-function approach, however, does not work if any of the endogenous regressors are

non-continuous.

For a single binary endogenous regressor, Vytlacil and Yildiz (2007) establish conditions

under which it is possible to identify the average treatment effect in non-linear models.

Identification requires variation in exogenous regressors (including the instruments for the

binary endogenous regressor) that has the same effect upon the outcome variable as a change

in the binary endogenous regressor. Yildiz (2006) implements this identification strategy in
1Several papers have considered estimation in the presence of endogeneity under additional assumptions.

These include Lewbel (2000), Hong and Tamer (2003), and Kan and Kao (2005).
2This idea was originally considered by Hausman (1978) in the linear-model context, where inclusion of

residuals in the regression equation controls for endogeneity.
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the context of a linear-index binary-choice model, where the outcome equation is

y1 = 1(z1β0 + α0y2 + ε > 0)

for exogenous regressors z1, a binary endogenous regressor y2, and i.i.d. error disturbance ε.

The reduced-form equation for y2 is

y2 = 1(zδ0 + η > 0)

for exogenous regressors z (which now includes instruments for y2) and i.i.d. error distur-

bance η. Identification requires an extra support condition, specifically that for some zδ0
values (i.e., a positive-probability region), the conditional distribution z1β0 has support wider

than the parameter value α0.3

In this paper, we consider the problem of testing the statistical significance of causal

(or treatment) effects in a general non-linear setting. That is, rather than attempting to

estimate the magnitude of causal effects, we seek to estimate the direction (or sign) of these

effects. The focus upon the sign(s) of causal effects rather than the magnitude(s) turns

out to have important implications for the generality of our proposed testing procedure.

First, the testing procedure can handle endogenous regressors of arbitrary form, including

continuous regressors as in Blundell and Powell (2003), a binary regressor as in Vytlacil

and Yildiz (2007), or other types of regressors (e.g., a censored variable). Second, the

approach extends easily to the case of multiple endogenous regressors; importantly, the set

of endogenous regressors can include a “mix” of discrete and continuous variables. Third,

the procedure can test the statistical significance of a causal effect even in cases in which the

magnitude of the causal effect is not identified. For example, the extra support condition

in Vytlacil and Yildiz (2007) and Yildiz (2006) is not required to identify the sign of the

treatment effect and, therefore, is not needed for our testing procedure.

Even in situations in which it is possible to identify the average causal effect of an

endogenous variable, the proposed test can be used as a preliminary stage of inference in

empirical applications. The rank-based approach that we adopt (for both preliminary plug-

in estimates and the test statistic itself) requires fewer smoothing and trimming parameters

than either Blundell and Powell (2003) or Yildiz (2006). Moreover, in the binary case, due

to the identification strategy required for estimation of the treatment-effect magnitude, it

may be possible to find evidence of a statistically significant treatment effect even when it

is difficult to precisely estimate the magnitude of the treatment effect.
3Alternatively, one can view this as a parameter restriction rather than a support condition. This restric-

tion is substantive in the sense that identification of β0 does no require unbounded support of z1β0.
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The outline of the paper is as follows. Section 2 introduces the generalized regression

model, a model similar to Han (1987) but with the inclusion of an endogenous regressor. To

complete the specification of the (triangular) model, a reduced-form model is utilized for the

endogenous regressor. Focusing upon the case of a binary endogenous regressor, Section 3

introduces a three-step procedure for testing significance of the causal (or treatment) effect of

the endogenous regressor. The first stage estimates the parameters of the reduced-form model

and, thus, is not new. The second stage consistently estimates the coefficients (up-to-scale)

for the non-endogenous regressors. The third stage computes the test statistic, which turns

out to be a kernel-weighted version of the tau statistic of Kendall (1938). Section 4 presents

the main asymptotic results for the second-stage estimator and third-stage test statistic,

both of which are shown to be
√
n-consistent and asymptotically normal. Since the (scalar)

test statistic is asymptotically normal, the test for statistical significance of the causal effect

is simply a z-test. Section 5 discusses the natural extensions of the approach to non-binary

endogenous regressors and to multiple endogenous regressors. Section 6 provides Monte

Carlo simulations that focus upon the performance of the third-stage test statistic. Finally,

Section 7 considers an empirical application based upon Angrist and Evans (1998), in which

we test for a causal effect of fertility (specifically, having a third child) upon mothers’ labor

supply. The application highlights the feasibility of our approach (even with nearly 300,000

observations) and provides a comparison to the 2SLS approach often taken in binary-choice

models with endogenous regressors.

2 The model

Let y1 denote the dependent variable of interest, which is assumed to depend upon a vector of

covariates z1 and a single endogenous variable y2. We consider the following (latent-variable)

generalized regression model for y1:

y∗
1 = F (z1β0, y2, ε), y1 = D(y∗

1) (2.1)

The model for the latent dependent variable y∗
1 has a general linear-index form, where ε

is the error disturbance (independent of z1) and F is a possibly unknown function that is

assumed to be strictly monotonic in its first and third arguments and weakly monotonic in

its second argument. The observed dependent variable is y1, where the function D is weakly

increasing and non-degenerate. The model in (2.1) is similar to the generalized regression

model of Han (1987), except for the inclusion of the endogenous variable y2. This model
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encompasses many non-linear microeconometric models of interest, including binary-choice

models, ordered-choice models, censored-regression models, transformation (e.g., Box-Cox)

models, and proportional hazards duration models.

Note that the endogenous variable y2 enters separably in the model for y∗
1. This for-

mulation includes the traditional additively separable case (i.e., z1β0 + α0y2) considered in

Blundell and Powell (2003) and Yildiz (2006) but allows for other forms of separability.4 In

addition to consistently estimating β in the presence of y2, researchers are also interested

in determining whether the endogenous variable y2 has an effect upon y1 and, if so, the

direction of this effect. More formally, in the context of the generalized regression model,

the null hypothesis of no effect of y2 upon y1 is

H0 : F (v, y′
2, ε) = F (v, y′′

2 , ε) for all y′
2, y

′′
2 , v, ε. (2.2)

In contrast, a positive effect of y2 upon y1 is equivalent to

F (v, y′
2, ε) > F (v, y′′

2 , ε) for all y′
2 > y′′

2 , v, ε, (2.3)

and a negative effect of y2 upon y1 is equivalent to

F (v, y′
2, ε) < F (v, y′′

2 , ε) for all y′
2 < y′′

2 , v, ε. (2.4)

As is common in econometric practice, the three alternatives (2.2)–(2.4) rule out the case

that y2 may have a positive effect for some z1β0 values and a negative effect for other z1β0

values. For instance, in the traditional linear-index approach where z1 and y2 enter through

the linear combination z1β0 + α0y2, the value of α0 determines which of the above three

cases is relevant (α0 = 0: no effect; α0 > 0: positive effect; and, α0 < 0: negative effect). In

the presence of possibly non-monotonic effects of y2 on y1, it is straightforward to apply the

testing component of this paper (i.e., testing H0 above) to different regions of the covariate

space. The proposed estimator of β0 will be entirely unaffected by non-monotonicities in the

effects of y2 on y1.

Turning to the model for the endogenous regressor, we first focus on the case of a binary

endogenous regressor in order to simplify exposition. (The general treatment of a discrete

or continuous endogenous regressor is considered in Section 5.) The binary endogenous

variable y2 is assumed to be determined by the following reduced-form model:

y2 = 1[zδ0 + η > 0], (2.5)
4Vytlacil and Yildiz (2007) also consider a weakly separable model with the added generality that z1

enters non-parametrically (rather than through a linear index).
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where z ≡ (z1, z2) is the vector of “instruments” and η is an error disturbance independent

of z. The z2 subcomponent of z provides the exclusion restrictions in the model. Endogeneity

of y2 in (2.1) arises when ε and η are not independent of each other. Estimation of the

model in (2.5) is standard. When dealing with a binary endogenous regressor, we will use

the common terminology “treatment effect” rather then referring to the “causal effect of

y2 on y1.” Thus, for example, a positive treatment effect would correspond to the case of

equation (2.3) where y2 can take on only two values: F (v, 1, ε) > F (v, 0, ε) for all v, ε.

The binary-choice model with a binary endogenous regressor is a special case of the

model in (2.1). The linear-index form of this model, with an additively separable endogenous

variable, is given by

y1 = 1[z1β0 + α0y2 + ε > 0]. (2.6)

Parametric assumptions on the error disturbances (e.g., bivariate normality of (ε, η)) natu-

rally lead to maximum likelihood estimation of (β0, α0, δ0), as described in Wooldridge (2002,

Section 15.7.3) and implemented by Evans and Schwab (1995).5 The semiparametric version

of this model (i.e., the distribution of (ε, η) being left unspecified) has been considered by

Yildiz (2006), whose estimation approach requires that all components of z be continuous.

3 Estimation and testing for a treatment effect

The testing approach consists of three stages. In the first stage, the reduced-form parameters

δ0 are estimated. In the second stage, the coefficients of the exogenous variables (β0) in the

structural model are estimated. Then, in the third stage, a treatment-effect test statistic is

calculated. Each of the three stages is described in turn below.

Stage 1: Estimation of δ0

When no distribution is assumed for η, several semiparametric binary-choice estimators

exist for
√
n-consistent estimation of δ0 up-to-scale (see Powell (1994) for a comprehensive

review).6 The following linear representation of the first-step estimator is assumed:

δ̂ − δ0 =
1
n

n∑
i=1

ψδi + op(n−1/2), (3.1)

5Another common estimation approach (see, e.g., Angrist and Evans (1998)) is to simply ignore the

non-linearity in (2.6) and apply two-stage least squares to the system given by (2.6) and (2.5).
6With a parametric assumption on η, standard binary-choice MLE estimation (e.g., probit) would apply.
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a representatation that exists for the available
√
n-consistent semiparametric estimators.

Since the second stage of our estimation procedure utilizes rank-based procedures, we also

focus our theoretical treatment of the first-stage estimator upon the use of a rank-based

estimator (specifically, the maximum rank correlation (MRC) estimator of Han (1987)). We

note, however, that any other
√
n-consistent estimator (parametric or semiparametric) of δ0

could be used in the first stage; the empirical application of Section 7, for instance, uses a

probit estimator in the first stage.

Stage 2: Estimation of β0

The estimator of β0 is based upon pairwise comparisons of the y1 values. If (ε, η) is indepen-

dent of z, note that the conditional distribution ε|y2, z is given by

Pr(ε ≤ e | y2, z) =

{
Pr(ε ≤ e | η ≤ −zδ0) if y2 = 0

Pr(ε ≤ e | η > −zδ0) if y2 = 1
(3.2)

If two observations (indexed i and j) have y2i = y2j and ziδ0 = zjδ0, equation (3.2) implies

that the conditional distributions εi|yi2, zi and εj|yj2, zj are identical. For such a pair of

observations, the monotonicity of F with respect to the linear index z1β0 implies that

z1iβ0 > z1jβ0 ⇐⇒ (3.3)

Pr(y1i > y1j | z1i, z1j, y2i = y2j, ziδ0 = zjδ0) > Pr(y1i < y1j | z1i, z1j, y2i = y2j, ziδ0 = zjδ0).

Equation (3.3) forms the basis for the proposed estimator of β0. Unfortunately, equation (3.3)

can not be used directly for estimation since (i) δ0 is unknown and (ii) having ziδ0 = zjδ0

might be a zero-probability event. Using the first-stage estimator δ̂ of δ0,7 note that equa-

tion (3.3) will be “approximately true” in large samples for a pair of observations with

y2i = y2j and ziδ̂ ≈ zj δ̂. This suggests the following kernel-weighted rank-based estimator

of β0:

β̂ ≡ arg max
β∈B

1
n(n− 1)

∑
i�=j

1[y2i = y2j]kh(ziδ̂ − zj δ̂)1[y1i > y1j]1[z1iβ > z1jβ], (3.4)

where kh(u) ≡ h−1k(u/h) for a kernel function k(·) and a bandwidth h that shrinks to zero

as n → ∞. The kernel weighting serves to place more weight on pairs of observations for
7Our method is not subject to the problems of the “forbidden regression” (in which fitted values are

plugged in to a non-linear function prior to mimicking 2SLS). The first-stage plug-in estimator (of the

reduced-form index) is used not as a regressor but rather as a matching mechanism. Matching also upon

the value of the endogenous regressor ensures that there is no relationship between the structural error and

the plug-in index.

6



which ziδ̂ is close to zj δ̂. Under appropriate assumptions, it is shown in Section 4 that β̂ is

a
√
n-consistent estimator of β0.

Stage 3: Testing for a treatment effect

In order to test for the presence of a treatment effect, we propose a kernel-weighted version

of Kendall’s tau (or rank correlation) statistic (Kendall (1938)). To motivate this test statis-

tic, we first substitute the reduced-form model (2.5) for the endogenous regressor into the

structural model (2.1), which yields

y1 = D(F (z1β0, 1(zδ0 + η > 0), ε)). (3.5)

For fixed z1β0, note that the sign of the rank correlation between y1 and zδ0 will depend upon

whether there is a positive treatment effect, a negative treatment effect, or no treatment

effect. More precisely, for a pair of observations (indexed i and j) having z1iβ0 = z1jβ0,

equation (3.5) implies

ziδ0 > zjδ0 ⇐⇒ (3.6)

Pr(y1i > y1j | zi, zj, z1iβ0 = z1jβ0) > Pr(y1i < y1j | zi, zj, z1iβ0 = z1jβ0)

if there is a positive treatment effect (as in (2.3)), and

ziδ0 > zjδ0 ⇐⇒ (3.7)

Pr(y1i > y1j | zi, zj, z1iβ0 = z1jβ0) < Pr(y1i < y1j | zi, zj, z1iβ0 = z1jβ0)

if there is a negative treatment effect (as in (2.4)). In the case of no treatment effect (as

in (2.2)), it is trivially the case that

Pr(y1i > y1j | zi, zj, z1iβ0 = z1jβ0) = Pr(y1i < y1j | zi, zj, z1iβ0 = z1jβ0) (3.8)

since y∗
1i and y∗

1j are identically distributed if z1iβ0 = z1jβ0.

Note that, unlike equation (3.3), these probability statements do not condition on y2. In

fact, the proposed treatment-effect test statistic below does not directly use the y2 values.

This approach is somewhat analogous to the second stage of two-stage least squares, where

the endogenous regressors are not directly used in the regression; instead, their “fitted values”

(projections onto the exogenous regressors) are included in the second-stage regression. In

our context, the y2 values play a role in estimation of δ0 and β0. Unlike two-stage least

7



squares, fitted values of y2 are not used since linear projections are not appropriate in our

general non-linear model.

To operationalize the empirical implications of the probability statements above, it is

necessary to plug in the estimators δ̂ and β̂ of δ0 and β0, respectively, and to place greater

weight on pairs of observations for which z1iβ̂ ≈ z1jβ̂. This leads to the proposed treatment-

effect test statistic, which is a kernel-weighted version of Kendall’s tau:

τ̂ ≡
∑

i�=j ω̂ijsgn(y1i − y1j)sgn(ziδ̂ − zj δ̂)∑
i�=j ω̂ij

, (3.9)

where sgn(v) = 1(v > 0) − 1(v < 0) and the (estimated) weights ω̂ij are defined as

ω̂ij ≡ kh(z1iβ̂ − z1jβ̂). (3.10)

Given asymptotically normal
√
n-consistent estimators δ̂ and β̂, it is shown in Section 4 that

τ̂ is also
√
n-consistent and asymptotically normal. The probability limit of τ̂ is

τ0 ≡ E[sgn(y1i − y1j)sgn(ziδ0 − zjδ0)|z1iβ0 = z1iβ0]. (3.11)

Based upon (3.6)–(3.8), it is easy to show that τ0 > 0 for a positive treatment effect,

τ0 < 0 for a negative treatment effect, and τ0 = 0 for no treatment effect. Therefore, it is

straightforward to conduct a one-sided or two-sided z-test of H0 : τ0 = 0 based upon τ̂ and

its asymptotic standard error se(τ̂). This test for a treatment effect is consistent against the

alternatives of a positive or negative treatment effect.8

In situations in which z1 is empty (i.e., only y2 enters the structural model for y1) or z1

has a single component, the test statistic defined in (3.9) simplifies somewhat. These two

cases are considered separately:

Case 1: z1 has no elements

In this case, one can re-write the structural latent-variable model in (2.1) as y∗
1 = F (y2, ε).

Since the weights ω̂ij are identical for all i and j, it follows directly that

τ̂ =
1

n(n− 1)

∑
i�=j

sgn(y1i − y1j)sgn(ziδ̂ − zj δ̂), (3.12)

8If the treatment effect is positive for some z1β0 and negative for some z1β0, it would be necessary to

use local versions of τ̂ in order to construct a consistent test. See, for example, Ghosal, Sen, and van der

Vaart (2000) and Abrevaya and Jiang (2005), who develop consistent tests in similar U-statistic frameworks.
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which is just the Kendall’s tau statistic for rank correlation between y1 and zδ̂. If, in addition,

z (= z2) contains a single “instrument” (the just-identified case), then δ̂ would simply reflect

the sign of z’s coefficient within the reduced-form model (2.5).9 If δ̂ > 0, the test statistic

would further simplify to be the rank correlation between y1 and z:

τ̂ =
1

n(n− 1)

∑
i�=j

sgn(y1i − y1j)sgn(zi − zj); (3.13)

if δ̂ < 0, the test statistic would be the negative of the rank correlation between y1 and z.

If z is a binary instrument, the test statistic in (3.13) can be thought of as a rank-based

analogue to the “Wald estimator” commonly used in treatment-effect contexts.

Case 2: z1 has one element

If z1 has a single element, the second-stage estimation of β0 is not necessary to construct the

test statistic. The estimated weights ω̂ij simplify to ω̂ij = kh(z1i − z1j). For a continuous

covariate z1, the test statistic takes the same form as (3.9) with these simplified weights.

For a discrete covariate z1, since h → 0 as n → ∞, weights will only be placed on pairs of

observations having z1i = z1j.10 Therefore, for a discrete covariate z1, the test statistic could

be re-written as

τ̂ =

∑
i�=j 1(z1i = z1j)sgn(y1i − y1j)sgn(ziδ̂ − zj δ̂)∑

i�=j 1(z1i = z1j)
. (3.14)

4 Asymptotic properties

In this section, we outline the asymptotic theory for the three-stage test-statistic procedure.

The first result concerns the asymptotic distribution for the second-stage estimator of β0.

Since β0 is only identified up to scale, we will normalize its last component to 1 and denote

its other components by θ0 and the corresponding estimator by θ̂, where

θ̂ = arg max
θ∈Θ

1
n(n− 1)

∑
i�=j

1[y2i = y2j]kh(z′
iδ̂ − z′

j δ̂)1[y1i > y1j]1[z′
1iβ(θ) > z′

1jβ(θ)] (4.1)

9As is well known in the semiparametric literature, this sign can be estimated at faster than the
√
n rate.

As such, its estimation would not affect the asymptotic distribution of τ̂ as it does in the more general case

where z has more than one element.
10We are making the fairly innocuous assumption that the discrete points of support for z1 do not change

as n gets larger. Also, if z1 is discrete, z2 would need to have a continuous element in order identify δ0 in

the semiparametric case.
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We impose the following regularity conditions:

Assumption CPS (Parameter Space) θ0 lies in the interior of Θ, a compact subset of Rk−1.

Assumption FS The first stage estimator used to estimate δ0 will be the maximum rank

correlation estimator of Han (1987). Consequently, the same regularity conditions in

that paper and Sherman (1993) will be assumed so we will have a linear representation

as discussed in the previous section. We normalize one of the coefficients of δ0 to 1,

and assume the corresponding regressor is continuously distributed on its support.

Assumption K (Matching stage kernel function) The kernel function k(·) used in the sec-

ond stage is assumed to have the following properties:

K.1 k(·) is twice continuously differentiable, has compact support and integrates to 1.

K.2 k(·) is symmetric about 0.

K.3 k(·) is a pth order kernel, where p is an even integer:∫
ulk(u)du = 0 for l = 1, 2, ...p− 1∫
upk(u)du �= 0

Assumption H (Matching stages bandwidth sequence) The bandwidth sequence hn used

in the second stages satisfies the conditions,
√
nhp

n → 0,
√
nh3

n → ∞.

Assumption RD (Last Regressor Properties) z(k)
1i is continuously distributed, with positive

density on the real line.

Assumption ED (Error Distribution) εi is distributed independently of the regressors

z1i, zi, and is continuously distributed with positive density on the real line.

Assumption FR (Full Rank Condition) The support of z1i does not lie in a proper linear

subspace of Rk.

The following lemma, whose proof is provided in the Appendix, establishes the asymptotic

properties of the second stage estimator of θ0. Some additional notation is used in the

statement of the lemma. The reduced-form linear index is denoted ζδi = z′
iδ0 and fζδ()

denotes its density function. FZ1 denotes the distribution function of z1i. Also, ∇θθ denotes

the second-derivative operator.
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Lemma 4.1 If Assumptions CPS, FS, K, H, RD, ED, and FR hold, then

√
n(θ̂ − θ0) ⇒ N(0, V −1ΩV −1) (4.2)

or, alternatively, θ̂ − θ0 has the linear representation

θ̂ − θ0 =
1
n

n∑
i=1

ψβi + op(n−1/2) (4.3)

with V = ∇θθN (θ) |θ=θ0 and Ω = E[δ1iδ
′
1i], and ψβi = V −1δ1i, where

N (θ) =
∫

1[z′
1iβ(θ) > z′

1jβ(θ)]H(ζj, ζj)F(z′
1iβ0, z

′
1jβ0, ζj, ζj)dFZ1,ζ(z1i, ζj)dFZ1,ζ(z1j, ζj)

(4.4)

with ζi = z′
iδ0, whose density function is denoted by fζ, and where

F(z′
1iβ0, z

′
1jβ0, ζi, ζj) = P (y1i > y1j|y2i = y2j, z1i, z1j, ζi, ζj) (4.5)

H(ζi, ζj) = P (y2i = y2j|ζi, ζj) (4.6)

and the mean-zero vector δ1i is given by

δ1i =
(∫

fζ(ζi)μ31(ζi, ζi, β0)dζi

)
ψδi (4.7)

where

μ(t, ζ, β) = H(t, ζ)M(t, ζ, β)fζ(t) (4.8)

with

M(t, ζ, β) = E[F(z′
1iβ0, z

′
1jβ0, ζi, ζj)1[z′

1iβ > z′
1jβ]z′

i | ζi = t, ζj = ζ] (4.9)

and μ1(·, ·, ·) denotes the partial derivative of μ(·, ·, ·) with respect to its first argument and

μ31(·, ·, ·) denotes the partial derivative of μ1(·, ·, ·) with respect to its third argument.

The asymptotic theory for the third-stage test statistic is based on the above conditions,

now also assuming conditions K and H are valid for the third stage matching kernel, and the

following additional smoothness condition:

Assumption S (Order of Smoothness of Density and Conditional Expectation Functions)

S.1 Letting ζβi denote z′
1iβ0, and let fζβ(·) denote its density function, we assume

fζβ(·) is p times continuously differentiable with derivatives that are bounded on

the support of ζβi.
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S.2 The functions G11(·) and Gx(·), defined as follows:

G11(·) = E[sgn(y1i − y1j)fZk|Z−k
(Δz′

−kijδ
(−k)
0 )Δz′

−kij|ζβi = ·, ζβj = ·] (4.10)

Gx(·) = E[(sgn(y1i − y1j)sgn(z′
iδ0 − z′

jδ0) − τ0)(z1i − z1j)′|z1i − z1j = ·] (4.11)

are all assumed to be all p times continuously differentiable with derivatives that

are bounded on the support of ζβi.

The following theorem, whose proof is also left to the Appendix, establishes the asymp-

totic distribution of the test statistic τ :

Theorem 4.1 If Assumptions CPS, FS, K, H, RD, ED, FR, and S hold, then

√
n(τ̂ − τ0) ⇒ N(0, V −2

2 Ω2) (4.12)

with V2 = E[fζβ(ζβi)] and Ω2 = E[δ2
2i]. The mean-zero random variable δ2i is

δ2i = 2fζβ(ζβi)G(y1i, zi, ζβi) + E[G′
x(ζβi)fζβ(ζβi)]ψβi + E[G11(ζβi)fζβ(ζβi)]ψδi, (4.13)

where G′
x() denotes the derivative of Gx and G() is given by

G(y1, z, ζ) = E[sgn(y1i − y1)sgn(z′
iδ0 − z′δ0)|ζβi = ζ]. (4.14)

The (scalar) test statistic τ̂ is
√
n-consistent and asymptotically normal, which implies that

testing the null hypothesis H0 : τ0 = 0 is a simple z-test. Given τ̂ and an estimated

asymptotic standard error v̂τ̂ , one-sided or two-sided versions of this test can be implemented

based upon the ratio τ̂ /v̂τ̂ . In order to compute the standard error v̂τ̂ , we recommend the use

of the bootstrap since the forms of the asymptotic variances in Lemma 4.1 and Theorem 4.1

are somewhat complicated. In the empirical application of Section 7, the bootstrap is used

for inference purposes. Although the bootstrap has not formally been shown to be consistent

in the specific context considered, there is no reason to expect failure of the bootstrap given

that each stage of the testing procedure is
√
n-consistent. Recently, Subbotin (2006) has

shown consistency of the bootstrap for the maximum rank correlation estimator (our first-

stage estimator). It is worthy of future research to investigate whether the approach of

Subbotin (2006) could be extended to kernel-weighted rank estimators (like β̂ and τ̂).
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5 Extensions

5.1 Non-binary endogenous regressors

The key to consistency of the second-stage estimator of β0 is the ability to compare observation-

pairs for which the distribution of ε (conditional on y2 and z) is the same. In the case of

a binary endogenous regressor considered above, the 1[y2i = y2j]kh(ziδ̂ − zj δ̂) factor in the

objective function in (3.4) serves to focus on such observation pairs. This same idea can

be easily generalized to cases in which the endogenous regressor y2 is non-binary. Specif-

ically, we specify a reduced-form model for y2 that is the generalized regression model of

Han (1987):

y∗
2 = F2(zδ0, η), y2 = D2(y∗

2). (5.1)

As before, we assume that (ε, η) are independent of z. The first-stage estimator of δ0 would

be the maximum rank correlation estimator of Han (1987) (or, as mentioned before, any

other semiparametric linear-index estimator). In the case of a continuous y2 variable, it is

worth noting that the model in (5.1) does not require that the functional form of F2 is known

and, therefore, is more general than Blundell and Powell (2003).

The second-stage estimator of β0 takes a form very similar to (3.4), except that weight

is placed on observation-pairs having y2 values close to each other (not necessarily equal):

β̂ ≡ arg max
β∈B

1
n(n− 1)

∑
i�=j

kh[y2i − y2j]kh(ziδ̂ − zj δ̂)1[y1i > y1j]1[z1iβ > z1jβ]. (5.2)

The third-stage test statistic (τ̂) of the previous section remains the same (once δ̂ and β̂

have been computed).

5.2 Multiple endogenous regressors

To illustrate how our testing approach generalizes to multiple endogenous regressors, we first

consider the case of two binary endogenous regressors. We then show that the basic idea

easily extends to more general cases and can be used, for example, when there are a mix of

discrete and continuous endogenous regressors.
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5.2.1 Two binary endogenous regressors

Consider the following model, which extends the model of Section 2 to the case of two binary

endogenous regressors y21 and y22:

y∗
1 = F (z1β0, y21, y22, ε), y1 = D(y∗

1) (5.3)

y21 = 1[zδ01 + η1 > 0] (5.4)

y22 = 1[zδ02 + η2 > 0] (5.5)

The error disturbances (ε, η1, η2) are assumed to be independent of z. The reduced-form

parameter vectors δ01 and δ02 can be consistently estimated with existing binary-choice-

model estimators.

The second-stage estimator β̂ would maximize the objective function

1
n(n− 1)

∑
i�=j

1[y21i = y21j]1[y22i = y22j]kh(ziδ̂1−zj δ̂1)kh(ziδ̂2−zj δ̂2)1[y1i > y1j]1[z1iβ > z1jβ].

(5.6)

Observation pairs are considered in the objective function when their y21 and y22 values are

identical and when their ziδ̂1 and ziδ̂2 index values are similar.

Given estimators for δ01, δ02, and β0, we now consider the problem of testing the signifi-

cance of causal effects. Combining the various equations of our model yields the following:

y1 = D(F (z1β, 1[zδ01 + η1 > 0], 1[zδ02 + η2 > 0], ε)). (5.7)

To test the effect of y21 (second argument) upon y1, we want to fix z1β and zδ02 and examine

the significance of the relationship between y1 and zδ01. (Similarly, to test the effect of y22

upon y1, we want to fix z1β and zδ01 and examine the significance of the relationship between

y1 and zδ02.) This idea can be operationalized with the following kernel-weighted rank-based

test statistic:

τ̂1 ≡
∑

i�=j ω̂ij,1sgn(y1i − y1j)sgn(ziδ̂1 − zj δ̂1)∑
i�=j ω̂ij,1

, (5.8)

where the (estimated) weights ω̂ij,1 are defined as

ω̂ij,1 ≡ kh(z1iβ̂ − z1jβ̂)kh(ziδ̂2 − zj δ̂2). (5.9)

The analogous test statistic (for testing the effect of y22 on y1) would be as follows:

τ̂2 ≡
∑

i�=j ω̂ij,2sgn(y1i − y1j)sgn(ziδ̂2 − zj δ̂2)∑
i�=j ω̂ij,2

, (5.10)
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where the (estimated) weights ω̂ij,2 are defined as

ω̂ij,2 ≡ kh(z1iβ̂ − z1jβ̂)kh(ziδ̂1 − zj δ̂1). (5.11)

5.2.2 The general case

The endogenous regressors are denoted y21, y22, . . . , y2Q, whereQ is the number of endogenous

regressors. The Q × 1 vector y2 is defined as y2 = (y21, y22, . . . , y2Q)′. Each endogenous

regressor y2q (for q = 1, . . . , Q) has a reduced-form generalized regression model as in (5.1):

y∗
2q = F2q(zδ0q, ηq), y2q = D2q(y∗

2q). (5.12)

The error disturbances (ε, η1, . . . , ηQ) are assumed to be independent of z. The functions

F2q and D2q may differ over q, allowing for an arbitrary mix of discrete and continuous

endogenous regressors.

To simplify notation somewhat, define Δ0 ≡ (δ01, . . . , δ0Q)′ to be the Q × � matrix con-

taining all of the reduced-form coefficients (where � is the dimension of z). Each of the

δ0q coefficient vectors can be estimated
√
n-consistently in a first stage using equation-by-

equation semiparametric estimation (e.g., maximum rank correlation or some other linear-

index estimator). The estimate of δ0q (for q = 1, . . . , Q) is denoted δ̂q, and the Q× � matrix

Δ̂ is defined as Δ̂ ≡ (δ̂1, . . . , δ̂Q)′.

For the second-stage estimator β̂, we generalize the approach from Section 5.2.1 and

focus upon observations pairs (i, j) for which y2i is close to y2j and Δ̂zi is close to Δ̂zj.

Specifically, the second-stage estimator β̂ maximizes the objective function

1
n(n− 1)

∑
i�=j

Kh(y2i − y2j)Kh(Δ̂zi − Δ̂zj)1[y1i > y1j]1[z1iβ > z1jβ]. (5.13)

whereKh(·) is a multivariate kernel function defined asKh(v) ≡∏dim(v)
q=1 kh(vq) for a vector v.

To test the effect of y2q upon y1 (for any q = 1, . . . , Q), we want to fix z1β and zδ0p for all

p �= q and examine the significance of the relationship between y1 and zδ0q. Let Δ̂−q denote

the matrix Δ̂ with the q-th row (i.e., δ̂′
q) removed, so that Δ̂−q has dimension (Q − 1) × �.

The test statistic associated with the q-th endogenous regressor is thus given by:

τ̂q ≡
∑

i�=j ω̂ij,qsgn(y1i − y1j)sgn(ziδ̂q − zj δ̂q)∑
i�=j ω̂ij,q

, (5.14)

where the (estimated) weights ω̂ij,q are defined as

ω̂ij,q ≡ kh(z1iβ̂ − z1jβ̂)Kh(Δ̂−qzi − Δ̂−qzj). (5.15)
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The asymptotic theory for the general case is completely analogous to the results devel-

oped previously. The regularity conditions which change for the general case are conditions

H and S. Condition H now becomes:

Assumption H’
√
nhp

n → 0,
√
nh

(
nm+2) → ∞, wherem denotes the number of matches,

so m = 2Q in the second stage and m = Q in the third stage.

The smoothness condition in Assumption S now applies to each of the random variables

being matched in the second and third stages.

6 Monte Carlo simulations

In this section, we consider evidence from Monte Carlo simulations which focus upon the

performance of the third-stage test statistic proposed above. The following simple design,

with a single (continuous) instrumental variable for the binary endogenous regressor, is

considered:

y1i = 1[α0y2i + εi > 0] (6.16)

y2i = 1[zi + ηi > 0] (6.17)

where zi ∼ N(0, 1) and

(
εi

ηi

)
∼ N

((
0

0

)
,

(
1 ρ0

ρ0 1

))
. Two parameters, α0 (the

coefficient on the binary endogenous variable) and ρ0 (the correlation between ηi and εi), are

chosen to vary over the simulation designs. In particular, the values ρ0 = 0, 0.25, 0.50, 0.75

and α0 = 0, 0.1, 0.2, 0.3 are considered, yielding 16 different designs.

For each of the 16 designs, 1,000 simulations were conducted with a sample size of 500

observations (n = 500). Three different approaches to testing the significance of α (i.e.,

testing H0 : α0 = 0) were considered: (i) a full MLE estimation strategy (with the test based

upon the z-statistic of α̂mle), (ii) a linear IV estimation strategy (with the test based upon the

z-statistic of α̂iv, and (iii) the third-stage test statistic τ̂ proposed above (which, in this case,

is the Kendall’s tau correlation between y1i and zi). Table 1 summarizes the results, with

rejection rates reported for the 5% and 10% levels for the three approaches (labeled MLE,

IV, and τ̂ , respectively). The first four rows of the table correspond to α0 = 0 and, therefore,

provide evidence on the size of the test. The rejection rates for the three tests are in line

with the 5% and 10% levels, although at the highest level of correlation (ρ0 = 0.75) between

the error disturbances, the MLE approach exhibits some over-rejection. The remaining rows
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of the table provide evidence on the power of the test (for α0 = 0.1, 0.2, 0.3). Overall, the

power of the alternative approaches is remarkably similar across these designs. For ρ0 = 0.75,

the MLE approach does have higher rejection rates, but these are likely the result of the

over-rejection phenomenon seen in the α0 = 0/ρ0 = 0.75 design; for the other ρ0 values, the

MLE approach has rejection rates which are basically indistinguishable from the other two

approaches.

For this simple Monte Carlo design, the semiparametric approach to testing for signif-

icance of the binary endogenous variable compares favorably with both an MLE approach

and a linear IV approach. There seems to be no loss of power associated the rank-based

test. The empirical application of the next section considers a more realistic situation with

additional exogenous covariates.

7 Empirical application

In this section, we apply our estimation and testing methodology to an empirical application

concerning the effects of fertility on female labor supply. In particular, we adopt the approach

of Angrist and Evans (1998), who use the gender mix of a woman’s first two children to

instrument for the decision to have a third child. This instrumental-variable strategy allows

one to identify the effect of having a third child upon the woman’s labor-supply decision.

The rationale for this strategy is that child gender is arguably randomly assigned and that,

in the United States, families whose first two children are the same gender are significantly

more likely to have a third child.

Using 1980 and 1990 Census data, Angrist and Evans (1998) find that married women

whose first two children are the same gender are 5–8% more likely to have a third child;

using the same-sex indicator as an instrument for having a third child, they find that having

a third child lowers the probability of a married women working for pay by about 10–12%.

Rather than using the 1980 and 1990 Census data, the sample for the current study is drawn

from the 2000 Census data (5-percent public-use microdata sample (PUMS)) in order to

see if any interesting changes have occurred in the relationship between fertility and labor

supply. Starting from the household PUMS data, a mother was retained in the sample if

all of the following criteria were satisfied: (i) mother has two or more children, (ii) mother

is white, (iii) mother is a United States citizen, (iv) mother is married with spouse present

in household, and (v) oldest child is 12 years of age or younger.11 In addition, to eliminate
11The PUMS data contains information on children under the age of 18 that are living in the household.
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any families that might have twin births (or higher-order multiple births), any family with

same-aged first and second children or same-aged second and third children were dropped

from the sample. The resulting sample consists of 293,771 observations.

Summary statistics for the variables to be used in the analysis are provided in Table 2.

The table shows that 69.7% of mothers in the sample worked for pay during 1999 and

25.7% of mothers had a third child. The percentage of women working for pay represents

a very slight increase over the comparable percentage from the 1990 Census data, and the

percentage having a third child represents a decline from 1990. In the analysis, the outcome

of interest (y1) is whether the mother worked in 1999, the binary endogenous explanatory

variable (y2) is the presence of a third child, and the instrument is whether the mother’s first

two children were of the same gender.

Table 3 reports the first-stage regression results, i.e. regressing the have-third-child indi-

cator upon the same-sex indicator variable and the other z variables. The linear probability

estimates and the probit estimates indicate that mothers whose first two children are the

same gender are 5.6–5.8 percentage points more likely to have a third child than mothers

whose first two children are of different gender. These estimates are very similar, although

slightly lower in magnitude, to those found by Angrist and Evans (1998, Table 5) for the

earlier 1980 and 1990 samples. Table 4 reports the second-stage estimates for the (linear)

two-stage least squares estimator, along with the OLS estimates for comparison. Again, the

results are very similar to those found by Angrist and Evans (1998, Tables 7 and 8), with

the OLS estimates of the had-third-child effect on labor supply larger in magnitude than the

2SLS estimates.

Table 5 considers the alternative tests for significance of the binary endogenous regressor,

comparing the semiparametric τ̂ test proposed in this paper with the z-test based upon the

2SLS estimates. In order to examine the effect of additional covariates, testing results are

reported starting from a model with no exogenous covariates and then adding covariates

onb-by-one until the full set of three exogenous covariates are included. (Note that the 2SLS

estimates and standard errors for the no-covariate and three-covariate models correspond

to those presented in Table 4.) In the model with no exogenous covariates, the z-statistics

associated with τ̂ and the 2SLS coefficient are extremely similar. This finding is very much in

Unlike earlier editions of the PUMS data, the 2000 edition does not contain a data item for the “total number

of children ever born.” Therefore, the last criterion is used in order to make it more likely that the oldest

child in the household is actually the mother’s first child. The cutoff could be lowered further to increase

this certainty but at the expense of decreasing the sample size.
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line with the Monte Carlo simulation evidence of the previous section. The 2SLS z-statistic

for the larger models is basically unchanged from the no-covariate model, which is not too

surprising given that the same-sex instrument is uncorrelated with the other exogenous co-

variates in the model. In contrast, the magnitude of the z-statistic for the semiparametric

τ̂ method does decline. The addition of covariates to the model forces the semiparametric

method to make comparisons based upon observation-pairs with similar first-stage (esti-

mated) index values associated with these exogenous covariates. It is encouraging, however,

that the z-statistic magnitude does not decline by much as the second and third covariates

are added to the model. Table 5 highlights the inherent robustness-power tradeoff between

the semiparametric and parametric methodologies. Although one might have worried that

the tradeoff would be so drastic to render the semiparametric method useless in practice,

the results indicate that this is not the case. Even in the model with three covariates, the

τ̂ estimate provides strong statistical evidence (z = −2.69) that the endogenous third-child

indicator variable has a causal effect upon mothers’ labor supply. Importantly, this finding

is not subject to the inherent misspecification of the linear probability model or any type of

parametric assumption on the error disturbances.

8 Concluding Remarks

This paper proposes a new method for testing for the causal effects of endogenous variables in

a generalized regression model. The model considered here allows for multiple continuously

and/or discretely distributed endogenous variables, thereby offering a test for cases not pre-

viously considered in the literature. The proposed test statistic converges at the parametric

rate to a limiting normal distribution under the null hypothesis of no causal effect. The sim-

ulation study in Section 6 indicates excellent finite-sample performance, and an application

to testing the causal effect of fertility illustrates the usefulness of the proposed approach

when compared to the standard 2SLS approach often implemented in empirical work.

A useful extension would be a localized version of the proposed procedure that would

allow the sign of the causal effect(s) to vary over the support of the random variables in

question.
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A Proof of Lemma 4.1

The proof strategy will be along the lines of Sherman(1994), and we deliberately aim to keep

notation as similar as possible to that used in that paper. Specifically, let Gn(θ) and Ĝn(θ)

be defined as12

Gn(θ) =
1

n(n− 1)

∑
i�=j

1[y2i = y2j]kh(z′
iδ0 − z′

jδ0)1[y1i > y1j]1[z′
1iβ(θ) > z′

1jβ(θ)](A.1)

Ĝn(θ) =
1

n(n− 1)

∑
i�=j

1[y2i = y2j]kh(z′
iδ̂ − z′

j δ̂)1[y1i > y2j]1[z′
1iβ(θ) > z′

1jβ(θ)] (A.2)

Similar to Sherman (1994), the proof strategy involves the following stages:

1. Establish consistency of the estimator.

2. Show the estimator converges at the parametric (
√
n) rate.

3. Establish asymptotic normality of the estimator.

For consistency, we apply Theorem 2.1 in Newey and McFadden (1994). Compactness

follows from Assumption CPS. To show uniform convergence, we note that the estimated

first-stage index converges uniformly to the true index, by Assumption FS, so we can replace

estimated indexes with true values inside the objective function, and work with Gn(θ). Next,

we note by Theorem 2 in Sherman (1994),

sup
θ∈Θ

(Gn(θ) − E[Gn(θ)]) = op(1) (A.3)

by the Euclidean property of the indicator function 1[z′
1iβ > z′

1jβ], and the uniform (in n)

boundedness of E[Gn(θ)]. By a change of variables and Assumptions K,H,

sup
θ∈Θ

E[Gn(θ)] − G(θ) p→ 0 (A.4)

where we will define G(θ) as follows. First, define the indicator d̃ij as I[y2i = y2j], and define

H(z′
iδ0, z

′
jδ0) = E[d̃ij|z′

iδ0, z
′
jδ0]

12Implicit in the proofs that follow, we are subtracting the function I[z′
1iβ0 > z′

1jβ0] from 1[z′
1iβ(θ) >

z′
1jβ(θ)] in each of the two objective functions, analogous to Sherman(1993). The terms subtracted do not

affect the value of the estimator, and are omitted for notational convenience.
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Furthermore, define

F(z′
1iβ0, z

′
1jβ0, z

′
iδ0, z

′
jδ0) = P (y1i > y1j|d̃ij = 1, z′

1iβ0, z
′
1jβ0, z

′
iδ0, z

′
jδ0)

So we can define

G(θ) = E[F(z′
1iβ0, z

′
1jβ0, z

′
iδ0, z

′
iδ0)H(z′

iδ0, z
′
iδ0)1[z′

1iβ(θ) > z′
1jβ(θ)]] (A.5)

where the above expectation is taken with respect to zi, zj. This establishes uniform conver-

gence of Ĝn(θ) to G(θ). G(θ) is continuous by the smoothness assumptions on the regressor

vector z1i, and the index z′
iδ0 distribution. Finally, as a last condition to apply Theorem 2.1

in Newey and McFadden (1994), we need to show that G(θ) is uniquely maximized at θ0.

This follows from the distributional assumption on εi (Assumption ED), the index distri-

butional assumption (Assumption RD) and the full rank condition (Assumption FR). This

establishes consistency.

With consistency established, the next two stages can be established along the lines

of Sherman (1994) and Khan (2001). Turning to deriving asymptotic normality of the

estimator, note that we can apply Theorem 2 of Sherman (1994), of which a sufficient

condition will be to show that uniformly over Op(1/
√
n) neighborhoods of θ0,

Ĝn(θ) =
1
2
θ′V θ +

1√
n
θ′Wn + op(n−1) (A.6)

where V is a negative definite matrix whose form will given below, and Wn is asymptotically

normal, with mean 0 and variance Ω (whose form is given below).

To show (A.6), we will work with the following expansion:

Ĝn(θ) = Gn(θ) +G′
n(θ) +Rn (A.7)

where

G′
n(θ) =

1
n(n− 1)

∑
i �=j

1[y2i = y2j ]h−1
n k′

h(z′
iδ̂−z′

j δ̂)1[y1i > y1j ]1[z′
1iβ(θ) > z′

1jβ(θ)](Δz′
ij δ̂−Δz′

ijδ0) (A.8)

with k′
h(·) denoting the derivative of the function kh(·). Rn in (A.7) denotes the remainder

term in the expansion, whose asymptotic properties will be dealt with after we derive the

asymptotic properties of Gn(θ) and G′
n(θ).

The following Lemma establishes a representation for Gn(θ):

Lemma A.1 Under the conditions RD, ED, FR, uniformly over Op(n−1/2) neighborhoods

of θ0, we have

Gn(θ) =
1
2
θ′V θ +

1√
n
θ′Wn + op(n−1) (A.9)

where V is negative definite and Wn is asymptotically normal with mean 0, and variance Ω.
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Proof: We will first evaluate a representation for E[Gn(θ)]. We do this because we will later
work with the U -statistic representation theorems found in, e.g. Serfling (1978). Letting
ζi = z′

iδ0, we write E[Gn(θ)] as the integral:∫
kh(Δζij)1[z′

1iβ > z′
1jβ]H(ζi, ζj)F(z′

1iβ0, z
′
1jβ0, ζi, ζj)dFZ1,ζ(z1i, ζi)dFZ1,ζ(z1j , ζj) (A.10)

Next, we do the change of variables u = Δζij

hn
and obtain the following integral∫

k(u)1[z′
1iβ > z′

1jβ]H(ζj + uhn, ζj)F(z′
1iβ0, z

′
1jβ0, ζj + uhn, ζj)

dFZ1,ζ(z1i, ζj)dFZ1,ζ(z1j, ζj + uhn)du (A.11)

Taking a second-order expansion inside the integral around uhn = 0, the lead term is of the

form:∫
k(u)1[z′

1iβ > z′
1jβ]H(ζj, ζj)F(z′

1iβ0, z
′
1jβ0, ζj, ζj)dFZ1,ζ(z1i, ζj)dFZ1,ζ(z1j, ζj)du (A.12)

Note the term F(z′
1iβ0, z

′
1jβ0, ζj, ζj) controls for selection bias. Therefore, we can use the

same arguments as in Sherman (1993) to conclude that the integral in (A.12) is of the form

1
2
θ′V θ + op(n−1) (A.13)

for θ uniformly in Op(n−1/2) neighborhoods of θ0. The first-order term in the second-order

expansion is 0 since
∫
uk(u)du = 0. The second-order term can be bounded above by(

C

∫
1[z′

1iβ > z′
1jβ]dFZ1,ζ(z1i, ζi)dFZ1,ζ(z1j, ζj)

)
h2

n (A.14)

where C is a finite constant. This term is O (θ′h2
n), which is o(n−1) for θ in a O(n−1/2)

neighborhood of θ0 by the assumptions on hn which imply
√
nh2

n → 0.

Next, we establish a representation for E[Gn(θ)|z1i, y1i, zi]. Using the same arguments as

in the unconditional expectation, we conclude that E[Gn(θ)|z1i, y1i, zi] is of the above form,

now no longer integrating over the variables z1i, y1i, zi.

Next, we derive a linear representation for (A.8). Regarding the term Δz′
ij δ̂, we will

only derive the linear representation involving the component ζ̂i − ζi as the term involving
ζ̂j − ζj can be dealt with similarly. The first step is to plug in a linear representation for the
estimator δ̂ of δ0:

1
n(n− 1)(n− 2)

∑
i �=j �=k

h−1k′
h((zi − zj)′δ0)1[y1i > y1j ]z′

iψδk1[z′
1iβ > z′

1jβ] (A.15)

where ψδk denotes the influence function in the linear representation of the first stage estima-
tor δ̂, evaluated at the k-th observation. We have a centered third order U -process. Again,
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we note the its unconditional mean is 0, as is its mean conditional on each of its first two
arguments. Consequently, we derive a linear representation for its mean conditional on its
third argument:

1
n

n∑
k=1

(∫
H(ζi, ζj)F(z′

1iβ0, z
′
1jβ0, ζi, ζj)h−1k′

h(ζi − ζj)1[z′
1iβ > z′

1jβ]z′
i×

dFZ(zi)dFZ(zj)
)
ψδk

(A.16)

While the above integral is expressed with respect to zi, zj, it will prove convenient to express

the integral in terms of ζi, ζj. We do so as follows:∫
H(ζi, ζj)M(ζi, ζj, β)h−1k′

h(ζi − ζj)fζ(ζi)fζ(ζj)dζidζj (A.17)

where fζ denotes the density function of ζ, and

M(ζi, ζj, β) = E[F(z′
1iβ0, z

′
1jβ0, ζi, ζj)1[z′

1iβ > z′
1jβ]z′

i|ζi, ζj] (A.18)

Now we do a change of variables in (A.17) v = (ζi−ζj)/h, noting that under our assumptions

we have
∫
k′(v)dv = 0 and

∫
k′(v)vdv = −1 so that the lead term in the expansion (inside

the integral) around vhn = 0 yields the integral(∫
μ1(ζj, ζj, β)fζ(ζj)dζj

)
(A.19)

where

μ(t, ζ, β) = H(t, ζ)M(t, ζ, β)fζ(t) (A.20)

and μ1(·, ·, ·) denotes its partial derivative with respect to its first argument. The remaining

terms in the expansion are negligible—i.e. op(n−1) uniformly in Op(n−1/2) neighborhoods of

β around β0.

The next step is to expand the function in (A.19) around β = β0. A second-order

expansion of μ1(·, ·, β) around β = β0, (inside the above integral) yields the term

1
n

n∑
k=1

(∫
μ31(ζj, ζj, β0)fζ(ζj)dζj

)
(ψδk)′(β − β0) +Rn (A.21)

where μ31(·, ·, ·) denotes the partial derivative of μ1(·, ·, ·) with respect to its third argument,

and the remainder term Rn is op(n−1) uniformly in β in Op(n−1/2) neighborhoods of β0. This

concludes the linear representation of the term in the objective function involving ζ̂i − ζi.

We note analogous arguments can be used to derive the analogous linear representation for

the term involving ζ̂j − ζj This concludes our proof that our estimator β̂ of β0 is root-n

consistent and asymptotically normal. We will use these results in deriving the asymptotic

properties of our test statistic.

25



B Proof of Theorem 4.1

The strategy is to derive a linear representation for τ̂ − τ0, where

τ0 = E[sgn(y1i − y1j)sgn(z′
iδ0 − z′

jδ0)|z′
1iβ0 − z′

1jβ0 = 0].

Note that

τ̂−τ0 =

(
1

n(n− 1)

∑
i�=j

ω̂ij

)−1(
1

n(n− 1)

∑
i�=j

ω̂ij(sgn(y1i − y1j)sgn(z′
iδ̂ − z′

j δ̂) − τ0)

)
(B.1)

from which we will derive the probability limit of the denominator term, a linear represen-

tation of the numerator term, and then apply Slutsky’s theorem.

For the denominator term in (B.1), a mean-value expansion around the true index dif-

ference, the root-n consistency of β̂, and a LLN for U -statistics implies:

1
n(n− 1)

∑
i�=j

ŵij
p→ E[fZβ(ζβi)] (B.2)

where fZβ(·) denotes the density function of ζβi = z′
1iβ0.

For the numerator term in (B.1), we first work with the term

1
n(n− 1)

∑
i�=j

ωij(sgn(y1i − y1j)sgn(z′
iδ0 − z′

jδ0) − τ0) (B.3)

to which we apply a U -statistic projection theorem. By a change of variables and the higher

order properties of the kernel function inside ωij, the expectation of the term inside the

double summation is op(n−1/2); therefore, it remains to derive expressions for conditional

expectations of the term inside the double summation conditional on its first and second

arguments. Again, using a change of variables and the higher order properties of the kernel

function inside the weighting function, we get the following expression for these conditional

expectations:

1
n

n∑
i=1

2fZβ(ζβi)(G(y1i, zi, ζβi) − τ0) + op(n−1/2) (B.4)

where

G(y1, z, ζβ) = E[sgn(y1i − y1)sgn(z′
iδ0 − z′δ0)|ζβi = ζβ]. (B.5)

Therefore, by the projection theorem (Powell et al. (1989)) (which is applicable due to

the properties of the kernel function and bandwidth, which imply that the variance of the

statistic is o(n)), (B.3) can be represented as (B.4).
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Turning attention to the linear term in the expansion of ω̂ij around ωij

1
n(n− 1)

∑
i�=j

h−1k′
h(ζi − ζj)(z1i − z1j)′(β̂−β0)(sgn(y1i − y1j)sgn(z′

iδ0 − z′
jδ0) − τ0), (B.6)

we can plug in the derived linear representation for β̂− β0, yielding a third order U -statistic

plus a negligible remainder term. The U -statistic is of the form:

h−1
n

n(n− 1)(n− 2)

∑
i�=j �=k

k′
h(ζβi −ζβj)(z1i −z1j)′ψβi(sgn(y1i −y1j)sgn(z′

iδ0 −z′
jδ0)−τ0). (B.7)

We note the unconditional expectation of the above term is 0, as is the expectation condi-

tional on each of its first two arguments. Using similar arguments as before, it follows that

the expectation conditional on its third argument can be expressed as:

1
n

n∑
i=1

E[G′
x(ζβi)fZβ(ζβi)]ψβi + op(n−1/2) (B.8)

where

Gx(·) = E[(sgn(y1i − y1j)sgn(z′
iδ0 − z′

jδ0) − τ0)(z1i − z1j)′|z1i − z1j = ·]

and G′
x(·) denotes the derivative of Gx(·) with respect to its argument.

A further term in the linear representation of the test statistic is

1
n(n− 1)

∑
i�=j

ωijsgn(y1i − y1j)(sgn((zi − zj)′δ̂) − sgn((zi − zj)′δ0)) (B.9)

Here we can effectively expand the above term with δ̂ around δ0. To do so, since the sign

function is not differentiable, we take the expectation of sgn((zi − zj)′δ) for any δ. Recall, as

a normalization, we set the last component of δ = 1 and assume its associated regressor was

continuously distributed. Here we let FZk|Z−k
(·) denote the cdf of zki − zkj conditional on

z′
−ki, z

′
−kj (where zki denotes the last component of zi and z′

−ki denotes the other components

of zi). Consequently, we have:

E[sgn((zi − zj)′δ)|z−ki, z−kj] = FZk|Z−k
(Δz′

−kijδ
(−k))

where Δz−kij denotes the difference in the corresponding components of zi and zj, and δ(−k)

denotes the subvector of δ corresponding to z−ki. We can expand this conditional expectation

evaluated at δ around the conditional expectation evaluated at δ0:

FZk|Z−k
(Δz′

−kij δ̂
(−k)) = FZk|Z−k

(Δz′
−kijδ

(−k)
0 )
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+fZk|Z−k
(Δz′

−kijδ
(−k)
0 )Δz′

−kij(δ̂ − δ0) +Op(‖δ̂ − δ0‖2)

where fZk|Z−k
(·) denotes the density function of zki − zkj conditional on z′

−ki, z
′
−kj. Note

that since the sgn function is Euclidean and δ̂ − δ0 is Op(n−1/2) (by using, e.g., Theorem 1

in Sherman (1994)), the remainder term that arises from replacing the difference in sgn

functions with their expectations in (B.9) is op(n−1/2).

Next, by applying the same arguments as before, involving plugging in a linear represen-

tation (this time for (δ̂− δ0)), and decomposing the resulting third order U -statistic, we get

a linear representation. Specifically, let

G11(·) = E[sgn(y1i − y1j)fZk|Z−k
(Δz′

−kijδ
(−k)
0 )Δz′

−kij|ζβi = ·, ζβj = ·].

Then, we may conclude that (B.9) has the following linear representation

1
n

n∑
i=1

E[G11(ζβi)fZβ(ζβi)]ψδi + op(n−1/2). (B.10)

Finally, we note that is easy to show that the remainder term, which involves the product

of β̂ − β0 and δ̂ − δ0, is op(n−1/2).

Therefore, collecting all our results we may conclude that

τ̂ − τ0 = E[fZβ(ζβi)]−1 1
n

n∑
i=1

(
2fZβ(ζβi)(G(y1i, zi, ζβi) − τ0) + E[G′

x(ζβi)fZβ(ζβi)]ψβi(B.11)

+ E[G11(ζβi)fZβ(ζβi)]ψδi

)
+ op(n−1/2) (B.12)

which establishes the theorem.
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Table 1: Monte Carlo simulation results for n = 500. Rejection rates (over 1,000 simulations)

for tests at the 5% and 10% levels are reported. The three different z-tests are based upon

MLE estimation, IV estimation, and rank correlation.

5%-level rejections 10%-level rejections

ρ α MLE IV τ̂ MLE IV τ̂

Size of the test 0.00 0.0 0.064 0.052 0.056 0.110 0.095 0.105

0.25 0.0 0.051 0.041 0.047 0.104 0.090 0.094

0.50 0.0 0.059 0.051 0.051 0.116 0.092 0.096

0.75 0.0 0.081 0.052 0.053 0.127 0.097 0.097

Power of the test 0.00 0.1 0.076 0.075 0.072 0.143 0.140 0.136

0.25 0.1 0.090 0.087 0.097 0.160 0.157 0.156

0.50 0.1 0.083 0.099 0.085 0.135 0.148 0.138

0.75 0.1 0.129 0.119 0.118 0.205 0.185 0.182

0.00 0.2 0.169 0.163 0.161 0.255 0.250 0.265

0.25 0.2 0.187 0.193 0.189 0.286 0.288 0.295

0.50 0.2 0.197 0.209 0.199 0.292 0.300 0.286

0.75 0.2 0.269 0.262 0.245 0.393 0.364 0.353

0.00 0.3 0.343 0.331 0.345 0.483 0.457 0.470

0.25 0.3 0.315 0.318 0.326 0.434 0.439 0.437

0.50 0.3 0.370 0.386 0.387 0.500 0.487 0.495

0.75 0.3 0.470 0.454 0.430 0.588 0.548 0.556

Table 2: Summary statistics

Variable Description Mean (Stdev)

Worked in 1999 1 if worked for pay in 1999, 0 otherwise 0.697

Same-sex indicator 1 if first two children are the same gender, 0 otherwise 0.502

Had third child 1 if had third child, 0 otherwise 0.257

Age at first birth Mother’s age when first child was born 26.36 (5.03)

1st child’s age Age of first child in 2000 7.55 (3.03)

Education Mother’s education level (in years) 10.97 (2.19)
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Table 3: First-stage regression results. The dependent variable is an indicator variable equal

to one if the woman had a third child. Heteroskedasticity-robust standard errors are reported

for the OLS estimates. Marginal effects (evaluated at the means of the explanatory variables)

for the probit estimates are provided in brackets.

OLS OLS Probit

Same-sex indicator 0.0564 0.0562 0.1865

(0.0016) (0.0015) (0.0052)

[0.0576]

Age at first birth -0.0147 -0.0511

(0.0002) (0.0006)

[-0.0158]

1st child’s age 0.0318 0.1111

(0.0002) (0.0009)

[0.0344]

Education 0.0104 0.0364

(0.0004) (0.0013)

[0.0113]

# observations 293,771 293,771 293,771

R-squared 0.0042 0.0812
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Table 4: Second-stage regression results. The dependent variable is an indicator variable

equal to one if the woman worked for pay in 1999. The 2SLS regressions use the same-sex indi-

cator variable as an instrument for the had-third-child indicator variable. Heteroskedasticity-

robust standard errors are reported.

OLS 2SLS OLS 2SLS

(Wald)

Had third child -0.1382 -0.1118 -0.1728 -0.1124

(0.0020) (0.0298) (0.0020) (0.0295)

Age at first birth -0.0074 -0.0065

(0.0002) (0.0005)

1st child’s age 0.0161 0.0142

(0.0003) (0.0010)

Education 0.0319 0.0313

(0.0004) (0.0005)

# observations 293,771 293,771 293,771 293,771

R-squared 0.0173 0.0167 0.0462 0.0432
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Table 5: Testing significance of the binary endogenous regressor. The z-statistics for the

semiparametric and 2SLS estimation approaches are reported for several different model

specifications. The 2SLS standard errors are heteroskedasticity-robust.

Exogenous covariates Semiparametric 2SLS

in the model τ̂ s.e. z-stat α̂ s.e. z-stat

None -0.00316 0.00085 -3.72 -0.1118 0.0298 -3.75

Education -0.00299 0.00102 -2.94 -0.1103 0.0296 -3.72

Education, -0.00655 0.00229 -2.86 -0.1111 0.0296 -3.75

Mother’s age at first birth

Education, -0.00695 0.00258 -2.69 -0.1124 0.0295 -3.80

Mother’s age at first birth,

Age of 1st child
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