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TIMING AND SELF-CONTROL

BY DREW FUDENBERG AND DAVID K. LEVINE1

The standard dual-self model of self-control, with a shorter-run self who cares only
about the current period, is excessively sensitive to the timing of decisions and to the in-
terpolation of additional “no-action” time periods in between the dates when decisions
are made. We show that when the shorter-run self is not completely myopic, this excess
sensitivity goes away. To accommodate the combination of short time periods and con-
vex costs of self-control, we introduce a cognitive resource variable that tracks how the
control cost depends on the self-control that has been used in the recent past. We con-
sider models with both linear and convex control costs, illustrating the theory through
a series of examples. We examine when opportunities to consume will be avoided or
delayed, and we consider the way in which the marginal interest declines with delay.

KEYWORDS: Self-control, dual selves, present bias, Allais paradox, revealed prefer-
ence, behavioral economics.

1. INTRODUCTION

MODELS OF LONG-RUN PLANNING and shorter-run2 impulsive selves suppose
that a single patient self makes decisions in each period to maximize the dis-
counted sum of utility net of a cost of self-control, where this cost depends
on the temptations faced by the impatient impulsive self. These models pro-
vide a quantitative explanation of a wide variety of “behavioral” paradoxes,
including the Rabin paradox (small stakes risk aversion), the Allais paradox,
preferences for commitment in menu choice, violations of the weak axiom of
revealed preference, nonexponential discounting, and the effect of cognitive
load on decision making and reversals due to probabilistic rewards. However,
these models, like the quasihyperbolic discounting model,3 have two implica-
tions about the role of timing that are at odds with the data. First, because
these models have a fixed horizon for the shorter-run self, they cannot explain
overwhelming evidence that the length of delay has a continuous impact on
decisions, and they make implausible predictions about the value of a commit-
ment that avoids temptation: There is no value for a commitment that must be
made the same period that the temptation is faced, while commitment “one
period before” the temptation arises can be highly valued, regardless of the
length of a time period. Second, past work has identified the importance of
allowing the cost of self-control to be a convex as opposed to a linear function

1This paper was presented as the Fisher–Schultz Lecture at the 2010 World Congress of the
Econometric Society in Shanghai. We thank Attila Ambrus, Yuichiro Kamada, Jawaad Noor,
Alex Peysakhovich, Tomasz Strzalecki, and Dmitry Taubinsky for helpful comments, and the NSF,
Grants SES-0646816, SES-0851315, and SES-0954162, for financial assistance.

2As we are dealing with “short-run selves” who live more than one period, we adopt the sug-
gestions of Rajiv Sarin and refer to “shorter-run selves.”

3Strotz (1955), Phelps and Polak (1968), Laibson (1997), and O’Donoghue and Rabin (1999).

© 2012 The Econometric Society DOI: 10.3982/ECTA9655

http://www.econometricsociety.org/
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA9655


2 D. FUDENBERG AND D. K. LEVINE

of foregone utility, but it has assumed that the cost function in each period is
independent of self-control used in the recent past. As we point out here, that
model has the implausible implication that making decisions simultaneously is
different from making them with an arbitrarily small delay. The new version of
the dual-self model we propose here addresses both of these issues.

To account for the continuous effect of delay and to explore the implications
of the timing of decisions, we propose that temptation comes from a shorter-
run self or selves who are not completely myopic but who value future utility
less than the long-run self does, because there is either a succession of shorter-
run selves with random lifetimes or a single shorter-run self whose discount
factor is lower than that of the long-run self. This lets us maintain the strength,
simplicity, and applicability of the dual-self model. It also lets us model cases
where agents are tempted by future consumption, as in Noor (2007, 2011), and
explain why this temptation is most significant with respect to payoffs in the
near future.

The key modeling question in extending the dual-self model to nonmyopic
shorter-run selves is the specification of the cost of self-control. In the one-
period model, this cost depends on the amount of utility the shorter-run self
foregoes in the current period. When temptation comes from selves who give
nonzero weight to future payoffs, expectations about these future payoffs mat-
ter; we propose that the control cost of implementing a given action depends
on how much that action lowers the highest possible average present value the
shorter-run self could obtain from the current period on. This specification is
consistent with the interpretation that the shorter-run selves are strategically
naive and evaluate foregone utility under the assumption that no self-control
will be used in the future; the Supplemental Material (Fudenberg and Levine
(2012)) points out some of the complications of an alternative specification.

We begin our analysis with the case where the cost of self-control is linear
in the foregone value. This is the simplest version of the model, and the one
closest to discounted expected utility, as it is consistent with both the indepen-
dence axiom for choices over lotteries and the weak axiom of revealed prefer-
ence. Our first application considers the decision of whether to accept or reject
a “simple temptation” that gives an initial positive payoff followed by a nega-
tive payoff in future periods. We point out that the agent may prefer to resist
a simple temptation when it is a once-and-for-all choice, and yet prefer to give
in when that temptation must be faced in every period unless and until it is ac-
cepted; we relate this to the effect of “bundling” of decisions noted by Ainslie
(2001) and Kirby and Guatsello (2001). We then show that the value of a com-
mitment to avoid temptation can be nonmonotone in the discount factor of
the shorter-run selves. In Example 3, we show that the model explains the fact
that the ratio between payment in period t and payment in period t + 1 that
makes subjects indifferent is typically increasing in t and not constant; we fo-
cus on data from Myerson and Green (1995), but there have been many similar
studies.
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Although linear costs are a convenient first cut at self-control problems,
there is considerable evidence that the costs are often convex, so that it is
more than twice as hard to resist twice the temptation. We therefore extend
the model to allow for convex costs. Examples 4 and 5 point out two implica-
tions of convex costs for agents faced with simple temptations: First of all, an
agent is more likely to resist a temptation that has a low probability of being
realized than one whose payoff stream is certain. Second, an agent who is faced
with two simultaneous simple temptations may choose to accept one of them,
even though he would reject both if they were presented in different periods.

This observation suggests that when costs are convex and time periods are
short, we expect that the nonlinearity of control costs should “spill over” from a
decision in one period to a subsequent decision soon afterwards, so that mak-
ing two decisions in rapid succession is similar to making the two decisions
simultaneously. Moreover, since the length of the time period in decision prob-
lems is an artificial construct, we want the model to apply to cases where the
time periods are very short, with decisions made in only a few of them.4 Adding
such “intermediate” no-action periods makes no difference in classic rational
models, but can have counterintuitive implications in models of self-control.

To capture the effect of changing the period length when there are convex
costs, we suppose that self-control uses cognitive resources and that these re-
sources are a stock that can be depleted over short time intervals, as argued
by Muraven, Tice, and Baumeister (1998) and modeled by Ozdenoren, Salant,
and Silverman (2009). From this perspective, the simpler model of the previous
sections corresponds to cases where the stock of cognitive resources completely
replenishes from one period to the next.

The reason for introducing a stock of cognitive resources is to track varia-
tions in the marginal cost of self-control and account for the way that using
self-control in one period can alter the self-control cost and decision in a sub-
sequent period. To check that this is all it is doing, we first show in Theorem 3
that when there is a single decision, the stock of cognitive resources is irrele-
vant, as the agent’s decision will be the same as in a “state-free” model with the
appropriately defined cost function. We then show in Theorem 4 that when the
marginal cost of self-control is constant, the decisions made by an agent with
a stock of cognitive resources that partially replenishes over time are again
the same as those made in an associated model without cognitive resources.
However, when the agent makes multiple decisions and the marginal cost of
self-control varies, the equivalence with the state-free model fails, precisely
because of the link between current decisions and the marginal cost of self-
control in future periods.

In general, there are three possible sources of nonlinearity in the model,
any of which can cause variations in the marginal cost of self-control: the way

4In multiplayer games, the period length models how long it takes one player to respond to the
play of another.
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the stock of cognitive resources is depleted by using self-control; the way the
stock is replenished over time; and way the stock provides benefits. Since cog-
nitive resources are not observed directly and have no natural units, there are
many equivalent representations of the same preferences, so it is not possible
to identify which part of the model is non-linear. Indeed, as Theorem 5 shows,
if there is any replenishment at all, it is without loss of generality to specify lin-
ear replenishment and lodge all of the nonlinearity in the depletion and benefit
functions.

After exploring the general properties of the cognitive resources model, we
consider a number of examples with linear depletion and linear (or no) re-
plenishment. Example 7 revisits the example of an agent with convex costs
facing two temptations in a row and shows that when resources replenish lin-
early, the agent makes the same choice whether the two decisions are made
exactly simultaneously or in rapid succession. Example 8 shows that when the
marginal benefits of resources are concave (so the cost of control is convex), it
may be optimal to resist a persistent temptation for a while and then take it,
a conclusion that is impossible in the stationary model without a stock variable.
Example 9 builds on this by adding the option to pay a fee and permanently
avoid the temptation. We show that it may be optimal to resist for a while and
then pay the fee, which is consistent with the findings of a suggestive recent
experiment of Houser, Schunk, Winter, and Xiao (2010). Examples 7 and 8
simplify by assuming no replenishment of resources at all, which is unrealistic
but makes it easier to highlight the logic of the argument. Example 10 reexam-
ines persistent temptation with a general depletion function to highlight how
the depletion and benefit functions interact to determine whether the agent
will resist for a while before giving in. Finally, Example 11 shows the issues in-
volved in relaxing our assumption that the “willpower technology” is fixed and
cannot be changed by the agent.

Some past work has used the device of random long-run player lifetimes to
explain behavioral anomalies: Dasgupta and Maskin (2005) showed that uncer-
tain long-run player lifetimes can lead to hyperbolic discounting. Halevy (2008)
developed a model where a single long-run self faces a stopping (or death) risk
that is modified by a convex “transformation function” and so is distinct from
the agent’s pure time preference. He used this to explain Keren and Roelof-
sma’s (1995) data, which show that “present-biased” preference reversals are
much less frequent when both the present and future rewards are uncertain.5

Epper, Fehr-Duda, and Bruhin (2009) used a similar idea of distorted survival
weights to explain present bias as a consequence of prospect theory.

Noor (2007, 2011) developed axioms for infinite-horizon choice problems in
which the agent can be tempted by future consumption. His model, like that of

5Our (2010) paper (Fudenberg and Levine (2010)) explains the same data as a consequence of
a convex cost of self-control.
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Gul and Pesendorfer (2001), is more general than ours in relating the tempta-
tion values to the objectives of the long-run player, but is less general in impos-
ing the independence axiom; because of this assumption, only the linear-cost
model in Section 3 is compatible with his framework. Noor did not investigate
how “temptation by the future” depends on the real time between the two pe-
riods of his model; his main goal is to show that there can be a self-control
problem despite the fact that future temptation results in little demand for
commitment, as in our analysis of menu choices in Example 1. In the context of
two-period models, Noor and Takeoka (2010a) developed axioms for choices
on menus that allow convex costs of self-control, and then (Noor and Takeoka
(2010b)) developed a more restrictive representation that they extended to
multiple periods and temptation by future payoffs. Brocas and Carrillo (2008)
explained the covariance of effort and consumption by assuming the long-run
self has incomplete information on the shorter-run self’s cost of effort, and
Chatterjee and Krishna (2009) and Dekel, Lipman, and Rustichini (2009) ax-
iomatized cases where second-period preferences are stochastic and can de-
pend on the first-period choice of menu.6 For the infinite-horizon problem,
Gul and Pesendorfer (2004) developed a recursive extension of their (2001)
axioms, including the independence axiom.

2. THE DECISION PROBLEM

In dual-self models, the agent acts to maximize expected discounted util-
ity subject to a cost of self-control that is derived from the preferences of
a more impulsive short run self. In this paper, we take this control cost as
exogenous; the Supplemental Material explains how the maximization prob-
lem we consider corresponds to the equilibrium of a game between the agent’s
long-run (LR) self (a “planner”) and a sequence of shorter-run (SR) “temp-
tation selves” (“doers”). To facilitate the exposition and also the comparison
of the model with previous work, we use a discrete-time model with periods
n = 1�2� � � � � We denote the agent’s discount factor by δ and suppose that the
discount factor of the shorter-run self is δμ, where μ ∈ [0�1) can also be inter-
preted as the survival probability of the current shorter-run selves.

We will frequently be interested in how the solution to the model varies with
the period length, which we would like to distinguish from the real time be-
tween decisions. To do this, we let the period length be τ units of calendar
time, and suppose that δ = exp(−ρτ) and μ = exp(−ητ); for small τ, we use
the approximations μ ≈ 1 −ητ and δ≈ 1 − ρτ.

The space of states, denoted Y , is a measurable subset of a finite-dimensional
Euclidean space, as is the space of actions A. For each state, there is a mea-
surable subset of feasible actions A(yn) ⊆ A and at least one measurable map
a :Y → A that satisfies a(yn) ∈ A(yn). Dynamics are Markovian: they are given

6These two papers differ in how the long-run self views the possible second-period preferences.
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by probability distributions π(yn−1� an−1)[dyn] over states next period, condi-
tioned by the current state and action, that are measurable functions of yn−1,
an−1. In applications, the state can take on many different roles: it can corre-
spond to direct and indirect constraints on feasible actions (such as the pres-
ence of tempting consumption opportunities and the agent’s wealth) and also
to the agent’s past consumption or other influences on the current period’s
utility function.7

Each period’s action is taken after that period’s state is known, so the history
of play at period n is hn = (y1� a1� � � � � yn−1� an−1� yn); the initial history h1 = y1

is exogenously given. A strategy or plan for the long-run self is then a measur-
able map a from histories to actions, so that for each history hn, the strategy
specifies an action in a(hn) ∈A(yn).

The shorter-run self (or selves) has utility u(yn�an) in period n if the action
an is taken in the state yn. We work with average present values, so that we
hold u(yn�an) fixed as we vary the length τ of the time period. The objective
of the long-run player is the average present value of these shorter-run self
utilities, minus a cost of self-control that is defined with reference to the max-
imum possible average present value for the shorter-run self. Let Ea�hn be the
conditional expectation generated by the plan a conditional on the history hn.
The expected average present value of the shorter-run self from period n on
under a is given by

U(hn�a)≡Ea�hn(1 − δμ)

∞∑
	=0

(δμ)	u(yn+	� an+	)�

or, equivalently,

U(hn�a)≡Ea�hn

(
1 − e−(ρ+η)τ

) ∞∑
	=0

e−(ρ+η)	τu(yn+	� an+	)�

To focus on the application of the model and not standard technical details,
we directly impose the following assumption.

ASSUMPTION SR0:

Ea�hn(1 − δμ)

∞∑
l=0

(δμ)	u(yn+	� an+	)

= (1 − δμ)

∞∑
	=0

(δμ)	Ea�hnu(yn+	� an+	)

7For example, the model is compatible with the “rational addiction” preference structure of
Becker and Murphy (1988) and with short-run consumption commitments as in the Gabaix and
Laibson (2002) explanation of the equity premium puzzle.
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(the expectation and sum operators can be interchanged) and U(hn�a) has a max-
imum for each n and hn.

Because the problem of the shorter-run self is Markov, this maximized value
only depends on the state:

THEOREM 1: maxa U(hn�a)= Ū(yn).

Our earlier work (Fudenberg and Levine (2006, 2010)) assumed that the
cost of self-control depends on the amount of utility foregone by the shorter-
run self, which is the difference between the maximum possible utility in the
current period and the current-period utility the shorter-run self actually re-
ceives. When shorter-run selves live more than one period, we must specify
how the cost of self-control takes into account the effect of current actions on
future payoffs. To do this, we suppose that the level used as a benchmark is the
highest value that the shorter-run player could hope to receive.

Specifically, we call Ū(yn) the temptation value in period n starting at state yn.
The foregone value is then

Δ(yn�an) = Ū(yn)−
(
(1 − δμ)u(yn�an)

+ δμ

∫
Y

Ū(yn+1)π(yn+1|yn�an)[dyn+1]
)
�

The foregone value is recursive in the sense that it depends on the future only
through the future temptation value and it attributes control costs to each ac-
tion as it occurs as opposed to entire contingent plans.8 The idea is that the cur-
rent cost of self-control depends on the foregone value in the current period,
which can be nonzero either because the current choice of action an lowers
u(yn�an) or because it changes the distribution of future states π(yn+1|yn�an)
and thus the temptation value from the next period on. Future actions that
may lower the shorter-run self’s value do not incur a current cost; instead they
incur costs at the time at which they are taken. Note in particular that there
is no foregone value to postponing a decision, provided that the set of utility
possibilities in the next period is the same as in this one, although as we will
see, the cost of implementing it may change.

8This is the same specification of temptation value and foregone value as in Noor (2007).
The Supplemental Material discusses an alternative formulation in which the shorter-run selves
have rational expectations about future self-control, so each period’s control cost depends on the
difference between the best expected present value available to a shorter-run self born in that
period and the value that will actually be received. We show that when the cost of self-control is
linear in the foregone value, as in (1), the two formulations are equivalent, but with nonlinear
costs, the recursive formulation has more plausible implications.
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One interpretation of the foregone value is that the term

δμ

∫
Y

Ū(yn+1)π(yn+1|yn�an)[dyn+1]

is the shorter-run self’s prediction of the expected continuation payoff, and
that the shorter-run self predicts that no self-control will be used in the future.
Under this interpretation, the shorter-run self is strategically naive and does
not anticipate that today’s actions can change the amount of self-control that
will be used in the future.9

Notice that by the principle of optimality, any plan that solves maxa U(hn�a)
must also solve the dynamic programming problem

max
an

(1 − δμ)u(yn�an)+ δμ

∫
Y

Ū(yn+1)π(yn+1|yn�an)[dyn+1]�

Thus we can make the following statement.

THEOREM 2: Δ(yn�an)≥ 0 and if â ∈ arg maxa U(hn�a), then Δ(yn� ân)= 0.

The key element of the theory of self-control is the specification of the cost
of exerting self-control. We study the linear case first.

3. LINEAR COST OF SELF-CONTROL

We start our analysis with a particularly simple specification of the cost of
self-control. We suppose that the cost of self-control is Γ Δ(yn�an), so it is linear
in the foregone value Δ, and that the scalar constant Γ ≥ 0 is independent of
the state and the period length.

The case of linear self-control costs has been the most widely studied. This
type of self-control model satisfies the Gul–Pesendorfer axioms, including the
independence axiom. Moreover, while nonlinear costs are important in many
applications, many insights still arise in the linear case. We examine the in-
creasing marginal cost of self-control in subsequent sections, along with the
idea that willpower is a stock, so that exercising self-control can increase the
control cost over the next few periods if periods are short.

The agent’s objective function is

V (hn�a)≡ Ea�hn

∞∑
	=0

δ	((1 − δ)u(yn+	� an+	)− Γ Δ(yn+	� an+	));(1)

9This is the same specification of temptation value as in Noor (2007). Depending on the cost
function, other interpretations are sometimes possible as well, for example, in the case of linear
costs (defined below), the definition of temptation utility is consistent with perfect foresight. But
the “naive” interpretation is valid regardless of the cost function.



TIMING AND SELF-CONTROL 9

this is the expected average present value of the per-period utility u minus the
discounted sum of control costs.

As in the case of the shorter-run decision problem, we assume the existence
of a maximum:

ASSUMPTION 0: V (hn�a) has a maximum for each n�hn.

Moreover, because this is a Markov decision problem, there is an optimal
plan in which the choice of action depends only on the current state yn.

The objective function (1) reduces to the linear-costs version of Fudenberg
and Levine (2006, 2010) when μ = 0. It is also a special case of the functional
forms considered in Noor (2007, 2011); unlike Noor, we assume that the long-
run and short-run selves have the same underlying per-period utility function,
and we specify how preferences change with the period length.

It is important to note that the term Γ Δ in (1) is not normalized by 1 − δ;
this is because here we model control cost as an impulse, while we treat utility
as a flow.10 To understand the implications of this, consider the decision to
take an action that lowers utility in every period by 1. This action lowers the
shorter-run self’s value by 1 and so has a foregone value of Δ= 1, independent
of period length. Thus its control cost is Γ regardless of period length, which
seems like the right conclusion. In contrast, if the Γ Δ terms were multiplied by
(1 − δ), the cost of implementing this action would go to zero as the periods
become short. However, an action that lowers utility by 1 for a single period
but has no impact on future utilities has foregone value Δ = 1 − δμ and a cost
of Γ (1 − δμ), which does become very small when periods are short.

One implication of this model is that long-term commitments will be more
attractive than a series of short-term ones: it is cheaper to resist future tempta-
tions now than to resist them as they arise. To see the intuition for this, suppose
the long-run player undertakes an infinite sequence of actions, each of which
lowers utility by 1 in the current period only. The overall cost of this series of
actions is Γ (1 −δμ)/(1 −δ), which is greater than the cost Γ of a single action
that lowers utility by 1 in every period. Moreover, the cost of committing now
to forego 1 util in every period from N on is Γ (δμ)N−1 and, in particular, is
strictly decreasing in N , except in the case μ = 0, where the shorter-run self
views all future periods N > 1 as equally far away. We illustrate these implica-
tions in Example 1 below.

Note that the difference between the long-term and short-term commit-
ments is most extreme in the case μ = 0, where the long-term commitment
is no more costly than any of the one-period delays. The difference diminishes
as μ → 1, holding other parameters constant; although when μ is large, the

10When we introduce cognitive resources, the control cost will be the reduction in the value of
the associated flow.
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preferences of the two selves are closely aligned, so that the long-run self has
little reason to exert self-control.

Finally, note that sending the time period τ to 0 sends μ to 1, but changes δ
as well: lowering utility by 1 forever starting immediately still costs Γ , lowering
utility by 1 forever starting at real time s = N/τ costs Γ exp(−(ρ + η)s), and
lowering utility by 1 period-by-period immediately costs Γ (ρ+η)/ρ. Thus the
difference between the long-term commitment and the series of short-term
ones stems not from the period length, but from the greater impatience of the
shorter-run self.

Simple Temptations

Several of our examples use as a building block what we call a simple temp-
tation, which is a choice between either utility 0 in every period or a flow of
ug > 0 that is received for a number of periods N , with −ub < 0 forever after.
This choice represents a stereotypical conflict between short-run and long-run
preferences that is easy to adapt to varying period lengths and to embed in
more complicated decision problems.

The average present values S for the shorter-run self and P for the long-run
self of this stream are S = (1−(δμ)N)ug−(δμ)Nub and P = (1−δN)ug−δNub.
Our interest lies in the case S > 0, P < 0 so that the shorter-run self would
like to take the temptation while the long-run self would prefer to reject it.
This conflict arises because the short-run self discounts future periods using
discount factor δμ< δ, and will not be present if we send μ to 1 with the other
parameters held fixed. However, the reason for interest in the case of μ near
1 is that it corresponds to very short periods. To analyze this case, we fix the
calendar length of time T for which the favorable flow lasts, so that N = T/τ.
Then when N is an integer, we have S = (1 − e−(ρ+η)T )ug − e−(ρ+η)Tub, and
P = (1 − e−ρT )ug − e−ρTub, independent of τ, even though μ= e−ητ → 1.

EXAMPLE 1—Simple and Persistent Temptations With Linear Cost: To be-
gin, consider a choice between accepting and rejecting a simple temptation in
the first period, with no other choices to be made. Then the temptation utility
is S, so the cost of resisting temptation is −Γ S; thus temptation will be resisted
if P <−Γ S. Next note that if the decision can be made at date 1 about whether
to accept or reject the temptation in period n, the cost of resisting is −Γ (δμ)nS,
so the temptation will be resisted if δnP < −Γ (δμ)nS or P < −Γ μnS; thus as
the decision concerns events further in the future, it becomes easier to resist.

Next suppose that the temptation is persistent: once the agent consumes the
substance, it is gone, but if he does not consume, the substance is still there
the next period so that the same choice is faced again in the next period.11 This

11We can formally model this by assuming that there are two states Y = {0�1}, where yn = 0
means that the temptation is not available and yn = 1 means that it is. In the state yn = 0, no action
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model describes, for example, the temptation to consume a durable good such
as a bottle of wine.12 If the temptation is available, the best possible value for
the shorter-run self is S, and the best continuation if the temptation is resisted
is δμS. Thus the foregone value from resisting is Δ = (1 − δμ)S, so resisting
costs Γ (1 − δμ)S each period, and resisting is optimal if P(1 − δ) < −Γ (1 −
δμ)S. Consequently, the persistent temptation is “harder to resist” than the
simple one, and when (1 − δμ)/(1 − δ) > |P|/Γ S > 1, the agent would choose
to give in to a persistent temptation but resist a simple one. This condition gets
increasingly difficult to satisfy as μ → 1, holding all other parameters fixed,
which corresponds to sending the birth parameter η to 0.

Since the main reason for large μ is that periods are short, it is interest-
ing to study the agent’s choice in the limit of short time periods. Here the
agent gives in to the persistent temptation but resists the simple one when
(ρ + η)/ρ > |P|/Γ S > 1 or (ρ + η)Γ S > ρ|P| > ρΓ S. This last equation has
a simple interpretation: ρ|P| is the value of postponing the negative payoff P
for an interval dt, (ρ+η)Γ S is the flow cost of resisting the persistent tempta-
tion, and rΓ S is the flow or average utility resulting from paying the one-time
cost of Γ S to permanently avoid the temptation.

If declining the temptation in period n means that it will not arise again until
period n + 	, the situation is intermediate between a persistent temptation
(	 = 1) and a simple one (	 = ∞). Then the best continuation value if the
option is resisted is (δμ)	S, so Δ= (1 − (δμ)	)S, and resisting forever costs

Γ

∞∑
n=0

δn	(1 − (δμ)	)S = Γ (1 − (δμ)	)S

1 − δ	
�

so resisting is optimal if |P|/Γ S > (1 − (δμ)	)/(1 − δ	). Consequently, resist-
ing is more attractive when the temptation can be avoided for longer and the
decision of whether to take at once or resist forever is monotone in 	: there is
some 	̄ (possibly 0 or infinity) such that the optimum is to take at once if 	 < 	̄
and resist forever if 	 > 	̄.

Intuitively, this is because the shorter-run self is much less concerned about
far-off events than the long-run player is, so the gap between the benefit of
delay and the cost of buying off the shorter-run player is increasing in the de-
lay length. If the temptation will arrive fairly soon, there is not much point in
trying to avoid it by making a commitment now, as the temptation is already

is possible, A(yn) = {0}; in the state yn = 1, the space of actions is A(yn) = {0�1}, where 0 means
to resist the temptation and 1 means to give in to the temptation. The transition probabilities in
state yn = 0 place probability 1 of remaining in that state, π(0|yn�an) = 1, while in state yn = 1,
the transition probability depends on the action taken: π(0|yn�1) = 1 so that if the action is taken,
the temptation is off the table, and π(0|yn�0) = 0 so that if the temptation is resisted, it remains
for the next period.

12We assume here that the consumption option is all or none; perhaps the wine will spoil once
opened.
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important for the short-run self, so committing to reject it is about as costly
as waiting and resisting it when it arrives. On the other hand, it is less costly
to commit now to resist temptations that will arrive in the distant future. This
is related to Noor’s (2007, 2011) point that agents may be tempted by future
consumption; the additional structure of our model lets us explain how this ef-
fect depends on the real time between the various decisions as opposed to the
period length per se.

Next, consider an initial-period choice of whether to accept or reject K sim-
ple temptations, the first one at real time 0, the second at real time period T ,
the third at 2T , and so forth. If the agent is close to indifferent about whether
to take the first temptation, he will strictly prefer to reject the second if that
decision could be made in period 1. For this reason, an agent who would ac-
cept the simple temptations may choose to reject the “bundle” of them. This
is common behavior, as seen, for example, in the experiments of Kirby and
Guatsello (2001) on the “bundling” of decisions.13 Note that the once-and-for
all decision to decline a simple temptation can be seen as a bundle of all of the
“decline today” decisions, and in each case the agent prefers the bundle for the
same reason, namely that he is less tempted by future rewards.

EXAMPLE 2—Nonmonotonicity of the Value of Commitment: Here we show
how the value of a commitment to avoid temptation can be nonmonotone
in η.14 To do this, we consider a menu choice when some of the choices
correspond to future commitments. Specifically, suppose that at time 0 the
agent’s action is to pick a menu from the list ({0}� {0�1}), where {0} means
that no future decision are possible and {0�1} means that at time 1 the
agent will face a simple temptation of the form described above. Because the
menu {0�1} simply postpones the decision, choosing it will have no foregone
value and no control cost, while the foregone value associated with {0} de-
pends on the preferences of the shorter-run self. We specialize to the case
ug = ub = 1�T = 1, and assume that Γ = 3 and ρ = log(3/2). Thus P = −1/3
and S = 1 − (4/3)exp(−η); note that S is positive or negative depending on
whether η is more or less than log(4/3). We define η̄ as the unique solution of
9 exp(−η̄)+ 6 exp(−2η̄) = 1 and note η̄ > log(4/3).15

13See also Chapter 5 of Ainslie (2001). Both Ainslie and Kirby and Guatsello (2001) reported
that merely telling subjects they will face the same decision in the future changes choices as well,
which the stationary model of this section cannot explain. Note though that Kirby and Guatsello
reported a much smaller impact of this “suggested linking” than of actual linking, and that the
instructions they used for suggested linking told subjects “the choice you make now is the best
indication of how you will choose every time,” which may have induced a spurious effect.

14Section W1 of the Supplemental Material examines a different sort of nonmonotonicity:
those who are willing to pay to avoid a temptation can have intermediate utilities from choosing
it, as those with very low values may find it easy to resist without commitment, while those with
high values will have a correspondingly high control cost for choosing the commitment.

15This follows from 9 exp(− log(4/3))+6 exp(−2 log(4/3)) = (27/4)+6 exp(−2 log(3/2)) > 1.
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We will show that for η< log(4/3), the agent is indifferent between {0} and
{0�1}, while for log(3/2) < η < η̄, the agent strictly prefers {0�1}, and for
η > η̄, the agent strictly prefers {0}. The reason for this nonmonotonicity is
this: for very small η, the long-run and short-run selves agree on whether to
take this temptation, so no self-control is needed to resist it. For larger values
of η, resisting requires costly self-control, and when η > log(3/2), the self-
control is so costly that when the decision is made at time 1 (that is, “without
precommitment”), it is optimal to give in. Moreover, when η is just a little
above log(3/2), it is not optimal to avoid the temptation by choosing the menu
{0} at time 0, because the time interval between 0 and 1 is short enough that
choosing the commitment menu requires substantial self-control. Finally when
η is sufficiently large, the short-run self is not tempted by time-1 consumption,
so choosing {0} is essentially costless.16

The agent’s choice at time 1 given {0�1} was chosen at time 0:
• If η< log(4/3), then as S < 0, there is no self-control problem at time 1;

here the optimum is to resist, with payoff 0.
• If η > log(4/3), so that S > 0, then S is the temptation value in pe-

riod 1. Resisting gives payoff −Γ S = 4 exp(−η)− 3, so it is optimal to take the
temptation if P > −Γ S, that is, η > log(3/2). For log(3/2) > η ≥ log(4/3), it
is optimal to resist.

The agent’s choice at time 0:
• If η< log(4/3), then the shorter-run self’s temptation payoff is 0, so the

long-run self is indifferent between choosing {0�1} (and subsequently resisting)
or choosing {0}.

• If η> log(4/3), then the shorter-run self’s value is maximized by choos-
ing the menu {0�1} than taking in period 1. The corresponding temptation
value in period 0 is V = exp(−(ρ + η))S = (2/3)(exp(−η) − 4/3 exp(−2η)).
The long-run self’s payoff to {0} is thus −Γ V = −2(exp(−η)−4/3 exp(−2η)).
If the menu {0�1} is chosen, it is optimal to take in period 1, resulting in the
payoff exp(−ρ)P = −2/9. For −2(exp(−η)−4/3 exp(−2η)) >−2/9 or η> η̄,
the long-run self strictly prefers {0}, and for η̄ > η> log(4/3), the long-run self
strictly prefers {0�1}.

EXAMPLE 3—Declining Marginal Interest Rates: Many studies relate agents
trade-offs between money today and money at various points in the future; see,
for example, the survey in Frederick, Loewenstein, and O’Donoghue (2002)
and the early work of Thaler (1981), who asked subjects to state the dollar
amount they would require at three different future dates to make them indif-
ferent to receiving $15 now. Myerson and Green (1995) used a larger set of
delays, allowing a better picture of the delay/interest rate trade-off. Subjects

16If there is a small fee ε for choosing the flexible menu {0�1}, then there is a strict failure of
nonmonotonicity: for η < log(4/3), the menu {0} is strictly preferred, while for log(3/2) + ε <
η< η̄− ε, {0�1} is strictly preferred, and for η> η̄, {0} is again strictly preferred.
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were asked to state how much hypothetical money ct they would need right
now to make them indifferent to receiving a hypothetical $1,000 after a delay
of length t. Using their responses, we can define an incremental interest rate
between successive queried times ti and ti−1 as

ρi = log(cti/cti−1)/(ti − ti−1)�

If agents treat cash payments like immediate consumption and the utility of
consumption is linear, then in both the quasihyperbolic discounting model and
the long-run/shorter-run self model with a fixed period length these incremen-
tal interest rates should be time invariant after the first period. From the My-
erson and Green data, the rates are17

Months (ti) Incremental Interest Rate Months (ti) Incremental Interest Rate

0.23 132% 36 26.0%
1 82.1% 60 8.0%
6 40.9% 120 9.4%

12 42.7% 300 6.6%

As can be seen, the decline is gradual rather than a one-time decline after the
first period.

We now show how nonmyopic short-run selves generate this sort of declining
interest rate. We take utility to be linear in consumption and without further
loss of generality, we set u(c) = c.18 We compute the amount of consumption
cn that makes the long-run self indifferent between a unit of consumption at

17Andersen, Harrison, Lau, and Rutström (2008) found evidence of a smaller but still mono-
tone gradual decline of interest rate with delay when real financial incentives are provided in the
form of lotteries and adjustments are made for curvature; Benhabib, Bisin, and Schotter (2010)
also found evidence of a gradual monotone decline using (small) cash rewards. Since Keren
and Roelsofsma (1995) already found (in hypothetical experiments) that agents’ intertemporal
choices are closer to geometric discounting when rewards are stochastic, it is not clear how much
of the difference between Andersen et al.’s findings and those of Myerson and Green are due to
the fact that subjects were paid.

18Myerson and Green asked subjects about cash payoffs as opposed to consumption. Both
dual-self and quasihyperbolic models need additional structure to explain why subjects (who pre-
sumably save) also view cash payoffs as tempting and why the small-stakes risk aversion seen in
lab experiments is so much higher than risk aversion for nontrivial fractions of lifetime wealth.
Our earlier papers explained this with endogenously determined “mental accounts and showed
how this leads to the high level of small-stakes risk aversion seen in the lab. We believe that a sim-
ilar explanation should be possible with nonmyopic short-run selves and that the mental accounts
model can also explain what is known as the magnitude effect: the implicit interest rate seems to
shrink with the stakes (Thaler (1981), Green, Myerson, and McFadden (1997), Benhabib, Bisin,
and Schotter (2010)). This remains a project for future work. Note also that if utility is a nonlin-
ear function of consumption, then the marginal rate of substitution between two dates depends
on the consumption levels at both dates in addition to the time-preference parameters.
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time 1 and cn units in period n; we then use this to compute effective marginal
interest rates on consumption. (In the Supplemental Material, we extend this
to the interest rate used at time 1 to discount between any two periods n and 	,
which is closer to the long-run player’s rate of time preference ρ because future
consumption is less tempting.) Observe that if the long-run self is indifferent
between 1 unit now and cn units later, then since μ< 1, the initial shorter-run
self strictly prefers 1 unit now. Hence the temptation is to consume now, which
incurs no control cost, and provides utility 1 for an average present value of
1 − δ. The initial short-run self gets an average present value of 1 − δμ from
consuming at time 1 and gets (1 − δμ)(δμ)n−1cn from the delayed option, so
the control cost of the delayed option is Γ (1 − δμ)(1 − (δμ)n−1cn). Thus the
utility of the delayed option is (1−δ)δn−1cn−Γ (1−δμ)(1−(δμ)n−1cn). Equat-
ing the values of the two options determines the consumption level leading to
indifference:

1 − δ = (1 − δ)δn−1cn − Γ (1 − δμ)(1 − (δμ)n−1cn)�

We can then solve for cn. This is done in the Appendix; from that computation
it follows that as μ→ 1, we have cn → 1/δn−1, which is the solution for a single
agent without self-control costs. To relate this back to Myerson and Green,
the Appendix also computes the instantaneous interest rate for consumption
decisions at real time t = nτ rate by letting the period length τ go to 0; we show
that

lim
τ→0

log
(
ct/τ+1

ct/τ

)/
τ = ρ+ Γ

ρ+η

ρ
exp(−ηt)η�

In this case, the marginal interest rate, to a good approximation, is equal to the
subjective interest rate of the long-run self, plus a term that declines exponen-
tially at rate η. In the case of a shorter-run self who lives exactly one period,
that is, μ= 0 or η = ∞, the marginal interest rate declines after a single period
to a constant equal to the subjective interest rate of the long-run self. However,
for larger values of μ, we get a more gradual decline, as we see in the data.19

4. CONVEX COSTS OF SELF-CONTROL

We now consider a simple extension of the model of linear cost of self-
control by allowing the cost of self-control to be convex. Specifically, we assume

19This gradual decline is consistent with hyperbolic (as opposed to quasihyperbolic) discount-
ing. The hyperbolic model is not widely used in economics, perhaps because it is hard to apply in
a dynamic setting.
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that the objective function is defined by the expected average present value of
shorter-run utility net of the control cost,

V (hn�a)≡ Ea�hn

∞∑
	=0

δ	
(
(1 − δ)u(yn+	� an+	)− g(Δ(yn+	� an+	))

)
�(2)

where g is a convex function. Allowing g to be convex is important both in
light of evidence from the psychology literature and because in the standard
dual-self model, convex costs can explain preference “reversals” that arise from
failure of the independence axiom, such as the Allais paradox, while linear
control costs cannot.20 In addition, convex costs can generate “compromise
effect” violations of the axiom of revealed preference, as shown in Fudenberg
and Levine (2006).

EXAMPLE 4—Stochastic Temptations: Another implication of convex con-
trol costs is that the agent is more likely to resist “stochastic temptations” than
certain ones. This is the basis of the explanation of the Allais paradox in Fuden-
berg and Levine (2010); we give an illustration of the idea here using simple
temptations. When faced with a single, and certain, simple temptation, with
S > 0 > P , it is optimal to choose the temptation if P > −g(S). Now suppose
that the agent is faced with the choice between an action that gives probability
q of the same simple temptation and complimentary probability 1 − q of 0, or
resisting, with utility flow 0. Then resisting the temptation has foregone value
qS, so resisting is optimal if −qP < g(qS), so when g is convex, it may be opti-
mal to give in to the certain temptation but resist the smaller one.

The same qualitative conclusion extends to the case where the agent learns
in period 1 that she will need to make the choice in some future period n:
now the temptation value is (δμ)n−1S, so the agent resists a lottery that gives
probability q of the temptation if −qδn−1P < g(q(δμ)n−1S), and it is possible
for this inequality to hold for small q but not larger ones. At the same time,
though, since there is less of a self-control problem about future decisions, in-
creasing n makes it more likely that the agent resists for all values of q. That
is, the model predicts an interaction of the effects of risk and delay: costly self-
control in the presence of risk can lead to Allais-type behavior, but since future
payoffs are less tempting, individual agents will switch from “paradoxical” to
expected-value-maximizing choices when the payoffs are sufficiently far in the

20Linear control costs are consistent with the independence axiom of expected utility theory
and so rule out the Allais-type preference reversals. Noor and Takeoka (2010a) weakened the
independence axiom in Gul–Pesendorfer axioms to allow nonlinear control costs and then de-
veloped axioms that correspond to control costs being convex. Since they work in a two-period
model with a single choice of a menu, they do not address the modeling issues we discuss here.
Noor and Takeoka (2010b) developed a more restrictive set of axioms that correspond to the cost
having the form φ(Ū)Δ, so that marginal cost is increasing in the size of the largest temptation
as opposed to the amount of temptation resisted or value foregone.
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future. This is consistent with the data of Baucells and Heukamp (2010): they
found that 36% of subjects exhibited preference reversal in a common-ratio Al-
lais paradox, changing from the safer to the expected-value-maximizing choice
when the decision is less likely to matter, while only 22% of subjects exhibited
this preference reversal when all payoffs were delayed by 3 months.21 Note fi-
nally that the dependence of the decision on q holds in the case where the
agent is initially uncertain whether she will face the certain temptation or the
stochastic one: all that matters is that she knows which temptation she is facing
at the moment she decides.22

EXAMPLE 5—Two Tempting Choices: We now consider a variation on Ex-
ample 4, where instead of a probability of a more or less tempting choice, there
is a certainty that two simple temptations will be faced: at both n1 = 1 and
n2 ≥ 1, the agent has to decide whether to accept or reject a simple temptation
with S > 0, P < 0.

Our goal is to investigate the sensitivity of the decisions to the timing. Sup-
pose first that n2 > 1, so there is at least some brief delay between the two de-
cisions. Because of the recursive nature of the formulation and the additivity
of the utilities, the two decisions are identical. If the option is not taken, utility
is 0 and the control cost is g(S). If the option is taken, utility is P and there is
no self-control cost, so it is optimal to take at both n1 and n2 if −P < g(S) and
not to take if −P > g(S). Notice that the solution is the same for any value of
n2 > n1 and for any period length, so it holds in particular if the periods are
arbitrarily short.

However, the solution changes if n2 = n1. In this case the possible actions
are not to take, a= 0, to take exactly one of the options, a= 1, or to take both
options, a= 2. The temptation is to take both options, so utility is V (a) = aP−
g(2S−aS). Then V (2)−V (1)= 2P−P+g(S)= P+g(S) and V (1)−V (0)=
P − g(S) + g(2S). When g is strictly convex, g(2S) − g(S) > g(S). If g(2S) −
g(S) > −P > g(S), it is optimal to resist each temptation when the options
are sequential, but it is not optimal to resist both when they are presented
simultaneously. This shows that this model of nonlinear costs is not suited for
analyzing decisions that occur in rapid succession. Intuitively, the problem is

21Explaining these data with a one-period horizon for the short-run player requires that the
period length of the subjects who switched is at least 3 months; this is consistent with the theory
but not with data from other experiments. Note also that Weber and Chapman (2005) did not
find this effect, although their sample was very small.

22Convex costs also imply that it is easier to resist smaller deterministic temptations when (as
in Example 2) we suppose that utility is a linear function of consumption. As noted in footnote 13,
there is evidence that the cost of resisting money temptations does not follow this prediction; we
attribute this to the fact that money is not consumed immediately and that its use is governed in
part by mental accounts. One advantage of varying the probability of winning and not the prize
itself is that the mental accounting for the scale of prize used in lab experiments may well be
independent of the probability with which that prize is won.
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that the nonlinearity of control costs should “spill over” from one period to the
next when time periods are short. The next section extends the model to allow
this.

5. WILLPOWER AS A STOCK AND INCREASING MARGINAL COST
OF SELF-CONTROL

The reason that control costs are often convex is that self-control can require
the use of costly cognitive resources, as argued by Baumeister and various col-
laborators (for example, Baumeister, Bratslavsky, Muraven, and Tice (1998)
and Muraven, Tice, and Baumeister (1998)). This implies that soon after one
tempting choice, the marginal cost of another tempting choice will be high; for
example, two consecutive decisions a microsecond apart should be about the
same as two simultaneous decisions. Thus, to develop a model that is consis-
tent with convex control costs and also robust to the timing of decisions and
the granularity of the periods, we need to incorporate the way the willpower
stock induces a spillover from one period’s self-control to self-control in the
near future.23 To do this, we develop a generalization of the willpower model
of Ozdenoren, Salant, and Silverman (2009).

Specifically, we assume that at the beginning of period n, there is a stock
wn of cognitive resources or willpower available. Note that this is part of the
vectory . Foregone value Δ has the same definition as before and, in par-
ticular, is not affected by wn; the change in the model is that the cost of
self-control comes from the fact that it depletes the stock of cognitive re-
sources. Specifically, when Δ(yn�an) is the foregone value, the end of period
stock is w̃n = f (wn�Δ(yn�an)), where f (w�Δ) is nondecreasing in wn and non-
increasing in Δ, continuously differentiable in both arguments, and satisfies
f (w�0) = w and f (w�Δ) ≤ w. Note that the stock of cognitive resources de-
pends on the action taken only through the foregone value, so actions that max-
imize the shorter-run self’s value also maximize the end-of-period stock w̃n. We
do not require that cognitive resources are bounded below; indeed, it will be
more convenient to allow them to become arbitrarily negative.

In Ozdenoren, Salant, and Silverman (2009) the stock is depleted, but never
replenished. This is a reasonable approximation for the short-duration prob-
lem they analyzed, but to adapt the model to longer horizons, we add the possi-
bility that willpower can be replenished. Specifically, we set wn+1 = r(w̃n)≥ w̃n,
where r is nondecreasing in w̃n; thus for a given wn, the highest that wn+1

can be is r(wn), and this maximum is attained by actions that set Δ = 0. We
assume also that r(w̃n) ≤ w̄, so that there is an upper bound on the stock

23In the longer term, it is possible that willpower can be built up, that is, that the “willpower
technology” can be improved. This introduces a range of issues that our model does not handle
well, and we abstract away from it for most of the paper. Section 6 explains some of the compli-
cations that arise when willpower can be increased through training.
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of cognitive resources. If r(w̃n) = w̄, then resources are replenished immedi-
ately, which is the usual assumption when shorter-run selves live a single pe-
riod. If r(w̃n) = w̃n, resources are never replenished, as in Ozdenoren, Salant,
and Silverman. Self-control costs arise because cognitive resources have alter-
native uses. Following Ozdenoren, Salant, and Silverman, we assume that an
(end-of-period) stock of cognitive resources w̃n yields a utility in other uses of
m(yn� w̃n), nondecreasing in w̃n, and that this is added to the utility from con-
sumption.24 Ozdenoren, Salant, and Silverman view w̃n as representing only the
stock of willpower, and motivate its assumed value as arising from self-control
problems that are not directly modeled. In our earlier work, we provided evi-
dence that cognitive resources matter and that these resources have alternative
uses, so we take a broader view of what the uses of these resources might be.

The objective function of the long-run self is then to maximize

V (hn�a) ≡ Ea�hn(1 − δ)

∞∑
	=0

δ	
(
u(yn+	� an+	)(3)

+m
(
yn+	� f (wn�Δ(yn�an))

))
�

Note that the contribution m of the stock of cognitive resources is measured in
the same units as utility. Thus if there is a fixed stock w̄ of cognitive resources,
the stock produces an amount m(y� w̄) of utility each period. The function m is
assumed to be concave, differentiable, and strictly increasing in w. Recall that
with full replenishment, the cost was not normalized by 1 − δ as the benefit is
here. We discuss the reason for this difference below.

As in the linear case, we assume LR0, which we repeat here for complete-
ness:

ASSUMPTION LR0: V (hn�a) has a maximum for each n�hn.

Note also that once again the long-run self’s maximization problem has a so-
lution that depends only on the current state yn.

In the “cake-eating” problem of Ozdenoren, Salant, and Silverman (2009),
there is a cake of fixed size, the only choice is a consumption level an that re-
duces the size of the cake, and the objective of the long-run self is to maximize
the discounted value of consumption until the exogenous terminal date, with
any remaining cake being useless. They assumed a purely myopic short-run
self (μ = 0) and that there is no replenishment (r(w̃n� an) = w̃n). Ozdenoren,

24It does not, however, enter into the computation of the temptation utility or the foregone
value, as these are a cause of self-control cost, not a consequence. Note also that we do not impose
the restriction w̃n ≥ 0 as do Ozdenoren, Salant, and Silverman: we can set m(yn� w̃n) = −∞ if
w̃n < 0 to incorporate that constraint, in which case we modify the differentiability assumptions
that we impose below.
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Salant, and Silverman used a continuous-time model to specify that the temp-
tation is a fixed upper bound ā on the consumption rate as long as some cake
remains and that the rate of willpower depletion is f̃ (an�wn) for an < ā, with
f̃ decreasing and strictly convex in an. In addition, m(yn� w̃n)= 0 until the stock
of cake runs out or the time horizon is reached, at which time m(yn� w̃n) =
m̄(w̃n). In our formulation, Δ(yn�an) = u(ā) − u(an), so that their model
is a special case of ours with f (wn�Δ(yn�an)) = f̃ (u(ā) − Δ(yn�an)�wn).25

However, their formulation requires that cognitive resource utility is state-
dependent. This possibility leads to complications, because it implies that the
plan most preferred by the short-run self, which is the plan that has the least
temptation, need not minimize the resource cost of self-control. We examine
this issue in Section 6, along with the possibility that actions have a direct im-
pact on the evolution of cognitive resources.

ASSUMPTION 4—State-Independence: m depends on the state only through
the stock of willpower; that is, for all yn, y ′

n, w̃n, m(yn� w̃n) =m(y ′
n� w̃n).

We maintain this assumption until Section 6 and, to lighten notation, we
write m(w̃n) in place of m(yn� w̃n).

The dual-self model of Fudenberg and Levine (2006, 2010) corresponds
to the assumptions (i) r(w̃n) = w̄, so that replenishment is immediate, and
(ii) μ = 0, so the short-run self is completely myopic. Here the temptation
value is maxa u(yn�a), so Δ(yn�an) = maxa u(yn�a) − u(yn�an), and the bene-
fit derived from cognitive resources in period n is m(f(w̄�Δ(y�an))). We can
then define c(Δ) = (m(w̄)−m(f(w̄�Δ)))/(1 − δ) ≥ 0; since f (w�0) = w, this
implies c(0)= 0.

Substituting this definition of cost into the objective function, we have

V (hn�a) ≡ Ea�hn(1 − δ)

∞∑
	=0

δ	
(
u(yn+	� an+	)

+m(w̄)− c
(
Δ(yn+	� an+	)

))
�

which is equivalent to the objective function in our earlier papers. Note here
that neither the function f nor the function m matters on its own: what matters
is the composition m◦f , for this is what determines the cost function c.26 There
is a similar but more complicated interaction between m and f under partial

25The function f is not constrained to be wn −Δ. This allows for lower depletion near wn = 0,
as in the multiplicative functional form f (wn�Δ(yn�an))= Δ(yn�an)wn.

26To model the effect of cognitive load (e.g., using short-term memory) on self-control, Fuden-
berg and Levine (2006) assumed that the control cost depends on the sum of the foregone value
and cognitive load; this corresponds to assuming that the benefit derived from cognitive resources
in period n is m(f(w̄�Δ(y�an)+ dn)), where dn is the cognitive load in period n.
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replenishment, as we see in the next subsection and again in the analysis of
Example 9.27

Single Decision Problems

Cognitive resources serve to link the decisions in one period to future control
costs and thus subsequent decisions. Several of the examples we have consid-
ered so far involve a single decision; in those cases, the resource variable is
superfluous. To make this precise, we define what we mean by a single decision.
Let Y ∗ be the set of states in which a decision is possible, that is, y /∈ Y ∗ im-
plies #A(y) ≤ 1. Then the probability of hitting Y ∗ from a state y ∈ Y ∗ must
be zero: once a decision is offered, no further decisions are possible. Notice,
though, that if y can occur in different periods, the amount of cognitive re-
sources available for decision making may be different. Suppose that w1 = w̄,
so that initially cognitive resources are “topped up.” In this case, we say that
resources start full.28

For any period n, define the end-of-period resource stocks corresponding
to an initial shock of Δ and no subsequent shock by w̃n

n(Δ) = f (w̄�Δ) and
w̃n

n+	(Δ) = r(w̃n
n+	−1(Δ)) for all 	≥ 1. Then the cost of self-control correspond-

ing to a single shock is

g(Δn)=
∞∑
	=0

δ	[m(w̄)−m(w̃n
n+	)]�

The following result is immediate.

THEOREM 3: If there is a single decision and cognitive resources start full, the
maximization problems

Ea�hn(1 − δ)

∞∑
	=0

δ	
(
u(yn+	� an+	)+m

(
yn+	� f (wn�Δ(yn�an))

))

and

Ea�hn

∞∑
	=0

δ	
(
(1 − δ)u(yn+	� an+	)− g(Δ(yn+	� an+	))

)

27Note also that cost is normalized differently than m. When there are cognitive resources, the
loss due to a single shock is spread out over many periods, so the per-period amount should be in
the same units as period utility u. In contrast, when cognitive resources replenish immediately, as
implicit in the “cost” formulation, the loss due to a single shock is concentrated in a single period
and should be in the same units as the present value of utility.

28The theorem also holds if there is a fixed time at which the decision is possible. That is, if
yn ∈ Y ∗ implies n = n∗, then we may replace w̄ with the fixed amount of cognitive resources w∗

available when a decision is possible, as this is invariant to y ∈ Y ∗.
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have the same set of solutions.

The Linear Case

Next suppose that in addition to conditions (i) and (ii) above, the bene-
fit of cognitive resources is linear in Δ, so that m(yn� w̃n) = γw̃n, and sup-
pose that resource depletion is linear as well, so that f (w�Δ) = w − Δ.29

Then the cost function c(Δ) = (m(w̄) − m(f(w̄�Δ)))/(1 − δ) defined above
is c(Δ) = (1 − δ)γw̄ − (1 − δ)γ(w̄ − Δ) = γ(1 − δ)Δ, so the linear model of
the previous section, where the cost of self-control is independent of δ, corre-
sponds to scaling the cost by 1/(1 − δ). Intuitively, full replenishment means
that all of the cost of self-control is borne in the current period, so if fore-
gone utility reduces the flow benefits of cognitive resources by a proportionate
amount, the cost of self-control goes to zero with the period length. Conversely,
if the control cost is invariant to the period length and there is full replenish-
ment, the flow cost in a period must become large as the periods get small.
This is also true when there are convex costs: the convex cost model of Sec-
tion 4 can be viewed as a model with full replenishment and linear depletion,
where the benefits at w̄ are independent of τ, while for smaller stocks, we have
mτ(w̄ −Δ)=m(w̄)− g(Δ)/(1 − δ).

When benefits are linear as well, we have a stronger result: the linear model
with partial replenishment is equivalent to the linear model with full replen-
ishment, so that partial replenishment has observable consequences only if at
least one of f , r, or m is nonlinear. Specifically, we say the model has linear
replenishment of resources if r(w̃n)= w̃n + λ(w̄ − w̃n), where 0 ≤ λ ≤ 1.

THEOREM 4: For any model with linear benefit γ, depletion, and replenish-
ment λ, define

Γ = (1 − δ)γ

1 − δ(1 − λ)
�

Then if a is a solution to the linear model with parameter Γ , then it is a solution to
the (λ�γ) model in which actions are independent of wn, and all such solutions
to the (λ�γ) model are solutions to the Γ model.

Theorem 4, which is proven in the Appendix, shows that if depletion, replen-
ishment, and self-control cost are all linear and state-independent, the stock of
self-control is irrelevant. Intuitively, with linear costs, all that matters is the av-
erage present value of the costs, and not their timing, which is why the stock of

29Note that we define linear depletion to mean that foregone utility is subtracted one-for-one
from the stock of resources. In principle, depletion might be linear with a coefficient other than
1, but we can normalize the coefficient to 1 by choosing appropriate units for w.
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willpower resources does not matter. Because the theorem maps many (λ�γ)
models to the same linear model Γ , it also implies that these models are equiv-
alent in the sense of generating the same decisions. That is, if we change λ to
λ′ while holding the time period (and thus δ and μ) fixed, and set

γ′ = γ

(
1 − δ(1 − λ′)
1 − δ(1 − λ)

)
�

the resulting system (λ′�γ′) will have the same cost for every self-control deci-
sion, even though the time path of the willpower stock in the two models will
be different: the agent has the same preferences with resources that replenish
quickly and matter a lot or with resources that replenish very slowly and matter
little.

Note that it is important for this result that resources are unbounded below;
if there is a lower boundary, the model is not linear there and the equiva-
lence with the full replenishment linear model breaks down. Note also that the
equivalent linear parameter Γ depends on the replenishment rate: when re-
sources are replenished very quickly (λ = 1), the cost of self-control is on the
order of (1 − δ) of a single period’s utility, while when replenishment is slow,
self-control has a long-term cost on the order of 1.

When we vary τ, the length of the period, we want to hold fixed the amount
of calendar time required for a given amount of replenishment, so we set
λ(τ)= 1−exp(−κτ). This corresponds to assuming that self-control in a given
period reduces the stock of willpower at the start of that period. That is, we
suppose that when Δn is spent in some period n, the stock immediately jumps
from wn to w̃n and is then replenished according to the continuous-time differ-
ential equation ẇt = κ(w̄ − wt).30 Thus when the period length is τ, we have
wn+1 = w̄−exp(−κτ)(w̄−w̃n), so λ(τ) = 1−exp(−κτ). Note that when the pe-
riod is long, the stock almost completely replenishes. Note also that as τ → 0,
we have λ(τ) → 0� δ(τ) → 1.

To characterize the behavior of the linear model as τ → 0, we compute the
limit of the equivalent marginal cost, which is

Γ ∗ ≡ lim
τ→0

(1 − exp(−ρτ))γ

(1 − exp(−(ρ+ κ)τ))
= ργ

ρ+ κ
�(4)

If κ is very small, so that any reduction in the stock is almost permanent,
then Γ ∗ ≈ γ. At the other extreme, when κ is very large, the equivalent cost is
near 0. Intuitively, in this case reductions in resources are replaced so quickly

30In the Supplemental Material, we consider alternate specifications of the timing of the re-
duction in the resources stock caused by self-control, for example, the reduction might happen
at the end of the period instead of the start. We show that with linear replenishment, the timing
does not matter when periods are small, although, of course, it does matter when periods are
longer.



24 D. FUDENBERG AND D. K. LEVINE

that they are virtually costless, even though the amount of replenishment in
a given period goes to 0 with τ.

EXAMPLE 6 —Resisting Temptation Within the Linear Case: To illustrate
Theorem 4, we reconsider the persistent and delayed temptations of Exam-
ple 1 in the model with linear benefit, linear depletion, and linear replenish-
ment. This lets us illustrate the continuous-time limit and set the stage for our
subsequent analysis of these temptations when the benefit function is concave.

We begin with the case of a persistent temptation, where temptation is
present each period unless and until it is accepted. If the benefits are linear, so
that m(w) = γw, then by Theorem 4, the solution is the same as in the linear
case: The agent will resist the temptation if P(1−δ) <−Γ (1−δμ)S and accept
it when the reverse inequality is satisfied, where Γ = (1 − δ)γ/(1 − δ(1 − λ)).
Using equation (4), we see that when the time period is short, the agent resists
the temptation when

ρP < −γρS(ρ+η)/(ρ+η)�(5)

Here the left-hand side is approximately the gain of postponing P by τ and
the right-hand side is the cost of postponement; this is the foregone value of
(ρ+η)S multiplied by the continuous-time cost parameter Γ ∗. Note that when
κ is very large compared to the other parameters, the right-hand side is near 0,
so it is always better to resist.

To extend this analysis to the case where declining the temptation delays
it for a real time s, recall that when declining puts off the temptation for 	
periods, it is optimal to resist if P <−Γ (1 − (δμ)	)/(1 − δ	)S; substituting for
Γ yields P(1 − δ(1 − λ))/(1 − δ) < −γS(1 − (δμ)	)/(1 − δ	). If we suppose
that the delay is s units of real time, assume 	 = s/τ, and send τ to zero while
holding s fixed, then it is optimal to resist if P(ρ+κ)/ρ < −γS[(1−exp(−(ρ+
η)s))/(1 − exp(−ρs))].

In the case s = τ, in which the delay is only a single period, this inequality
reduces to ρP < −γρS[(ρ + η)/(ρ + κ)], which is what we had before. As
s → ∞, the condition reduces to P < −γρS/(ρ+ κ), which is easier to satisfy.
More generally, as in the discrete-time model, the decision of whether to take
at once or resist forever is monotone in s: there is some s̄ (possibly 0 or infinity)
such that the optimum is to take at once if s < s̄ and resist forever if s > s̄.
When we reexamine this problem with a concave benefit function, we see that
it can be optimal to resist for a finite length of time and then take, and that the
optimal time to give in is monotone in the length s of the delay.

6. COGNITIVE RESOURCES, NONLINEARITIES, AND REPLENISHMENT

In the linear model, the stock of willpower does not play a significant role.
When there are nonlinearities in f , r, and/or m, the stock of willpower deter-
mines the way the cost of foregone utility is allocated between different pe-
riods. The main reason for introducing the cognitive resources variable is to
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allow for the possibility that (i) the cost of self-control depends on the stock,
(ii) the stock does not completely replenish from one period to the next, so
that exerting willpower in one period can have a carry-over effect on decisions
made soon afterward, and (iii) the agent faces more than one decision, so us-
ing self-control in an earlier decision can alter the control cost in a subsequent
one. The simplest way to capture this is to suppose that there is no replen-
ishment at all, so that the stock evolves according to wn+1 = f (wn�Δ(yn�an)).
This stark assumption is sufficient for demonstrating many of the implications
of willpower as a resource that is limited in the short run, but it is not neces-
sary, and many of the same results are obtained provided that replenishment
is incomplete.

In general, the dynamic value of cognitive resources given the foregone
utility process Δn is governed by the depletion equation w̃n = f (wn�Δn), the
replenishment equation wn+1 = r(w̃n), and of course the benefit function
m(yn� w̃n). Putting together the depletion and replenishment equations gives
the dynamics of cognitive resources wn+1 = r(f (wn�Δn)), where w̄ ≥ r(w̃n) ≥
w̃n is nondecreasing and f (wn�Δn)≤wn� f (wn�0)= wn is nondecreasing in wn

and nonincreasing in Δn.

Linear Replenishment

The units in which wn are measured are arbitrary; by changing them, we
change f , r, and m. As we shall see, there is redundancy in these three func-
tions, meaning that we can choose one of them to normalize.

Specifically, let 0 < λ< 1 be a fixed number. We construct a change of units
w′ = h−1(w) and w̃′ = h−1(w̃) so that the replenishment function, r ′ that corre-
sponds to w′ is linear, with r ′(w̃′)= w̄−(1−λ)(w̄− w̃′). Given such a function,
we may define f ′(w′�Δ) = h−1(f (h(w′)�Δ)) and m′(w′) = h−1(m(h(w′)), and
the model with the new units and new depletion and benefit functions is the
same as the original one.

There are a variety of ways to construct an h function. One simple method
is to start with an interval Iλ = (0�λw̄] and a mapping T(w′)≡ w̄− λ(w̄−w′),
and then consider the images of the iterated map Tn(Iλ) (since T is invertible,
we allow negative values of n). Notice that these intervals form a partition of
(−∞� w̄).

Hence for any w′ < w̄, there exists a unique integer n(w′) (possibly nega-
tive) such that w′ ∈ Tn(w′)(Iλ). The interval Iλ for the units w′ corresponds to
(0� r(0)] in the original units w′. Define h(w′) = rn(w

′)(T−n(w′)(w′)r(0)/λw̄). If
r(0) > 031 and r is strictly increasing for w̃ < w̄� (0� r(0)] is a nonempty interval,
so h maps onto (−∞� w̄). In this case, h is strictly increasing and so is invert-
ible, and by construction h(w̄−λ(w̄−w′))= r(h(w′)). If r is continuous, then

31The same construction would work with a different origin, provided there is some w with
r(w) > w.
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h is continuous and h(0)= 0; h extends uniquely to a continuous function32 on
(−∞� w̄] by defining h(w̄) = w̄.

We summarize this as a theorem.

THEOREM 5: Suppose that r is continuous and strictly increasing, and that
r(w) > w for at least one w. Then the system with replenishment r ′(w̃′) = w̄ −
(1 − λ)(w̄ − w̃′), depletion f ′(w′�Δ) = h−1(f (h(w′)�Δ)), and benefit function
m′(w′) = h−1(m(h(w′)) maps strategies to values of the agent’s objective func-
tion exactly as does the system with replenishment r(w̃), depletion f (w�Δ), and
benefits m(w).

Notice that the rescaling of units to linearize r is possible only when there
is some replenishment (r(w) > w) and less than full replenishment (r strictly
increasing). When there is full replenishment, we cannot change the units to
spread the foregone utility shock over time: as soon as there is nonlinearity,
partial replenishment spreads the marginal cost of self-control over time.

Note also that if we start with a system where benefits and depletion are
linear, and replenishment is linear with some λ′, then the equivalent system
in units of w′ for a different value of λ is not linear. This may seem puzzling
in light of our observation that Theorem 3 implies an equivalence between
linear models with different replenishment rates. However, this is only for av-
erage present values, not the stronger sort of equivalence established here,
which tracks the moment-by-moment movement of the flow benefit of cogni-
tive resources. The weaker form of equivalence is sufficient when benefits and
depletion are linear, but once these functions are allowed to be nonlinear, the
stronger sort of equivalence is needed, and this equivalence requires a nonlin-
ear change of units.

Nonlinear Costs and Linear Replenishment

Now we investigate the implications of nonlinear costs when the agent faces
multiple decisions, so that self-control in one period can increase the marginal
cost of self-control in the next one. To make the computations easier, we pick
units so there is linear replenishment, r(w̃n)= w̃n+λ(w̄−w̃n). In the examples
that follow we will frequently need to compute the average present value of
cognitive resources when the stock at the start of period n is some arbitrary wn

and no self-control is used from period n. With linear replenishment and no
foregone utility, wn+	 = (1 −λ	)w̄+λ	wn. Along this path, the average present
value of cognitive resources is

M(wn)= (1 − δ)

∞∑
	=0

δ	m(wn+	)�(6)

32Notice that h need not be differentiable everywhere: it may have kinks at the boundaries of
the intervals.
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Recall that to study the effect of varying the period length, we take λ(τ) =
1 − exp(−κτ), so for small τ, we have λ(τ)≈ κτ.

EXAMPLE 7—Two Tempting Choices With Linear Depletion and Replenish-
ment: Now we reanalyze the two temptations of Example 5 assuming partial
linear replenishment and linear depletion. We show that the agent makes the
same decision whether the decisions on the two temptations are made simul-
taneously or in very rapid succession.

Suppose first that the decisions are made in consecutive periods, so that
n1 = 1 and n2 = 2, and to simplify notation, suppose that the initial stock of
resources is w̄. The agent has four possible plans:

• Take both options: The first option provides direct utility of P , the
second option provides δP , and no self-control is used, so overall utility is
(1 + δ)P +M(w̄). As τ → 0, this converges to 2P +M(w̄).

• Take only the second option: Self-control of S is used in the first period
and none thereafter, so w̃1 = w̄ − S and the overall value is

(1 − δ)m(w̄ − S)+ δP + δM(w̄ − (1 − λ)S) = δP +M(w̄− S)�

As τ → 0, this converges to P +M(w̄ − S).
• Take only the first option: No self-control is used in the first period; in the

second period, the foregone SR utility (and thus the expenditure of cognitive
resources) is S and no self-control is used thereafter, so cognitive resources at
the end of the second period are w̄ − S and the overall value is

P + (1 − δ)m(w̄)+ δ(1 − δ)m(w̄ − S)+ δ2M(w̄ − (1 − λ)S)

= P + (1 − δ)m(w̄)+ δM(w̄ − S)�

As τ → 0, this converges to P +M(w̄ − S).
• Reject both options: Self-control is used in both periods, so the value is

(1 − δ)m(w1 − S)+ (1 − δ)δm(w̄ − (2 − λ)S)

+ δ2M(w̄ − (1 − λ)(2 − λ)S)

= (1 − δ)m(w1 − S)+ δM(w̄ − (2 − λ)S)�

As τ → 0, this converges to M(w̄ − (2 − λ)S).
Because the two projects are identical, when the decisions are made simul-

taneously, there are only three plans to consider:
• Take both options: Here the overall value is 2P +M(w̄). As τ → 0, this

does not change.
• Take one option: Here overall value is P + (1 − δ)m(w̄ − S)+ δM(w̄ −

(1 − λ)S). As τ → 0, this converges to P +M(w̄ − S).
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• Reject both options: Now the overall value is

(1 − δ)m(w̄ − 2S)+ δM(w̄ − (1 − λ)2S)=M(w̄ − 2S)�

As τ → 0, this converges to M(w̄ − 2S).
Thus as τ → 0, the value for taking both options converges to 2P + M(w̄),

the value for taking either one of the two options converges to P +M(w̄− S),
and the value for rejecting both options converges to M(w̄− 2S), regardless of
whether the options are sequential or simultaneous, and regardless of which
option is taken when only one is taken. Hence simultaneity does not matter in
the limit and the optimum is governed by whichever of these three numbers
is largest. In the sequential case, if it is optimal to take just one option, the
advantage of taking the second option over the first is given by (1 − δ)[−P +
M(w̄ − S) − m(w̄)]. Notice that m(w̄) = M(w̄) and that the first option is
strictly better if and only if −P <M(w̄) − M(w̄ − S). On the other hand, for
the first option to be a strict optimum, it must also be strictly better than taking
both options, which implies M(w̄)−M(w̄ − S) < −P . Thus if it is strictly best
to take one option, it must be the second option. Intuitively, when the second
option occurs, cognitive resources are depleted, so it makes more sense to give
in rather than to first give in and then resist.

EXAMPLE 8—Persistent Temptation With Nonlinear Benefits and No Re-
plenishment: To further explore the implications of willpower being a stock
that can be depleted over time, we now revisit the persistent temptation of Ex-
ample 1 in a setting with no replenishment of cognitive resources, linear deple-
tion, and nonlinear benefits. One of the main differences is that with willpower,
it may now be optimal to resist a while and then to take the temptation once
the marginal benefit of resources becomes sufficiently high. We emphasize that
this sort of nonstationary behavior is consistent with perfect foresight and thus
need not be interpreted as a sign that agents misperceive their own future in-
tentions.

Because there is no replenishment at all, the stock decreases by Δ = (1 −
δμ)S each time the agent resists; if the agent resists 	 times before giving in,
his value is

(1 − δ)

[
	−1∑
n=1

δn−1m(w̄ − n(1 − δμ)S)

+
∞∑
n=	

δn−1m(w̄ − 	(1 − δμ)S)

]
+ δ	P�

The larger is 	, the smaller is the first term and the larger is the second. This
implies that a necessary condition for an optimal 	 is that the value for resisting
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	+ 1 times is not larger and that a sufficient condition for 	= 0 optimal is that
the value for 	= 1 is lower.

The value for 	 minus the value for 	+ 1 is33

D(	) = δ	
[
m(w̄ − 	(1 − δμ)S)

−m(w̄ − (	+ 1)(1 − δμ)S)+ (1 − δ)P
]
�

Observe that since m is concave, D(	) is strictly increasing, so it is optimal to
take at the first time this expression is positive and never to take if it is always
negative.

To characterize the solution for small τ, define

d(s� τ) = D(s/τ)/
(
δ(s/τ)(1 − δ)

)
= [

m
(
w̄ − (s/τ)exp(−(ρ+η)τ)S

)
−m(w̄ − ((s/τ)+ 1)(exp(−(ρ+η)τ)S + exp(−ρτ)P

]
/exp(−ρτ)�

where s/τ is the number of periods until real time s. Note that d has the same
sign as D, so it can be used to characterize the optimum. Observe also that

d(s)= lim
τ→0

d(s� τ)= m′(w̄ − s(ρ+η)S)(ρ+η)S/ρ+ P�

Thus if limw→−∞ m′(w) < −ρP/S(ρ + η), it is optimal never to give in; if
m′(w̄) > −ρP/(ρ + η)S, it is optimal to give in right away; and if nei-
ther corner solution applies, the optimal time to give in is characterized by
m′(w̄ − s(ρ+η)S) = −ρP/(ρ+η)S.34

This case of no replenishment is extreme and we will soon revisit this exam-
ple to allow not only partial linear replenishment, but also a general depletion
function. First, though, we want to make a simpler point about the possibility
that it is optimal to “wait to commit.”

The case where declining the temptation postpones the decision for a num-
ber of periods T is also of interest. Using an argument analogous to that above,
it can be shown that the stopping time is increasing in T ; we omit the details.

EXAMPLE 9—Waiting to Commit: Without cognitive resources (or with full
replenishment), it is always cheaper to commit now to avoid a future temp-
tation than to do so later when the temptation is more imminent. However,

33Here we make use of the fact that the two decisions lead to the same time path of resources
up to time 	.

34A naive interpretation of these inequalities is that if ρ is large compared to the other terms,
the agent resists forever, while if ρ is small, the agent accepts at once, but as both P and S depend
on ρ, the comparative statics require more care.
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because there is no foregone value associated with delaying the commitment,
it is easy to construct examples where it is optimal to postpone a decision if
the current stock of resources is quite low. The next example expands on this
theme of optimal delay: we now add to Example 8 the possibility of taking the
temptation off the table for a cost F < |P|, while maintaining the simplifying
assumptions of no replenishment and linear depletion. We show that it can be
optimal to wait for a while and then pay to commit; once again, a nonstation-
arity in behavior is consistent with perfect foresight.

Using the argument from Example 8, we see that for small enough τ, it is
not optimal to commit immediately if m′(w̄ − F)(ρ+ η)S/ρ < F . A sufficient
condition is

m′(w̄ + P) < ρF/(ρ+η)S�(7)

Suppose that m′(−∞)(ρ + η)S/ρ + P < 0, so that in the absence of the pos-
sibility of commitment, it is optimal never to give in, resulting in at least the
value m(w̄) + P . Taking the temptation off the table in the first period gives
value

lim
τ→0

(1 − δ)

[ ∞∑
n=1

δn−1m(w̄ − (1 − δμ)S)− F

]
− F = m(w̄ − F)− F�

Hence a sufficient condition for committing is m(w̄)−m(w̄−F)+P +F < 0.
Observe that

m(w̄)−m(w̄ − F)+ F + P ≤ m′(w̄ − F)F + F + P

≤ m′(w̄ + P)F + F + P�

Thus a sufficient condition for committing is m′(w̄ + P) < |P|/F − 1. This in-
equality together with (7) are sufficient for it to be optimal to wait a while
then to commit. To see that both conditions can be satisfied simultaneously,
take F = |P|/2. Then the sufficient condition for committing is m′(w̄+P) < 1,
while (7) becomes m′(w̄+P) < ρ|P|/2(ρ+η)S. In other words, if the marginal
benefit of cognitive resources is low when resources are higher than w̄+P and
if F is small but not too small, then it pays to use cognitive resources for self-
control until the marginal benefit of cognitive resources is sufficiently high and
then to commit to taking the temptation off the table.

Houser et al. (2010) provided a very suggestive experiment that indicates
that delay in commitment may occur in practice: subjects were paid to com-
plete certain tasks while they had access to a web browser, but they could pay
a cost to remove web access. The experimental instructions did not specify
when and whether opportunities for commitment might occur in the future, so
it is not clear what subjects believed and whether the perfect foresight analysis
applies. Thus although delay was observed, we cannot be certain from these



TIMING AND SELF-CONTROL 31

experiments whether it is the type of delay predicted by this model. We hope
that future experiments will shed more light on the type of delay that can occur
with cognitive resource depletion.

EXAMPLE 10 —A Persistent Temptation With Nonlinear Benefits, Partial
Linear Replenishment, and General Depletion: Our final variation on the per-
sistent temptation problem drops the option to commit, and examines the in-
terplay between the benefit function m and the depletion function f . To be-
gin, note that regardless of the form of the benefit and depletion functions,
if there is full replenishment, the problem is stationary, so it is never opti-
mal to wait for a while and then take. Defining the cost of self-control to be
g(Δ) = (1 − δ)(m(w̄) − mτ(f (w̄�Δ))) (as in Section 4), we see that the pol-
icy of taking at once gives payoff P + m(w̄) and resisting forever gives payoff
m(f(w̄� (1 − δμ)S)), so resisting forever is optimal if

P <m
(
f (w̄� (1 − δμ)S)

) −m(w̄) = −g((1 − δμ)S)/(1 − δ)�

Next suppose that m(w) = γw for w ≥ 0 and m(w) = −∞ for w < 0. If
P < −γ(1 − δμ)S, then as in our earlier analysis, the optimum is to take the
temptation immediately. If (1 − δ(1 − λ))P > −γ(1 − δμ)S the solution is to
resist forever if permanent resistance is consistent with resources remaining
nonnegative; this is the case if 1 − (1 − δμ)S/w̄ > λ. Otherwise, if (1 − δ(1 −
λ))P >−γ(1 − δμ)S and (1 − (1 − δμ)S)/w̄ < λ, the solution is to resist until
one more period of resistance would “exhaust the stock” (that is, make w̃ < 0)
and then to give in to the temptation.

Now consider the general case, normalizing to have linear replenishment.
We assume that m and f are twice continuously differentiable, and that

−dm

dw
((1 −A)w̄+Aw)

∂f

∂Δ
(w�0)

(which is positive) is decreasing in w; we call this increasing marginal cost of
self-control. Note that the marginal cost of control is increasing if m is strictly
concave and f is linear. Equivalently, we can write this condition in terms of
second derivatives as

−d2m

dw2
((1 −A)w̄ +Aw)

∂f

∂Δ
(w�0)

− dm

dw
((1 −A)w̄+Aw)

∂2f

∂Δ∂w
(w�0) < 0�

If m is concave, this says that the cross-partial derivative of f should not be “too
negative.” If the cross-partial is strongly positive, then m need not be concave.

PROPOSITION 6: Suppose there is increasing marginal cost of self-control and
there is strictly partial linear replenishment, 0 < κ.
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(a) There is ¯τ > 0 such that if τ < ¯τ, there are |P̄τ| > | ¯Pτ| > 0 such that it is
optimal to resist forever if |P| > P̄τ, it is optimal to resist until period ∞ > 	̂ > 1
and then take if |P̄τ|> |P| > | ¯Pτ|, and it is optimal to take immediately if | ¯Pτ|>P .

(b) Let P̄0, ¯P0 denote the limits of P̄τ , ¯Pτ as τ → 0. Let Ws be the solution to
the differential equation

Ẇt = κ(w̄−Wt)+ ∂f

∂Δ
(Wt�0)(ρ+η)S

and let W∞ be the solution to

0 = κ(w̄−W∞)+ ∂f

∂Δ
(W∞�0)(ρ+η)S�

Then

|P̄0| = −(ρ+η)S

∫ ∞

0
e−(ρ+κ)tm′(W∞)

∂f

∂Δ
(W∞�0)dt�

| ¯P0| = −(ρ+η)S

∫ ∞

0
e−(ρ+κ)tm′(w̄)

∂f

∂Δ
(w̄�0)dt�

and if |P̄0| > |P| > | ¯P0|, then ŝ = limτ→0 τ	̂ is finite and strictly positive, and is
determined by

|P| = (ρ+η)S

∫ ∞

0
e−(ρ+κ)tm′(w̄ − e−κtWŝ)

∂f

∂Δ
(Wŝ�0)dt�

REMARK 1: One way to read this result is that the agent’s choice depends
on the magnitude of P , but recall that P = (1 − δT )ug − δTub and S = (1 −
(δμ)T )ug − (δμ)Tub, so changing P implies changes in S and/or in δ and μ (or
ρ and η in the continuous-time formulation), and any of these other changes
will also matter for the decision.

REMARK 2: To better understand the formulas given above, note that when
depletion and benefits are both linear,

|P̄0| = |¯P0| = (ρ+η)γS

∫ ∞

0
e−(ρ+κ)t dt = (ρ+η)

(ρ+ κ)
γS�

which is the same as the condition for the critical value of P given in equa-
tion (4).



TIMING AND SELF-CONTROL 33

REMARK 3: To illustrate the fact that concavity of the optimization can come
from any of the three functions f , m, and r, consider the case where f and m
are linear, and r is piecewise linear:{

r(w̃n)= w̃n + λ1(w̄ − w̃n) for w̃n ∈ [w∗� w̄],
w̃n + λ2(w̄ − w̃n) for w̃n < w∗,

where λ1 = 1 − exp(−κ1τ), λ2 = 1 − exp(−κ2τ), and

−γS(ρ+η)/(ρ+ κ2) < P < −γS(ρ+η)/(ρ+ κ1)�

Then if the replenishment rate was fixed at κ1, the agent would always resist,
while if it was fixed at κ2, the agent would take the temptation at once. We
claim that the short-time-period solution with the piecewise linear replenish-
ment function is to resist until resources fall to w∗. To see why, first consider
the agent’s problem when the resource level is w∗. Resisting forever gives ex-
actly the same payoff as when the replenishment rate is fixed at κ2, and taking
gives a higher payoff than with replenishment fixed at κ2, so since taking gives
a higher payoff here than with κ = κ2, the agent takes. When w>w∗, the gain
from resisting for a short interval and then taking the temptation, instead of
taking it now, is exactly as in the case κ = κ1, so the agent resists; since this
causes resources to decrease, the agent will resist until resources fall to w∗.

The proof of Proposition 6 is provided in the Appendix, but the intuition
is simple. We first show that because of the increasing marginal cost of self-
control and because resisting temptation lowers the stock next period, the gain
to waiting one more period is monotone in the number of periods 	 that the
temptation has been resisted. Thus, if P is small enough (sufficiently bad) rel-
ative to all the other parameters, it is optimal to wait forever; if P is close
enough to 0, it is optimal to take at once; and for intermediate P , it is optimal
to wait a while and then take. For an arbitrary length τ of the time period,
this intermediate region may be empty, but when τ is very small, the concavity
assumption ensures that it is nonempty.

EXAMPLE 11—State-Dependent Marginal Cost: We assume full replenish-
ment of willpower each period, so the stock of willpower is constant and
thus irrelevant. As in the case of constant marginal cost, we assume both
linear resource depletion and linear value of cognitive resources. However,
we drop the assumption that the marginal benefit of cognitive resources is
constant and instead let them depend on the state. Specifically, we assume
m(yn� w̃n)= Γ (yn)w̃n and, more specifically, that the marginal benefit Γ (yn) in
period 1 is Γ̄ > 0 while from period 2, it is either Γ̄ or 0, depending on the first
period choice.

In period 1, there is a choice of whether or not to pay a cost F ; think of it
as spending time learning self-control, perhaps with the aid of a counselor or
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religious or spiritual advisor. If the cost is paid, then there is no problem of
self-control at all in future periods, that is, Γ (yn) = 0; if the cost is not paid,
the marginal benefit remains equal to Γ̄ .

In period 2, the agent can decide whether to take or to resist a simple tempta-
tion, with shorter-run player value S and direct value P for the long-run player,
with S > 0 > P and P < −Γ̄ S, so that if the agent does not pay in period 1, it
will be optimal to take in period 2.

Now we examine the decision in period 1. The future best value for the
short-run self is δμS, regardless of whether F is paid today or not. Thus
the temptation utility is δμS and the utility the SR associates with “pay” is
δμS − F(1 − δμ), so the foregone value of pay is F(1 − δμ) and the self-
control cost for this action is Γ̄ F(1 − δμ). Hence it is optimal in the reduced
form problem to pay whenever (Γ̄ (1 − δμ)+ (1 − δ))F <−δP .

In contrast, if paying F today makes taking tomorrow impossible, the fore-
gone value of pay is δμS+F(1 −δμ), so for some parameters (such as μ close
to 1), the commitment will not be optimal even though the arguably equiv-
alent “training” action would be. The difference between commitment and
lowering control costs is a consequence of our assumption that the shorter-
run selves are strategically naive, so that the shorter-run player is unconcerned
by any action that leaves the feasible set unchanged. Models with nonnaive
shorter-run players may also be of interest, but they are much more compli-
cated.35

To make this example simple, we kept the stock of willpower constant and
assumed that the first-period action had a direct effect on the cost of self-
control in the second period. Similar effects could be obtained if we allowed
the replenishment function r to depend on the action as well as on the end-
of-period willpower, and let the benefits of cognitive resources be slightly con-
cave (so that the cost is slightly convex). Specifically, suppose that acting in
the first period increases the willpower stock from 1 to 1 + w∗ and that the
benefit of cognitive resources w is wα for some α ∈ (0�1). Then if the agent
does not act in the first period, the cost of resisting second-period tempta-
tion is 1α − (1 − δμS)α ≥ αδμS, while the cost if the agent acts goes to 0 with
w∗.

In the Supplemental Material, we discuss some of the complications that
arise when the evolution of resources can be state-dependent and can depend
directly on actions, not only on the foregone value. The Supplemental Material
also shows that when we rule out the kind of endogenous changes in willpower
explored in Example 11, we can show that the actions that maximize the long-
run self’s objective function correspond to the equilibrium of a game in which

35This example suggests that nonnaivete is necessary to capture St. Augustine’s request “give
me chastity and continence, but not yet.”
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a benevolent but patient long-run self faces a sequence of shorter-run selves
who live for a random length of time. In this game, decisions are made by
the shorter-run selves, but the long-run self can alter the preferences of the
shorter-run selves by undertaking “self-control” actions that, in general, lower
the utility of the shorter-run selves.

7. CONCLUSION

Allowing shorter-run selves to live more than a single period provides a natu-
ral way to capture the way preferences change as the “period” becomes shorter.
This lets us explain why commitments to avoid far-off temptations are less
costly and more attractive than commitments to avoid more imminent temp-
tations, and lets us explain the subjective interest rates decline with delay; it
also provides a natural parameterization of the effect of the length of the time
interval between potential decision nodes. This is important because the con-
cept of a discrete-time period in these decision problems is simply a convenient
construction; the real-time length of delay is what should matter for decision
making.

When the marginal cost of self-control is constant, the agent’s decision prob-
lem is not affected by the timing of when self-control costs are incurred and
there is no need for the model to track the stock of the agent’s cognitive re-
sources. As we saw, the model with linear replenishment, benefits, and de-
pletion is equivalent to the “state-free” model. However, when nonlinearities
matter, so does the timing of self-control decisions and costs, and the willpower
stock provides a way to model the “spillover” from one period’s self-control to
future control costs. Tracking the stock of willpower allows simultaneous de-
cisions to be about the same as almost simultaneous ones, and lets us explain
why agents may choose to “resist and then give in” and “wait to commit.”

We explored some, but far from all, of the many possible ways to model these
nonlinearities, and there is ample scope for future work on this. In particular,
we have looked for plausible properties, such as insensitivity to minor changes
in timing; it would be useful to compile these properties in a set of clear and
readily interpretable axioms to better understand the universe of models that
satisfy them. Also, it would be good to extend the qualitative analysis here by
exploring the extent to which we can find, for each individual agent, a stable
constellation of preference parameters that fits that agent’s quantitative behav-
ior across a range of problems. This was done to a limited extent in Fudenberg
and Levine (2010) for the model where shorter-run selves live a single period,
although the calibration was for the median subject across a number of differ-
ent experiments as opposed to individual subjects observed in many different
treatments. However, several of the experiments studied there are better fit by
allowing shorter-run selves to have random lifetimes. Finally, while our anal-
ysis here has presumed that the cost function c (in the first part of the paper)
or the functions governing the evolution of cognitive resources (in the second
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part) are fixed and constant, it is straightforward to allow them to have random
variation, as long as this variation is exogenous. For example, each period t the
cost of foregoing Δ units of value could be Γt , where the Γt are independent
and identically distributed according to some known distribution.

APPENDIX

EXAMPLE 3—Continued Derivation of Marginal Interest Rates: From the
indifference condition in the text, we may compute

1 − δ+ Γ (1 − δμ)

(1 − δ)δn−1 + Γ (1 − δμ)(δμ)n−1
= cn�

so setting n = t/τ and taking the limit τ → 0 shows that

MRt = lim
τ→0

log
(
c(t/τ)+1

c(t/τ)

)/
τ

= lim
τ→0

log

⎛
⎜⎜⎝

1 − δ+ Γ (1 − δμ)

(1 − δ)δt/τ + Γ (1 − δμ)(δμ)t/τ

1 − δ+ Γ (1 − δμ)

(1 − δ)δ(t/τ)−1 + Γ (1 − δμ)(δμ)(t/τ)−1

⎞
⎟⎟⎠

/
τ

= lim
τ→0

log
(

1
δ

(1 − δ)+ Γ (1 − δμ)μ(t/τ)−1

(1 − δ)+ Γ (1 − δμ)μt/τ

)/
τ

= ρ+ Γ lim
τ→0

(1 − δμ)(exp(−ηt)(μ−1 − 1))/(1 − δ)τ

= ρ+ Γ (ρ+η)exp(−ηt)η/ρ�

where MR denotes the marginal interest rate.

PROOF OF THEOREM 4: Recall that w̃n = wn − Δn. With linear replenish-
ment, wn+1 = w̃n +λ(w̄− w̃n)=wn −Δn +λ(w̄−wn +Δn). Define the willpower
deficit Dn = w̄ −wn. Then

Dn+1 = (1 − λ)Dn + (1 − λ)Δn = (1 − λ)n+1D0 +
n∑

n′=0

(1 − λ)n
′+1Δn′ �

Recall that the average value of cognitive resources in the linear case is

M = (1 − δ)

∞∑
n=0

δnγwn�
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It follows that the total value of cognitive resources is

M/(1 − δ) = γ

[
w̄ −

∞∑
n=0

δnDn

]

= γ

[
w̄ −

∞∑
n=0

δn

(
(1 − λ)nD0

+
n∑

n′=1

(1 − λ)n−n′
Δn′ +Δn+1

)]

= γ

[
w̄ −

∞∑
n=0

δn

(
(1 − λ)nD0 +

n∑
n′=0

(1 − λ)n−n′
Δn′

)]

= γ

[
w̄ −

∞∑
n=0

δn(1 − λ)nD0 −
∞∑
n=0

δn

n∑
n′=0

(1 − λ)n−n′
Δn′

]

= γ

[
w̄ −

∞∑
n=0

δn(1 − λ)nD0

−
∞∑

n′=0

δn′
Δn′

∞∑
n=n′

(δ(1 − λ))n−n′
]

= γ

[
w̄ −

∞∑
n=0

δn(1 − λ)nD0 − 1
1 − δ(1 − λ)

∞∑
n′=0

δn′
Δn′

]
�

Hence if we define Γ = (1 − δ)γ/(1 − δ(1 −λ)), we see the equivalence to the
simple linear model without replenishment. Q.E.D.

PROOF OF PROPOSITION 6: Suppose the agent resists for 	 periods and then
gives in. Let w	

n be the corresponding time path of cognitive resources. Note
that this is a weakly decreasing function of 	, strictly decreasing for n > 	. The
resulting average value is

(1 − δ)

(
	−1∑
n=0

δnm
(
f (w	

n+1� (1 − δμ))S
) +

( ∞∑
n=	

δnm(w	
n+1)

))
+ δ	P�

and the larger is 	, the smaller is the first term and the larger is the second
term (recall that P is negative). This implies that a necessary condition for an
optimal 	 is that the value for 	+ 1 is no larger and that a sufficient condition
for 	= 1 optimal is that the value for 	+ 1 is lower. Let us look at the value at
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	 minus the value at 	+ 1:

D(	) = (1 − δ)

(
	−1∑
n=0

δnm
(
f (w	

n+1� (1 − δμ)S)
)

+
( ∞∑

n=	

δnm(w	
t+1)

))
+ δnP

− (1 − δ)

(
	∑

n=0

δnm
(
f (w	+1

n+1� (1 − δμ)S)
)

+
( ∞∑

n=	+1

δnm(w	+1
n+1)

))
− δ	+1P�

Note that for n ≤ 	, we have w	
n = w	+1

n , so we can write this difference as

D(	) = (1 − δ)δ	

[(
m(w	

	+1)−m
(
f (w	

	+1� (1 − δμ)S)
))

+
∞∑

n=	+1

δn−	(m(w	
n+1)−m(w	+1

n+1))+ P

]
�

Observe that because there is partial replenishment, w	
	+n strictly decreases

in 	.
We now use the assumption of increasing cost of self-control to conclude

that there is a ¯τ such that for τ < ¯τ, each individual term in D(	) is strictly
increasing in 	 and hence that D(	) is strictly increasing. The first term,
m(w	

	+1) − m(f(w	
	+1� (1 − δμ)S)) = m(f(w	

	+1�0)) − m(f(w	
	+1� (1 − δμ)S),

strictly decreases in w	
	+1 from increasing marginal cost of self-control at A = 1

and the fact that (1 − δμ)S → 0 as τ → 0. Since w	
	+1 decreases in 	, these

differences increase.
For the terms in the sum, since n runs from 	+ 1 to ∞, the arguments w	

n+1

and w	+1
n+1 have the form w	

	+	′ and w	+1
	+	′ , and the former decrease with 	. The

individual terms have the form m(w	
	+	′) − m(w	+1

	+	′) with w	+1
	+1 = f (w	

	+1� (1 −
δμ)S) and w	+i

	+	′ = w̄− (1 − λ)	
′−1(w̄ −w	+i

	+1). Putting this together, we have

m(w	
	+	′)−m(w	+1

	+	′)

=m
(
w̄ − (1 − λ)	

′−1(w̄ −w	
	+1)

)
−m

(
w̄ − (1 − λ)	

′−1
(
w̄ − f (w	

	+1� (1 − δμ)S)
))

=m(Aw̄ + (1 −A)w	
	+1)−m

(
Aw̄ + (1 −A)f(w	

	+1� (1 − δμ)S)
)
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=m(Aw̄ + (1 −A)f(w	
	+1�0))

−m
(
Aw̄+ (1 −A)f(w	

	+1� (1 − δμ)S)
)
�

where A = (1−λ)	
′−1. When τ is small enough, the increasing marginal cost of

self-control implies that this expression is decreasing in w	
	+1 and so increasing

in 	 when τ is small enough.
Because wn is bounded below by the steady state, D is bounded above as

a function of 	. If P is large enough in absolute value (it is negative) given
all the other parameters, then this expression is negative for all 	 and it is
optimal to wait forever, let P̄τ be the smallest such P in absolute value. If P
is small enough in absolute value, this expression is positive for all S and it is
optimal to take immediately, let ¯Pτ be the largest such P in absolute value.

Next we assume that τ is small, and show that |P̄τ|> | ¯Pτ|. Observe that

w	
	+	′ = w̄− (1 − λ)	

′−1(w̄ −w	
	+1)= w̄ − (1 − λ)	

′−1(w̄ −w	
	+1)�

w	+1
	+	′ = w̄− (1 − λ)	

′−1(w̄ −w	+1
	+1)

= w̄− (1 − λ)	
′−1

(
w̄− f (w	

	+1� (1 − δμ)S)
)
�

Let d(s� τ)=D(s/τ)/δs/τ(1 − δ) with W t
s ≡wt/τ

s/τ. Then

d(s� τ) = (
m(W s

s+τ)−m
(
f (W s

s+τ� (1 − δμ)S)
))

+
∞∑
n=2

e−ρn(m(W s
s+nτ)−m(W s+τ

s+nτ))+ P�

where

W s
s+nτ −W s+τ

s+nτ = (1 − λ)n−1
[
W s

s+τ − f (W s
s+τ� (1 − δμ)S)

]
and

W s
s+nτ = w̄− (1 − λ)n−1(w̄ −W s

s+τ)�

The first term of d converges to zero as τ → 0, and since m and f are differen-
tiable, the sum converges to

d(s)≡ (ρ+η)S

∫ ∞

0
e−(ρ+κ)tm′(w̄ − e−κt(w̄ −Ws))

∂f

∂Δ
(Ws�0)dt�

where Ws is the solution to the differential equation

Ẇt = κ(w̄−Wt)+ ∂f

∂Δ
(Wt�0)(ρ+η)S
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with initial condition W0 = w̄. Thus we have d(s) ≡ limτ→0 d(s� τ). Recall that
D is strictly increasing, and that 	̂ = 1 is optimal if and only if D(1) ≥ 0. As
τ → 0, this is equivalent to

d(0) = −(ρ+η)S

∫ ∞

0
e−(ρ+κ)tm′(w̄)

∂f

∂Δ
(w̄�0)dt + P

= −(ρ+η)m′(w̄)

(ρ+ κ)

∂f

∂Δ
(w̄�0)≥ 0�

Similarly, 	̂ = ∞ is optimal if and only if lim	→∞ D(	) ≤ 0, and so is optimal
when d(∞)≤ 0.

Finally, resisting for a while and then taking, that is, 1 < 	̂ < ∞, is optimal
if and only if D(	̂ − 1) ≤ 0, D(	̂) ≥ 0, hence d(ŝ) = 0. This gives the charac-
terization of the optimum in the proposition. Finally, the assumption that the
marginal cost of self-control is increasing implies d(s) is strictly increasing, so

| ¯P0| = −(ρ+η)S

∫ ∞

0
e−(ρ+κ)tm′(w̄)

∂f

∂Δ
(w̄�0)dt

< −(ρ+η)S

∫ ∞

0
e−(ρ+κ)tm′(W∞)

∂f

∂Δ
(W∞�0)dt = |P̄0|

and hence | ¯Pτ|< |P̄τ| must hold for all sufficiently small τ. Q.E.D.
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BY DREW FUDENBERG AND DAVID K. LEVINE

W1. AN EXAMPLE MOTIVATED BY DELLAVIGNA ET AL.

FIRST WE CONSIDER an example motivated by DellaVigna et al.’s (2010) exper-
iment on door-to-door charitable fund-raising that illustrates a form of non-
monotonicity. DellaVigna et al. (2010) provided homeowners with the option
to avoid a fundraiser by using a “Do Not Disturb” check box and found that
those who chose avoidance were concentrated among people who donate less
when avoidance is not possible. As we explain here, this example is consistent
with our model: whether the agent is willing to pay to avoid a temptation can
be a nonmonotone function of the temptation’s short-run utility. Intuitively,
those who are willing to pay to avoid a temptation can have intermediate util-
ities from choosing it, as those with very low values may find it easy to resist
without commitment, while those with high values will have a correspondingly
high control cost for choosing the commitment.

EXAMPLE W1—Door-to-Door Sales: This example has two decisions: First,
whether to avoid a tempting opportunity and, second, whether to give in to
temptation if it was not avoided. (For concreteness, think of the avoidance
activity as avoiding a door-to-door salesman.) As we will see, costly self-control
leads to a nonmonotonicity: if the temptation is very high or very low, then the
opportunity will not be avoided, but it may be avoided for intermediate levels
of temptation. The intuition is that when the opportunity is very good, there is
little conflict between the long-run self and shorter-run self, so the opportunity
should be taken advantage of and not avoided. When the opportunity is very
bad, the shorter-run self will not indulge much, so it is not worth paying a fixed
cost for avoidance. However, in the intermediate case, there may be a more
severe conflict between long-run self and shorter-run self, so the long-run self
may choose to commit so as to avoid the temptation.

The example is very simple and stylized. In period 1, a cost F ≥ 0 may be
paid or not; think of this as not being at home when the salesman calls. If the
cost is paid, the utility in all subsequent periods is 0. If the cost is not paid,
then in period 2, a decision must be made on whether to purchase from the
salesman. If the purchase is made, the utility in period 2 is B; otherwise it is
zero. In period 3, if the purchase was made, it must be paid for, resulting in
a disutility of −1.

To solve the model, we first compute temptation values in each period and
state, and then compute the agent’s objective function. We then solve the vari-
ous inequalities to see when each action is best.
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We begin by computing the temptation value in the last period in which ac-
tion is possible, namely in period 2 when the avoidance cost has not been paid.
Here the shorter-run self’s average present value from doing nothing is 0 and
that of purchasing is (1 − δμ)(B − δμ), so Ū2 = (1 − δμ)max{0�B − δμ}. In
the initial state, if F is chosen, the shorter-run self’s value is −F(1−δμ), while
if it is not chosen, the shorter-run player value is δμŪ2. If B − δμ < 0, then
also B − δ < 0, so in period 2 the optimum is not to purchase, which incurs no
cost of self-control.

Now we suppose B − δμ > 0 and compute the agent’s decision. Resisting
temptation in period 2 will cost Γ (1 − δμ)(B − δμ), so the purchase will be
made when (1 − δ)(B − δ) ≥ −Γ (1 − δμ)(B − δμ). If avoidance is chosen,
the shorter-run self pays the avoidance cost of −(1 − δμ)F in the first period.
Since the temptation value is δμŪ2, the average present value of avoidance is

−(1 − δ)F − Γ (F(1 − δμ)+ δμŪ2)

= −(1 − δ)F − Γ (F(1 − δμ)+ δμ(1 − δμ)max{0�B − δμ})
and avoidance is optimal if this is higher than the discounted average value
of long-run player utility in period 2, which is δmax{(1 − δ)(B − δ)�−Γ (1 −
δμ)(B − δμ)}.

Denote the strategy of not paying the avoidance cost and not purchasing
as a0, of not paying the avoidance cost and purchasing as a1, and of paying the
avoidance cost as aF . We have the following characterization of the optimal
decision rule:

PROPOSITION W1: Set

F∗ = Γ δ2(1 − δμ)(1 − δ)(1 −μ)2

(1 − δ+ Γ (1 − δμ))2
�

If F ≥ F∗, then a0 is optimal for

B ≤ δ
1 − δ+ Γ (1 − δμ)μ

1 − δ+ Γ (1 − δμ)
≡ B∗

and a1 is optimal if B ≥ B∗. If F ≤ F∗, then

B̄ ≡ δ
1 − δ+ Γ (1 − δμ)μ2

1 − δ+ Γ (1 − δμ)μ
− 1 − δ+ Γ (1 − δμ)

δ(1 − δ+ Γ (1 − δμ)μ)
F

≥ B∗ ≥ δμ+ 1 − δ+ Γ (1 − δμ)

Γ (1 − δμ)δ(1 −μ)
F ≡ ¯B

and a0 is optimal for B ≤ ¯B�aF is optimal for ¯B ≤ B ≤ B̄, and a1 is optimal for
B ≥ B̄.
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PROOF: (i) As worked out above, the payoff to F is

−(1 − δ)F − γ(F(1 − δμ)+ δμŪ2)

= −(1 − δ)F − γ(F(1 − δμ)+ δμ(1 − δμ)max{0�B − δμ})�
(ii) If a0 (do not avoid, do not purchase) is chosen, the direct utility is 0 and

the reduced form utility is the temptation cost incurred in the second period:

V (a0) = −Γ δ(1 − δμ)max{0�B − δμ}�
(iii) If a1 is chosen, the direct utility is (1 − δ)(δB − δ2), while the cost of

self-control is in period 2 and is −Γ (1 − δμ)min{0�B − δμ}, as self-control is
needed only when the shorter-run player does not want to purchase. Thus

V (a1) = (1 − δ)δ(B − δ)+ Γ δ(1 − δμ)min{0�B − δμ}�
If B ≤ δμ, then the optimum is not to purchase and there is no temptation

cost; here it is also not optimal to avoid in the first period, and the optimum
is a0. Next suppose that B > δμ and consider the period-2 choice, assuming
the avoidance cost was not paid. If the purchase is not made, the average value
from period 2 on is −Γ (1 −δμ)(B−δμ), while if it is made, the average value
is (1 − δ)(B − δ). So the optimum is not to purchase when

B ≤ δ
1 − δ+ Γ (1 − δμ)μ

1 − δ+ Γ (1 − δμ)
≡ B∗�

Next observe that since B > δμ, the present value of utility from avoiding is
given by

−(1 − δ)F − Γ (F(1 − δμ)+ δμ(1 − δμ)(B − δμ))�

Then V (aF)≥ V (a0) if and only

B ≥ δμ+ 1 − δ+ Γ (1 − δμ)

Γ (1 − δμ)δ(1 −μ)
F ≡ ¯B�

Since B − δμ > 0, this implies there is a range of sufficiently small F where aF

is better and a range of F so large that a0 is better.
Finally, V (aF)≥ V (a1) if

−(1 − δ)F − Γ (F(1 − δμ)+ δμ(1 − δμ)(B − δμ))

≥ δ(1 − δ)(B − δ)

or

B ≤ δ
1 − δ+ Γ (1 − δμ)μ2

1 − δ+ Γ (1 − δμ)μ
− 1 − δ+ Γ (1 − δμ)

δ(1 − δ+ Γ (1 − δμ)μ)
F ≡ B̄�
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We conclude that aF is best when

δ
1 − δ+ Γ (1 − δμ)μ2

1 − δ+ Γ (1 − δμ)μ
− 1 − δ+ Γ (1 − δμ)

δ(1 − δ+ Γ (1 − δμ)μ)
F

≥ B ≥ δμ+ 1 − δ+ Γ (1 − δμ)

Γ (1 − δμ)δ(1 −μ)
F�

Straightforward algebra shows that there is a nonempty interval of B where aF

is best when

F ≤ Γ (1 − δμ)(1 − δ)δ2(1 −μ)2

(1 − δ+ Γ (1 − δμ))2
= F∗�

If F > F∗, it is not optimal to use aF ; in this case, the optimum is determined
from the condition for V (a0) ≥ V (a1) above. If F ≤ F∗ and if B ≤ ¯B, then
V (aF)≤ V (a0) and V (a1)≤ V (a0), so a0 is optimal; if ¯B ≤ B ≤ B̄, then V (aF)≥
V (a0) and V (aF) ≥ V (a1), so aF is optimal; if B ≥ B̄, then V (aF) ≤ V (a1) and
V (a1) ≥ V (a0), so a1 is optimal. Finally note that δμ ≤ ¯B�B

∗, so that the case
B ≤ δμ where a0 is optimal is included in this result. Q.E.D.

Note that the right-hand side inequality in ¯B ≤ B ≤ B̄ gets harder to satisfy
as μ → 1 or as Γ → 0. In the former case, the interests of the shorter-run self
are nearly aligned with those of the long-run self, while in the second case, the
shorter-run self defers to the wishes of the long-run self. In either case, paying
F is just an expensive way to not buy. Paying a small F is attractive as μ → 0,
as here the first SR self is not very tempted by the second-period outcome, so
it is cheap to get him to agree to a commitment that will probably bind on the
next self.

DellaVigna et al. (2010) found that if an option to avoid the fundraiser is
available, about a quarter of people make use of it, and that if the option is
made cheaper by providing a “Do Not Disturb” check box, nearly a third of
people choose to avoid the salesperson. If we imagine that without checking
the box there is a cost of avoiding, then this is as our model predicts: the lower
the cost of avoidance, the more people will choose it. As noted above, Della-
Vigna et al. found that those who chose avoidance were concentrated among
people who donate less when avoidance is not possible. Whether this is the
case in our model depends on the distribution of B. If the lowest value of B/ ¯Bin the population is greater than or equal to 1 and the highest value of B/B̄
also exceeds 1, then all those who would not contribute when avoidance is
not possible (F = ∞) will choose avoidance, while only some of those who
would contribute choose avoidance; this is what DellaVigna et al. found. On
the other hand, if the highest value of B/B̄ in the population is less than or
equal to 1 while the lowest value of B/ ¯B is below 1, our model predicts the
opposite result. A more elaborate experiment could vary the value of B and
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the cutoffs more systematically—for example, in the flier describing the visit,
indicating that a level of matching funds are available ($3 to the charity for
every $1 you donate, for example). This would make it possible to test for the
nonmonotonicity in B that the model predicts.

W2. STATE DEPENDENCE

In the text, we defined the value of cognitive resources to be state-independent
if it depends on the state only through the stock of willpower; in a slight abuse
of notation, we write this as m(yn� w̃n) = m(w̃n). State-independent resource
valuation implies that the action most favored by the shorter-run self maxi-
mizes the utility of cognitive resources. To see this, define

M(hn�a)≡Ek
a�hn

∞∑
�=0

(δμ)�(1 − δμ)m(w̃n+�)

and note that the value on the right-hand side is independent of k. If each pe-
riod’s action is chosen to maximize the value Uk(hn�a) of the current shorter-
run self, the foregone value each period is 0. This implies that the level of re-
sources at each period is as high as possible given the initial value; with state-
independent resource valuation, any action plan a that leads to this highest
possible path for w̃ also maximizes the flow of benefits m(w̃n) in the strong
sense that no other action plan leads to a higher value of m in any period along
any history. As a consequence, any action plan that maximizes shorter-run util-
ity in each period on each history also maximizes M .

THEOREM W2: With state-independent resource valuation, arg maxa U(hn�
a)= arg maxa M(hn�a).

W3. THE GAME BETWEEN LONG-RUN AND SHORTER-RUN SELVES

Here we show that the optimization problem in the text can be identified
with the outcome of a game between the long-run self and a sequence of
shorter-run selves. To do this, we introduce an augmented state variable Yk

that is defined in any period n in which a new shorter-run self is born and in-
cludes along with yn the value of n as well as available cognitive resources; that
is, Yk = (yn�wn�n). Notice that any strategy a that maps histories to actions
induces a well defined stochastic kernel Π(a�Yk)[dYk+1] based on the original
stochastic kernel and the laws of motion for cognitive resources.

In the game formulation, the actions are taken by the shorter-run selves, and
the long-run self chooses self-control actions that influence the preferences of
the shorter-run self; the control cost we specified in the text will now corre-
spond to a reduction in the utility function as opposed to an additional term.
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Each shorter-run self can be thought of as choosing an a: Although this con-
tains irrelevant information such as how the shorter-run self will behave after
he “dies,” we will ignore this in computing the shorter-run self’s payoff. Fol-
lowing Fudenberg and Levine (2006), we assume that before the shorter-run
self moves, the long-run self chooses a self-control action e ∈E. It is convenient
to take E = 0 ∪ A; we then interpret e ∈ A as the “suggested action” and e = 0
as “no recommendation” or “no self-control.” In the game formulation, cog-
nitive resources follow the exact same equations of motion as in the reduced
form model and depend only on the action actually taken by the short-run self
and not on the self-control action e. We consider a sequence of stage games
between the long-run self and the kth shorter-run self. The kth stage game
consists of a choice of self-control action e by the long-run self and a response
a by the shorter-run self. The utility of the kth shorter-run self has the form
u(Yk� e�a), which we specify below.

Histories in this game are sequences of augmented states Yk along with the
chosen actions ek, ak. A strategy from the long-run self is a map e from the
previous history to a self-control action, and a strategy for the kth shorter-run
self is a map ak from the previous history and choice of the long-run self to
an action. The vector of strategies for all shorter-run players is denoted 
a. We
define the conditional expectation operator Ee�a�Yk

given the strategies e, a and
state Yk.

Fudenberg and Levine (2006) specified the procedure for deriving a util-
ity function from an underlying objective function and a “cost of self-control”
function. We mimic that procedure here to show that the equilibria of the game
are equivalent to those of a particular optimization problem that we define be-
low; we then show that the solution to this optimization problem is the same
as the solution to the optimization problem in the text .

To do so, we first define Ek
e�a�Yn

to be the conditional expectation when k is
alive. Write1

Ũ(Yk�a)≡ (1 − δ)Ek
0�a�Yk

∞∑
n=0

(δμ)n−ku(aS
k+n� yk+n)�

Parallel to the definition of M in Section W2, define

M̃(Yk�a)≡ (1 − δ)Ek
0�a�Yk

∞∑
n=0

(δμ)n−km(yk+n� w̃k+n)�

1Since the right-hand side of this equality does not depend on e, we write the expectation
conditional on e = 0 to facilitate later steps.
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where again the right-hand side does not depend on e. Following Fudenberg
and Levine (2006), we now define the SR objective function in the game:

ũ(Yk� e�a)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ũ(Yk�a)+ max
a′ M̃(Yk�a′)�

e= 0�

Ũ(Yk� e)+ M̃(Yk� e)− ‖e− a‖�
Ũ(Yk�a)+ M̃(Yk�a)≥ Ũ(Yk� e)+ M̃(Yk� e)�

Ũ(Yk�a)+ M̃(Yk�a)− ‖e− a‖�
Ũ(Yk�a)+ M̃(Yk�a) < Ũ(Yk� e)+ M̃(Yk� e)�

Notice that with this objective function the shorter-run self cares about re-
sources, but except when the utility Ũ(Yk�a) + M̃(Yk�a) from the chosen ac-
tion is smaller than the utility Ũ(Yk� e)+ M̃(Yk� e) from the suggested action,
the shorter-run self views those resources as being outside of his control.

The long-run self is completely benevolent: her payoff in the game is the
discounted sum of shorter-run self utilities

Ṽ (Y1� e� 
a) ≡ (1 − δ)Ee�
a�Y1

∞∑
k=0

δkũ(Yk� ek�ak)�

We assume that Ũ(Yk�a)� M̃(Yk�a) are continuous in a and define the cost of
self-control to be

C(Yk�a) ≡ ũ(Yk�0�a)− max
e|ũ(Yk�e�a)≥ũ(Yk�e�·)

ũ(Yk� e�a)

=
⎧⎨
⎩

0� a ∈ arg max
a′

ũ(Yk�0�a)�

max
a′ M̃(Yk�a′)− M̃(Yk�a)� a /∈ arg max

a′
ũ(Yk�0�a)�

which has the property that C(Yk�a) ≥ 0 and C(Yk�a) = 0 if and only if a ∈
arg maxa′ ũ(Yk�0�a′).

As in Fudenberg and Levine (2006), we now consider equilibria in which the
shorter-run selves optimize following every history, and the long-run player
anticipates this reaction and plays like a Stackelberg leader. This is designed
to capture what we imagine is the strategic naivete of the shorter-run self: with
one-period lifetimes for the shorter-run players, this Stackelberg equilibrium is
equivalent to subgame-perfect equilibrium in which the long-run player moves
first against each shorter-run player and is equivalent to the weaker concept
of SR-perfect Nash equilibrium defined in Fudenberg and Levine (2006). If
we assume that the long-run player can choose a self-control action ek that is
observed by shorter-run self k before choosing plan ak, SR-perfect Nash equi-
librium has the same implication here. However, the assumption that ek is cho-
sen once and for all at the beginning of the life of shorter-run self k is stronger
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when the shorter-run self lives multiple periods. First, the self-control action
changes the preferences of the shorter-run self over many periods. Second, the
self-control action cannot be “changed” as long as the particular shorter-run
self is alive. As we note below, if the long-run self were unable to commit for
the life of the shorter-run self, then there would be a nontrivial strategic inter-
action between the two.

As is the case in which the shorter-run self lives only for a single period,
the expectations of the shorter-run self about play by the long-run self do not
matter, because the long-run self has already moved. For this reason, the situ-
ation does not correspond to a repeated game (which it would in the absence
of the commitment assumption). Moreover, the case for subgame perfection
may be stronger here than it is in general, as when the long-run self can com-
mit, the predictions of subgame perfections are less sensitive to changes in the
information structure.

Fudenberg and Levine (2006) defined a SR-perfect Nash equilibrium profile
to be equivalent to a solution to the reduced form optimization problem of
maximizing

Ea�Y1

∞∑
k=0

δk(u(Yk�0�a)−C(Yk�a))

if the reduced strategy induced from the shorter-run players’ strategy profile is
a solution to the optimization problem. Conversely, if there exists a SR-perfect
Nash equilibrium profile with this property for a particular solution to the op-
timization problem, we say that this solution of the reduced form optimization
problem is equivalent to the SR-perfect Nash equilibrium profile. Provided
that Ũ(Yk�a) and M̃(Yk�a) are continuous in a, the conditions of Fudenberg
and Levine’s (2006) Theorem 1 are satisfied, so this equivalence does indeed
hold.2

THEOREM W3: If Ũ(Yk�a) and M̃(Yk�a) are continuous in a, then SR-perfect
Nash equilibria are equivalent to solutions to the reduced form optimization prob-
lem.

We now wish to relate solutions to the optimization problem equivalent to
SR-perfect Nash equilibria

Ea�Y1

∞∑
k=0

δk(u(Yk�0�a)−C(Yk�a))(∗)

2These conditions are costly and unlimited self-control, limited indifference, and continuity.
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to those of

Ea�Y1

∞∑
n=0

δn((1 − δ)u(an� yn)+m(yn� w̃n))�(∗∗)

the agent’s objective function that we used as the starting point in this paper.

THEOREM W4: (∗) and (∗∗) have the same solutions.

PROOF: Observe that since we have assumed state independent resource
valuation, by Theorem W2, Ũ(Yk�a) and M̃(Yk�a) have the same arg max,
while ũ(Yk�0�a) = Ũ(Yk�a) + maxa′ M̃(Yk�a′) trivially has the same arg max.
It follows that if a ∈ arg maxa′ ũ(Yk�0�a), then a ∈ arg maxa′ M̃(Yk�a) and, by
definition, C(Yk�a) = 0. The former implies maxa′ M̃(Yk�a′) − M̃(Yk�a) = 0,
so C(Yk�a) = maxa′ M̃(Yk�a′) − M̃(Yk�a). Since this also holds by definition
for a /∈ arg maxa′ ũ(Yk�0�a), it holds for all a. Hence

Ea�Y1

∞∑
k=0

δk
((

Ũ(Yk�a)+ max
a′ M̃(Yk�a′)

)

−
(

max
a′ M̃(Yk�a′)− M̃(Yk�a)

))

=Ea�Y1

∞∑
t=0

δk(Ũ(Yk�a)+ M̃(Yk�a))�

Let Akt be the probability k is alive at t. Then we may write

Ea�Y1

∞∑
t=0

δk(Ũ(Yk�a)+ M̃(Yk�a))

=Ea�Y1

∞∑
k=0

δk(1 − δ)

( ∞∑
n=k

(δμ)n−kAk�k+nu(a
S
k+n� yk+n)

+
∞∑
n=k

(δμ)n−kAk�k+nm(yk+n� w̃k+n)

)

=Ea�Y1

∞∑
n=0

δn

n∑
k=1

(μ)n−kAk�k+n(1 − δ)

× (u(aS
k+n� yk+n)+m(yk+n� w̃k+n))

=Ea�Y1

∞∑
n=0

δn(1 − δ)(u(aS
k+n� yk+n)+m(yk+n� w̃k+n))� Q.E.D.
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Thus the reduced form of the game is the same agent’s objective function
that we used in our analysis, hence our study of the solutions of the agent’s
objective function can be interpreted as an equilibrium of this game.

Notice that we have assumed that the long-run self can commit for the life-
time of the shorter-run self. This is intended to capture the strategic naivete
of the shorter-run self as a passive actor. If the long-run self simply moves
first each period but cannot commit to contingent plans for future periods, the
equilibrium here is still a SR-perfect equilibrium, since we have shown that
the solution to the reduced form optimization problem is Markov, so that the
long-run self has no wish to renege on his commitment. However, without com-
mitment there can be other equilibria in which the shorter-run self chooses a
plan different from that suggested by the long-run self as part of a repeated
game equilibrium. However, we regard such equilibria as inconsistent with our
notion of the nature of the shorter-run self.

W4. RECURSIVE VERSUS OPPORTUNITY COST

The text supposes that the control cost depends on the foregone value, which
is defined with respect to the maximum possible SR utility from tomorrow on-
ward given tomorrow’s state. This specification does not necessarily satisfy the
property of being an opportunity cost. In general, an opportunity cost for the
short-run self would have the form

C̃(Yk�a)= G(Ū(Yk)− Ũ(Yk�a))�

where, as in Section W3, Ũ(Yk�a) ≡ (1 − δ)Ek
0�a�Yk

∑∞
n=0(δμ)

n−ku(aS
k+n� yk+n).

With this specification, the control cost is computed each period by the differ-
ence between the best expected present value available to a shorter-run self
born in that period and the present value actually received, taking into account
what will actually happen in future periods.

With this alternative specification of the cost, the alternative objective func-
tion for the long-run self in period 1 is

Ṽ (h1�a) ≡ Ea�h1

∞∑
n=0

δn
(
u(y1+n� a1+n)

− (1 −μ)Γ [Ū(y1+n)−U1+n(h1+n�a)])
−μΓ [Ū(y1)−U1(h1�a)]�

Here the control cost is computed each period by the difference between the
best expected present value available to a short-run self born in that period
and the present value actually received. It has the form of an opportunity cost
that depends only on the best present value available to the short-run selves
and the actual utility they receive. Note that the name of the short-run self
born in period 1 + n does not matter, so we may compute the self-control cost
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without loss of generality for k = 1 + n. This expected present value cost is
weighted by 1 − μ, which is the probability of a new short-run self being born
in a given period. In period 1, however, the weight must be taken to be 1, since
the optimization problem always begins with the birth of a new short-run self.

In contrast, the formulation in the paper computes the foregone value and
thus the cost in each period “as if” no self-control will be used in future periods.
However, in the linear case, these two formulations are equivalent.

THEOREM W5: If C̃(Yk�a) = Γ (Ū(Yk) − Ũ(Yk�a)), then C̃(Yk�a) =
C(Yk�a).

PROOF: Since the identity of the SR self does not matter, is suffices to prove
this for k = 1. So we must show

Ea�h1

∞∑
n=0

δnΔ(y1+n� a1+n)

=Ea�h1

∞∑
n=0

δn
(
(1 −μ)[Ū(y1+n)−U1+n(h1+n�a)])

+μ[Ū(y1)−U1(h1�a)]�
We do so by showing that we can apply the principle of optimality for the
shorter-run self to compute the opportunity cost as a sum of current and fu-
ture foregone utilities; then we rearrange the resulting sum to get the desired
result. As noted in the text, the principle of optimality for the shorter-run self
gives the opportunity cost as a sum of weighted increments,

Ū(yn)−Un(hn�a) = Ū(yn)−En
a�hn

∞∑
�=0

(δμ)�u(an+�� yn+�)

= En
a�hn

( ∞∑
�=0

(δμ)�(Δ(yn+�� an+�))

)
�

Writing out the full average present value of opportunity costs, we can in turn
express that as a weighted sum of foregone utilities,

Ea�h1

∞∑
�=0

δ�
(
(1 −μ)[Ū(y1+�)−U1+�(h1+��a)])+μ[Ū(y1)−U1(h1�a)]

=Ea�h1

∞∑
�=0

δ�

(
(1 −μ)

∞∑
�′=0

(δμ)�
′
(Δ(y1+�+�′� a1+�+�′))

)

+μ

[ ∞∑
�′=0

(δμ)�
′
(Δ(y1+�′� a1+�′))

]
�
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Set �′′ = �+ �′. The final step is to rearrange this sum to get the recursive cost

Ea�h1

∞∑
�′′=0

∞∑
�′≤�:

(
(1 −μ)

(
δ�′′μ�′Δ(y1+�′′� a1+�′′)

))

+μ

[ ∞∑
�′=0

(δμ)�
′
(Δ(y1+�′� a1+�′))

]

=Ea�h1

∞∑
�′′=0

(1 −μ)δ�′′Δ(y1+�′′� a1+�′′)

∞∑
�′≤�′′

μ�′

+μ

[ ∞∑
�′=0

(δμ)�
′
(Δ(y1+�′� a1+�′))

]

=Ea�h1

∞∑
�′′=0

δ�′′Δ(y1+�′′� a1+�′′)
(
1 −μ�′′+1

)

+μ

[ ∞∑
�′=0

(δμ)�
′
(Δ(y1+�′� a1+�′))

]

=Ea�h1

∞∑
�′′=0

δ�′′Δ(y1+�′′� a1+�′′)�

which is the desired result.
The key idea is that the principle of optimality for the shorter-run self en-

ables us to write the overall loss to the shorter-run self as a sum of recursively
computed losses,

Ū(yn)−Un(hn�a)

= Ū(yn)− (1 − δμ)En
a�hn

∞∑
�=0

(δμ)�u(yn+�� an+�)

=En
a�hn(1 − δμ)

( ∞∑
�=0

(δμ)s(Δ(yn+�� an+�))

)
�

Hence the opportunity cost is just a weighted sum of the increments Δ(yn+��
an+�), and the proof simply consists of bookkeeping to verify that the weights
are the same as in the recursive case. Q.E.D.

In the linear case, in other words, it does not matter whether the cost of
imposing self-control on the shorter-run self arises from recursive considera-
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tions or from an opportunity cost. The reason we adopted the recursive for-
mulation in the text is that in the nonlinear case, the model of opportunity
cost leads to implausible predictions about timing, such as changes in behavior
when a shorter-run self “dies.”

The recursive formulation of the text defines a cost of self-control for each
state and action to be a convex function g of the difference between the most
utility obtainable for any shorter-run self starting in that state and the utility
that would be obtained if the shorter-run self next period gets the most possible
utility,

C(y�a)= g

(
Ū(y)−

(
u(y�a)+ δ

∫
Y

Ū(y ′)π(y ′|y�a)[dy ′]
))

�

The long-run self then solves the recursive problem directly without reference
to which shorter-run self is born at a particular time, resulting in reduced form
utility

Ṽ n
a�hn ≡En

a�hn

∞∑
�=0

δ�[u(yn+�� an+�)−C(yn+�� an+�)]�

In the opportunity cost formulation, the cost of self-control for shorter-run
self n born in period n is a convex function g of the difference between the most
utility obtainable for the shorter-run self and the utility actually obtained,

Cn
a�hn = g(Ū(yn)−Un

a�hn)�

Note that there will typically be many shorter-run selves and that the long-run
player pays the control cost for the nth shorter-run when that self is “born.”

EXAMPLE W2: We now explore the difference between the two formulations
through a simple example. In the example, the recursive formulation captures
the simple intuition that when the probability of a temptation is reduced, it be-
comes less tempting. In the opportunity cost formulation, reducing the proba-
bility of a temptation has a complicated effect that depends on the exact timing
of when the temptation occurs relative to the “birth” of a new short-run self.
We argue that this is both unintuitive and inconsistent with experimental re-
sults.

In the example it is known that at some point in the future, a simple temp-
tation will arrive, and it will have value P for the long-run self and value S for
the shorter-run self. The exact nature of this opportunity is initially unknown;
it is equally likely to be highly tempting (H) or less so (L). The agent learns
which opportunity he will face at a time t1 + 1, where t1 follows an exponential
waiting time with parameter p1, which is the conditional probability of arrival
each period. Once t1 arrives, the agent is informed which state prevails: there
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is a second exponential waiting time with parameter p2 until the time t2 when
the agent can choose whether to take the tempting action or decline it. No-
tice that t1 and t2 take on the value zero with positive probability, meaning, for
example, that if t1 = t2 = 0, the agent learns immediately that he faces an op-
portunity and he takes an action during the same period. Note also that when
p1 and p2 are large compared to the birth rate 1 −μ of the short-run players,
the initial short-run self will be the one who makes the eventual decision, while
in the reverse case, a short-run self will probably be born after t1 and soon
before t2.

In the highly tempting state H, the simple temptation if chosen is received
for sure. In the less tempting state L, there is only a probability q if the temp-
tation is chosen that it will be received.

EXAMPLE W2a—Recursive Cost of Self-Control: In the recursive case, the
only relevant cost of self-control is in the period in which action is taken. The
maximization problem can be written conditional on whether state H or L has
occurred, so the condition for taking is exactly as in the text: in H the optimum
is to take if

P < g(S)�

while in L the condition is

qP < g(qS)�

Note moreover that this solution holds regardless of the values of p1 and p2.

EXAMPLE W2b—Opportunity Cost of Self-Control: Here the long-run self
faces one decision problem before t1, a different decision problem once the
information is revealed at t1 but before action at t2, and yet a third at the de-
cision time t2. Each of these problems is stationary and independent of the
past history. Each one corresponds to a shorter-run self who faces a different
temptation. To compute that temptation, we simply compute the probability
distribution over arrivals of the event that the action becomes available, condi-
tional on which type the shorter-run self is.

To calculate the temptation utility for any shorter-run self born at or after t1
and strictly before t2 in state H, we compute the expectation of the discounted
value of S over different values of t2:

U2H = E(μδ)t2S =
∞∑

t2=1

(μδ)t2Sp2(1 −p2)
t2−1

= μδp2S

(1 −μδ(1 −p2))
�
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In state L, the temptation utility is just U2L = qU2H . For the short-run self born
at exactly t2, the temptation utilities are U2H = S and U2L = qS. In either case,
the temptation costs are given by g(U2H) and g(qU2H). If p1 is large relative
to p2, then it is far more likely that the shorter-run self is born after t1 than
before, so most of the weight in the objective function of the long-run self is
on these temptation costs. This leads to an analysis that is qualitatively similar
to the recursive case. In the laboratory, however, the time between when the
subjects learn they will face a particular decision problem and the time they
are asked to take an action is usually on the order of minutes, while we expect
the mean length of life of a shorter-run self3 to be on the order of a day, so
that it much more likely that the shorter-run self is born before t1 rather than
after.

The temptation utility for a self born before t1 is the expected value of taking
the temptation, averaged over the arrival times t1 and t2. Since these times are
independent, the temptation value is

U1 = E
[
(μδ)(t1+t2)0�5(1 + q)S

]
= 0�5μδp1p2(1 + q)S

(1 − δμ(1 −p1))(1 − δμ(1 −p2))
�

Let us focus on the case where most of the weight is on shorter-run selves
born before t1. Let aJ be an indicator function of whether the long-run
self takes at J ∈ {H�L}. Let Q = 0�5(aH + qaL) be the overall proba-
bility of the long-run self taking. Then the objective of the long-run self
is

V (Q) = δp1p2

(1 − δ(1 −p1))(1 − δ(1 −p2))
QP

− g

(
μδp1p2S

(1 − δμ(1 −p1))(1 − δμ(1 −p2))
(0�5(1 + q)−Q)

)
�

In particular, the objective function depends only on Q. Notice that there are
four relevant values of Q: 0�0�5q�0�5�0�5(1 + q). Note moreover that since g
is convex,

V ′
0 ≡ V (0�5q)− V (0)

0�5Q
≥ V ′

0�5q ≡ V (0�5)− V (0�5q)
0�5 − 0�5q

≥ V ′
0�5 ≡ V (0�5(1 + q))− V (0�5)

0�5(1 + q)− 0�5
�

It follows that the optimal choice of Q is 0 if V ′
0 ≤ 0; it is 0�5q if V ′

0 ≥ 0,
V ′

0�5q ≤ 0, it is q if V ′
0�5q ≥ 0, V ′

0�5 ≤ 0, and it is 0�5(1 + q) if V ′
0�5 ≥ 0, and since

3See Fudenberg and Levine (2010).
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increasing P lowers the slope of V , the optimal Q is a decreasing function
of P . If P is close to zero, then Q should be equal to 1, meaning that the
long-run self takes regardless of the state. If P is highly negative, then Q
should be equal to zero, meaning that the long-run self never takes. As P
is reduced from zero, eventually the probability Q must be reduced from 1
to 0�5, meaning that the optimum is to take only in the state H. This is the
same behavior exhibited in the case in which most shorter-run selves are born
after t2 or that of a recursive shorter-run self. As we reduce P further, the
probability Q must drop again from 0�5 to 0�5q, meaning that the optimum
is to take only in the state L. This is the opposite direction from that of a
shorter-run self born after t2 or a recursive shorter-run self. It also is con-
trary to indicating that reversals have the form that as the probability of a
prize is reduced, behavior favored by the long-run self is more likely to be
observed.4

Dept. of Economics, Harvard University, 310 Littauer Center, Cambridge,
MA 02138, U.S.A.; dfudenberg@harvard.edu

and
Dept. of Economics, Washington University in St. Louis, St. Louis, MO 63130-

4899, U.S.A.; david@dklevine.com.

Manuscript received November, 2010; final revision received May, 2011.

4See Fudenberg and Levine (2010).

mailto:dfudenberg@harvard.edu
mailto:david@dklevine.com

	Introduction
	The Decision Problem
	Linear Cost of Self-Control
	Simple Temptations

	Convex Costs of Self-Control
	Willpower as a Stock and Increasing Marginal Cost of Self-Control
	Single Decision Problems
	The Linear Case

	Cognitive Resources, Nonlinearities, and Replenishment
	Linear Replenishment
	Nonlinear Costs and Linear Replenishment

	Conclusion
	Appendix
	References
	Author's Addresses
	supplement.pdf
	An Example Motivated by DellaVigna et al.
	State Dependence
	The Game Between Long-Run and Shorter-Run Selves
	Recursive versus Opportunity Cost
	Author's Addresses


