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We examine the effect of exposure to a set of toxic pollutants that are tracked by the Toxic Release Inven-
tory (TRI) from manufacturing facilities on county-level infant and fetal mortality rates in the United
States between 1989 and 2002. Unlike previous studies, we control for toxic pollution from both mobile
sources and non-TRI reporting facilities. We find significant adverse effects of toxic air pollution con-
centrations on infant mortality rates. Within toxic air pollutants we find that releases of carcinogens are
particularly problematic for infant health outcomes. We estimate that the average county-level decreases
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510
580

eywords:

in various categories of TRI concentrations saved in excess of 13,800 infant lives from 1989 to 2002. Using
the low end of the range for the value of a statistical life that is typically used by the EPA of $1.8M, the
savings in lives would be valued at approximately $25B.

© 2010 Elsevier B.V. All rights reserved.
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. Introduction

Over 75,000 different chemical substances, used or manufac-
ured in the United States, are currently registered with the EPA
nder the Toxic Substances Control Act (TSCA). The majority of
hose substances are relatively new, having been developed since

orld War II, and for many, little is known about their effects on
ealth. Since 1988, the Toxic Release Inventory (TRI) has tracked
nvironmental releases by manufacturing plants in the U.S. of 300
o 600 of these substances, all of which are either known to be,
r suspected of being, hazardous to human health. It is estimated
hat, in 2000, more than 100 million lbs of carcinogens, 188 mil-
ion lbs of developmental or reproductive toxins, 1 billion lbs of
uspected neurological toxins, and 1.7 billion lbs of suspected res-
iratory toxins were released into the nation’s air, water, and land
y the manufacturing sector alone.1
Toxic substances face cradle-to-grave regulation in the U.S.:
heir storage, handling, transportation, and disposal are all strictly
egulated. Yet, for most of these substances, there is no formal reg-
lation of their releases into the environment. In part, this may be

∗ Corresponding author.
E-mail address: ltbui@brandeis.edu (L.T.M. Bui).

1 See U.S. PIRG Report, executive summary (January 22, 2003).
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ue to a belief that at low levels of perceived exposure there are
o significant health effects.2 And, to a large extent, there was lit-
le public concern over toxic releases until the discovery in 1978
f toxic wastes buried beneath a neighborhood in Love Canal, N.Y.,
nd then of a strong correlation between residential proximity to
ove Canal and significantly elevated rates of cancer, neurological
isorders, birth defects, and still births.

Love Canal spurred a number of epidemiological studies into the
ealth effects of toxic exposure. The bulk of that research consists
f cross-sectional studies, usually on adults, and provides mixed
esults on the relationship between toxic pollution exposure and
ealth outcomes. That is similar to what has been observed in the

iterature on (non-toxic) air pollution and health. As pointed out by
reenstone and Chay (2003a), the lack of a consensus on the effects
f air pollution on health may be explained by identification prob-
ems due to omitted variable bias that often arise in cross-sectional

tudies. A second problem is that studies of adult health outcomes
ay be flawed by the inability to measure accurately life-time

xposure to pollutants. Even abstracting from mobility issues, using
urrent levels of pollution to proxy for life-time exposure will be

2 No comprehensive data set exists for ambient toxic pollutants. Data on ambient
oxic concentrations for only a small number of toxic pollutants have been recorded
or a select number of states in 1996, and only periodically since that time.

http://www.sciencedirect.com/science/journal/01676296
http://www.elsevier.com/locate/econbase
mailto:ltbui@brandeis.edu
dx.doi.org/10.1016/j.jhealeco.2010.04.002
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naccurate if pollution concentration levels have changed dramati-
ally over time, as is true of toxic pollutants (Needham et al., 2005).

A third problem is the absence of data on toxic pollution con-
entrations. At best, toxic releases are available at the facility level
n the manufacturing sector for facilities that are required to report
o the TRI. No data exist, however, for TRI non-reporters within the

anufacturing sector or toxic polluters not required to report to
he TRI. Because the contributions of pollution from these sources
re unobserved and change over time, they cannot be accounted for
n cross-sectional studies. Studies thus far, have not controlled for
hese time-varying omitted variables, potentially leading to esti-

ation bias.
In this study, we investigate the health effects of toxic pollution

xposure on two particularly vulnerable groups: fetuses surviving
t least 20 weeks in utero and infants under one year of age. By
oing so, we mostly avoid the problems associated with trying to
roxy for life-time exposure levels. Empirical studies show that
obility rates for pregnant women are low, so that fetal exposure

an reasonably be approximated by pollution concentrations in the
other’s county of residence.
We construct a panel in which we make use of facility level

nnual toxic release data that we aggregate to the county-year
evel and link to files of all births and deaths in the U.S. between
989 and 2002. We include a large set of covariates to control
or potentially confounding effects. In particular, we explicitly
nclude proxy variables to control for toxic pollution from TRI
on-reporting manufacturing sources and for mobile sources of
ollution – two potentially important variables which have sys-
ematically been omitted from other studies. One proxy variable
or TRI non-reporting facilities is constructed using county-level
ensus data for all operating manufacturing facilities and is based
n the ratio of TRI reporting facilities to all (operating) manufactur-
ng facilities by 2-digit SIC code. The second proxy variable accounts
or the potential level of TRI releases from non-reporting facilities
y constructing an index which takes into account the distribu-
ion of non-reporting facilities by industries within each county
nd weights it by the national average of TRI releases within the 2-
igit SIC code. The proxy for mobile source pollution is constructed
rom releases of criteria air pollutants that are known to be cor-
elated with fuel combustion. Our central identification strategy is
ased on using what we believe are plausibly exogenous changes in
oxic pollution concentrations within state-years with county fixed
ffects to estimate the causal effect of toxic pollution exposure on
nfant and fetal health outcomes.

Our findings show that there are significant health conse-
uences to infants from exposure to toxic releases. We do not,
owever, find similar outcomes for fetal health, although this may
e due to “harvesting” that occurs during the first 20 weeks of gesta-
ion so that fetuses that would normally survive at least 20 weeks
n utero survive less than 20 weeks due to toxic pollution expo-
ure. We cannot test this hypothesis directly, however, due to poor
ata quality for fetal deaths that occur during the first 20 weeks of
estation.

We do find that toxic air releases are significantly more harmful
o infant health than other forms of releases (e.g. water or land) and
hat carcinogenic air releases have the largest effect on infant mor-
ality. We estimate that the average county-level decline in toxic air
oncentrations of 9.5% per year in the manufacturing sector alone
ed to a total decline in infant mortality of approximately 4% in 14
ears. The over all reductions by TRI reporters in the manufactur-

ng sector in various categories of TRI concentrations (by chemical
ategory and by media) during our sample led to a savings of over
3,800 infant lives. Using value of a statistical life measures used by
he EPA of between $1.8M and $8.7M, we estimate that the value of
he saved lives ranges between $25B and $121B. Our findings, how-

i
f
d
i

conomics 29 (2010) 557–574

ver, may significantly under estimate the actual effects of toxic
eleases on infant mortality, as they do not include the adverse
ealth consequences of releases by TRI non-reporters for which we
nd evidence. Moreover, these estimates almost surely underesti-
ate the true savings to society associated with the reduction in

oxic releases as we do not include health benefits accruing to older
hildren and adults as we do not learn about longer term health
enefits from decreased long-term exposure. Finally, in contrast to
ther studies, we do not find any correlation between measurable
ealth effects on infants or fetuses from exposure to ambient con-
entrations of criteria air pollutants, specifically, particulate matter
PM10) (our proxy for mobile source pollution), or from ozone (O3).

The rest of the paper is organized as follows. In Section 2 we
rovide a brief summary of the literature, focusing in particular on
pidemiological studies that relate fetal and infant health outcomes
o toxic pollution exposure. We discuss data sources that are used
n our study in Section 3; descriptive statistics are given in Section
. Section 5 describes our methodology, and Section 6 discusses
ata issues. In Section 7, we present our results. In Section 8 we
escribe tests for robustness, and in Section 9 we discuss policy

mplications and provide concluding remarks.

. Background

It is generally believed that both fetuses and infants are par-
icularly vulnerable to exposure to toxic pollutants, although the
iological mechanisms through which that occurs are not yet
ell understood. The National Research Council described four
ays in which these two groups may be especially vulnerable to

nvironmental toxins (Landrigan et al., 2004). Children have dis-
roportionately heavy exposures to many environmental agents
ecause of their size. Relative to their body weight, they consume
ignificantly more food and water than adults. Toxins that are
resent in the food system or in the water supply may therefore
e more harmful to them than to adults. And, because the central
ervous system is not fully developed until at least 6 months post
irth (Choi et al., 2006), the blood–brain barrier may be breached
y some environmental toxins in a manner that is less likely later

n life. It is also believed that developmental processes are more
asily disrupted during periods of rapid growth and development
efore and after birth, making exposure to environmental toxins
uring these stages particularly harmful.

Before addressing the question of fetal or infant health outcomes
rom exposure to environmental toxins, it is important to address
irectly the question of how to measure toxic exposure. Fetal expo-
ure is a direct consequence of maternal exposure. Most studies
ssume that the relevant level of exposure may be captured by
he mother’s place of residence at the time of delivery. That will
e true, however, only if the mobility rate of pregnant women is

ow. Published studies have estimated residential mobility during
regnancy to range between 12 and 32%, with one study estimat-

ng that, of those that moved, only 5% changed municipality and 4%
hanged county during pregnancy (see Fel et al., 2004; Khoury et
l., 1988; Shaw and Malcoe, 1992; Zender et al., 2001). In combina-
ion, those studies would suggest that, at most, 1.2% of pregnant
omen would not have been in residence within their child’s

irth-designated county during pregnancy and at most 1.6% would
ot have been in residence within their child’s birth-designated
unicipality.

The finding of low mobility rates amongst pregnant women is

mportant as it bounds the potential confounding effects stemming
rom pregnant women moving to counties (or municipalities) with
ifferent pollution characteristics based on a Tiebout-type sort-

ng mechanism (see Banzhaf and Walsh, 2008). This could lead to
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ample selection bias if, for example, high-risk pregnant women
ere sorting into high pollution counties based on some set of per-

onal characteristics which then might lead to high infant or fetal
ortality rates being falsely attributed to high pollution concen-

rations. Fel et al. (2004), however, report finding no evidence that
obility (amongst pregnant women) is correlated with exposure

o chemicals or pesticides in the workplace or at home.
Post-natal mobility during the infant’s first year of life may be

igh, however, particularly for new families, introducing additional
ifficulties in measuring post-natal pollution exposure in infants.
o date, we are not aware of any empirical studies which provide
stimates of these mobility rates outside of county boundaries,
lthough there is some evidence suggesting that young families
ay migrate away from (dirty) urban areas to (clean) suburban

reas. To the extent that this migration is significant, we acknowl-
dge the possibility that measurement error in exposure levels may
e introduced into our estimates.

Several epidemiological studies look at health outcomes for pre-
atal exposure to toxic pollutants. A number find a correlation
etween pre-natal exposure and spontaneous abortion, malfor-
ation, and low birth weight (Bove et al., 1995; Carpenter, 1994;

andrigan et al., 1999). Others, however, find no such correlation
Baker et al., 1988; Croen et al., 1997; Fielder et al., 2000; Kharrazi et
l., 1997; Sosniak et al., 1994). More recent work suggests that the
ealth effects may be tied only to particular categories of toxic pol-

utants. For example, Mueller et al. (2007) look at the relationship
etween fetal deaths and maternal proximity to hazardous waste
ites, but finds statistically significant results only for proximity to
aste sites associated with pesticides.

Infant health outcomes may be affected both by exposure that
ccurs in utero and after birth. It is well documented that infants
re at particular risk for exposure to heavy metals, such as lead
nd methyl mercury (Landrigan et al., 2004; Choi et al., 2006) find
n increased risk of having a child diagnosed with brain cancer
efore age 5 for mothers living within 1 mile of a TRI facility (odds-
atio = 1.66) or living within 1 mile of a facility known to release TRI
arcinogens (odds-ratio = 1.72) relative to those living more than 1
ile from such a facility.
Because of similarities in terms both of econometric issues and

ssues of causality, it is useful to look also at the literature on
non-toxic) air pollution and health. Greenstone and Chay (2003a),
or example, examine the effects of total suspended particulates
TSPs) on infant mortality rates. They use the changes in TSP pol-
ution concentrations generated by the 1981–1982 recession as a
quasi-experiment” to identify changes in infant mortality at the
ounty-level in the U.S. Their underlying assumption is that the
ecession-induced variation in county-level TSP concentrations is
xogenous to infant mortality rates. They compare cross-sectional
esults for each year between 1978 and 1984 to a panel-data,
xed-effects model (in first-differences) and show that the tra-
itional cross-sectional approach can produce misleading results
ue to unobserved, omitted confounders. Using an approach that
itigates many of these identification problems, Greenstone and

hay find that a 1 �g/m3 reduction in TSP concentration results in
pproximately 4 to 8 fewer infant deaths per 100,000 live births
t the county-level. Over the 1980–1982 recession, they estimate
hat the reduction in TSPs led to approximately 2500 fewer infant
eaths.

Currie and Neidell (2005) also examine the relationship
etween ambient air pollution concentrations and infant and fetal

ortality. They focus on California during the 1990s and examine

hree different criteria air pollutants: carbon monoxide, particulate
atter, and ozone. Unlike most other air pollution studies, Currie

nd Neidell allow for correlations across pollutants in their effect
n infant mortality. Taking individual data that they aggregate up
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o the zip code–month level, they estimate an approximate lin-
ar hazard model and find a significant effect of carbon monoxide
n infant mortality (although not on fetal mortality) and estimate
hat the significant reduction in carbon monoxide concentrations
n California saved approximately 1000 infant lives over the 1990s.

The relationship between infant health outcomes and TRI
eleases is studied in Currie and Schmieder (2009). Here, they use
nfant birth and death data for a small subset of counties in the
.S. (consisting of counties with populations greater than 250,000)
nd study correlations between infant health outcomes and TRI air
eleases. They find that the reduction in TRI air releases over the first
en years of reporting are correlated with lower levels of adverse
ealth outcomes for infants. There are a number of shortcomings,
owever, to this paper. Most importantly, they do not control for
everal confounders, including TRI releases through other media,
RI releases from non-reporting facilities, emissions from criteria
ir pollutants, and mobile source emissions, all of which may con-
ribute to adverse health outcomes and are correlated with TRI air
eleases.

Taking a cue from both Greenstone and Chay (2003a,b) and
urrie and Neidell (2005), and addressing some the shortcomings

ound in Currie and Schmieder (2009), we make use of the reduc-
ion in TRI releases across location and time to identify the effects
f toxic pollution on health. Our maintained assumption is that
oth the reductions in toxic releases and the distribution and char-
cteristics of industries within counties over time are plausibly
xogenous to determinants of infant and fetal health outcomes.
e base our assumptions on the following evidence: (1) large pol-

uting companies of TRI “priority” substances were contacted in
arly 1991and 1992 and were invited to participate in a “volun-
ary” abatement program called the TRI 33/50. Participants of this
rogram agreed to reduce their releases by 33% from their 1988
aselines by 1992 and 50% by 1995. In total, over 1000 compa-
ies (and their facilities) participated in this program and all target
eductions were met. (2) The deadlines to meet the requirements
et out under the Montreal Protocol, an international agreement
hat required the phase-out of several ozone-depleting chemicals
hat are listed substances under the TRI occurred in 1994 and 1996
and later in 2003, and 2005). These phase-out deadlines were also

et. (3) Over 26 states adopted Toxic Use Reduction Programs to
ncourage the reduction of toxic substance use in the production
rocess. These programs primarily provided educational outreach
o polluters to help them abate, although some states instituted
numeric) state-wide reduction goals (some with target compli-
nce dates, as well as penalties associated with non-compliance).
4) Nationwide recessions occurred in 1990–1991 and in 2001.
he contraction of manufacturing during this time period also
ed to a reduction in TRI releases across the country. For many
ndustries, for example the electronic industry, the recession in
001 was exacerbated by a build up in inventory during the 1990
oom years, which further suppressed production. And (5) because
eductions in toxic releases are “voluntary” in nature, only facili-
ies and industries that can abate at low cost will do so. We observe
arge variations across industry in their reported abatement activ-
ties. For example, during our sample period, petroleum refineries
educed their releases by 74% whereas the food industry increased
heir releases by more than 174%. We also observe that larger facil-
ties report larger reductions in abatement than smaller facilities.
aking these five points together, we believe that there is reason-
ble evidence that the majority of the toxic reductions may be taken

s exogenous to factors affecting infant and fetal health outcomes.
o the extent that they are not fully exogenous, the case for a causal
elationship between toxic pollution exposure and adverse health
utcomes may be weakened. Nevertheless, even given the poten-
ial limitations of the data, we believe our methodology provides a
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etter understanding of the impact of toxic pollution exposure on
etal and infant mortality.

To control for other potential confounding effects, we include a
ich vector of parental characteristics, pre-natal care information,
nd medicaid and other income transfers. We also allow for the
ossibility that other types of pollution exposure may affect health
utcomes. In particular, we include measures for particulate mat-
er and ozone concentration. Those two criteria air pollutants are
lso used as a proxy for toxic air pollution concentrations that are
erived from mobile sources of pollution, as they are highly cor-
elated with fuel combustion. And, unlike other studies that have
ade use of TRI data, we construct two unique proxy variables that

llow us to control for the effects of time-varying toxic releases
rom non-reporting TRI facilities.

. Data

We combine data from various sources to construct a com-
rehensive set of measures at the county-level for the period
989 to 2002. (We restrict ourselves to these years because of
hanges in the data format for our primary variables post 2002
hat could lead to inconsistencies in the measurement of our vari-
bles.) Data on pregnancy outcomes are from the National Center
or Health Statistics (NCHS). Data on toxic emissions are from the
oxic Release Inventory, maintained by the U. S. Environmental
rotection Agency (EPA). Those two data sets are supplemented by
ounty-level data on income, job composition, transfer payments
rom health and unemployment benefit programs, and population,
ll from the U.S. Bureau of Economic Analysis. Data on land and
ater area are taken from the U.S. Census 2000 Gazetteer Files. In

his section we provide a detailed description of the primary data
sed in this study.

.1. Infant and fetal health outcomes data

Our dependent variables and many important control variables
re taken from infant3 birth and death records and fetal death
ecords provided by NCHS. These records are constructed from a
ensus of death and birth certificates, as required by law in all
tates. The NCHS, in cooperation with the states and territories of
he U.S., has promulgated a uniform instrument with which to col-
ect information on each fetal death. (Our estimate of pregnancies
omes from adding live births and reported fetal deaths in a given
ear; as such it does not include terminated pregnancies.)

.1.1. Infant data
Birth certificates contain information about parentage, in addi-

ion to limited details about the medical history of the mother and
he specific pregnancy. The variables that we use as controls include
he reported age, education, marital status, and race of the parents;
eported tobacco and alcohol consumption; and the level of pre-
atal care as indicated by the number of pre-natal visits to a doctor.

We use death certificates to identify the cause of death as coded
sing the International Classification of Diseases. We remove infant
eaths caused by external factors (such as physical injury) from our
easures, as they are not related to the exposure of toxic releases.
e refer to the retained observations as “internal” infant deaths.
.1.2. Fetal data
Information in the fetal death files includes some of the same

nformation that is available in birth certificates, such as the

3 An infant is defined as being an individual under one year of age.
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eported age, education, marital status, and race of the parents;
obacco and alcohol consumption; and the level of pre-natal care.
he period of gestation is also included. Deaths of fetuses at less
han 20 weeks are not well reported in the data set. Birth certifi-
ates and fetal death records also report the county of the mother’s
esidence coded using the Federal Information Processing Standard
FIPS).

Using the individual-level data described above, we com-
ute county-level statistics based on the county of residence of
he mother, for infant death rates due to internal causes and
eath rates for fetuses with a period of gestation of more than
0 weeks. Our control variables are likewise aggregated to the
ounty-level, by computing averages of measures such as mater-
al and paternal age, maternal years of education, and the number
f pre-natal visits. We also compute for each county and year
he fraction of pregnant mothers in each of the following cat-
gories: white, African-American, mothers that smoke tobacco,
others that consume alcohol, and mothers that are married.

he health data set, thus aggregated to the county-year level by
he residence of the mother, is then merged with data on toxic
eleases.

.2. Toxic release data

Data on toxic releases are taken from the Toxic Release Inven-
ory. The TRI was introduced in 1986 under the Emergency
lanning, Community Right To Know Act (EPCRA) and requires
hat all manufacturing plants with ten or more full-time employ-
es that either use or manufacture more than a threshold level of
listed substance report their toxic releases to a publicly main-

ained database. The first year of reporting was 1987. At that time,
here were approximately 300 TRI listed substances. In 1995, this
ist was expanded to include 286 new substances. Today (2009),
he TRI covers 581 individually listed chemicals, 27 chemical
ategories, and 3 delimited categories containing another 58 chem-
cals. Reporting thresholds have remained at 10,000 lbs (annually)
or most chemicals, with the exception of 4 persistent, bio-
ccumulative, toxic chemical (PBT) categories, containing 16 PBT
hemicals (see www.epa.gov/tri/lawsandregs/pbt/pbtrule.htm).
ecause of changing thresholds and both the addition and deletion
f reporting chemicals over time, we restrict our analysis to the sta-
le base set of 1988 chemicals that are not affected by subsequent
hanges in reporting thresholds.4

TRI data are reported at the facility level. Separate reports are
led for each TRI substance for which the facility meets the report-

ng requirements. Information is provided as to whether the toxic
ollutant is released on-site or transferred off-site. We restrict
ur reported analysis to on-site releases, although all results are
obust to the inclusion of off-site releases. Data are broken down
y medium (air, water, land, etc.), and information is provided
s to whether the substance is a known carcinogen. Using TRI-
rovided information on chemical CAS number, we further classify
RI chemicals as a developmental or reproductive toxin if it is listed
s such in the State of California Safe Drinking Water and Toxic
nforcement Act. The TRI data set also provides information on
With these data we construct, for each county-year observa-
ion, the total pounds of TRI releases net of any Clean Air Act

4 We calculate the correlations between the balanced panel of 1988 chemicals
nd the newer chemicals that were added to TRI reporting requirements and find
hat they are low – below 23%. This suggests that bias from not including those
hemicals in our analysis should be reasonably small.

http://www.epa.gov/tri/lawsandregs/pbt/pbtrule.htm
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eleases by air, water, and “land” (where land is the residual
ategory = aggregate releases–air releases–water releases); broken
own by carcinogenic, and developmental and/or reproductive
oxic emissions.5 (We exclude CAA chemicals from our measures
f TRI concentrations to avoid any possibility of “double counting”
ecause we include measures of criteria air pollution concentra-
ions in our models of health outcomes.) Using geo-graphic data
rom the Census 2000 Gazetteer Files, we construct a crude mea-
ure of “concentration” by dividing total pounds of releases by land
rea.

Note that in our analysis we only study the current-year’s level
f releases (the flow measure) on health outcomes and not some
easure of the depreciated stock of toxic releases. The reason for

his is two-fold. The first is that because we focus solely on fetal and
nfant exposure only through the first year of life, there is only a
imited amount of exposure that we need to account for. This would
ot be the case if we were to study the health effects for older chil-
ren or adults where life-time exposure to toxic pollutants would
ake more sense. The second is that with the exclusion of the heavy
etals that are covered under the TRI, the bulk of TRI chemicals are

elieved to be fund pollutants—pollutants that do not accumulate
n the environment.

.3. Criteria air pollution data

When examining the relationship between TRI releases and
ealth, it is important to control for the effect that other pollutants
ay have on health outcomes, particularly if there is a possibil-

ty that non-toxic pollution emissions may be correlated with TRI
eleases. We therefore supplement the TRI pollution data with data
n concentrations of criteria air pollutants, as provided by EPA’s
ational Air Data Group. Those data were extracted from record-

ngs taken from pollution monitors located in various counties
cross the nation. The data set provides means, variances, medians,
nd higher percentiles of concentrations observed by monitoring
tations in a given day of a year. Of these values, we make use of
he daily average concentration and the 95th percentile concen-
ration. In some counties, there are multiple monitoring stations.
n those cases, we use the simple average across all monitoring
tations for the daily average concentration and for the 95th per-
entile concentration. Most counties, however, do not have any
onitoring stations that measure all categories of criteria air pol-

ution concentrations. We choose to concentrate on particulate
atter (PM10) and ozone (O3) because these pollutants had the

east number of missing county-level observations and because
number of studies have shown a potential link between their

mbient concentration levels and adverse health outcomes for both
nfants and the unborn. An additional benefit of including PM10
n our study is that it is highly correlated with carbon monoxide
eleases (see Lleras-Muney, in press) which come primarily from
obile source emissions of pollution and can therefore used as a

ontrol for toxic pollution concentrations from mobile sources of
ollution.

.4. Other data sources

Several county-level controls are also used in our study. Data

n per capita income, Medicaid transfers, food stamp participa-
ion, and other government supplemental income transfers are
aken from the Bureau of Economic Analysis (BEA). The fraction
f the labor force employed in the manufacturing sector as well

5 Some chemicals are classified as both carcinogenic and developmental and/or
eproductive toxins.
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Fig. 1. Mean infant mortality rates by TRI quartiles.

s county-level unemployment rates also come from the BEA.
he number of facilities by 2-digit SIC code are taken from the
ounty-level Business Patterns data collected by the U.S. Census
ureau.

. Births, deaths, and toxic releases: 1989–2002

The TRI-internal infant death and fetal death data set con-
ists of 43,124 county-year observations; when linked with County
usiness Pattern data collected by the U.S. Census Bureau, we
ave 42,617 county-year observations; and when we further

nclude county-level demographic data, we have 41,908 county-
ear observations. The last of these data sets is referred to as the
full” sample, which we describe, below.

Between 1989 and 2002, there were over 54.3 million live
irths in the United States, with 410,615 internal infant deaths
nd 381,988 fetal deaths (post 20 weeks) recorded. More than 34.2
illion lbs of toxic pollutants were released into the environment
y TRI reporters from the manufacturing sector, 28.8 billion lbs of
hich were released on-site. Of the on-site releases, 3.12 billion

bs were carcinogens (2.68 billion lbs in the form of air releases)
nd 3.27 billion lbs of which were developmental or reproductive
oxins (3.24 billion lbs in the form of air releases).

Of the 41,908 county-year observations for which we have TRI,
irth and infant/fetal death information, and county-level demo-
raphic information, only 10.8%, or 4524 county-years, also have air
onitoring stations that collect PM10 and ozone concentrations.
ver the period of study, this sample covers 53% of the coun-

ry’s over-all population, 57.6% of live births, 41.5% of aggregate
RI releases, and 39.6% of TRI on-site releases, and is the basis for
ur regression analysis. Select summary statistics for this data set
the “restricted” sample) are presented in Tables 1–3, and described
elow. The restricted sample consists of an un-balanced panel with
etween 273 and 376 counties, ranging in population from 2294 to
,800,000.

Nationwide, mean county-level infant deaths from internal
auses declined almost monotonically between 1989 and 2002
rom 948.9 to 660.9 deaths per 100,000 live births, or by nearly 30%.
smaller decline (9%) was observed for fetal deaths (post 20 weeks

estation). In the restricted sample, we observe a similar decline for
nfant deaths from internal causes (approximately 29%), but a much
arger decline in fetal deaths (20%) than the national trend. We note
lso that internal infant mortality rates vary significantly across TRI
oncentrations (net of Clean Air Act chemicals) by quartile, being

ignificantly higher for the dirtiest TRI counties. The same pattern
olds for fetal mortality rates (see Figs. 1–3).

In 1989, average county-level on-site toxic concentrations
weighted by live-births) were approximately 3159 lbs/sq. mile;
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Table 1
Descriptive statistics.

Year 1989 1990 1991 1992 1993 1994 1995

Number of counties in full sample 3138 3137 3137 3136 3139 3140 3140
Total unterminated pregnancies 4,106,988 4,227,266 4,178,607 4,140,357 4,075,704 4,023,016 3,966,182
Total live births 4,045,693 4,162,917 4,115,342 4,069,428 4,004,523 3,956,925 3,903,012
Infant deaths (external) per 100,000 live births 33.74 33.49 30.64 30.72 32.66 30.10 29.13
Infant deaths (internal) per 100,000 live births 948.89 886.81 856.55 819.23 794.73 765.17 725.31
Fetal deaths per 100,000 unterminated pregnancies 1492.46 1522.24 1514.02 1713.11 1746.47 1642.82 1592.72

Number of counties in restricted sample 273 302 312 329 355 365 363
Total unterminated pregnancies 2,300,939 2,507,635 2,402,515 2,411,194 2,471,157 2,456,792 2,413,694
Total live births 2,273,005 2,473,685 2,373,036 2,377,723 2,432,488 2,420,710 2,379,440
Infant deaths (external) per 100,000 live births 32.86 31.17 27.69 29.15 30.38 29.41 26.14
Infant deaths (internal) per 100,000 live births 978.88 902.06 866.02 828.61 800.09 778.57 730.59
Fetal deaths per 100,000 unterminated pregnancies 1214.03 1353.87 1227.01 1388.15 1564.81 1468.66 1419.15

Mean county-level characteristics (restricted sample)
Per Capita Income (2000) 25,696.62 25,662.07 24,997.65 25,270.46 24,992.35 25,295.11 25,477.19
Medicaid Transfers (2000) 192,823.79 211,094.36 225,444.07 256,249.89 274,178.07 282,771.91 295,287.03
% of Jobs in Manufacturing Sector 16.48% 16.36% 15.78% 15.63% 15.30% 15.18% 14.88%
Land Area (sq. miles) 1344 1261 1267 1242 1241 1195 1200
Water Area (sq. miles) 114 107 101 103 108 102 99
Population 480795 463987 442367 433320 421427 420131 426843

Mean parental and demographic characteristics (restricted sample, weighted by live births)
Years of Mother’s Education 12.44 12.42 12.41 12.45 12.49 12.54 12.61
Mother’s Age 26.58 26.70 26.71 26.84 26.94 27.03 27.14
Father’s Age 29.91 29.90 29.92 30.02 30.12 30.20 30.27
% of White Mothers 75.11% 75.77% 76.43% 76.08% 75.68% 75.56% 76.14%
% of Black Mothers 19.65% 19.00% 18.34% 18.56% 18.84% 18.78% 18.03%
% Mother’s Consumption of Alcohol 4.61% 3.77% 3.81% 2.77% 3.97% 3.44% 2.98%
% Mother’s Consumption of Tobacco 17.55% 16.56% 15.96% 15.38% 14.29% 13.42% 12.23%
Number of Pre-natal Visits 10.72 10.79 10.93 11.09 11.13 11.28 11.39
Percentage Married 69.85% 69.12% 67.92% 67.38% 66.34% 64.83% 65.73%

Mean infant health endowment (restricted sample, weighted by live births)
Birth Weight (g) 3326.51 3331.92 3327.62 3330.07 3321.48 3319.50 3318.56
Gestation Period (weeks) 39.10 39.07 39.03 39.03 38.95 38.93 38.92

Mean fetal health endowment (restricted sample, weighted by live births)
Birth Weight (g) 1466.12 1415.62 1403.82 1411.81 1347.41 1338.48 1340.23
Gestation Period (weeks) 28.40 27.77 27.97 27.78 27.12 26.92 26.82

Mean concentration level for pollution (restricted sample, weighted by live births)
Ozone – 8-h (ppm) 0.0256 0.0247 0.0259 0.0244 0.0250 0.0260 0.0269
PM10 24-h (�g/m3) 36.55 32.94 33.30 29.25 28.76 28.87 27.68

Mean concentration level for TRI releases by manufacturing industries (lbs/sq. miles) (restricted sample, weighted by live births)
Total Onsite releases 3158.573 2757.896 2488.981 2880.275 1986.141 1897.177 1635.504
Air Releases 2009.079 1597.872 1371.826 1225.091 1017.201 1013.555 866.445
Water Releases 178.965 193.387 191.788 169.109 107.978 85.582 46.736
Carcinogenic Air Releases 25.610 12.577 7.915 6.998 7.757 6.729 5.659
Carcinogenic Water Releases 9.763 8.728 6.788 5.369 5.483 4.199 2.964
Developmental/Reproductive Air Releases 28.419 26.799 13.720 13.408 9.456 3.822 4.234
Developmental/Reproductive Water Releases 1.681 1.403 2.883 0.801 0.980 0.659 0.334

Year 1996 1997 1998 1999 2000 2001 2002

Number of counties in full sample 3139 3140 3140 3139 3140 3141 3139
Total unterminated pregnancies 3,960,037 3,948,331 4,008,630 4,027,340 4,126,955 4,085,973 4,082,657
Total live births 3,894,874 3,884,329 3,945,192 3,963,465 4,063,823 4,031,531 4,027,376
Infant deaths (external) per 100,000 live births 30.73 29.84 28.49 34.24 33.22 33.39 33.69
Infant deaths (internal) per 100,000 live births 698.69 692.27 689.80 670.27 660.46 648.76 660.90
Fetal deaths per 100,000 unterminated pregnancies 1645.52 1620.99 1582.54 1586.03 1529.75 1332.41 1354.05

Number of counties in restricted sample 376 374 341 289 281 283 277
Total unterminated pregnancies 2,403,439 2,320,646 2,277,093 2,064,808 1,890,658 1,910,580 1,895,966
Total live births 2,367,951 2,290,749 2,247,445 2,040,164 1,867,408 1,890,269 1,877,578
Infant deaths (external) per 100,000 live births 28.17 27.63 27.72 32.15 32.29 34.39 33.82
Infant deaths (internal) per 100,000 live births 705.25 700.43 686.91 687.05 678.43 681.91 696.48
Fetal deaths per 100,000 unterminated pregnancies 1476.55 1288.31 1302.01 1193.53 1229.73 1063.08 969.85

Mean county-level characteristics (restricted sample)
Per Capita Income (2000) 25,615.16 26,163.54 27,548.15 27,726.69 28,432.88 28,260.60 27,882.85
Medicaid Transfers (2000) 293,128.75 275,592.01 303,439.31 335,439.64 327,910.65 375,998.55 394,886.84
% of Jobs in Manufacturing Sector 14.98% 14.53% 13.75% 12.73% 13.35% 10.29% 9.51%
Land Area (sq. miles) 1253 1203 1261 1402 1092 1187 1281
Water Area (sq. miles) 98 100 103 105 94 92 91
Population 416124 413366 444356 471508 443266 454518 464706
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Table 1 (Continued )

Year 1989 1990 1991 1992 1993 1994 1995

Mean parental and demographic characteristics (restricted sample, weighted by live births)
Years of Mother’s Education 12.62 12.69 12.74 12.68 12.79 12.78 12.78
Mother’s Age 27.17 27.24 27.32 27.19 27.25 27.30 27.37
Father’s Age 30.31 30.37 30.45 30.35 30.42 30.47 30.52
% of White Mothers 76.27% 76.31% 76.48% 75.21% 74.90% 74.57% 75.60%
% of Black Mothers 17.81% 17.72% 17.45% 18.30% 19.13% 19.53% 18.23%
% Mother’s Consumption of Alcohol 2.46% 2.67% 1.82% 1.37% 6.46% 4.48% 6.11%
% Mother’s Consumption of Tobacco 11.89% 11.75% 11.97% 10.74% 9.95% 10.27% 8.11%
Number of Pre-natal Visits 11.43 11.53 11.51 11.58 11.47 11.45 11.49
Percentage Married 65.56% 65.67% 65.36% 64.19% 64.13% 63.44% 63.21%

Mean infant health endowment (restricted sample, weighted by live births)
Birth Weight (g) 3316.79 3312.47 3313.25 3306.02 3300.48 3289.02 3283.78
Gestation Period (weeks) 38.92 38.83 38.79 38.75 38.74 38.68 38.65

Mean fetal health endowment (restricted sample, weighted by live births)
Birth Weight (g) 1345.95 1321.22 1309.65 1278.44 1263.89 1271.86 1237.69
Gestation Period (weeks) 26.85 27.09 26.93 27.35 26.98 27.24 27.22

Mean concentration level for pollution (restricted sample, weighted by live births)
Ozone – 8-h (ppm) 0.0265 0.0267 0.0280 0.0280 0.0266 0.0273 0.0282
PM10 24-h (�g/m3) 26.64 26.80 26.54 27.72 26.04 25.57 25.48

Mean concentration level for TRI releases by manufacturing industries (lbs/sq. miles) (restricted sample, weighted by live births)
Total Onsite releases 1634.223 1888.138 1905.801 1975.801 2154.782 1747.925 1680.158
Air Releases 822.450 825.871 812.137 820.395 784.857 756.025 736.299
Water Releases 34.725 43.519 44.344 40.260 32.640 40.489 32.594
Carcinogenic Air Releases 6.382 3.609 2.893 2.764 3.034 3.244 3.525

t
t
a
1
f
c
f
i
t

b
t
d
a
F

T
W

Carcinogenic Water Releases 3.198 1.692
Developmental/Reproductive Air Releases 2.143 2.088
Developmental/Reproductive Water Releases 0.181 0.206

oxic air releases (net of CAA chemicals) made up over 63% and
oxic water releases some 5.7% of all on-site releases. By 2002, aver-
ge county-level on-site toxic concentrations had declined 47% to
680 lbs/sq. mile and the contribution to releases by air and water
ell to 44% and 2%, respectively. During this same period, both car-

inogenic and developmental/reproductive toxin concentrations
ell, suggesting that the most toxic of the TRI releases participated
n the observed over-all decline. It should be noted, however, that
he declines in releases (and subsequently, concentrations) have

f
o
f

able 2
ithin state-time variation for select variables (restricted sample).

Variable Mean (weighted
by live births)

Ov
de

Health statistics
Infant deaths per 100,000 live births: internal causes 770.79 25
Infant deaths per 100,000 live births: external causes 30.05 26
Fetal Death per 100,000 unterminated pregnancies 695.60 21

County-level characteristics
Per Income Capital (2000 dollars) 28563.72 70
Medicaid Transfer (2000 dollars) 1243989.10 19
% Employed in Manufacturing Industry 13.22% 5.7

Parental and demographic characteristics
% of White Mothers 75.76% 16
% of Black Mothers 18.51% 16
% of Mothers consuming Alcohol 3.56% 7.9
% of Mothers consuming Tobacco 13.05% 8.2
% Married 66.04% 10

Concentration level of TRI releases (lbs/sq.mile)
Total Onsite 2141.81 61

Air 1063.27 18
Water 92.16 42
Carcinogenic Air 7.26 31
Carcinogenic Water 4.10 27
Developmental/Reproductive Air 8.33 12
Developmental/Reproductive Water 0.86 11
1.533 1.488 1.195 1.220 1.473
2.201 1.379 0.952 1.041 0.911
0.266 0.238 0.542 1.363 0.218

een far from monotonic. Although the annual average change in
oxic concentrations over the sample period is almost -4%, the stan-
ard deviation is over 13% with changes in county-level, average
nnual TRI concentrations ranging between −31% and +15% (see
igs. 4–6).
In contrast to TRI concentrations, ambient air concentrations
or ozone and particulate matter are reasonably stable throughout
ur sample. Average county-level ozone concentrations (ppm) rose
rom 0.0256 to 0.0282, whereas PM10 concentrations (�g/m3) fell

erall standard
viation

Within state-time
standard deviation

Within state-time
standard deviation of
demeaned variable

1.62 171.26 104.51
.61 22.81 20.10
7.71 152.15 95.98

42.91 6207.70 1177.03
60629.00 1496427.00 389867.70
6% 4.29% 1.55%

.08% 11.30% 1.11%

.25% 10.45% 0.97%
6% 5.21% 4.83%
8% 6.60% 5.43%
.60% 8.63% 1.66%

36.72 5187.64 2703.26
76.20 1540.26 579.76
7.61 376.21 252.00
.75 23.23 20.38
.61 24.27 16.86
3.23 118.71 90.02
.27 10.14 8.84
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Table 3
Correlations between toxic concentrations, parent demographics, and county-level controls (restricted sample).

Panel I: Variables in levels

Mean PM10 Mean ozone Mother’s Education Mother’s Age Father’s Age Mother’s Race: White

Air 13.60% −11.45% −7.66% −15.02% −8.31% −31.70%
Water 7.49% −6.39% −2.86% −9.33% −8.50% −9.28%
Land 4.91% 0.64% −3.77% −9.79% −7.75% −5.09%
Total 13.01% −4.43% −4.19% −11.78% −6.69% −15.84%
Carcinogenic Air 10.30% −5.97% −2.93% −4.37% −1.57% −8.21%
Carcinogenic Water 2.18% −3.47% 1.25% −1.42% 0.04% −2.56%
Developmental/Reproductive Air 0.72% −4.43% 3.06% 3.68% 2.36% −1.47%
Developmental/Reproductive Water 1.93% −1.28% −0.09% −2.47% −2.60% 0.09%

Mother’s Race: Black %Alcohol % Tobacco Pre-natal Visits Married Per Capita Income Medicaid

Air 35.51% 0.89% −0.59% −5.35% −24.50% −0.86% 10.43%
Water 12.03% −0.76% 5.48% −3.60% −8.26% −3.93% −0.21%
Land 6.98% −0.85% −1.39% 0.10% −3.38% −5.50% −2.14%
Total 19.62% −0.69% 3.64% −2.32% −14.65% −5.07% 7.06%
Carcinogenic Air 9.92% 3.10% 4.11% −7.38% −7.17% −1.61% 5.21%
Carcinogenic Water 4.39% 1.40% 1.93% −1.82% −0.88% −0.29% 0.69%
Developmental/Reproductive Air 1.86% 1.07% 0.18% −3.75% 1.58% 2.89% 0.35%
Developmental/Reproductive Water 0.91% −0.82% 1.61% −1.00% 3.15% 0.00% −0.85%

Panel II: De-meaned Variables (de-meaned for state-time and county fixed effects)

Mean PM10 Mean ozone Mother’s education Mother’s age Father’s age Mother’s race: white

Air 2.21% 2.42% −2.19% −7.72% −10.62% −11.67%
Water 2.12% −0.04% −2.40% 0.58% −1.84% −3.94%
Land 1.98% 1.01% −3.36% −3.36% −2.10% 1.40%
Total 2.63% 1.52% −4.01% −4.92% −4.52% −1.48%
Carcinogenic Air 3.06% 1.55% 1.85% 5.30% −1.62% −3.69%
Carcinogenic Water −0.17% 0.25% 0.92% 1.88% 1.68% 0.85%
Developmental/Reproductive Air −0.72% −7.36% −3.25% −7.56% −6.75% 7.20%
Developmental/Reproductive Water −0.97% −1.92% 1.02% −2.04% −4.88% 1.20%

Mother’s Race: Black %Alcohol % Tobacco Pre-natal Visits Married Per Capita Income Medicaid

Air 20.20% 0.84% 5.45% −8.03% −6.87% −4.59% −17.92%
Water 5.59% −0.18% 1.26% −3.85% −0.04% 2.36% −2.91%
Land −1.92% 0.04% −1.15% −2.55% 0.12% −0.30% 1.08%
Total 2.95% 0.20% 0.15% −4.60% −1.35% −1.06% −3.05%
Carcinogenic Air 4.81% −0.38% 1.71% −1.95% −0.12% 4.75% −7.58%
Carcinogenic Water 0.11% 1.31% 1.33% 5.37% 1.38% 6.19% −0.49%
Developmental/Reproductive Air −6.03% 0.03% −0.48% 4.23% −2.20% −2.96% −0.20%
Developmental/Reproductive Water −0.93% −0.53% 0.19% 2.74% 3.32% 1.45% 1.59%
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additive.6 There is evidence, however, that suggests significant
non-linearities in the effects of toxic pollution on infant health,
possibly due to threshold effects. Because mis-specification of the
Fig. 2. Mean fetal death rates by TRI quartiles.

rom 36.55 to 25.48. The variance in concentrations is small, across
ime, across county, and within county.
. Methodology

The approach widely used to estimate the effects of non-
oxic pollution on health outcomes (infant and fetal mortality)
ssumes that the effects of the covariates on health is linear and

f

Fig. 3. Infant mortality rates - a sample comparison.
unctional form can lead to biased estimates, we have a more flex-

6 See, for example, Greenstone and Chay (2003a).
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Fig. 4. Aggregate TRI concentrations by media.

Fig. 5. Average concentrations by media and type.
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Fig. 6. Aggregate releases by type.

ble specification to allow for a non-linear dose–response function
y including quadratic terms of the toxic pollution covariates in our
odel.7

We assume, then, that the true relationship between infant mor-
ality and toxic pollution can be modeled as:

it = ˇ1Xit + ˇ2X2
it + �Zit + IIWit + εit (1)

it = �it + ˛i + �t + uit, (2)

here Yit is the infant mortality per 100,000 live births in county

and year t. Xit is our independent variable of interest, the con-
entrations of toxic releases; Zit are a set of covariates that capture
ggregate parental characteristics; and Wit are controls for other
ounty-level characteristics.

7 In Section VII we discuss the validity of the quadratic toxic pollution concentra-
ion term.
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Because geographic information in our infant birth/death data
s at the county-level, we aggregate all data to the county-year
evel. An ordinary least squares estimator would equally weight
arge and small counties. To more accurately measure the effect
f pollution on infant mortality, we use an estimation strategy
hat weights each county-observation by the number of live births
n that county-year. For weighted least squares (weighted by live
irths) to consistently estimate ˇ1 and ˇ2, εit must be orthogonal
o Xit. If there are county-fixed unobservables ˛i, time-fixed unob-
ervables � t, and county-time varying unobservables �it that are
orrelated with Xit (and Yit), εit will no longer be orthogonal to Xit.
ncluding county-time interaction terms would be one method that

ould correct all such possible biases if the data structure allowed
or it. That approach is foreclosed, however, by a constraint on the
vailable degrees of freedom because the covariates in our model
re aggregated to the county-year level.

While it is therefore not possible to correct for all sources of
ias from county-time varying unobservables, it is straightforward
o correct for biases stemming from only county-fixed or time-fixed
nobservables. One approach would be to use a model with county-
emeaned variables to remove the county-level unobserved fixed
ffects, and to include dummy variables to correct for bias from the
ime-fixed unobservables. To do so, we take the difference between
ounty-level observations at period t and mean county-level obser-
ation across all years to obtain

it − Ȳi = ˇ1(Xit − X̄i) + ˇ2(X2
it − X̄2

i ) + �(Zit − Z̄i) + II(Wit − W̄i)

+ (εit − ε̄i) (3)

it − ε̄i = �it − �̄i + �t − �̄ + uit − ūi (4)

here X̄t = ˙tXit
T , etc.

For consistent estimation of (3) by WLS after including time-
xed effects to control for (�t − �̄), we need to assume that (�it − �̄i)

s orthogonal to (Xit − X̄i) conditional on time fixed-effects. This
mplies that the annual deviation in levels of pollution concentra-
ion by manufacturing plants in a particular county is not correlated
ith annual deviations in other (uncontrolled) factors that are cor-

elated with infant health in that county. Since we control for
ounty-fixed and time-fixed unobservables, these factors are exclu-
ively those with significant variation across time within each
ounty. Presumably, many of those factors are constant across all
ounties within a single state-year. For example, changes in pol-
cy within a state in a given year may affect both infant health
nd toxic pollution. So, to control for effects that are neither
xed within a county or across time, but are fixed within state-
ime groups, we include state-time variables in our demeaned

odel.
If the size of the residual county-time varying unobservables

hat are correlated with toxic pollution is not large and the within
tate-time variation is large enough, we can consistently estimate
1 and ˇ2 using WLS. Table 2 presents the within state-time vari-
tion of the key variables in the model. The within state-time
tandard deviation of the demeaned variable of our county-level
nd parental demographic characteristics is less than a fifth of
he overall standard deviation in most cases. We conclude that

model that accounts for county-fixed and state-time interac-
ion effects will adequately control for unobservables that may
nduce bias in the WLS estimator. While the within state-time vari-

tion is not high for county characteristics, the within state-time
tandard deviation of each of our measures (in terms of county-
emeaned variables) of toxic pollution concentration and the infant
ealth statistic is at least a third of the overall standard deviation.
his gives us confidence that correcting for state-time interaction



5 ealth E

e
p
t
s
l
i
t
i
h
t
t
w

Y

w
a

�
d
i
v
m
c
t
t
w
n
t
o
b
m

5

s
t
c
l
b
g
p
fi
g
c
f
a
e
l

t
T
t
a
t
t

a
(
l

m
w

a
p
o
c
y
i
w
a
�
c
w

t
e
s
t
s

6

6

s
c
c
t
w

l
o
e
f
r
N
o
i
r

p
l
i
s
o
f
c
s
PM10, which has been found to be highly correlated with CO
in several data sets, including our own (see Lleras-Muney, in
press) and for which we have almost twice as many observa-
tions (4520 county-years). Note that none of our results change
66 N. Agarwal et al. / Journal of H

ffects, in addition to county-fixed and time-fixed effects, has not
urged our model of the variation that would be necessary for iden-
ification. As described more fully in Section 2, we believe that the
ource of within state-time variation in the demeaned toxic pol-
ution concentration stems from the distribution of manufacturing
ndustries in the counties of a state.8 Over time within a county,
here is variation in the level of pollution abatement by different
ndustries, induced by TRI reporting and other factors exogenous to
ealth outcomes. This variation can be used to identify the effect of
he concentration of toxic pollution of infant and fetal health. We
herefore estimate the following model in which observations are
eighted by live births:

it − Ȳi = ˇ1(Xit − X̄i) + ˇ2(X2
it − X2

i
) + �(Zit − Z̄i)

+ II(Wit − W̄i) + �st + �it, (5)

here s indexes the state of county I. �st are state-time indicators
nd �it is an orthogonal error term.

For consistent estimation of (5), we assume that E[Xit − X̄i] ·
it = 0 and E[(X2

it
− X̄2

i
) · �it] = 0. Intuitively, this says that the time

emeaned distribution of toxic pollution from the manufactur-
ng sector across counties within a given state is exogenous to
ariations in county characteristics that may affect infant (fetal)
ortality rates that are not captured in �st, Zit, or Wit. Since we

ontrol for state-time interaction effects, we need only assume
hat the location choice of different types of manufacturing indus-
ries (heavy polluters or otherwise) within a state is random
ith respect to other factors that might affect pre-natal or peri-
atal health. This assumption will also be reasonable as long as
he variation in (�it − �̄i) within a state is low for each year in
ur sample. By controlling for state-time interaction effects, we
elieve we have eliminated most sources of potential bias in our
odel.

.1. Exogeneity and serial correlation

An examination of the correlation between the TRI release
tatistics and covariates, Zit and Wit indicate that the correla-
ion between the levels of TRI pollution and most parental and
ounty characteristics is low, as well as with the criteria air pol-
ution concentrations (see Table 3, panel II). Only for Medicaid
enefits and mother’s race (black) do we observe a correlation
reater than 15% with pollution concentrations. (For the sam-
le of large counties >250,000 in population, post 1996, we also
nd high correlations between pollution measures and demo-
raphic characteristics like racial composition and percentage of
hildren born in wedlock. This, in and of itself, may be important
or issues relating to environmental justice and public policy.) In
ny event, the correlation measures for those variables that we can
xplicitly control for suggests that bias due to �it should not be
arge.

We also check to ensure that our TRI measures have no explana-
ory power over our assumed exogenous parental characteristics.

o do this, we regress each parental characteristic variable (Z) on
he TRI measures, all other parental (Z) and exogenous (W) vari-
bles, and county and state-year fixed effects. In no instance other
han for mother’s race (white and black) are the TRI variables sta-
istically significant—providing further evidence of exogeneity for

8 We also test this directly by examining whether industry level dummies have
ny explanatory power to predict variations in toxic releases at the county-level
where state-year fixed effects are included). The resulting F-statistic is sufficiently
arge to allow for rejection of the null hypothesis at the 1% significance level.
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ost of our variables.9 (A Hausman test for exogeneity is run as
ell, and discussed in Section 7.)

There might also be concern that errors both across time within
county and across counties within a state might not be inde-

endent. If TRI releases are serially correlated within a county
r state-wide effects cause dependence in releases between two
ounties within a state, assuming that �it are distributed i.i.d. might
ield inconsistent standard errors and invalidate any statistical
nference. To avoid these problems, we cluster our standard errors

ithin state-groups so that when computing standard errors, if I
nd j are two counties in the same state, we allow for Corr(�it,
jt) /= 0. This error specification may also help to correct for spacial
orrelation that exists due to spillover effects across county borders
ithin states, but not across states.

Finally, an additional robustness test that we conduct to ensure
hat TRI releases are not serially correlated over time is that we re-
stimate our models using lagged TRI terms and test for statistical
ignificance (both individually and jointly when there are more
han 1 TRI measure). In no instance are the lagged TRI variables
tatistically significant.

. Data issues

.1. Toxic pollution concentrations

The estimating model described in (5) assumes that mea-
urements of toxic pollution concentrations are available at the
ounty-level. Virtually no data exist, however, on toxic pollution
oncentrations. So, in contrast with studies on criteria air pollu-
ants where monitoring stations can provide concentration data,
e must estimate toxic pollution concentrations.

It is widely believed that the two principal sources of toxic pol-
ution are manufacturing activities, and mobile sources. That is
ur maintained assumption.10 Even with that assumption, how-
ver, we can observe toxic releases only from TRI reporting
acilities within the manufacturing sector and not from non-
eporting TRI facilities or from mobile sources of toxic pollution.
ot accounting for such factors obviously leads to a serious risk
f omitted variable bias in our model. The problem, therefore,
s how to control for these unobserved contributors to toxic
eleases.

Toxic releases from mobile sources of pollution are generated
redominantly by internal combustion and therefore are corre-

ated with non-toxic pollutants that are simultaneously generated
n the same process. The best proxy to use would be emis-
ions of carbon monoxide (CO), which is a known by-product
f fuel combustion. The number of observations that we have
or ambient CO concentrations, however, is quite small (2605
ounty-years). So, in lieu of using CO as our proxy for mobile
ource pollution, we make use of ambient concentrations of
9 Parental characteristics tested for exogeneity include: mother’s race,
other’s age, mother’s education, father’s education, medicaid recipient, and

ips.
10 TRI reporting requirements after 1998 were expanded to include a small number
f non-manufacturing industries, including electric utilities and mining. We do not
nclude these industries in our analysis; however, for the years in which we have
RI data for them, we calculate the correlations between releases from the “new”
ndustries and releases from the “original” industries. The correlation between the
ew and original industries is under 14% for all TRI release types (by media and
ategory), so we do not expect a significant bias from omitting these industries.
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f we include ambient concentrations of CO in any of our model
pecifications.11

Controlling for toxic releases from non-TRI reporting sources is
ore complicated. Our strategy is to construct two proxy variables

or each county-year. Our first proxy variable captures the percent-
ge of non-reporting TRI facilities in the manufacturing sector. The
econd takes into account both the number of non-reporting facili-
ies by 2-digit SIC code in manufacturing and the relative dirtiness
f those industries based on national annual TRI releases by report-
ng facilities. The construction of these variables is described more
ully below.

.1.1. Toxic concentrations from TRI reporting facilities
County-level toxic pollution concentrations that originate from

he manufacturing sector are measured as pounds of toxic releases
er square mile.12,13 Toxic release data are available for facilities

n a specified range of manufacturing SIC codes that have at least
en full-time employees and that either use or manufacture more
han a threshold level of a specified toxic pollutant under the TRI.
or our analysis, we restrict ourselves to the 1988 balanced panel
f both toxic pollutants and industries covered by the TRI.

As noted in the data section, the TRI provides information on
hether the toxic releases are released “on-site” or are transported

off-site.” Aggregate releases are defined as being the sum of both
n-site and off-site releases that are produced at the facility. For
his paper, we report the results only for on-site releases, although
ur results are robust to using aggregate releases as well.

.1.2. Toxic concentration proxies for non-TRI reporters
A facility in a “designated” SIC code may be a non-reporter

or several reasons: they may not have had 10 or more full-time
mployees, they may have fallen below the reporting threshold,
r they may simply have failed to report. Although it is generally
hought that non-reporters are small polluters, there is little evi-
ence as to what over-all contribution they make to toxic pollution
eleases within a county or to what extent they may be correlated
ith reported releases. To address the issue of potential omitted

ariable bias in our estimation, we make use of the County Business
attern data collected from the U.S. Census Bureau to construct two
ariables to control for non-reporter toxic release concentrations.14

For the first variable, we determine the total number of facili-
ies in operation by county in the manufacturing sector (SIC 20-39).
rom the TRI data we calculate the number of TRI reporting facilities
y county and 2-digit SIC code. From these we construct a variable

hat is the percentage of non-reporting facilities within a county.

ithin the regression sample of 4524 county-year observations,
04 county-years had no reporting facilities, and 22 county-years
ad no non-reporting facilities. Over all, the average percentage of

11 Regression results including CO concentrations are available from the authors
pon request.
12 An alternative approach might be to look at the exact distance between a
other’s residence (address) and a toxic plant to obtain a possibly better measure

f exposure. This approach has been taken by some epidemiologists (see, for exam-
le, Choi (2004)) and is currently being explored by Janet Currie in preliminary,
npublished work that focuses on infant health, environmental justice, and toxic
ollution exposure in New Jersey, Florida, Pennsylvania, and Texas (IHEA Confer-
nce, Summer 2007, Copenhagen). The nature of our data precludes us from taking
his approach.
13 Normalizing toxic releases by land area may be problematic if population is
oncentrated in a small number of urban areas and there is a lot of (mostly) unin-
abited land area in the county, so we also use un-normalized releases (in pounds)
s an alternative measure in our estimates. This results in larger (negative) esti-
ated effects of toxic pollution on infant health outcomes than those we reported

or releases normalized by land area.
14 We thank Wayne Gray for suggesting the use of this data set, which allowed us
o construct these proxy variables.
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on-reporters within a county year is 92.8%, with a standard devi-
tion of 8.1%. Counties with higher percentages of non-reporting
acilities (above the mean value) tend to be counties with much
ower TRI concentrations, lower percentages of employment in the

anufacturing sector, and higher per capita income levels. These
ounties also have lower rates of fetal (>20 weeks gestation) and
nfant mortality—both internal and external.

Because releases vary greatly both across industries and over
ime, and not just by the number of facilities, we construct a
econd variable that controls for the relative “dirtiness” of non-
eporting facilities, depending on the distribution of non-reporters
ithin a county over time. That is done by constructing an annual
ational index based on aggregating TRI data by 2-digit SIC codes
nd calculating average facility-level TRI releases. For each county
nd year, we then take the number of non-reporting facilities
n each 2-digit SIC code and multiply it by a “dirtiness” index –
amely the national “dirtiness” rank of that 2-digit SIC code. That
alue is summed over all industries in the county in each year to
onstruct our second control variable. This variable assumes that
he rank distribution of TRI releases by non-reporting facilities
cross industries and time is the same as for reporting facilities.
o obtain a “pseudo-concentration” value, we divide the control
ariable by land area. This variable will be largest for counties with
any non-reporting facilities in the dirtiest industries and small-

st for counties with few non-reporting facilities in the cleanest
ndustries.

As a check on the validity of our two variables to proxy for
he contribution of toxic releases from non-reporting facilities,
e construct the same two variables for reporting facilities. We

hen regress aggregate, actual county-level TRI concentrations on
he newly constructed control variables and all other exogenous
ariables in our health-outcome model (the first-stage regression).
iven the very large F-statistic from the first-stage regression, we
onclude that they are strong instruments. This suggests that our
roxy variables may be sound controls for toxic pollution contri-
utions from unobserved non-reporters.

.2. Measurement error

There are two types of measurement error to consider. The
rst is classical measurement error that arises because we do not
ave “true” toxic pollution exposure or concentration measures.15

nstead, we make use of toxic pollution releases that we modify
nto a “concentration” measure by normalizing pounds of releases
y county land area. This leads to attenuation bias in our estimates.

The second type of measurement error is non-classical mea-
urement error that arises from using survey data. Evidence in the
abor literature shows that errors in survey data may be substan-
ial and problematic when used for estimation purposes, and the
irection of any bias may be difficult to predict. Although this type
f measurement error almost surely exists in TRI data, we assume

hat TRI survey respondents are providing TRI release estimations
hat are based on their best available information and, more impor-
antly, are making those estimations independent of county-level
nfant (or fetal) mortality rates.16 Under these conditions, the non-

15 Lleras-Muney (in press) finds evidence that suggests that measurements taken
t air monitoring stations may lead to non-classical measurement error for criteria
ir pollutants. The location choices of air monitoring stations, however, are known
o be problematic and non-random in nature. We are unaware of any evidence of
on-classical measurement error in emissions data for pollutants.
16 Quality-assurance testing of TRI data is conducted annually by the EPA on an
xtremely small sample of facilities (<100 facilities). In the testing, it has been found
hat a large number of reporting errors exist in the data. At this time, there is no evi-
ence to suggest that the errors are systematic in nature (over- or under- reporting)



5 ealth E

c
“
s
s

7

m
b
c
i
c
b
d
f

r
t
p
p
t
p
o
p
a
t
t
t
d
c
o

7

o
m
a
r
g
t
p
r
r
o

c
a
i
e

o
o

i
a
e
a

t
o
p

v
W

v
t
p
i
a

s
o
r
C
t
c
o
f
e
e
(
r
n
i

e
o
p
t

7

m
u
p
i
t
b
m
s

w
c
m
m
t
o
a
e
l

68 N. Agarwal et al. / Journal of H

lassical measurement error in TRI releases may be described as
optimal prediction errors” in the regressor, and no additional bias
hould be introduced into the estimators from this source of mea-
urement error (see Hyslop and Imbens, 2000).

. Estimation results

Tables 4–6 summarize the effects of TRI concentrations on infant
ortality and fetal mortality (>20 weeks) rates per 100,000 live

irths or 100,000 unterminated pregnancies from estimating the
ounty-level fixed-effects model described in (5).17 Infant mortal-
ty regressions are weighted by total number of live births in each
ounty and year, whereas fetal mortality regressions are weighted
y the total number of unterminated pregnancies. We report stan-
ard errors that are robust to correlation between observations
rom within-state groups.

The primary regression model which is estimated using the
estricted sample includes TRI concentrations and TRI concentra-
ions squared,18 as well as controls for parental characteristics, real
er capita income and medicaid transfers. As described above, air
ollution concentrations for PM10 and ozone are included to con-
rol for mobile sources of toxic pollution, allowing as well for the
ossibility of health effects caused directly by those pollutants;
ur control for the percentage of non-reporting facilities and our
roxy for TRI pollution releases (per sq. mile) from non-reporters
re included to account for aggregate toxic pollution concentra-
ions attributable to non-reporters. Hausman tests were used to
est the exogeneity assumption required for (5) to yield consis-
ent estimators for the preferred regression; in each specification
escribed below, the null hypothesis of exogeneity for the TRI con-
entration variables of interest could not be rejected at a 5% level
f significance.19

.1. Aggregate TRI releases

We present the results from our estimation of the health effects
f aggregate TRI concentrations in Table 4. Column 1 is the primary
odel based on (5) and contains all of the covariates described

bove and is estimated using the restricted sample. Column 2
e-estimates the primary model but excludes county-level demo-
raphic variables and parental characteristics. Column 3 is based on
he full sample and excludes county-level demographic variables,
arental characteristics, PM10, and ozone. Column 4 presents the
esults for the model given in Column 3 further excluding TRI non-
eporter controls. Column 5 summarizes the results for fetal health
utcomes using the restricted sample.

From column 1, our estimates suggest that aggregate TRI con-

entrations from reporting facilities in the manufacturing sector,
lthough positive, do not have a statistically significant effect on
nfant or fetal health outcomes. These results are robust to the
xclusion of parental character-istics and county-level income

r that they are correlated with factors that might determine infant or fetal health
utcomes.
17 Note that all regressions were also run using TRI releases measured in pounds
nstead of pounds per square mile. Results for the un-normalized level of TRI releases
re qualitatively similar to those reported here, although they tend to show larger
ffects (but of the same sign and level of significance). These alternate results are
vailable from the authors upon request.
18 Tests of significance on the level and quadratic term for the TRI concentra-
ion variables show joint significance in all models. Higher order polynomials and
ther functional forms were also tested and rejected in favor of the second order
olynomial.
19 The Hausman test consists of running the regression including leads on all
ariables of interest and conducting a Wald test on their joint significance. See
ooldridge (2002).
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ariables in the restricted sample (column 2), and parental charac-
eristics, county-level income, non-reporting toxic concentration
roxies, and criteria air pollution concentrations (columns 3 and 4)

n the full sample. Note that the coefficient estimates are remark-
bly stable in magnitude across all specifications and samples.

Although we do not report the estimates here, we do not find
tatistically significant effects on infant mortality rates for PM10
r ozone concentrations, which is consistent with the California
esults in Currie and Neidell (2005) but not with Greenstone and
hay (2003a). It should be noted, however, that there is very lit-
le variation in the concentrations of PM10 and ozone both across
ounty and over time in our sample. This could make their effects
n infant and fetal health outcomes difficult to identify. And, as
ound in earlier health-pollution studies, per capita income lev-
ls and income transfers also do not appear to have a measurable
ffect on infant and fetal health outcomes. We do find positive and
sometimes) statistically significant results for our two TRI non-
eporter controls, which suggests that as both the percentage of
on-reporters and the number of non-reporters in dirtier industries

ncreases within a county, infant mortality rates rise.20

One possible explanation for why we do not find any health
ffects from aggregate TRI concentrations is that this measure
bscures important heterogeneity in health effects either across
ollution media, toxic chemical categories, or both. We turn now
o these possibilities.

.2. TRI by land, sea, and air

The first question of interest is whether different pollution
edia have differential effects on health. For example, infants

ndergo direct exposure to air pollution and their less-developed
ulmonary capacity may adversely affect their ability to deal with

nhaled airborne toxins. They may thus be more susceptible to air
han water pollution. Fetuses, on the other hand, are exposed to
oth air and water pollution only through maternal exposure. The
echanisms through which maternal exposure lead to fetal expo-

ure almost surely differ across pollution media.
We preface the discussion of our results here with a cautionary

ord: although we believe that our measure for toxic air pollution
oncentrations (pounds of toxic pollution divided by county-square
iles) is reasonable, we are less certain about the accuracy of this
easure for either water or land pollution. It is highly likely that

he relevant area around a polluting source for the determination
f exposure is much smaller for water and land pollution than for
ir pollution. We therefore expect that the degree of measurement
rror associated with our water and land pollution variables would
ead to greater attenuation bias and more imprecise estimators.

In Table 5, we report estimates based on TRI concentrations par-
itioned by air, water, and “land,” where land simply denotes the
esidual releases once air and water releases have been accounted
or. We include quadratic terms for all TRI concentration variables.
hat we observe now is that both TRI air and water concentra-
ions have strong, statistically significant effects on infant, but not
etal, mortality rates.21 Toxic releases into the land do not appear
o affect either infant or fetal mortality.

20 There is multicollinearity between one of the proxy variables and some of the
ounty-level demographic characteristics which sometimes lowers the significance
evel, however, joint tests of significance between the proxy variables and the county
emographic variables show statistical significance. These findings are consistent
hroughout our results.
21 Note that for both air and water releases, the implied damage function is con-
ave. This results is somewhat surprising, but is robust across all specifications and
ight reflect the health effects over aggregate pollutants. For all TRI concentration

evels in our sample, however, the over-all effect is always negative.



N. Agarwal et al. / Journal of Health Economics 29 (2010) 557–574 569

Table 4
Estimated effects of aggregate TRI concentrations.

Variable Internal infant deaths Fetal deaths External deaths

Restricted sample (with PM10, ozone) Full sample (without PM10, ozone)

Aggregate TRI (lbs/sq.mile) 0.0006 0.0018 0.0023 0.0023 −0.0013 −5.50e−7
(0.002) (0.0028) (0.002) (0.002) (0.002) (0.0005)

(Aggregate TRI)2 −6.99e−9 −1.80e−8 −2.24e−8 −2.23e−8 5.59e−9 −2.53e−9
(2.06e−8) (2.42e−8) (1.69e−8) (1.69e−8) (1.89e−8) (4.33e−9)

Non-Reporter Controls Y Y Y N Y Y
Mean PM10 (�g/m3) Y Y N N Y Y
Mean Ozone (ppm) Y Y N N Y Y
County Income Controls Y N N N Y Y
Parental Characteristics Y N N N Y Y
State -Year Indicators Y Y Y Y Y Y
County Fixed Effects Y Y Y Y Y Y

Observations 4520 4698 42617 43124 4520 4520
Adjusted R-squared 0.7908 0.7858 0.4118 0.4149 0.7549 0.2498
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tate-level clustered standard errors in parentheses.*Significant at 10%; **significan
ortality rates are per 100,000 pregnancies. Internal infant mortality regressions ar

s for gestational period >20 weeks and is weighted by total number of pregnancies

Focusing on air releases, we observe that TRI air concentra-
ions have strong, statistically significant effects on infant, but
ot fetal, mortality rates. From the estimates in column 1 of
able 5, we calculate the implied county-level, annual toxic air
oncentration elasticity (or, more precisely, the toxic air con-
entration from TRI reported on-site releases elasticity on infant
ortality), measured at the mean, as 0.03. With an annual aver-
ge decline in toxic air concentrations of approximately 9.47%
er year (measured over our 14 year sample), this suggests that
he decline in toxic air concentrations between 1989 and 2002
aved over 9979 infant lives. Using a value of a statistical life of

T
U
t
T

able 5
stimated effects of TRI concentrations by pollution medium.

Variable Internal infant deaths

Restricted sample (includes PM10, ozone) Full s

TRI Air (lbs/sq.mile) 0.0250** 0.0309** 0.021
(0.0111) (0.0131) (0.00

(TRI Air)2 −1.11e−6* −1.17e−6* −5.77
(6.01e−7) (5.98e−7) (2.52

TRI Water (lbs/sq.mile) 0.0353** 0.0516** 0.011
(0.1056) (0.0240) (0.01

(TRI Water)2 −4.65e−6** −6.87e−6** −1.48
(1.99e−6) (3.13e−6) (1.67

TRI Land (lbs/sq.mile) −0.0022 −0.0023 −0.00
(0.0023) (0.0024) (0.00

(TRI Land)2 1.92e−9 2.08e−8 1.69e
(1.973−8) (2.09e−8) (1.22

Non-Reporter Controls Y Y Y
Mean PM10 (�g/m3) Y Y N
Mean Ozone (ppm) Y Y N
County Income Controls Y N N
Parental Characteristics Y N N
State -Year Indicators Y Y Y
County Fixed Effects Y Y Y

Observations 4520 4698 4261
Adjusted R-squared 0.7924 0.7888 0.412

tate-level clustered standard errors in parentheses. Note: Internal mortality rates are p
nfant mortality regressions are weighted by total number of births in each county and y
y total number of pregnancies in each county and year.

* Significant at 10%.
** Significant at 5%.

*** Significant at 1%.
; ***significant at 1%. Note: Internal mortality rates are per 100,000 births and fetal
ghted by total number of births in each county and year. Fetal mortality regression
h county and year.

etween $1.8M and $8.7M, the cost savings would be approx-
mately $18B to $86.8B. Similarly for water concentrations, we
stimate an implied county-level, annual toxic water concentra-
ion elasticity, measured at the mean, of 0.004. Given an annual
verage decline of 12.4% in toxic water concentrations, we esti-
ate that the decline in toxic water concentrations during our

ample period led to a savings of approximately 1716 infant lives.

aken together, approximately 11,694 infant lives were saved.
sing a value of a statistical life of between $1.8M and $8.7M,

he cost savings would be approximately $21.05B to $101.7B (see
able 7).

Fetal deaths External deaths

ample (without PM10, ozone)

4** 0.0213*** −0.0032 0.00047
72) (0.0072) (0.0085) (0.0016)

e−7** −5.75e−7** 1.56e−7 −9.79e−10
e−7) (2.52e−7) (4.25e−7) (1.31e−7)

1 0.0110 0.0078 −0.0046
13) (0.0112) (0.0201) (0.0033)

e−7 −1.46e−7 −1.98e−6 6.51e−7
e−7) (1.67e−7) (2.51e−6) (4.21e−7)

17 −0.0017 −0.0009 0.00002
13) (0.0014) (0.002) (0.0005)

−8 1.68e−8 1.62e−9 −2.91e−9
e−8) (1.22e−8) (2.00e−8) (4.96e−9)

N Y Y
N Y Y
N Y Y
N Y Y
N Y Y
Y Y Y
Y Y Y

7 43124 4520 4520
7 0.4158 0.7547 0.2496

er 100,000 births and fetal mortality rates are per 100,000 pregnancies. Internal
ear. Fetal mortality regression is for gestational period >20 weeks and is weighted
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Table 6
Estimated effects of TRI concentrations by pollution category and medium.

Variable Internal Infant Deaths Fetal Deaths External Deaths

Restricted Sample (includes PM10, ozone) Full Sample (without PM10, ozone)

TRI Carcinogenic Air (lbs/sq.mile) 0.2942* 0.4572*** 0.4854*** 0.4828*** −0.0243 −0.0134
(0.1490) (0.1457) (0.1661) (0.1668) (0.2467) (0.0587)

(TRI Carcinogenic Air)2 −0.0003** −0.0005*** −0.0006*** −0.0006*** 0.0003 −0.00002
(0.0001) (0.0001) (0.0002) (0.00001) (0.00025) (0.0001)

TRI Dev/Rep Air (lbs/sq.mile) 0.0010 0.01467 0.00800 0.00793 −0.04489 0.00268
(0.0488) (0.0553) (0.0528) (0.0533) (0.0440) (0.00857)

(TRI Dev/Rep Air)2 1.63e−6 −3.01e−8 4.58e−7 5.19e−7 1.58e−6 −1.54e−6
(9.23e−6) (0.00001) (0.00001) (0.00001) (8.23e−6) (1.60e−6)

TRI Residual Air (lbs/sq.mile) 0.0234** 0.0289** 0.0204*** 0.0203*** −0.00360 0.0008
(0.0108) (0.0134) (0.0071) (0.0071) (0.00744) (0.0016)

(TRI Residual Air)2 −1.08e−6* −1.14e−6* −5.53e−7** −5.52e−7** 1.23e−7 −2.73e−9
(6.27e−7) (6.45e−7) (2.47e−7) (2.46e−7) (4.18e−7) (1.33e−7)

TRI Carcinogenic Water (lbs/sq.mile) 0.3025 0.3555 0.6464 0.6375 −0.3772* 0.0400
(0.3732) (0.5285) (0.5485) (0.5527) (0.2182) (0.0467)

(TRI Carcinogenic Water)2 −0.0007 −0.0008 −0.0013 −0.0013 0.00032 −0.00004
(0.0007) (0.0009) (0.0010) (0.0010) (0.0004) (0.00009)

TRI Dev/Rep Water (lbs/sq.mile) −1.0739 −1.360 −1.527** −1.5429** −0.0257 0.0503
(0.9702) (1.0010) (0.7567) (0.7643) (0.5372) (0.1181)

(TRI Dev/Rep Water)2 0.0019 0.0024 0.0029* 0.0030* −0.0004 −0.0002
(0.0021) (0.0021) (0.0016) (0.0016) (0.0012) (0.0003)

TRI Residual Water (lbs/sq.mile) 0.0389** 0.0548** 0.0098 0.0098 0.0207 −0.0055
(0.0189) (0.0231) (0.0106) (0.0106) (0.0214) (0.0034)

(TRI Residual Water)2 −5.12e−6** −7.30e−6** −1.29e−7 −1.29e−7 −3.48e−6 7.66e−7*

(2.34e−6) (3.05e−6) (1.57e−7) (1.57e−7) (2.73e−6) (4.05e−7)

TRI Land (lbs/sq.mile) −0.0020 −0.0020 −0.0013 −0.0013 −0.0009 3.67e−6
(0.0022) (0.0023) (0.0014) (0.0014) (0.0021) (0.0005)

(TRI Land)2 1.76e−8 1.77e−8 1.34e−8 1.33e−8 5.79e−10 −2.67e−9
(1.88e−8) (1.92e−8) (1.23e−8) (1.23e−8) (2.0e−8) (5.00e−9)

Non-Reporter Controls Y Y Y N Y Y
Mean PM10 (�g/m3) Y Y N N Y Y
Mean Ozone (ppm) Y Y N N Y Y
County Income Controls Y N N N Y Y
Parental Characteristics Y N N N Y Y
State -Year Indicators Y Y Y Y Y Y
County Fixed-Effects Y Y Y Y Y Y

Observations 4520 4698 42617 43124 4520 4520
Adjusted R-squared 0.7924 0.7894 0.4132 0.4162 0.7555 0.2495

State-level clustered standard errors in parentheses. Note: Internal mortality rates are per 100,000 births and fetal mortality rates are per 100,000 pregnancies. Internal
infant mortality regressions are weighted by total number of births in each county and year. Fetal mortality regression is for gestational period > 20 weeks and is weighted
by total number of pregnancies in each county and year.

* Significant at 10%.
** Significant at 5%.

*** Significant at 1%.

Table 7
Estimated elasticities and lives saved or lost: average annual county-level values.

Variable Mean change in concentration Estimated elasticity 95% confidence interval Point estimate of lives saved (lost)

TRI air −9.469% 0.031198 (0.0043–0.0584) 9979
TRI water −12.36% 0.004109 (0.0054–0.0077) 1716

Carcinogenic air −23.65% 0.002728 (0.00001–0.00544) 2179
Non-Carcinogenic, Non-

Developmental/Reproductive
Air

−9.25% 0.028800 (0.00300–0.05463) 8997

Non-Carcinogenic, Non-
Developmental/Reproductive
Water

−12.20% 0.004303 (0.00020–0.00842) 1774

Mean Internal Deaths (per
100,000 live births)

770.7866

Total Births (000,000) 31.3
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In the medium-based partitioned regression, we continue to
nd no statistically significant effects of criteria air pollution con-
entrations, per capita income, or transfers. And, consistent with
ur findings using aggregate TRI concentrations, the coefficients on
ur two controls for non-TRI reporter concentrations are positive
nd statistically significant here, as well.

We find our estimators for toxic air concentrations to be robust
cross various model specifications, although somewhat less so
or toxic water concentrations once criteria air pollution concen-
rations are no longer included in the model. This might suggest
orrelation across these variables or sample selection bias asso-
iated with county-level characteristics associated with having
ir monitoring stations for both PM10 and ozone. A more likely
xplanation, however, is that toxic water and land concentrations
re not as well measured as toxic air concentrations using our
ethodology and the attenuation bias more pronounced for these

stimators.

.3. TRI carcinogens, developmental, and reproductive toxins

Exposures to carcinogens and to developmental/reproductive
oxins are thought to be particularly hazardous to human health.
ere, then, we look to see whether toxic releases that are either
nown or suspected carcinogens or developmental/reproductive
oxins have a measurable effect on infant and fetal mortality rates.

Because our earlier findings show that different pollution media
ave differential effects on health, we now parse aggregate TRI
eleases by both media (air, water, and land) and chemical category
carcinogenic, developmental/reproductive, “other”), including a
eparate variable for each of the 9 different categories. In doing
o, however, we recognize that we may not obtain statistically sig-
ificant results, as we lose a great deal of variation in these more
arrowly defined chemical categories by media. Regression results
re summarized in Table 6.

Of toxic air releases, carcinogenic air concentrations have the
argest adverse effect on infant mortality, whereas developmen-
al/reproductive toxins do not appear to have any measurable
ffect. With a coefficient estimate of 0.29 on the linear term and
0.0032 on the quadratic term, the implied elasticity for carcino-
enic air concentrations is 0.0027. The average annual reduction
n carcinogenic air concentrations during our sample period was
3.6%. Accumulated over 14 years, this suggests a reduction in

nfant lives lost of 2179, or a valuation of between $3.9B and $19B
see Table 7).

Air toxins that are neither carcinogens nor developmen-
al/reproductive toxins also have a significant effect on infant

ortality. This result is robust over all of our estimated specifi-
ations, with coefficient estimates on the toxic air concentration
ariables remaining quite stable. We estimate that given an
nnual county-level decline of 9.3% over 14 years, the reduction
n non-carcinogenic/developmental/reproductive toxins saved
pproximately 8997 infant lives. Taken together with the lives
aved from the reduction in carcinogenic air concentrations, we
stimate an aggregate reduction in lives lost from the reduction
n toxic air concentrations of approximately 11,176, valued at
etween $20B and $97B.

We also find that concentrations of non-carcinogenic, non-
evelopmental/reproductive toxins in water may also have an
dverse effect on infant mortality, although the robustness of this
esult disappears if criteria air pollutant concentrations are not

ncluded in our model. This is similar to the pattern that we
bserved when we had TRI concentrations broken down only by
ollution medium, and may suggest some important correlations
cross the toxic water variables and the criteria air pollution con-
entration variables, sample selection issues, or attenuation bias.

o
t
o
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If we include criteria air pollution concentrations in our model,
e find that toxic water pollution concentrations that are not car-

inogenic or developmental/reproductive toxins also affect infant
ortality. The coefficient estimates here are similar to those

ound for non-carcinogenic, non-developmental/reproductive air
eleases. Over the 14-year sample period, we estimate that over
774 infant lives were saved from the approximately 12.2% average
nnual county-level decline in toxic water concentrations.

. Additional checks for robustness

Because of the complicated nature of our data, it is important
o ensure that our findings are not driven by sample selection,
purious correlation, or outliers. We discuss these issues, below.

.1. Timing

A potential concern that we must address is the timing of births
nd deaths. In our analysis, year t mortality is regressed on year t
ollution concentrations; however, if mortality occurs at the begin-
ing of the year, then year t − 1 pollution concentrations might be
ore relevant to the health outcome than year t’s. Without being

ble to match up calendar-year births and deaths accurately, it is
ot possible to test the potential problem of “timing” directly, with-
ut introducing other methodological problems such as sample
election bias. With this understanding, we construct a data set that
imits the set of births and deaths that we study to one that satis-
es the following conditions for infants: if a death occurs, the death
ust occur before the end of December in a given calendar year,

nd the infant must have been conceived during the same calendar
ear. If the infant were carried to full term, this would mean that the
nfant must have been born no earlier than September of that same
ear. By constructing the data in this way, all pre- and post-natal
xposure will occur in the same year as the death; hence there is
o “timing” issue. Caution should be used in interpreting the coeffi-
ient estimates from this “September-cohort” data as there may be
ample selection bias inherent in the construction of the sample. As
second check, we also re-run our original model including leads

nd lags for all toxic pollution variables. A priori, we would expect
hat if timing is not an issue, neither leads nor lags will be statisti-
ally significant. Results for these robustness tests are summarized
n Table 8.

Note that for simplicity, we focus only on the model specifica-
ion that breaks TRI concentrations down by media. Columns 1 and
use the September-cohort and estimates the effects of TRI con-

entrations on infant mortality. Column 1 contains all covariates
xcept for PM10 and ozone concentrations to allow for the maxi-
um number of county-years to be included in the sample; column
only contains the TRI concentration variables. In both cases, the

oefficient estimators on TRI air are statistically significant and are
ery similar in magnitude to the coefficient estimators reported in
able 5. So, even when restricting ourselves to a September-cohort
here timing issues do not exist, our coefficient estimators remain

pproximately the same. In columns 3 through 5, we re-estimate
he models presented in Table 5 including leads and lags. In all but
ne specification do we find a statistically significant coefficient on
lead or lag variable. We believe that given these results, timing

ssues are not problematic in our estimates.

.2. Spurious correlation
We must be concerned also about the possibility of spuri-
us correlation driving our results. To ensure that this is not
he case, we follow Greenstone and Chay’s (2003a) methodol-
gy and re-estimate our model using external infant deaths as
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Table 8
Estimated effects of TRI concentrations by pollution medium including leads and lags on internal deaths.

Variable September cohort Full sample with leads and lags

TRI Air (lbs/sq.mile) 0.0203* 0.0276** 0.02106*** 0.0256*** 0.0253***

(0.0114) (0.0105) (0.0079) (0.0087) (0.0087)

(TRI Air)2 −4.10e−07 −5.86e−07** −7.10e−07** −8.43e−07** −8.38e−07***

3.203−07 (2.45e−07) (3.46e−07) (3.85e−07) (3.85e−07)

TRI Air (lbs/sq.mile) (t+1) −0.0023 0.00003 0.0002
(0.0094) (0.0103) (0.0103)

TRI Air (lbs/sq.mile) (t − 1) −0.0015 0.0019 0.0018
(0.004) (0.005) (0.005)

(TRI Air)2 : (t + 1) 1.07e−07 9.49e−08 9.02e−08
(3.56e−07) (3.92e−07) (3.90e−07)

(TRI Air)2 : (t − 1) −2.72e−08 −7.17e−08 −7.06e−08
(6.36e−08) (7.41e−08) (7.42e−08)

TRI Water (lbs/sq.mile) 0.0305 0.0335 0.0091 0.0072 0.0072
(0.0294) (0.0299) (0.0113) (0.0110) (0.0111)

(TRI Water)2 −5.09e−07 −5.56e−07 −4.75e−08 −3.43e−08 −3.67e−08
(4.16e−07) (4.25e−07) (1.39e−07) (1.42e−07) (1.42e−07)

TRI Water (lbs/sq.mile):(t + 1) 0.0047 0.0079 0.0080
(0.0097) (0.0108) (0.0109)

TRI Water (lbs/sq.mile):(t − 1) −0.0103 −0.008 −0.0077
(0.0067) (0.0069) (0.0070)

(TRI Water)2: (t + 1) 2.20e−08 1.58e−08 1.43e−08
(6.47e−08) (7.80e−08) (7.85e−08)

(TRI Water)2: (t − 1) 2.06e−08 −1.58e−08 −1.64e−08
(7.20e−08) (7.48e−08) (7.52e−08)

TRI Land (lbs/sq.mile) −0.0034 −0.0029 −0.0020 −0.0021 −0.0021
(0.0039) (0.0036) (0.0017) (0.0017) (0.0017)

(TRI Land)2 6.15e−08 5.38e−08 1.57e−08 1.80e−08 1.77e−08
(3.653−08) (3.54e−08) (1.55e−08) (1.55e−08) (1.55e−08)

TRI Land (lbs/sq.mile): (t + 1) 0.0013 0.0016 0.0016
(0.0010) (0.0011) (0.0011)

TRI Land (lbs/sq.mile): (t − 1) 0.0006 0.001 0.0007
(0.0007) (0.0006) (0.0006)

(TRI Land)2: (t + 1) −9.09e−10 −4.64e−09 −4.85e−09
(1.05e−08) (1.14e−08) (1.14e−08)

(TRI Land)2: (t − 1) −2.17e−09 −2.62e−09 −2.59e−09*

(1.42e−09) (1.40e−09) (1.40e−09)

Non-Reporter Controls Y Y Y Y N
Mean PM10 (�g/m3) N N N N N
Mean Ozone (ppm) N N N N N
County Income Controls Y N Y N N
Parental Characteristics Y N Y N N
State-Year Indicators Y Y Y Y Y
County Fixed Effects Y Y Y Y Y

Observations 40336 42194 35910 36537 36964
Adjusted R-squared 0.0606 0.0585 0.4017 0.3994 0.4039

State-level clustered standard errors in parentheses. Note: Internal mortality rates are per 100,000 births. Internal infant mortality regressions are weighted by total number
of births in each county and year.
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* Significant at 10%.
** Significant at 5%.

*** Significant at 1%.

ur dependent variable. External infant deaths include those from
utomobile accidents, murder, and trauma – deaths that should
ot be related to toxic pollution concentrations. Our TRI con-
entration variables should not be statistically significant in a

egression with external infant mortality rates as the dependent
ariable if our results are not driven by spurious correlation.
egression results are provided in Tables 4–6, column 7. Note
hat these regressions are run on the restricted sample as they
nclude controls for PM10 and ozone, although the results do

f
c
t
w
c

ot change if the unrestricted sample is used for the estimation.
n only one case do we find a statistically significant coefficient
n any of our TRI variables. This is in the specification which
reaks TRI releases by medium and pollution category and is

or the coefficient on the squared term of the residual water
oncentration (non-carcinogenic, non developmental or reproduc-
ive toxin). The coefficient is significant only at the 10% level, so
e conclude that overall, our results are not driven by spurious

orrelation.



ealth E

8

r
d
r
c
e
c

9

t
b
g
c
c
a
t
m
t
T
a
t
i
h
c
f
t
a

o
e
t
$
$
t
s
c
b
a
s
n
i
w
I
i
i
i
w
h
a

t
a
t
m
g
I
a
a
e
w

t
a
i
m
E
o
b
c
p
w
r
t
o

e
i
s
t
m
t
“
h
s
l
o
s
p

a
t
h
c
i

A

d
E
T
s
G
a
t
E
v
c

R

B

B

B

C

C

N. Agarwal et al. / Journal of H

.3. Outliers

Finally, we exclude a small number (4) of outliers from our
egression analysis. These observations lie approximately 3 stan-
ard deviations away above the mean value of aggregate TRI
eleases, and appear to be due to data entry errors that had not been
orrected as of 2005. To ensure robustness over our sample, how-
ver, we checked the stability of our results over different outlier
riteria; results are robust over all specifications.

. Conclusion

Although the release of toxic chemicals is not directly regulated,
he potential health effects could be significant. Our objective has
een to study those health effects on two of the most vulnerable
roups in society – infants and the unborn. The primary question of
oncern is whether at the current levels of toxic releases and their
orresponding levels of toxic concentrations there are measurable
dverse health consequences. Our analysis of the data suggests that
here are potentially large, statistically significant effects on infant

ortality rates at the county-level with increases in toxic concen-
rations, which would be obscured by looking only at aggregate
RI releases because of heterogeneity in health effects across media
nd chemical categories. Between 1989 and 2002, we estimate that
he decline in county-level TRI concentrations in the manufactur-
ng sector saved over 12,000 infant lives. It is important to note,
owever, that the above number of lives saved may be signifi-
antly underestimated. By constructing proxy variables to control
or toxic releases from non-TRI reporting sources, we find statis-
ical evidence that their contribution to toxic concentrations may
lso have an adverse effect on health outcomes.

It is often useful for policy purposes to place a monetary value
n lives saved or lost. One commonly used approach assigns to
ach life a valuation based on a “statistical” life. If we were to use
he numbers typically employed by the EPA of between $1.8M and
8.7M, that approach would imply a savings of between $22B and
104B. Such numbers should, however, be interpreted with cau-
ion, as they almost surely do not reflect the true welfare cost to
ociety from lost infant lives. Although modeling family fertility
hoice is beyond the scope of this paper, conceiving a child and
ringing it to term is clearly a costly endeavor. If the child is lost
t any stage of the process, the costs of bringing the child to that
tage represent a true (welfare) loss to the family. If the family has
ot yet attained its desired size, additional costs may be incurred

n that the family may never achieve that size. Even if it does, it
ill have incurred the added costs of delay in achieving that size.

f, on the other hand, in response to an infant death, another child
s conceived (one that would not have been conceived if the first
nfant had not died), is brought to term and survives, the surviv-
ng child’s value should be taken into account as an offset to the

elfare loss from the infant death. None of these considerations,
owever, are captured in the statistical value of life numbers given
bove.

From a policy perspective, it is almost surely the case that
he most effective way for regulators to protect infants from the
dverse effects of toxic pollution exposure would be to identify
he toxic hazards and regulate their releases into the environ-

ent directly. For a variety of reasons, however, this is not the
eneral approach that has been adopted in the United States.

nstead, toxic releases only face quasi-regulatory mechanisms that
re aimed at encouraging industry to reduce releases without
ctually targeting specific toxic pollutants. Given this regulatory
nvironment, our findings suggest that if government programs
ere to be developed to encourage reductions in toxic releases,

C

C
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he biggest health benefits for infants would come from policies
imed at reducing toxic air releases, in general, and carcinogens,
n particular. Our findings also suggest that much more infor-

ation should be collected from current non-reporting facilities.
ven if each non-reporting facility released a very small amount
f toxic pollution into the environment, given the sheer num-
er of non-reporters in the manufacturing sector, their aggregate
ontribution would be significant. Current TRI policy is contem-
lating the reduction of reporting requirements by TRI facilities,
hich would include allowing fewer facilities to report their toxic

eleases to the public. Such a policy clearly would be detrimental
o improving our understanding of how toxic releases affect health
utcomes.

Our results are based on crude measures of concentration and
xposure and more precise measures could help to refine our find-
ngs. Further study also is needed to determine whether there are
pecific chemicals that are driving the results, or, whether it is
he general mix of chemicals that are released into the environ-

ent that is doing the harm. Spatial analysis may be important
o determine whether proximity to a TRI-producing facility or an
off-site” treatment facility may lead to higher levels of adverse
ealth outcomes, as well as to whether there are “cross-border”
pill-overs – whether the border is at the zip-code, county, or state
evel. We suspect that with more refined geographic information
n the residence of the pregnant woman that we could obtain more
tatistically reliable results on the effects of toxic water and land
ollution exposure on fetal and infant health.

The lack of general regulatory oversight on toxic emissions is
lmost surely because of the belief that low levels of toxic pollu-
ion concentrations are not harmful to human health. Our results,
owever, strongly suggest that the effects of exposure, even at the
urrent levels of concentrations, are far from benign, at least for
nfants under 1 year of age.
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