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Abstract

Calls for eliminating prioritization for SARS-CoV-2 vaccines are growing amid
concerns that prioritization reduces vaccination speed. We use an SEIR model
to study the effects of vaccination distribution on public health, comparing pri-
oritization policy and speed under mitigation measures that are either eased dur-
ing the vaccine rollout or sustained through the end of the pandemic period.
NASEM’s recommended prioritization results in fewer deaths than no prioriti-
zation, but does not minimize total deaths. If mitigation measures are eased,
abandoning NASEM will result in about 134,000 more deaths at 30 million vac-
cinations per month. Vaccination speed must be at least 53% higher under no
prioritization to avoid increasing deaths. With sustained mitigation, discarding
NASEM prioritization will result in 42,000 more deaths, requiring only a 26%
increase in speed to hold deaths constant. Therefore, abandoning NASEM’s pri-
oritization to increase vaccination speed without substantially increasing deaths
may require sustained mitigation.
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Vaccination can potentially alleviate the public health and economic crisis caused

by SARS-CoV-2. The first vaccination in the US took place on December 14, 2020. As

of February 19, 2021, the Pfizer-BioNTech and Moderna vaccines have been granted

Emergency Use Authorization by the US Food and Drug Administration. About 59

million doses have been administered in two months, with 42 million individuals re-

ceiving at least one dose. It is expected to take 9 months to vaccinate 75% of the US

population [1] and even longer for the world [2].

The scarcity of vaccines has motivated groups like the National Academies of Sci-

ences, Engineering, and Medicine (NASEM) and the CDC’s Advisory Committee on

Immunization Practices to propose allocation frameworks, taking into account age,

social contacts, and other factors. US State, Tribal, Local, and Territorial entities

(hereafter states) have used these recommendations as a basis for allocation.

Adherence to vaccine prioritization varies greatly amid concerns that implementing

priorities is slowing down vaccination campaigns [3]. Some states have allowed lower

priority patients to be vaccinated before those from earlier phases to increase speed and

minimize waste [4], as vaccinations are seen as essential for the return to normalcy [5].

The fatigue and economic toll associated with sustaining social distancing, masking,

and remote work creates a strong push towards faster vaccinations [6].

These forces have also motivated states to adopt mitigation policies that are respon-

sive to the prevalence of infection [7, 8]. Many states are using a phased approach that

relaxes or tightens restrictions based on health metrics. Under these policies, mitiga-

tion will depend on vaccine rollout. Ignoring this interaction could incorrectly predict

disease dynamics.

The potential for increasing speed by abandoning prioritization motivates our in-

vestigation of how vaccine prioritization, vaccination speed, and mitigation measures

affect cumulative mortality, herd immunity, years of life lost (YLL), and total incidence.
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Evaluating Disease Dynamics

We evaluated disease dynamics for SARS-CoV-2 under vaccine prioritization and mit-

igation scenarios using an age-stratified SEIR model, building on [9]. Age is a strong

correlate of contact rates [10], susceptibility to infection [11, 12], and infection fatality

rates [13, 14]. Moreover, recommended prioritization rules emphasize age after initial

allocation phases [15]. We use eight age bins: 0-9, 10-19, ..., 80+, and incorporate

age-specific vaccine efficacy [16, 17] and vaccine hesitancy [18]. We forward simulate

the path of the disease for one year starting from estimated initial conditions as of

December 14, 2020. The initial number susceptible, infectious, and exposed in each age

bin is calculated using death records from [19, 20]. To evaluate the effect of speed, we

vary the number of individuals vaccinated per month. The assumptions and parameters

of our model are detailed in the supplementary text.

Figure 1: IFR, Contact Rates and Vaccination Policies by Age Group and
Mitigation Scenario. Left panel shows IFR and contact rates aggregated to the age
groups 0-29, 30-59, and 60+. Middle and right panels show vaccination policies for
Sustained and Calibrated Mitigation with 30 million vaccinated per month.

We focus on two mitigation scenarios. Sustained Mitigation represents a partially-

mitigated pandemic with a basic reproduction number R0 of 1.5, which corresponds to
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an effective reproduction number Rt of approximately 1.2 on December 14, 2020. This

was the largest value forRt across all 50 states [21]. Assuming an unmitigatedR0 = 2.6

[22], it is equivalent to measures that scale contact rates by the factor θ = 0.577 until

the end of the pandemic period. This factor θ measures the cumulative effect of all

non-pharmaceutical interventions [23, 24]. (Figures S.6 – S.8 in the supplement provide

results for Sustained Mitigation with R0 = 1.3.)

Calibrated Mitigation represents time-varying mitigation measures that keep the

total exposed and infectious population no higher than the initial level. Thus, the

factor θ is a function of time that fixes Rt at 1 until herd immunity is reached. This

models a mitigation scenario that loosens measures as the force of infection decreases.

Figure S.2 shows that θ starts at high mitigation (θ ≈ 0.5) on Day 0 and moves towards

no mitigation (θ = 1) at a rate that depends on vaccination policies. The approach of

constraining Rt at 1 follows [25].

We consider three vaccine prioritization policies: NASEM’s guidelines (NASEM), No

Prioritization, and Optimal Prioritization. NASEM simulates the National Academies’

recommendation. After a “jumpstart” Phase 1A/B, NASEM’s Phase 2 allocates to

K-12 staff and childcare workers, critical workers, individuals with comorbidities, older

adults, and people in homeless shelters or prisons [15]. Our simulation of NASEM uses

micro-level data with demographic and risk information for the US population [26]. No

Prioritization corresponds to uniformly distributed vaccinations across the population.

Optimal Prioritization minimizes cumulative number of deaths and depends on the

mitigation scenario and vaccination speed.

It is optimal to vaccinate the elderly under both mitigation scenarios (Figure 1).

In Optimal Prioritization, individuals over the age of 60, who have the highest IFRs

and the lowest contact rates, are vaccinated before vaccinating Age 30-59. Vaccinated

age groups overlap once a sufficient number of the older people have been vaccinated.

Individuals below the age of 30 are not prioritized even though they have high contact

rates.

NASEM’s recommendation also prioritizes the elderly, but not as much as the Opti-



4

mal Prioritization. In NASEM, the vaccination of individuals less than 60 years begins

alongside individuals over this age. However, NASEM vaccinates Age 60+ faster than

No Prioritization, which vaccinates age groups in proportion to population.

These results focus on 30 million vaccinations per month (hereafter vpm) because

that rate corresponds to the Federal government’s target to vaccinate every eligible

individual by July 2021 [27], but are similar for 15 million vpm (Figures S.4, S.5).

Impact of Prioritization and Mitigation on Disease Dynamics and Cumula-

tive Deaths

Figure 2: Active Cases and Cumulative Mortality over Time. Active cases (top
panels) count both infectious and exposed individuals. Vertical dashed lines indicate
time to herd immunity.

Disease dynamics and cumulative deaths are sensitive to both prioritization policy

and mitigation measures (Figure 2). Incidence first increases under Sustained Mitiga-

tion because initialRt ≈ 1.2, but rapidly declines within two months. Under Calibrated

Mitigation, initial conditions result in momentum towards more infections for Age 60+

for a short period of time. However, the cumulative number of infections, deaths, and

YLL are higher under Calibrated Mitigation than under Sustained Mitigation for each

vaccine prioritization policy (Figure S.3).

Although the total incidence is the highest under Optimal Prioritization, it saves

the most lives (Figure 2). In both mitigation scenarios, Optimal Prioritization results
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in lower incidence for Age 60+ relative to the other prioritization policies, but higher

incidence for Age 0-59. Cumulative deaths are between 104,000 and 151,000 greater

under NASEM depending on the mitigation scenario. Relative to No Prioritization,

NASEM similarly results in higher overall incidence, but lower incidence amongst the

elderly and lower cumulative deaths. The comparisons are similar for YLL (Figures 2

and S.3).

These effects are driven by deaths for Age 60+ although this group comprises only

21.4% of the population. Under Optimal Prioritization, mortality for 60+ is between

623 and 695 per 100,000, but it is over 760 under other policies. In contrast, mortality

for Age 0-59 is at most 40 per 100,000 under all scenarios.

Effects of Vaccination Speed

We next evaluate the effect of vaccination speed on reduction of deaths and time to herd

immunity relative to an unmitigated pandemic with no vaccinations (Figure 3). We also

consider a No Mitigation scenario with R0 = 2.6, which is calibrated to estimates in

[22]. We consider speeds ranging from 15 million vpm to 40 million vpm. The former

corresponds to 1 million doses per day of a two-dose vaccine, which is approximately

equal to the rollout speed in the US at the end of the first month [28], to 40 million,

which is higher than current Federal government targets [27].

As expected, the benefits of increasing vaccination speed are large: it decreases

both cumulative deaths and time to herd immunity under all scenarios considered.

Increased mitigation also reduces cumulative deaths and delays herd immunity for a

fixed vaccination speed and prioritization policy.

The reduction in deaths is larger under NASEM than under No Prioritization for all

speeds and mitigation scenarios we considered. By construction, Optimal Prioritization

outperforms both. These rankings are reversed for time to herd immunity. The differ-

ences between prioritization policies are more pronounced when mitigation measures

are less stringent. For each level of speed, cumulative mortality across prioritization

policies is most similar under Sustained Mitigation.
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The benefits of marginal increases in vaccination speed also depend on the priori-

tization and mitigation scenarios. Increases in speed reduce cumulative deaths more if

mitigation is lower: the effects on death are largest under No Mitigation, followed by

Calibrated Mitigation. Given a mitigation scenario, cumulative deaths is more sensitive

to vaccination speed under NASEM and No Prioritization than Optimal Prioritization.

Across the range of scenarios considered, mitigation measures have an impact com-

parable to or larger than vaccination prioritization policies or vaccination speeds. Op-

timal Prioritization with 40 million vpm under No Mitigation results in no additional

reduction in deaths than No Prioritization with 32.5 million vpm under Calibrated

Mitigation or 15 million vpm under Sustained Mitigation. Similarly, the reduction in

deaths under NASEM with 30 million vpm and Calibrated Mitigation is no higher than

NASEM with 27.5 million vpm and Sustained Mitigation.

Figure 3: Reduction in Deaths and Time to Herd Immunity versus Vaccina-
tions per month. The percentage reduction in deaths is compared to No Mitigation
and no vaccines.

The Trade-Off Between Prioritization and Speed

NASEM results in fewer cumulative deaths than No Prioritization for each speed and

mitigation scenario considered (Figure 3). However, this ranking may be reversed if
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eliminating prioritization results in higher speed. Figure 4 analyzes this trade-off by

reporting the increase in speed needed for No Prioritization to have the same cumulative

deaths or YLL as NASEM. We present results varying speed and mitigation scenarios

because Figure 3 shows that these two factors influence the effects of a marginal increase

in speed.

Figure 4: The Required Increase in Vaccinations per month under No Priori-
tization. Left panel keeps deaths the same as NASEM and plots the required increase
relative to NASEM. Right panel keeps YLL the same as NASEM.

Compared to NASEM with Sustained Mitigation and 30 million vpm, No Prioritiza-

tion would require an increase of at least 7.8 million vpm to achieve the same reduction

in the number of deaths as NASEM. The required increase in speed is much larger

under Calibrated Mitigation. At 30 million vpm, the minimum increase in vpm is 15.8

million, a 53% increase. These results are qualitatively similar if the comparison holds

YLL constant, but smaller in magnitude. They are also robust to variations on the

baseline assumptions which consider a vaccine with 80% efficacy (Figure S.10); set sus-

tained mitigation so that R0 = 1.3 (Figure S.8); or assume no vaccine hesitancy in the

population (Figure S.9). Thus, abandoning NASEM’s prioritization policy in favor of

No Prioritization while holding either deaths or YLL constant requires a larger increase

in speed under Calibrated Mitigation.
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Discussion

Economic and political pressure may push states and individuals to relax mitigation

measures as SARS-Cov-2 vaccination reduces infection and mortality. During initial

vaccine rollouts, mask mandates and other mitigation efforts have been relaxed [29].

At the same time, current prioritization policies have been criticized as slowing vacci-

nation speed [30]. This paper shows that relaxing restrictions during the rollout and

abandoning vaccine prioritization could significantly increase mortality unless the gains

in vaccination speed are dramatic.

We use an age-stratified SEIR model to benchmark vaccine prioritization policies

under different mitigation scenarios. Across the scenarios, vaccinating elderly individ-

uals who have the highest risk first minimizes cumulative deaths even though these

individuals have the lowest contact rates (see also [9]). NASEM guidelines include pri-

oritization for the elderly, but less so than Optimal Prioritization in part due to ethical

considerations for healthcare and essential workers [15]. In fact, Optimal Prioritiza-

tion illustrates that finer age-based prioritization could be valuable even after initial

vaccination phases. No Prioritization does not target high-risk individuals, increasing

deaths.

Although NASEM reduces deaths relative to No Prioritization, the differences be-

tween these policies are significantly smaller if the spread of infections is suppressed by

continuing mitigation measures during vaccine distribution. A more realistic mitiga-

tion approach that gradually relaxes restrictions during the vaccine distribution results

in a larger difference in deaths between NASEM and No Prioritization. Nonetheless,

abandoning NASEM may not increase deaths if No Prioritization results in higher vac-

cination speed. The required gain in speed to keep deaths from increasing is smaller

if mitigation measures can be sustained. Thus, combining vaccine prioritization pol-

icy with mitigation scenarios in SEIR models is essential for understanding disease

dynamics and the health effects of vaccination.

The focal outcomes we study are cumulative deaths and time to herd immunity.

The ranking between the prioritization strategies and the qualitative trade-off between
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speed and prioritization are similar with YLL. However, infection rates are higher and

herd immunity is delayed under prioritization policies that reduce deaths. The strain on

healthcare capacity or economic costs may weigh in favor of prioritization policies that

instead reduce infections. It is possible to adapt our framework to compare the effects

of vaccine prioritization and specific mitigation measures on healthcare utilization [31]

or economic impacts [24].

Several states have adapted the NASEM benchmark in devising their own guide-

lines. Similarly, Calibrated Mitigation is a stylized depiction of the phased approach

to restrictions being used in several states. Enriching our framework to more accu-

rately represent vaccine prioritization policies and mitigation scenarios requires more

detailed information on these policies. With this information, our model can forecast

the interplay between prioritization, mitigation, and speed for particular states.

Our NASEM simulation uses micro data from the US population. Detailed esti-

mates of epidemiological factors that vary by demographics and occupation could be

used to further stratify our SEIR model. For instance, contact rates and adherence

to mitigation may vary by these characteristics. The model could use such informa-

tion to more precisely evaluate the effect of prioritizing healthcare workers and first

responders in Phase 1A, which represent 5% of the U.S. population. Many guidelines

recommend prioritizing these groups partly because of their specific risks and contact

rates. Nonetheless, our age-stratified model captures the vast majority of vaccinations

occurring after the initial phase.

Our study has several important limitations. Predicting the course of the disease

presents challenges for modeling vaccine prioritization policy because of high uncer-

tainty. For example, it is unknown whether recovered individuals have enduring im-

munity [32]. There are also new strains of SARS-Cov-2, with differing levels of trans-

missibility and virulence [33, 34], and vaccine efficacy [35, 36, 37, 38]. How these new

strains affect the consequences of vaccine prioritization is unclear. Higher virulence

increases the importance of age-based prioritization, vaccination speed, and mitigation.

While our model abstracts away from these new strains, understanding the trade-off
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between prioritization, speed, and mitigation will be necessary for designing effective

vaccination and mitigation policies as the disease evolves.
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Materials and Methods

The Susceptible Exposed Infectious Recovered (SEIR) Model with Vaccina-

tions and Deaths

We use a continuous-time ordinary differential equation (ODE) model with age-stratified

compartments (Si, Ei, Ii, Ri, Di, Vi) indexed by i in the age-groups 0-9, 10-19, ..., 70-79,

80+. The model builds on [9] by incorporating the initial state of the pandemic as of

December 14, 2020; the vaccine prioritization strategy recommended by the National

Academies of Sciences, Engineering and Medicine (NASEM) [15]; and a calibrated com-

munity mitigation scenario.

Initially susceptible individuals (state S) may transition to the exposed state (E)

upon contact with infectious (I) individuals. Exposed individuals transition to the

infectious state, after an expected duration of dE. Infectious individuals, after an

expected duration of dI , transition to either the recovered (R) or the dead (D) state with

probability given by age-specific IFR from [13]. We assume that recovered individuals

are immune from infection. The expected durations dE and dI are age-invariant and

calibrated based on [39, 40]. The number of individuals in group i, denoted Ni, is

calculated by scaling the 2014-2018 5-year American Community Survey (ACS) Public

Use Micro Data [41] to its full population representation using the included person

weights.

We allow susceptible, exposed, and recovered individuals to be vaccinated because

differentiating between these groups has not been recommended in the US [15]. How-

ever, vaccinations move only susceptible individuals to the (V ) state. Vaccines do not

alter the course of individuals already exposed when immunized. We assume that vac-

cines are transmission blocking if they protect an individual; immunity, if acquired

through vaccination, is immediate once the vaccination course has been completed; and

no individual can be vaccinated more than once. For two-dose vaccines like the Pfizer-

BioNTech and Moderna vaccines, a course is completed only after both doses have been

administered.
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Vaccine efficacy is introduced by adding compartments SV , EV , IV and RV . Suscep-

tible individuals transition to the state SV upon vaccination with probability νe,i, which

is calibrated to age-specific efficacy measured in [16, 17]. Individuals in SV transition

to EV and IV according to the same laws as unvaccinated individuals. However, con-

sistent with evidence from clinical trials, all vaccinated individuals are fully protected

from death [16, 17].

We assume that community mitigation scales contact rates proportionally across all

groups. Thus, the force of infection for group i at time t is given by

λi (t) = θ (t) βi
∑
j

cij [IV,j (t) + IX,j (t) + Ij (t)] ,

where θ (t) controls the cumulative impact of all community mitigation measures at time

t, βi is the transmission probability following a contact with an infectious individual,

cij is the number of daily contacts for individuals in group j that an individual in

group i contacts, and Ij (t), IX,j (t) and IV,j (t) are the proportions of individuals in

group j that are infectious and respectively (i) unvaccinated, (ii) vaccine hesitant, and

(iii) vaccinated but unprotected from infection. Thus, the sum of these terms is the

probability that an individual in group j is infectious.

We project age-specific contacts rates using data from [10] to the US population

to calculate cij. We use a US-specific contact matrix identifying interactions in all

available location types (rural and urban) and settings (home, work, school, and other).

We follow the approach of [9] to collapse 5-year age groups into the 10-year groups in

our model. We depart from [9] by using population weights from the ACS. We again

follow [9] to extend contact matrices to include individuals aged 80+ by copying the

contact rates for individuals aged 70-79 along the diagonal and then adjusting 80+

contact rates to account for long-term care facility interactions. Specifically, contacts

between 80+ individuals and 0-60 year old individuals are scaled down by 10% with the

amount decreased then evenly redistributed to interactions with 70-79 and 80+ year

olds.

The basic reproduction number is R0, which is the first eigenvalue of the next-
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generation matrix without mitigation DβCDI , where Dβ is the diagonal matrix with

elements βi, DI is the diagonal matrix with elements dI,i, and C is a matrix with i− j

element cij. We assume that βi is proportional to age-specific susceptibility estimated

in [12] (see Table S.3). The vector β is scaled to calibrate R0 to 2.6, which is the

midpoint of values estimated in [22].

Figure S.1 presents a schematic description of the model discussed above. Table S.3

presents the calibrated parameters and Table S.1 presents the contact matrix.

Initial Conditions

Initial conditions for the model as of December 14, 2020 are calculated using data on

the age-distribution of reported deaths sourced from the Centers for Disease Control

and Prevention (CDC) [19] and smoothed state-level death counts over time compiled

by the New York Times [20], IFR rates in [13], and dE and dI . The number initially

vaccinated is zero. Following [42], we combine estimates from [40] of incubation period

and time from symptom onset to death to construct an uncertainty interval of lag of

deaths to exposure of 18 to 24 days. We assume that lags are discretely uniformly

distributed following [43]. This gives estimates of the true (not reported) number of

new exposures per day. The number of initially susceptible individuals is obtained

by subtracting the cumulative number of individuals ever exposed until December 14,

2020 from the number of individuals in the corresponding group, Ni. The number of

individuals initially exposed is the number of estimated new exposures over the course

of the dE days prior to December 14, 2020. The number of infectious individuals on

December 14, 2020 is the number of estimated newly exposed individuals over the course

of the dI days preceding dE days prior to December 14, 2020. The number of initial

recovered or dead individuals is the cumulative number of estimated exposures through

the date dI + dE + 1 days prior to December 14, 2020. Throughout our calculations of

initial conditions, we assume that no individual has been infected twice.

Table S.2 presents our initial conditions. Table S.4 compares our imputed number

of total true infections against various sources in the literature. While several studies
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have found that Covid-19 reported case counts underestimate actual infections, there

is limited consensus in the literature on the true disease incidence of Covid-19. Our

estimates fall in the middle of the tabulated total number of true infections. Relative to

[44] and [45], our estimates of total true infections are moderately higher. Our estimates

are in line with those of [46] and underestimate relative to [47]. Table S.5 compares

our age-stratified imputation against the CDC estimates [48]. The CDC estimates

are through the end of December while ours are through December 14, 2020. We are

therefore unable to directly compare the two true infection estimates. However, the

age-distribution of cumulative infections as reported by the CDC closely matches the

age-distribution of our total number of infections.

Sustained and Calibrated Mitigation Scenarios

We simulate two types of mitigation scenarios. Sustained Mitigation sets θ (t) = θ0 for

all t, with θ0 = 1.5/2.6. This value yields an effective reproduction number Rt on the

initial date of approximately 1.2 since 79.4% of the population is initially susceptible on

December 14, 2020 according to our estimates (see Table S.4). The model is equivalent

to setting R0 = 1.5 and evaluating it under no mitigation, that is, θ0 = 1.

The Calibrated Mitigation scenario sets θ (t) ∈ [0, 1] so that the total exposed plus

infectious remains constant until herd immunity is attained. The value of θ (t) is the

solution to the problem

∑
i

[
Ėi (t) + İi (t)

]
Ni = θ (t)

∑
i

βiSi (t)Ni

∑
j

cijIj (t)
−∑

i

d−1
I,i Ii (t)Ni = 0,

where we have combined the compartments EV and EX into E, and IV and IX into I

for simplicity of notation. Thus, this sets Rt = 1 until herd immunity is attained since

the expected number of new exposures caused by a newly infectious individual at time

t is equal to 1.
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Time to Herd Immunity

Time to herd immunity is defined as the earliest date on which the total infectious plus

exposed would drop if mitigation measures were lifted:

t∗ = min

t :
∑

i

βiSi (t)Ni

∑
j

cijIj (t)
−∑

i

d−1
I,i Ii (t)Ni < 0

 ,

where we have combined the compartments EV and EX into E, and IV and IX into I

for simplicity of notation.

Incorporating Vaccination Hesitancy

We incorporate vaccine hesitancy by introducing compartments SX , EX , IX and RX .

Individuals are placed in SX if they are hesitant and may only transition to EX , IX ,

RX and D. The proportion of individuals placed in SX is age-specific and calibrated

using a January 2021 survey administered by the U.S. Census Bureau [18]. Vaccine

uptake rates, equal to one minus hesitancy, are defined as the age-stratified proportion

of individuals responding to the Census survey as: (i) already having received at least

one vaccine dose, (ii) indicating the individual will probably get the vaccine, or (iii)

indicating the individual will definitely get the vaccine. The Census age stratification

does not match the model group definitions. Thus, we translate their estimates to the

model group structure using population weights from the ACS data. Further, consistent

with the limitations on the authorization of currently available vaccines, we assume that

individuals below the age of 16 cannot be vaccinated [49, 50]. This is incorporated into

our model by assuming that their uptake is 0% and thus they are fully hesitant.

Simulating the NASEM Vaccination Policy

The NASEM guidelines define a phased allocation meant to inform vaccine prioritization

policy at the federal, state, and local level. They outline five phases (1A, 1B, 2, 3,

4) based on a combination of demographics, individual health risk, and individual

occupation. We label each individual in the ACS data to the highest priority NASEM
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phase for which they qualify and simulate an iterative federal to state to individual

allocation of vaccines. Federal allocation of incrementally available units to states is by

state population share. State allocation of received units to individuals is in NASEM

phase order where within-phase allocation proceeds by random lottery. Our phase-

labeling procedure follows that of [26] and is outlined below.

Phase 1A includes healthcare workers in high-risk settings and first responders.

We identify these health care workers through industry codes from the ACS data.

NASEM also includes death care professionals, pharmacists, public health workers, and

dentists alongside frontline health care workers. These individuals, along with the first

responders, are identified using occupation codes. We use the analysis from [51] to only

include health care workers in high-risk settings.

Phase 1B includes individuals of all ages with health conditions that put them at

significantly higher risk. We use the CDC 2018 Behavioral Risk Factor Surveillance

System (BRFSS) dataset to assess risk and merge it with the ACS [52]. For each

group defined by age, sex, and race in the BRFSS data, we compute the proportion

of individuals with at least two risky health conditions. The BRFSS does not include

data on individuals younger than 18, therefore risk probabilities of the youngest age-

bin with available data, 18-24, are extrapolated to individuals younger than 18. For

each observation in the ACS data, we assign individuals to high risk based on the risk

probabilities computed from the BRFSS conditional on demographics. Phase 1B also

includes older adults living in congregate or overcrowded settings. We identify these

individuals in the ACS data by including individuals who are at least 65 years old and

live in multigenerational housing or institutional group quarters.

Phase 2 guidelines include several groups. First, K-12 teachers, school staff, and

child care workers are identified using occupation codes. Second, critical workers work-

ing in settings of high exposure-risk are identified using LMI Institute coding of the

Department of Homeland Security (DHS) definition of Essential Critical Infrastructure

Workers to identify critical workers [53]. High exposure-risk is computed using survey

results from the Bureau of Labor Statistics (BLS) O*NET on disease exposure in the
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workplace [54]. Third, individuals of all ages with at least one risky health condition

are identified using the same methods as in Phase 1B. Fourth, people living in homeless

shelters or group homes as well as staff who work in such settings are identified by

including people living in non-institutional group quarters according to the ACS data.

As non-institutional group quarters also include military barracks and college dormito-

ries, we remove any active military members and undergraduate college students from

consideration in non-institutional group quarters [55]. Staff in such settings are identi-

fied by occupation code. Fourth, prisoners and prison staff are identified as individuals

in institutional group quarters and occupation codes are used to identify prison staff.

Finally, we include all individuals at least 65 years old.

Phase 3 includes young adults, children, and critical workers not included in Phase

1 or 2. Per NASEM guidelines, we include young adults as anyone at least 18 years

old and at most 30 years old. We include children by adding everyone less than 18

years old. Using the same critical worker definition from Phase 2, we include all critical

workers who have not yet been assigned a phase.

Finally, we assign anyone remaining unassigned to Phase 4.

The NASEM guidelines contain approximate estimates of phase sizes. Our phase

labeling procedure yields phase sizes that closely match their estimates. Specifically,

they specify Phase 1A as 5%, Phase 1B as 10%, Phase 2 as 30-35%, Phase 3 as 40-45%,

and Phase 4 as 5-15% of the US population. Our labeling yields Phase 1A as 5%, Phase

1B as 11%, Phase 2 as 37%, Phase 3 as 39%, and Phase 4 as 8% of the US population.

Solving the Model

We simulate the model by solving the ODE using a daily discrete-time approximation

for 365 days. The pandemic period ends by that time in our simulations. The optimal

vaccination policy {Vi (t)}i is a function of age-group and time. We solved for this

policy using Artleys’ KNITRO optimization software. The problem is constrained so

that the total daily flow of vaccinated individuals across all groups ∑
i V̇i (t)Ni cannot

exceed the total number of vaccination courses completed each day. The optimizer
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S E I D
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Figure S.1: Schematic Depiction of the SEIR Model. SX , SV , and S are suscepti-
ble; EX , E, and EV are exposed; IX , I, and IV are infectious; RX and R are recovered;
D is dead; V is vaccinated and protected. The subscripts X and V denote vaccine
hesitant and vaccinated but unprotected respectively. V̇S, V̇E and V̇R are the rates at
which susceptible, exposed and recovered individuals are vaccinated. We ensure that
no individual is vaccinated twice by moving individuals from E and R to separate com-
partments at rates V̇E and V̇R respectively. νe denotes vaccine efficacy; λ denotes the
force of infection; dE and dI are the expected durations in the exposed and infectious
states respectively; δ is the IFR.

is initialized at an allocation proportional to the initial population share in each age

group.
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Contactee
0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

Contactor
0-9 5.70 1.19 0.94 1.69 0.90 0.55 0.38 0.16 0.14
10-19 1.70 14.29 1.30 1.19 1.57 0.53 0.23 0.14 0.14
20-29 0.80 1.93 5.63 2.81 2.17 1.43 0.36 0.12 0.12
30-39 1.61 1.13 2.38 4.39 2.85 1.58 0.57 0.16 0.11
40-49 1.01 1.72 1.96 2.92 3.71 1.70 0.49 0.19 0.14
50-59 1.32 1.43 2.35 2.58 2.92 2.86 0.80 0.22 0.17
60-69 2.01 1.31 1.58 2.34 1.89 1.78 1.67 0.47 0.20
70-79 1.15 1.39 0.56 0.99 1.19 0.86 0.92 0.82 0.53
80+ 1.04 1.04 1.25 0.50 0.89 1.07 0.77 1.28 1.24

Table S.1: Mean daily contacts by age group. Mean daily contacts by age group in
the United States in all location types and settings from [10]. Conversion from 5-year
to 10-year age intervals and extrapolation to include 80+ individuals following [9].

S(0) E(0) I(0) R(0) D(0)
Age group

0-9 0.7705 0.0051 0.0105 0.2139 <0.0001
10-19 0.7709 0.0044 0.0092 0.2156 <0.0001
20-29 0.7094 0.0060 0.0122 0.2724 <0.0001
30-39 0.7368 0.0058 0.0123 0.2451 0.0001
40-49 0.7834 0.0053 0.0115 0.1996 0.0002
50-59 0.8346 0.0044 0.0094 0.1510 0.0006
60-69 0.8763 0.0035 0.0075 0.1113 0.0015
70-79 0.9087 0.0027 0.0058 0.0792 0.0036
80+ 0.9199 0.0024 0.0052 0.0621 0.0104

Table S.2: Initial Conditions by Age Group as of December 14, 2020. Age-
stratified share of population in each model compartment at start of simulation. S(0) is
the share susceptible in the S, SX and SV groups combined; E(0) is the share exposed
in the E, EX and EV groups combined; I(0), share infectious in the I, IX and IV groups
combined; R(0) is share recovered in the R and the RX groups; D(0) is the share dead.
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Age group

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ Source

dE 4 days (age invariant) [39, 40]

dI 9 days (age invariant) [39]

βi 0.40 0.38 0.79 0.86 0.80 0.82 0.88 0.74 0.74 [12]

IFRi 0.001 0.003 0.011 0.037 0.123 0.413 1.380 4.620 15.460 [13]

Ni 40,065,319 42,116,480 45,002,935 42,518,642 40,909,501 43,310,372 36,150,682 20,706,539 12,122,561 [41]

νu,i 0.000 0.298 0.724 0.711 0.750 0.789 0.858 0.893 0.893 [18]

cij See Table S.1 [10, 9]

νe,i 0.956 0.956 0.956 0.956 0.956 0.951 0.922 0.911 0.932 [17, 16]

Y LLi 74.5 64.7 55.1 45.9 36.6 27.8 20.0 13.0 6.5 [56]

Table S.3: Calibrated model parameters. Summary of age-stratified parameters
used in model and simulation. dE, length of exposed period; dI , length of infectious
period; βi susceptibility to infection for age group i; IFRi, infection fatality rate for age
group i; Ni, number of people in age group i; νu,i, vaccine uptake (one minus vaccine
hesitancy) for age group i; cij, contact rate between age group i and j; νe,i, vaccine
efficacy among age group i; Y LLi, years of life lost upon each death in age group
i. Vaccine efficacy represents an unweighted combination of Moderna and Pfizer age-
stratified efficacy. Efficacy is extrapolated to children using reported efficacy among
youngest subgroup. Vaccine uptake is assumed to be 0% for individuals less than 16
years old. ACS population data is used to align age groups from original efficacy and
uptake sources to the groups in the model. Years of life lost are summarized at the age
group level using population weights from the ACS.

Total Infections in the U.S.
Date as of Benchmark Our Equivalent Estimate

Benchmark
[44] 11/15/20 46,910,006 56,399,234
[45] 12/14/20 15.8% of pop. 20.6% of pop.
[46] 12/14/20 67,260,900 66,475,815
[47] 12/14/20 85,127,894 66,475,815

Table S.4: Imputed cumulative infections by source. [46] estimates are as reported
on February 16, 2021. [47] estimates are as reported on December 20, 2020 for their
maintain status quo scenario. Our imputation of the percent of US population that has
been infected is computed using population counts from the ACS.
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Figure S.2: Mitigation Measures Over Time. The parameter θ over time under
Calibrated Mitigation and Sustained Mitigation (with R0 = 1.5). The mitigation pa-
rameter scales the force of infection proportionally for each group. Lower values indicate
more stringent measures.

Figure S.3: Reduction in YLL and Total Cases versus Vaccinations per Month.
The percentage reductions compared to No Mitigation and no vaccines.
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Figure S.4: IFR, Contact Rates and Vaccination Policies by Age Group and
Mitigation Scenario for 15 million vaccinated per month. Analogous to Figure
1.

Figure S.5: Active Cases and Cumulative Mortality over Time for 15 million
vaccinated per month. Analogous to Figure 2.
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Figure S.6: IFR, Contact Rates and Vaccination Policies by Age Group and
Mitigation Scenario with Sustained Mitigation set to R0 = 1.3. Analogous to
Figure 1.

Figure S.7: Active Cases and Cumulative Mortality over Time with Sustained
Mitigation set to R0 = 1.3. Analogous to Figure 2.
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Figure S.8: The Required Increase in Vaccinations per month with Sustained
Mitigation set to R0 = 1.3. Analogous to Figure 4.

Figure S.9: The Required Increase in Vaccinations per month with No Vaccine
Hesitancy. Analogous to Figure 4.
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Figure S.10: The Required Increase in Vaccinations per month with Vaccine
Efficacy set to 80%. Analogous to Figure 4.

Figure S.11: IFR, Contact Rates and Vaccination Policies by Age Group and
Mitigation Scenario with Vaccine Efficacy at 80%. Analogous to Figure 1.
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CDC Estimates Our Estimate
Cumul. as of 12/31/20 Cumul. as of 12/14/20

Age
0-17 17,552,452 (21.2%) 0-19 18,842,982 (28.3%)
18-49 41,940,215 (50.5%) 20-49 33,133,047 (49.8%)
50+ 23,486,817 (28.3%) 50+ 14,499,785 (21.8%)
All ages 83,111,629 All ages 66,475,815

Table S.5: Age Distribution of Cumulative True Infections. CDC estimates [48]
are assumed to include infections occurring through December 31, 2020 whereas our
estimates only include infections occurring through December 14, 2020. CDC reported
age groups do not align with our group structure.


