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Abstract

A principal specifies time paths of effort provision, task allocation, and knowledge

transfer for a cash-constrained apprentice, who is free to walk away at any time. In the

optimal contract the apprentice pays for training by working for low or no wages and by

working ineffi ciently hard. The apprentice can work on both knowledge-complementary

and knowledge-independent tasks. We study the optimal time path of effort distortions

and their impact on the knowledge transfer, and analyze the effect of regulatory limits on

the length of apprenticeships and on how much effort apprentices are allowed to provide.
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1 Introduction

Both in medieval times and today, employees at the beginning of their careers (e.g. ap-

prentice bakers, prep cooks, law firm associates, medical residents, post-docs) go through

a stage where they acquire knowledge and training from their employers while working

long hours. This raises the questions of whether the employers will specify more effort

than would be socially optimal and longer training periods than strictly needed for the

desired training.

In this paper, we consider the design of optimal (profit-maximizing) careers by a

principal with commitment power, who can specify time paths of effort provision, task

allocation, and knowledge transfer subject to the no-servitude condition that the agent is

free to leave at any time. We assume that the agent is cash constrained, and so cannot

simply purchase knowledge from the principal. Instead, the agent will undergo a form of

apprenticeship, where they work hard for relatively low cash payments to compensate the

principal for training them. Following Becker (1964), we are interested in environments

where the knowledge that the agent wishes to acquire takes the form of general human

capital: much of what bakers, doctors, and lawyers learn in their early years is fully

applicable in other firms. An important feature of our model is that the principal’s

ability to extract payment for transferring general human capital is constrained by the

apprentice’s ability to leave the firm once trained without paying the principal back.

Our goal is to understand how the intensity and composition of apprentice effort vary

over the course of the apprenticeship, the interaction between effort and the knowledge

transfer, and the implications of our results for various possible policy interventions. To

study effort composition, we suppose that the agent’s effort can be split between two tasks:

A “skilled task”whose productivity rises with the agent’s knowledge, such as writing legal

briefs, and an “unskilled task”whose productivity is independent of the agent’s knowledge

level —this could either be menial work such as making coffee or photocopies, or fairly

sophisticated work that does not however use the knowledge that the agent is working to

receive.

We find that the optimal contract for the principal is ineffi cient both because the agent

will work ineffi ciently hard to compensate the principal for their training and because this

training is ineffi ciently slow. Ineffi ciently slow training makes the skilled task relatively

less effi cient, so the agent spends more time on unskilled or menial work. As we show,

the extent of overwork decreases throughout the apprenticeship, and the agent spends a
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decreasing amount of time on menial effort. These implications of the model accord well

with our anecdotal observations in Section 2.

The key to understanding the time path of effort distortions is that when the principal

asks the agent to exert more effort in the future the agent is more tempted to walk away at

all earlier times. To offset this, she must lower the agent’s outside option by training them

more slowly, which reduces the agent’s productivity. This productivity loss is greater for

effort that is farther in the future, so over time the contracted effort path becomes less

and less distorted, and indeed as we show the effort distortion shrinks to zero at the end

of the apprenticeship. Moreover, because the agent is becoming more productive in the

skilled task and their overall effort level is becoming less distorted, they spend less and

less time on the menial task.

The overall length of the apprenticeship is in turn governed by the degree of effort

distortion and allocation of effort across tasks. If only unskilled effort is distorted above

the effi cient level the apprenticeship lasts 1
r
years, where r is the annual interest rate,

regardless of the degree of effort distortion. If skilled effort is distorted the apprenticeship

lasts less than 1
r
years, with a greater distortion in skilled effort leading to a shorter

apprenticeship.

Because the optimal contract specifies ineffi ciently high effort together with ineffi -

ciently lengthy training, government regulation may in principle be desirable. As we

show below, bounds on effort alone can lead to even slower training, and bounds on ap-

prenticeship length can increase overwork. Pareto-effi cient regulations require a cap on

apprenticeship length along with a time-varying bound on effort, though total surplus can

also sometimes be increased by a cap on apprenticeship length combined with a judiciously

chosen constant upper bound on hours worked.

Ours is the first model to consider a dynamic effort-for-knowledge exchange, and to

derive the resulting time-path of excessive effort. More generally, we contribute to the

study of effort provision with an endogenously evolving participation constraint.

Our model builds on that of Garicano and Rayo (2017) (GR) who studied profit-

maximizing training in a model without effort, and showed that for strategic reasons

the principal will transfer knowledge slowly even though it would be more effi cient to

transfer all of it at once. Because their model does not include effort, it cannot address

the empirical facts about workload and its composition that are the motivation for our

analysis. Like us, GR show that the principal can induce the agent to work for little or no
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pay in exchange for training, and in the main text we take this as given.1 However, our

analysis of effort distortions and their effect on the optimal contract uses entirely different

techniques, based on the theory of optimal control. And in addition to being of intrinsic

interest, the workload and tasks of apprentices are easier to observe than the speed of

knowledge transfer, and therefore serve as potential tests of the underlying theory.

Our work and GR are both related to earlier work by Thomas and Worrall (1994)

and Albuquerque and Hopenhayn (2004) on lending with limited enforcement in models

without effort. In both of these papers it is also true that the agent’s outside option

and productivity increase gradually over time, and all consumption is postponed until

output reaches its steady-state level. However, in these earlier papers repayment cannot

be enforced unless the principal is able to punish the agent for walking away.2 Thus our

work differs both because the principal can induce the agent to work without the threat

of punishment in exchange for training, and because of our analysis of the time path of

overwork.

There is an extensive literature focusing on worker training with general human cap-

ital, but this literature abstracts away from effort choice and a fortiori from the time

path of effort. In addition, Katz and Ziderman (1990), Acemoglu (1997), Acemoglu and

Pischke (1998), Malcomson et al. (2003) all assume that knowledge transfer is a one-time

instantaneous event. These papers focus on how market frictions may allow training to

occur in equilibrium even despite the diffi culties in appropriating the gains from providing

general knowledge.3

There is also an extensive literature on the effect of uncertainty about the worker’s

ability, which can lead to either more or less effort than in the first best, as in Akerlof

(1976), Landers et al. (1996), Holmström (1999), Dewatripont et al. (1999), Barlevy and

Neal (2017), Bonatti and Hörner (2017), and Cisternas (2017). All of this work abstracts

from knowledge transfers and does not distinguish between skilled and unskilled effort.

The remainder of the paper is organized as follows. Section 2 presents motivating

examples. Section 3 sets up the model, using some simplifications of the space of feasible

1In the Online Appendix we show that even if the principal is allowed to pay the agent wages and
keep them as an apprentice forever, the optimal contract specifies 0 (or minimum) wages and trains the
agent in finite time. The argument for this result does not follow from that in GR but the intuition is
quite similar.

2In Thomas and Worrall the punishment is that the host country cannot produce without the help of
the foreign firm; in Albuquerque and Hopenhayn the punishment is left more abstract.

3Hörner and Skrzypacz (2016) study gradual information revelation by a privately informed agent
about her competence; their model has neither effort nor human capital.
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contracts that we justify in Appendix A. Section 4 states and explains our main results.

Section 5 analyzes extensions to cases where the need for certification gives the agent some

limited commitment power, and where the agent can make initial cash payments. These

extensions expand the applicability of the model and suggest that our main findings are

robust. Section 6 uses our results to study the impact of various sorts of regulations.

Appendix B provides proofs for all of the results that are stated in the text.

2 Motivating examples and alternative theories

2.1 Motivating examples

Work-for-training arrangements are common in a wide range of industries. Consistent

with our predictions, apprentices frequently experience long hours and heavy workloads,

initially spend a large share of their time on menial work unrelated to the skills they wish

to acquire, and gradually progress toward more advanced tasks.

To start with, consider the restaurant industry. Star chefs posses coveted knowledge

that aspiring chefs wish to acquire (e.g. Gergaud et al., 2017). Once a chef is trained, she

can opt to work on her own and keep all her earnings; as a result, master chefs can only

obtain rents from their apprentices before they are fully trained. In upscale restaurants,

apprentices endure years of grueling work while advancing through well-defined career

stages. For example, over seven-plus years, young cooks at Le Gavroche restaurant in

London, under the tutelage of world-renowned chef Michel Roux Jr., gradually progress

from doing, as Roux himself warns, “the jobs no one wants”(under the Apprentice po-

sition) to “workhorse ”prep work (the Commis position) and eventually, if successful, to

supervising activities until becoming a Head Chef, either at Le Gavroche or elsewhere.4

Memorable examples of menial work can be found in the documentary Jiro Dreams of

Sushi, where Jiro, arguably the world’s top sushi chef, takes roughly ten years to train his

apprentices. A large share of their time is devoted to such monotonous tasks as cleaning

and preparing seafood —including massaging octopus meat for 40 to 50 minutes per batch

—and toasting seaweed by hand.

4As noted by Verena Lugert, a former employee of the famed Gordon Ramsey: “[Aspiring chefs] pay
into a blood-sweat-and-tears account and hope for a return in form of titles: Demi Chef, Chef de Partie,
[etc.] Everything is worth it: Dedication. Burn scars. Ego-Devastation. And checking in to a parallel
universe [where] ‘Only lazy [people] need sleep!’[and] working eight hours is called ‘briefly coming in for
half a day.’”See www.micheleroux.co.uk/working.html and Lugert (2017).
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Apprenticeships date back to at least the European trade guilds starting in the 12th

century, where they served as the main source of training for artisans and merchants

(Jovinelly and Netelkos, 2007). At the same time, they gave rise to opportunities for

exploitation: “Master craftsmen and tradesmen took in young learners and gave them

menial tasks that make filing and photocopying look plush” (Spradlin, 2009). Adam

Smith considered industrial-revolution apprenticeships, which usually lasted seven years,

to be excessively long and poorly paid. He viewed this arrangement as a response to the

agent’s liquidity constraints: “During the continuance of the apprenticeship, the whole

labour of the apprentice belongs to his master. In the mean time he must, in many cases,

be maintained by his parents or relations, and in almost all cases must be cloathed by

them”... “They who cannot give money [to the master], give time, or become bound for

more than the usual number of years; a consideration which... is always disadvantageous

to the apprentice”(Smith , 1872, p. 93). As we will see, this effect of cash payments is

predicted by our model.

During the industrial revolution, long hours were commonplace and even a cause for

public concern. Lane (1996) notes that a 14-hour workday was typical, with frequent

cases of even longer hours: “Shoemakers also theoretically worked a 14-hour day, but

[apprentice] George Herbert’s memories recorded that he often worked ‘for three weeks

together from three or four in the morning till ten at night’”. Just as with current-day

apprenticeships, 17th and 18th century apprenticeships commonly began with a period

of menial work: Ayres (2014) notes, “In acquiring a craft skill a youth was put through

an almost military discipline. After one or two years engaged in menial tasks: fetching

and carrying, sweeping the workshop floor or lighting the stove, an apprentice woodcarver

might be granted the privilege of learning to sharpen tools”(p. 350).5

In modern times, a number of high-end professions, including medicine, scientific re-

search, and professional services (e.g. law, accounting, banking, architecture), exhibit

some of the same features. In the medical profession, residencies constitute a form of

mandatory apprenticeship. As noted by Park (2017), residencies are “structured to serve

the dual, often dueling, aims of training the profession’s next generation and minding

the hospital’s labor needs”, with hospitals constantly struggling to “stay on the right

side of the boundary between training and taking advantage of residents.”6 In the U.S.,

5For contemporary examples of harsh apprenticeships, see UK Dept. for Business, Innovation and
Skills (2013).

6Indeed, “[l]ong hours and hard work have been features of medical training since the modern residency
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residents typically endure a grueling 80-hour work week; in contrast, less than a quarter

of fully trained doctors work for more than 60 hours a week (e.g. Landrigan et al., 2004,

American Medical Association, 2015). A significant portion of a resident’s shift is usually

spent on menial tasks, known in the medical profession as “scut”work, such as inserting

IV lines, which are valuable to the hospital but provide limited learning opportunities for

the apprentices (Jauhar, 2015).7

In surgery residencies, for example, first year trainees are commonly assigned to “floor

work”such as “talking to patients’families [...] accompanying patients to tests, and ob-

taining patients’signatures on consent-to-surgery forms. [...] They rarely see the inside

of the OR, and when they do, it’s usually to assist with an emergency or a run-of-the-mill

case”(Kirzner, 2014). Over time, residents acquire greater decision-making responsibil-

ities and progress towards more complex procedures. At Vanderbilt, for instance, the

second year experience “broadens to include opening and closing laparotomy wounds,”

third year residents progress toward “renal transplantation [...] pediatric surgery, and en-

doscopy,”fourth years are engaged in “vascular [and] thoracic surgery,”and finally fifth

years become chief residents and are “involved with major elective procedures emphasizing

complex gastroenterologic, oncologic [and] vascular cases.”8

In science careers, postdoctoral positions are widely used and, increasingly, a cause

of public concern (e.g. Stephan and Ma, 2005, Stephan, 2013). Postdocs, especially in

the life sciences, spend years working long hours (with an average 53-hour week) at low

wages (around $16/hour in 2012) in the hope of gaining skills and access to a tenure-track

job.9 Thanks to an abundance of young aspiring scientists, many postdoc employers are

able to train their postdocs very slowly, all the while using them as a form of cheap

labor: “many postdoctoral scholars —especially those not funded by training grants or

fellowships —are but poorly paid research assistants who receive little mentoring and have

few opportunities to develop an independent research agenda.”(Stephan, 2013, p. 245.)

In professional service firms, where young professionals seek to acquire knowledge from

program had its beginnings at the Johns Hopkins Hospital in Baltimore in the late 19th century”(Jauhar,
2015, New York Times).

7Schwartz et al. (1992) find that in-hospital hours of surgical residents averaged 98 per week, with
hours slightly declining over time from around 100 hours for interns (first-year residents), 97 for junior
residents, and 95 for chief residents. About 20 hours a week were spent on menial tasks.

8See the Vanderbilt University general surgery residency program at:
https://ww2.mc.vanderbilt.edu/GSR/15429 (accessed 10/15/2018).
9As noted by Stephan (2013): “If, instead, faculty members were to staff their labs with staff scientists,

they would have to pay 50—100 per-cent more than they pay to a postdoc" (p. 245).
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the firms’partners, long hours and heavy workloads are common as well (e.g. Coleman

and Pencavel, 1993, Landers et al., 1996, Barlevy and Neal, 2017). Not unlike medieval

apprentices and cooking trainees, workers in the early stages of their careers are frequently

assigned mind-numbing grunt work (e.g. Maister, 1993). A Financial Times article notes:

“There is no simple fix for an entrenched culture of overwork at professional services firms.

The fact that an entry-level analyst at a Wall Street bank is required to sacrifice his or her

personal life to the job —sitting at a desk until dawn, eating order-in food and correcting

invisible errors in spreadsheets —has been built into the system”(Gapper, 2014).10

Lastly, manicurists in the New York City area go through an apprenticeship reminis-

cent of those of the Industrial Revolution. As documented by Maslin Nir (2015), “workers

routinely work up to 12 hours a day, six or even seven days a week [...] enduring all man-

ner of humiliation”. Rampant wage violations (wages below the legal minimum, tip and

wage skimming, no overtime pay) have kept wages very low, with $30-$40 per day being

typical. Furthermore, at the beginning of a typical career, aspiring manicurists “must

hand over cash —usually $100 to $200, but sometimes much more —as a training fee.

Weeks or months of work in a kind of unpaid apprenticeship follows.”As they acquire

skills and pay their dues through menial work, they eventually advance through various

career stages: “ ‘Little job’is the category of the beginners. They launder hot hand towels

and sweep toenail clippings. They do the work others do not want to do [...] ‘Medium Job’

workers do regular manicures [...] ‘Big Job’employees are veterans, experts at sculpting

false nails out of acrylic dust.”

2.2 Alternative theories

An alternative explanation of effort distortions is that the agent overworks not to purchase

knowledge from a master, but to influence the assessment of their boss, or the labor market

more generally, about their ability (see the literature cited in the introduction). Several

predictions distinguish our theory from this alternative. First, our model predicts that

apprentices will have a decreasing time path of menial effort (see Section 4.2), and it is not

clear how that prediction would emerge from signalling or screening. Second, in our model

10While our model helps account for some aspects of these professions, it fails to account for several
others — such as firms usually offering multiple career paths, many young professionals not making
partner, and many leaving their firms before completing their training. Barley and Neal (2017) explain
these patterns as the result of the firm learning about the agent. Professional service firms also tend to
pay higher wages to their novices than other careers.
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the agent becomes more knowledgeable over time, so under natural assumptions they will

be assigned to increasingly advanced skilled tasks either because it is more effi cient to do

so or simply because there are tasks that the agent cannot do without receiving training.

Finally, our model predicts that agents who can make suffi ciently large cash payments

can reduce the length of their apprenticeship (see Section 5.2).

Likewise, our model has different and more detailed implications than one in which

workers exert effort to increase their probability of promotion in a complete-information

tournament: while such tournaments may be a source of incentives it is not clear why

they should lead to overwork, let alone to a decreasing time path of menial effort or to

the agent working on increasingly-advanced skilled tasks over time.11 This type of model

would also not predict excessive effort when the agent expects to switch employer after

completing their work, as in many of our examples.

Another reason that agents might work more hours than optimal for static effi ciency

is that doing so may allow them to learn more quickly. However, this explanation for

long work hours suggests that agents ought to do little if any menial work so as to have

more time for work that speeds their training; and does not predict a negative correlation

between cash payments and apprenticeship duration.

3 Model

3.1 Production, Payoffs, and Knowledge

A principal (she) and an agent (they) interact over an infinite horizon in continuous time.

Both players have discount rate r. At time t, the agent combines a stock of knowledgeXt ∈[
0, X

]
and two sorts of effort at, bt to produce output yt. Effort at is “skilled,”meaning

that its productivity is increasing in the agent’s knowledge Xt. Effort bt is “unskilled”

or “menial,”meaning that its productivity is independent of Xt. Let qt := at + bt denote

total effort. We assume that both at and bt are non-negative and qt is bounded above by

a constant, which we normalize to 1.

11Li et al. (2018) show that a firm may distort upward the number of junior workers it employs,
which is conceptually similar to distorting the effort of junior workers, but their model does not deliver
predictions about the time path of effort for these workers, or about its composition.
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Thus total output yt is given by

yt := f(Xt, at) + g(bt).

We assume that the agent’s flow payoff function is quasi-linear in money and that

exerting effort qt imposes cost ct := c (qt) ≥ 0 on the agent.

For ease of exposition, the main text will maintain all of the assumptions that are

needed for any of our results. The online appendix breaks these down to show which

assumptions are needed where.

Assumption 1

1. f and g are twice differentiable with fX > 0, fa ≥ 0, fXa > 0, faa ≤ 0, g′ > 0,

g′′ ≤ 0, and either faa < 0 or g′′ < 0.12

2. c is twice differentiable with c′ ≥ 0, c′ (0) = 0, and c′′ > 0.

Let v (X) := maxa,b≥0 {f (X, a) + g (b)− c (a+ b)} denote first-best surplus given X.
Because f (X, a) is strictly increasing in X, so is v (X) .

Let superscript ∗ on a function denote its maximal value given the specified argu-

ments, so that y∗(X, q) := maxa∈[0,q] {f (X, a) + g (q − a)} denotes the maximum possi-

ble output given knowledge and effort levels (X, q). Similarly, a∗ (X, q) := arg maxa∈[0,q]

{f(X, a) + g(q − a)} denotes the output-maximizing skilled effort given (X, q) . Finally,

q∗(X) := arg maxq∈[0,1] {y∗(X, q)− c(q)} is the first-best level of total effort, which is
unique from Assumption 1, and a∗(X) := a∗ (X, q∗(X)) is the corresponding first-best

level of skilled effort, which is also unique.13

To simplify the analysis we assume that the effi cient effort level is always less than 1.

Assumption 2 q∗(X) < 1 for all X ≤ X.

12Note the we have assumed that fX(X, a) > 0 even when a = 0. To justify this, imagine that the
first a > 0 units of skilled effort are costless to the agent (for example, because they enjoy a degree of
intrinsic motivation). We can then assume, without loss, that the agent exerts at least a units of skilled
effort, and reinterpret a as skilled effort above a.
13Note that ∂y

∗

∂q (X, q) = max{fa(X, a
∗ (X, q)), g′ (q − a∗ (X, q))}, so in particular ∂y∗

∂q exists.
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The assumptions that c′(0) = 0 and g′ > 0 imply that q∗(X) > 0 for all X. This means

that our model doesn’t exactly nest that of GR, though it can approximate it by setting

both the productivity of effort and its cost to be very small.14

The agent starts with some exogenous stock of knowledge X ∈
[
0, X

)
. The agent’s

stock of knowledge can never decrease, and the only way it can increase is by transfers from

the principal. In our baseline model, the principal is able to costlessly and instantaneously

increase the agent’s knowledge to any level up to X. (The Online Appendix shows that

the results are qualitatively unchanged if the principal faces a cost of training the agent.)

The agent has no other way to obtain knowledge. As a result, the principal can select any

weakly increasing function Xt with range in
[
X,X

]
.

3.2 Apprenticeship Contracts

The principal has full commitment power, and offers a contract to the agent at time 0

that specifies a graduation date T ≥ 0 and for each t ∈ [0, T ] a knowledge stock Xt and

effort levels (at, bt). Between dates 0 and T, all output belongs to the principal. After date

T, the agent works on their own and keeps all output. While the principal can commit to

the contract, the agent can walk away at any time; if the agent does so, the principal does

not hire them back. In the main text, we consider only contracts with a finite graduation

date T , and where all knowledge is eventually transferred to the agent, so that XT = X.

We also assume that the principal does not pay wages to the agent, and that total effort

qt = at + bt at each time is allocated to maximize output, so that yt = y∗(Xt, qt). As we

explain in Appendix A, such contracts are optimal in a more general model that allows

T =∞, wage payments, savings, an arbitrary effort allocation, and XT < X.15

In addition, we restrict attention to contracts where the time path of effort satisfies

a Lipschitz condition.16 Thus the set of feasible contracts, denoted Ψ, is the set of all

14Formally, fix f, g, and c that satisfy our assumptions, and then for ε > 0 define new functions fε, gε,
and cε by fε(X, a) = f(X, εa), gε(b) = εg(b), and cε(q) = εc(q).When ε is very small, effort is minimally
productive and minimally costly, and as we will see below, the resulting optimal contract is close to that
of GR.
15Intuitively, because the agent’s payoff is linear in consumption and the parties have the same discount

rate, any contract with positive wages can be improved by a contract with an earlier graduation date,
the same effort path up to graduation, 0 wages, and the same initial value for the agent. And since the
allocation of total effort across tasks does not affect the agent’s utility, it is optimal for the principal to
choose an allocation that maximizes output.
16That is, there exists a constant K such that |qt − qs| ≤ K |t− s| for all t, s ∈ [0, T ] . As we show in

Lemma A3 in Appendix B, this condition guarantees existence of an optimal contract.
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graduation times T and time paths of effort and knowledge (qt, Xt)
T
t=0 with Xt : [0, T ]→[

X,X
]
non-increasing and right continuous, XT = X, and qt : [0, T ] → [0, 1] satisfying

a Lipschitz condition. Let q := (qt)
T
t=0 and X := (Xt)

T
t=0 denote the time paths of effort

and knowledge, and let C := (T,q,X) denote a contract.

The agent has access to the same output technology when working for the expert and

when working on their own. The agent also has access to an alternate employment that

pays v, with 0 < v < v
(
X
)
, so that total surplus is maximized by fully training the

agent, and after graduation the agent’s flow payoff is v
(
X
)
. If the agent walks away

before graduation with knowledge X, they obtain instantaneous surplus max {v, v (X)} ,
which will be their flow payoff from then on.

Given a contract C ∈ Ψ, the principal’s and agent’s continuation values from date

t ≤ T onward are

Πt (C) =

T∫
t

e−r(τ−t)yτdτ and (1)

Ut (C) = e−r(T−t)
1

r
v
(
X
)

︸ ︷︷ ︸
discounted “graduation prize”

−
T∫
t

e−r(τ−t)c (qτ ) dτ︸ ︷︷ ︸
“effort tax”

,

where 1
r
v
(
X
)
is the “prize”received by the agent upon graduation.

The principal can select any contract she desires subject to the agent’s participation

constraint: At each date t ≤ T, the agent’s continuation value should be at least as high

as their outside option. We show in Appendix A that once the agent accepts the contract

and the principal has had the chance to raise the agent’s knowledge to the desired level

X0, this participation constraint holds with equality from then on; we simply assume that

here.17 Moreover, since the principal will immediately increase the agent’s knowledge to

at least the point where v(X) = v, we write the agent’s initial outside option as 1
r
v (X) ,

instead of 1
r

max {v, v (X)} . Thus the participation constraint reduces to

U0 (C) ≥ 1

r
v (X) and Ut (C) =

1

r
v (Xt) for all [0, T ]. (2)

We call the first of these conditions the initial participation constraint, and the second

17The principal wishes to raise Xt to the point where the agent’s participation constraint holds with
equality because training is costless and increases the agent’s productivity.
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one the ongoing participation constraint.

Rewriting the ongoing participation constraint in differential form, we have

dv (Xt) /dt︸ ︷︷ ︸
Flow value of new knowledge

= r [v (Xt) + c (qt)]︸ ︷︷ ︸ .
Agent’s opportunity cost

As this equation shows, when the agent is not asked to exert effort so that ct = 0, then

v (Xt) needs to increase at rate r: the principal needs to transfer knowledge more quickly

when the agent’s knowledge stock and outside opportunities are higher. Moreover, the

principal needs to transfer knowledge even more quickly the more she asks the agent to

work.

Note that we can model situations where the principal must pay the agent a strictly

positive subsistence wage with the same formalism: if the required wage is w, we can

define f̂ := f −w, ŷ := y−w, and v̂ := v−w and model the situation using (1) and (2).
To allow for this interpretation of the model, we will allow ŷ and v̂ to be negative.

The principal’s problem is to select a finite graduation date T and time paths of total

effort and knowledge before this date that satisfy the initial and ongoing participation

constraints. Formally, her problem is

max
C∈Ψ

T∫
0

e−rt y∗(Xt, qt)dt (3)

subject to (2).

Note for future reference that any optimal contract is sequentially optimal, so while

the principal has commitment power, she does not make commitments that she would

later prefer to undo. For this reason it is suffi cient for the principal to be able to commit

to spot contracts.18 This is because the agent’s ongoing participation constraint is always

binding, so any feasible change the principal would want to make at some time t could not

make the agent worse off from then on. Thus any potential improvement to the contract

could be implemented ex-ante.

18In a discrete time model it would be suffi cient for the principal to commit at the beginning of each
period to transfer knowledge at the end of it, conditional on the agent exerting the agreed effort.
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4 Solution

We begin by solving a relaxed version of problem (3) where the principal is allowed to

select the initial knowledge level X0 to be arbitrarily low. We then use the solution to the

relaxed problem to derive the optimal contract for the original problem.

Define the knowledge premium given knowledge X and skilled effort a as

ρ(X, a) :=
fX (X, a)

fX (X, a∗ (X))
.

Because fX (X, a∗ (X)) = v′(X) from the envelope theorem, this premium measures the

marginal impact of knowledge on the agent’s productivity inside the relationship relative

to its impact on the agent’s outside option. Notice in particular that for any given a,

an increase in X that raises the agent’s outside option v (X) by one unit, raises current

output by ρ(X, a) units. As we shall see, the knowledge premium plays a central role in

determining both the optimal effort levels and the optimal contract length.

Relaxed problem. Here we suppose the principal is free to chooseX0 unconstrained

from below. In this case, the principal’s problem simplifies to that of selecting any desired

contract length T and effort path q while setting the knowledge path X to its highest

level such that the agent’s ongoing participation constraint is met. That is,

v(Xt) = e−r(T−t)v(X)− r
∫ T

t

e−r(τ−t)c (qτ ) dτ . (4)

Let ρt := ρ(Xt, at) denote the corresponding knowledge premium at time t, where at =

a∗ (Xt, qt) .

Theorem 1 characterizes the solution:

Theorem 1 In the relaxed problem the optimal contract is unique and satisfies:

1. r
∫ T

0
ρtdt = 1.

2. For all t,

∂y∗

∂q
(Xt, qt) /c

′ (qt) = max

{
r

∫ t

0

ρτdτ ,
∂y∗

∂q
(Xt, 1) /c′ (1)

}
. (5)
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As a result, the optimal effort path is effi cient at the terminal time T , and exceeds the

effi cient level at all earlier times.

Here is a simple heuristic derivation of this result. Consider first the choice of T. A

marginal increase in T allows the principal to keep the agent’s output for longer, but since

this hurts the agent, it forces the principal to lower the agent’s knowledge throughout the

apprenticeship. That is, the principal faces a trade-off between a longer apprenticeship

and a less-productive apprentice.

Suppose, in particular, that the principal lengthens the apprenticeship to T+dT, while

specifying the same effort as before up to T, and first-best effort over the interval dT . Set

dT so that this modification gains the principal, and costs the agent, 1 in present value.

To meet the participation constraint, at each time t ≤ T the agent’s outside option must

fall by 1 unit in present value, which lowers their productivity by rρt units in present

value; hence, the principal loses r
∫ T

0
ρtdt. It is therefore optimal to set

r

∫ T

0

ρtdt = 1.

Because ρt ≥ 1, this equations tells us that the contract will last at most 1/r years, with

a shorter apprenticeship the greater the values of ρt.

Consider now the choice of effort path. A marginal increase in the required effort

level at time t raises output at that time, but since it hurts the agent, the principal must

lower the agent’s knowledge at all previous times to deter the agent from leaving. Thus

the principal faces a trade-off between a higher output today and lower output at every

prior date. Suppose, in particular, that the principal raises effort at time t so as to cost

the agent 1 extra in present value. This raises output by ∂y∗

∂q
(Xt, qt) /c

′ (qt) in present

value. But to meet the participation constraint, at each time τ ≤ t the agent’s outside

option must fall by 1 unit in present value, which lowers their productivity by rρτ units in

present value; and so the principal’s overall loss is r
∫ t

0
ρτdτ . Hence, the principal either

sets
∂y∗

∂q
(Xt, qt) /c

′ (qt) = r

∫ t

0

ρτdτ , (6)

or, when this is impossible given the upper bound on effort, she sets qt = 1. The right-

hand side of (6) is the principal’s (shadow) cost of effort. The left-hand side of (6) is

the (inverse) effort distortion. This ratio is strictly decreasing in effort, and is equal to 1
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when effort is first-best. (Since effort is bounded above by 1, the lowest feasible value for

the ratio is ∂y∗

∂q
(Xt, 1) /c′ (1) .)

Early in the relationship the (shadow) cost of effort is so low that the principal opti-

mally sets qt = 1. Then as time goes by this cost grows and effort becomes less and less

distorted relative to first best; until, at the terminal time, the principal fully internalizes

the agent’s true cost and effort becomes first best.

The two equations in the theorem, together with the binding participation constraint

(4), define a unique contract. To see why, begin at time T where knowledge is known

to be X, effort is first best, and ρT = 1. Now move backward in time using the system

(4) and (5), the relationship r
∫ t

0
ρτdτ = 1 − r

∫ T
t
ρτdτ , and ρt := ρ(Xt, a

∗ (Xt, qt)) to

determine the time-paths of knowledge, effort, and knowledge premia. Because (4) and

(5) uniquely define Xt and qt given the values of
∫ T
t
e−r(τ−t)c (qτ ) dτ and

∫ T
t
ρτdτ , these

paths are unique.

Original problem. We now return to the original problem where X0 is constrained to

be no smaller than X. Theorem 2 characterizes the solution:

Theorem 2 In the original problem the optimal contract is unique. Moreover, for all X,

there is a threshold X̂ < X such that:

1. If X ≤ X̂ the optimal contract corresponds to the relaxed solution in Theorem 1.

2. If X > X̂ the optimal contract is the truncated version of the relaxed solution

obtained by eliminating from this relaxed solution all time periods where knowledge is

below X. That is, the agent begins the contract farther along, with initial knowledge

X0 = X.

The threshold X̂ is the initial knowledge prescribed by the unconstrained solution.

Letting U0 denote the agent’s total payoff in the relaxed solution, this threshold solves

v(X̂)/r = U0.

The first part of the theorem is immediate. To gain intuition for the second part notice

that because the agent’s ongoing participation constraint always binds, the unconstrained

solution is sequentially optimal. Hence whenever X exceeds X̂, it is optimal to begin the

contract with knowledge X and to proceed from there as prescribed by the unconstrained

solution.19

19As we show in the Online Appendix, our results extend to the case where the principal incurs a
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Notice that when X < X̂ the principal grants the agent a knowledge gift at time zero,

raising the agent’s knowledge to level X̂. An example would be a summer crash course

at the beginning of a consulting career.

4.1 Pareto-effi cient contracts

Recall that the principal’s optimal contract is sequentially optimal. Hence, as time goes

by, the players’continuation payoffs trace the Pareto frontier. It follows that any Pareto-

effi cient payoffs (Π, U) are uniquely implemented by an initial knowledge gift to raise

the agent’s knowledge to v−1(rU), followed by the principal’s optimal contract when the

agent starts with that knowledge level. That is, every Pareto-effi cient contract is simply a

truncated version of the principal’s optimal contract, where the agent begins the contract

farther along and therefore endures a shorter apprenticeship. Notice also that along the

Pareto frontier, as U grows and Π falls total surplus grows monotonically, and reaches the

first-best level when Π reaches 0.

We obtain the slope of the Pareto-frontier using a simple heuristic. Pick an arbitrary

payoff U = v (X0) /r for the agent (supported by an underlying Pareto-effi cient contract

of length T ). Now raise U by 1 by gifting the agent a money bonus at graduation worth 1

in present value.20 Measured in present value, this costs the principal 1, but it also allows

her to raise the agent’s outside option by 1 at each time before graduation, allowing her

to gain r
∫ T

0
ρtdt in additional output. Hence, the net loss for the principal —which gives

us the slope of the frontier —is

dΠ/dU = −1 + r

∫ T

0

ρtdt.

This slope is −1 when the agent begins with knowledge X0 = X (in which case T = 0),

and becomes less and less negative as X0 falls (and T grows). Because the principal pays

for effort with knowledge, this slope is equal to the principal’s (shadow) cost of effort.

Hence, in any given Pareto-effi cient contract, as time goes by and players move along the

Pareto frontier, knowledge becomes more and more costly to the principal and hence the

effort distortion falls.

cost k per unit of knowledge transferred to the agent; the only change is that in the equations for the
optimal contract length and effort path, [ρt − k] takes the place of ρt. Hence as k grows the apprenticeship
becomes longer, but otherwise has very similar properties.
20Equivalently, the principal could slightly shorten the apprenticeship.
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Figure 1

Figure 1 depicts the Pareto frontier for the case where y∗ (X, q) = X + q and c (q) =

α + βqσ. The slope of this frontier ranges from 0 at the principal optimum to −1 at the

agent optimum (panel A). As c becomes more linear (σ falls) effort becomes closer to a

money transfer and the Pareto frontier expands (panel B).21

4.2 Evolution of effort

Corollary 1 describes the path of unskilled effort.

Corollary 1 The optimal path of unskilled effort is weakly decreasing, strictly so when-

ever unskilled effort is positive and below its upper bound of 1.

To gain intuition, notice that as times goes by the principal’s shadow cost of effort

grows, and hence unskilled effort becomes less distorted relative its first-best level. At

the same time, the marginal value of skilled effort grows, and hence the first-best level of

unskilled effort falls. Both these effects cause bt to fall.

In contrast, the path of skilled effort can in principle be increasing, decreasing, or even

non-monotone. This is because, even though skilled effort becomes less and less distorted
21In panel B, as σ varies, α, β and the maximum feasible effort vary so that q∗, c (q∗) and the maximum

feasible effort cost are held constant.
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relative its first-best level, this first-best level is itself increasing. Depending on the details

of f and g, either one of these effects can dominate.22

In practice, novices may go through an initial phase where they do very little skilled

work. By imposing additional structure on the output technology we can guarantee that

the optimal contract exhibits this property. To illustrate, suppose output is X · (a+ a) +

g(b), where a > 0 is a small exogenous level of skilled effort that is costless to the agent

(e.g. because of intrinsic motivation), a is skilled effort above a, and g is strictly concave.

And suppose further that g satisfies

X0 < g′ (1) < g′ (0) < X,

where X0 is the optimal initial knowledge level given g.23 In this case the novice goes

through an initial phase where Xt ≤ g′ (1) and at = 0, then an intermediate phase where

g′ (1) < Xt < g′ (0) and both at and bt are potentially positive, and finally a phase where

g′ (0) ≤ Xt and bt = 0.

Finally, casual empiricism suggests that as time goes by apprentices not only do less

menial work, but also devote their skilled effort to more and more advanced tasks. For

example, as noted in Section 2, novices ranging from young cooks to surgeons go through

well-defined career stages, initially carrying out the least desirable and simplest tasks

and then gradually progressing into more sophisticated activities. This pattern is readily

obtained in an extension of our model with multiple skilled tasks that are ordered by

diffi culty, on the assumption that it is effi cient to assign more knowledgeable workers to

more diffi cult tasks.

4.3 Contract length

Corollary 2 shows how effort distortions influence the length of the optimal contract.

Corollary 2 When the agent’s initial participation constraint is slack and the contract
22We can show by example that each case can occur.
23To see that such a g exists, notice first that regardless of g, profits are bounded below by

(
X −X

)
a,

because the principal can ask the agent to work over a period of time using knowledge X and effort
q∗(X), promise all knowledge at the end of this period, and choose the period so that the agent earns
zero rents. Now restrict to functions g such that g(0) = 0 and g′ (0) < X. Because instantaneous output
is bounded above, T is bounded away from 0 (otherwise profits would not be bounded away from zero).
Hence X0 is bounded away from X. The desired condition is then met whenever g(0) = 0 and both g′ (1)
and g′ (0) are close to X.
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specifies a first-best level of skilled effort at all times, then T = 1
r
; otherwise T < 1

r
.

Note that if skilled effort is first best at all times, ρt is always equal to 1. Hence the

optimal length satisfies r
∫ T

0
dt = rT = 1, which corresponds to the optimal length in

GR. In our model, this case obtains for instance when fa(X, 0) < g′(1), so that even

when the agent is fully trained, it is ineffi cient for them to work on the skilled task.24 In

this “menial-effort-only”case, when menial effort becomes more productive (that is, when

g is replaced by γg with γ > 1), the principal asks the agent to work harder, and the

ongoing participation constraint then requires that the time path of knowledge becomes

lower at all dates before T . For this reason, paying for knowledge with menial effort is

very different from paying for it with cash. As we show in Section 5.2, when the agent

has some initial cash, the principal takes it, and the time path of knowledge is weakly

higher than without a cash payment, strictly so when the agent has significant cash.

Conversely, if skilled effort is ever higher than first best, we obtain
∫ 1

r

0
ρtdt >

1
r
and

T < 1
r
. Thus the interaction of skilled effort and training leads to shorter optimal contracts

than in GR.

5 Extensions

5.1 Training certificates (and indentured servitude)

So far we have assumed that the agent is unable to commit to keep working for the

principal after being trained. If instead the agent had full commitment power, the optimal

contract would immediately fully train the agent, specify the corresponding first-best level

of effort, and require that the agent works for the principal for a time interval just long

enough to extract the full value of all knowledge from the agent. The many complaints

about slow training and excess effort that we discussed in Section 2 suggest that in practice

the agent commonly does not have this sort of commitment ability. Nevertheless, in some

situations the agent’s outside opportunity is lower than v(X) unless they are provided

with a certificate of completion, occupational license, or letter of recommendation from

the principal. Here the agent’s desire to be certified in effect makes human capital at least

partially firm-specific.

24This corresponds to the special case where effort and knowledge are always substitutes.
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In the extreme case where the agent’s outside option without a certificate is v regardless

of their level of training, the principal can implement the full-commitment solution with

immediate training and first-best effort at all times. More generally, if the certificate adds

a fixed amount∆ to the agent’s outside option, then when the agent has knowledgeX their

value is 1
r
v(X)with a certificate and 1

r
max{v(X)−∆, v} without it. In this case, as we

show in the online appendix the optimal contract has two phases. Phase 1 resembles the

solution for ∆ = 0: Here knowledge grows over time, the agent’s participation constraint

binds at each instant, and the agent works ineffi ciently hard until the last instant of the

phase, which occurs when the agent is fully trained (that is when Xt = X). Phase 2

corresponds to the solution for large ∆: Here the fully-trained agent exerts first-best

effort and earns zero wages over a time interval just long enough to extract the full value

∆/r of the certificate from the agent.

Thus when ∆ is small, the solution is very similar to the solution in our main model;

the main difference is that the “graduation prize”for phase 1 is v(X̄)−∆ instead of v(X̄),

and the differential version of the participation constraint is now
·
ut = r [ut + c (qt)−∆]

instead of
·
ut = r [ut + c (qt)] , where ut = v(Xt). As ∆ grows, the agent can be trained

more quickly, but is kept longer after being trained. Hence, a more valuable certificate

(e.g. a more demanding occupational licence) raises profits, but is potentially damaging

to the agent.

Indentured servitude agreements may play a role similar to certificates. For instance,

if the principal can threaten to impose a penalty D on an agent who walks away from

the relationship, then the parties can enter a servitude agreement whereby, after being

trained, the agent promises to continue working for the principal until giving up value

D. This case is identical to the above case of a certificate with ∆ = rD. Indentured

apprenticeships date back to medieval times, where apprentices were commonly bound to

their masters for a number of years (e.g. Thrupp, 1989). Arguably, these arrangements

are echoed in some modern apprenticeships where servitude contracts have been replaced

with (more benign) certification requirements.25

25Indentured servitude has also been widely used, both historically and in modern times, to finance
the migration of credit-constrained workers (e.g. Galenson, 1984, and Guido and Guriev, 2006). In
modern times, illegal workers and their employers enter agreements where the worker spends time in a
sweatshop, under coercion, until the agreed debt has been repaid. Our model suggests that such debt
may in principle include not only the cost of smuggling the worker, but also the value of any knowledge
acquired in the sweatshop.

21



5.2 Cash payments

In the baseline model the agent starts out with no cash and cannot borrow from a third

party. If the agent instead begins the relationship with a cash balance M that is known

to the principal, then the optimal contract is as follows (where we have assumed that

v (X) ≥ v without loss):26

1. If M is lower than the value of the optimal level of the knowledge gift [v (X0) −
v (X)]/r in the baseline model, then the principal charges the agent M upfront

for the right to enter the apprenticeship, and otherwise leaves the apprenticeship

unaffected.

2. If M is higher than [v (X0)− v (X)] /r, but lower than
[
v
(
X
)
− v (X)

]
/r, then the

principal charges the agent M and, in return, offers the agent a Pareto-effi cient

apprenticeship in which the agent earns payoff U = v (X) /r + M . Recall that

this apprenticeship is the truncated version of the original apprenticeship where the

agent is given a larger initial knowledge injection, and therefore starts out farther

along the training path.

3. If M is higher than
[
v
(
X
)
− v (X)

]
/r, then the principal sells the agent all knowl-

edge upfront, at a price equal to its full value.

Thus we see that a higher cash level (weakly) shortens the apprenticeship, allows the

agent to avoid the worst of the effort distortions (and the worst of the menial work), and

raises total surplus. However, the principal’s monopoly power means that, net of the cash

payment, the agent does not benefit, and may even lose, from having access to this cash.

The proof for this result is as follows. Suppose first that M is lower than [v
(
X
)
−

v (X)]/r. Because the slope of the Pareto frontier is less than 1 in absolute value, it is

optimal to ask the agent to buy M dollars worth of knowledge up front. The optimal

contract then maximizes profits (above and beyondM) subject to the initial participation

constraint U ≥ v (X) /r + M. Since a larger M is equivalent to a larger v (X) /r, the

result follows from Theorem 2. Finally, if M is greater than
[
v
(
X
)
− v (X)

]
/r, then

the principal can obtain profits equal to the first-best surplus by selling all knowledge up

front.
26Garicano and Rayo (2017) derive a special instance of this result for the case where there is no effort

choice.
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As noted in Section 2, Adam Smith observed that during the industrial revolution,

masters asked their novices for up-front cash payments for the right to enter an unpaid

apprenticeships, and novices who could not make this payment served longer apprentice-

ships, as our model predicts. Similarly, in medieval apprenticeships, “Lack of payment

could be made an excuse for prolonging the term of service [...] Unfortunately for the mas-

ters, the supply of labor able to pay for apprenticeship fell short of demand.”(Thrupp,

1989, 215). And as an example in modern times, aspiring New York manicurists are

asked to pay to enter a type of unpaid apprenticeship, and sometimes also to acquire

additional skills (“$100 for eyebrow waxing, $100 to learn how to apply gel and cure it

with ultraviolet light ”), with discounts possible after a long enough service (Maslin Nir,

2015).

6 Regulating apprenticeships

Regulators have long been interested in protecting apprentices from potential abuse by

their masters. In Germany and Switzerland, where apprenticeships are widespread, the

government imposes heavy regulation. As Wyman (2017) notes, the apprenticeship sys-

tem “is jointly governed and funded by the public and private sectors. Furthermore,

cantons (state governments), the federal government, trade associations and companies

collaborate closely to design curricula, standards, and training programs.”In the U.S., tra-

ditional apprenticeships are less common, but various training relationships are regulated

nonetheless. For instance, to obtain a license (a form or training certificate), hair stylists

“must complete a 900-hour cosmetology curriculum covering everything from chemical

hair treatments and pedicures to shaving”(Williams, 1997). Another example is that of

medical residencies, where, as we discuss below, regulators have been recently interested

in capping the hours worked each week.

The model helps us identify some important issues in evaluating various possible forms

of regulation. To frame our discussion, recall that any Pareto-effi cient payoffs are uniquely

implemented by a (potentially zero) initial knowledge gift followed by the principal’s

optimal contract given that initial gift.

Mandated training. The government may attempt to raise surplus by mandating a

higher initial knowledge gift, that is by mandating faster training early in the relationship.

This may potentially justify attempts by European governments to control the curricula
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of apprentices. However, in many cases the government lacks the knowledge necessary

to design an optimal curriculum and the means to verify that a knowledge transfer has

occurred.

Certificates and government funding. The certificates discussed in Section 5.1 can

potentially promote effi cient effort and rapid training. Indeed, by requiring that the

agent is certified by a specific principal before they are allowed to use their knowledge in

the broader labor market, or switch to another principal, the planner directly addresses

the agent’s commitment problem. Such a remedy, however, faces a potential drawback

outside the model: Once the agent’s has committed to a particular master, the agent has

much less of a check on potentially abusive behavior.

The government can also raise surplus by relaxing the agent’s liquidity constraint

(see Section 5.2). This motive may justify government funding of apprenticeships, as

frequently observed in Europe. It may also justify providing student loans, though as we

have seen very small loans may only benefit the principal.

Caps on effort and apprenticeship length. The regulator might also consider a cap on

the length of the apprenticeship, a cap on effort, or a combination of the two.27 The next

result considers the idealized case where the government can impose both a cap on length

and a cap on effort that varies over the life of the apprenticeship.

Proposition 1 For every Pareto-effi cient contract C there is a cap on contract length
and a (time-dependent) cap on effort that together induce the principal to select C.

To gain intuition, pick a Pareto-effi cient contract C with length T , effort path q, and
initial knowledge level X0. Notice that this contract uniquely maximizes the principal’s

profits subject to the agent’s payoffbeing at least v (X0) /r. Now impose a cap on contract

length equal to T and a time varying cap on effort equal to q. These two caps combined

imply that the agent’s payoff can be no lower than v (X0) /r (per equation 4); hence they

induce the principal to select the desired contract.

Notice that over the allowed duration of the apprenticeship, the optimal time-dependent

effort cap is equal to the unconstrained principal-optimal effort path. Thus, for any given

desired apprenticeship length, one could use historical data on an industry to measure

effort levels, working backward from the novice’s graduation date, and use them to set

the time-dependent effort cap.
27GR consider caps on apprenticeship duration alone, without considering their impact on the effort

path.
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In some cases it may not be easy to identify or implement the optimal time-dependent

effort cap in Proposition 1. For this reason it is interesting to note that when the optimal

contract prescribes effort weakly above the steady-state level, welfare may be increased

by regulations that combine a time-invariant effort cap with a limit on the training pe-

riod, even though such regulations are not Pareto effi cient. One can check this hypothesis

empirically by using historical data in a given industry to compare the hours of appren-

tices against the hours of fully trained agents. For instance, medical residencies appear

to satisfy this hypothesis, as medical residents routinely work at least 80 hours per week,

whereas 90% of fully trained doctors work 70 hours or less (see American Medical Asso-

ciation, 2015).

Proposition 2 Let (T,q,X) denote the principal-optimal contract and suppose qt ≥
q∗(X) for all t.28 Then any cap on contract length TCAP ≤ T combined with a constant

cap on effort qCAP = q∗(X) weakly increases surplus, strictly so whenever TCAP < T , or

qt > q∗(X) at some time t, or both.

When the hypothesis of the proposition is satisfied, an effort cap at the steady state

level forces the principal to move the effort path closer to the first-best path (which prior

to graduation lies strictly below the steady state level). Moreover, because contract length

is capped at the original level T (or lower), the agent faces a less costly apprenticeship

and hence can be granted additional knowledge.

Notice that the improvements made by the regulations considered in the two proposi-

tions can come in part from an increase in the “knowledge gift”that the principal provides

at time 0. In practice, there is a bound on training speed, and this instantaneous gift

corresponds to an initial phase where knowledge is raised as quickly as possible to the

desired starting level. From the viewpoint of optimal regulation, the government should

always allow the principal to devote as much time as she would like to such “pure training

phases”where the agent is fully devoted to learning without this time counting toward a

limit on the duration of the apprenticeship.29

28One case of the model where this hypothesis is satisfied is when knowledge and effort are substitutes
(i.e. y∗ (X, q) = X + q) for in this case q∗ (X) = q∗

(
X
)
for all X. Another case is when y∗ (X, q) = X · q,

c is quadratic, and the exogenous bound on effort is large relative to q∗
(
X
)
(Section 4 of the Online

Appendix derives an analytical solution for this case).
29In an earlier version of this paper we explicitly verified that when there is a bound on training speed,

under suitable assumptions the principal optimally has such a pure training phase at the beginning of
the apprenticeship. And since the gift grows when we cap T (and effort), the pure training phase would
also grow.
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Both effort caps and caps on length are needed for these results. A cap on appren-

ticeship length alone, without a cap on effort, accelerates the agent’s graduation, but also

leads the principal to further distort effort, and even distort effort at the terminal date, in

order to sell her knowledge more quickly.30 For this reason, unless the cap is tight enough

that the principal chooses to give away most of her knowledge, its impact on surplus is

ambiguous. Moreover, if the principal faces a cost when training the agent, a suffi ciently

tight cap may simply drive the principal away from the market. Conversely, a cap on

effort without a cap on apprenticeship length reduces the effort distortions at a given

knowledge level of the agent, but may lead the principal to lengthen the apprenticeship,

so here again the impact on total surplus is ambiguous.

Moreover, as illustrated in the following remark, even very mild caps on length or

effort alone can be counter-productive.

Remark 1 Let (T,q,X) denote the principal-optimal contract absent regulation. Suppose

knowledge and effort are substitutes (i.e. y∗ (X, q) = X + q) and suppose X is strictly

above the unconstrained initial knowledge level, and so there is no initial knowledge gift.

Then, every cap on contract length TCAP < T that is close to T reduces surplus. Similarly,

every cap on effort qCAP < supt qt that is close to supt qt reduces surplus.

(Proof in Appendix B.)

Intuitively, the reason these “light-touch”caps fail is that when X is above the uncon-

strained initial knowledge level, neither a small reduction in contract length nor a small

reduction in maximum allowed effort will make the principal want to give the agent a

knowledge gift. Thus these interventions lower the principal’s payoff while leaving the

agent’s payoff unchanged.31

A recent example of regulation is the cap on hours worked by medical residents in

the U.S. This cap, which limits hours to 80 per week averaged over a four week period,

was first imposed in 2003 by the Accreditation Council from Graduate Medical Education

30This can be seen from the first-order condition for qT in the proof of Lemma A4, part 2.
31One can also find cases where caps on either length or effort raise surplus. For example in GR,

because there is no effort, any cap on length TCAP < 1/r raises surplus. Any such cap would also raise
surplus after we add effort to the model provided there is an initial knowledge gift and effort is both
minimally costly and minimally productive, so that the model remains close to GR. Also, it is easy to
show that any constant cap on effort qCAP that is suffi ciently close to 1 increases surplus when knowledge
and effort are substitutes and there is an initial knowledge gift to begin with, as in this case T = 1/r
both before and after the cap.
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(ACGME).32 Critics of this 80 hour limit feared that it would hurt patient care and hinder

learning (e.g. Carroll, 2016), but in 2011 the ACGME decided to keep this limit. It noted

that: “In the 7 years that the GME community has functioned under the 2003 common

standards, studies have shown that residents’clinical exposure, academic achievement,

and medical knowledge have remained constant or improved slightly [. . . ] and quality of

care appears to have been unaffected or only very slightly improved by the 2003 limits.”

(ACGME, 2011, p. 29.)

Our analysis highlights a risk behind such regulation. The cap, to the extent that it

is adequately enforced,33 may cause residency programs to eventually grow in length, and

indeed the ACGME recently authorized a pilot program that lengthens family medicine

residencies from 3 years to 4 (see Abercrombie et al., 2012).34 A potential remedy, per

Proposition 2, is to restrict apprenticeship length using historical data on length prior to

the imposition of the weekly hour cap.

7 Conclusion

To conclude, we briefly review our main findings. We have considered the optimal contract

for a principal with commitment power to “sell”knowledge to a cash-constrained agent,

or apprentice, who is free to walk away at any time. In these contracts, the agent works

for the principal for low or no wages.35 The optimal contract is ineffi cient both because

the agent will work ineffi ciently hard to compensate the principal for their training, and

because this training is ineffi ciently slow. The extent of overwork decreases throughout

the apprenticeship, and the agent spends a decreasing amount of time on menial effort.

When the production function leads the principal to require excess effort in the skilled

task, the period of apprenticeship decreases, while if the principal only ever requires excess

effort in the unskilled task, the length of the apprenticeship is unaffected by the degree to

32The ACGME was motivated by public pressure, evidence of the adverse effect of lack of sleep on
performance, and a threat of legislation (ACGME, 2011). It also regulates shift length and requires
minimum rest periods.
33There is been some debate about how well the cap on residency hours has been enforced. See for

example Ketcham (2008).
34In defense of the pilot program, Abercrombie et al. (2012) argue that “Duty hour restrictions reduced

the available teaching hours to less than 2.5 years [...] How do we produce a competent graduate with
the constraints of less time?”
35Appendix A shows that the optimal contract when wages are allowed is to pay the minimum allowed

wage. (The minimum for apprentices and young people can be lower than the general minimum.)
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which the agent is overworked. Moreover, bounds on effort alone can lead to even slower

training, and bounds on apprenticeship length can increase overwork, but total surplus

can be increased by a cap on apprenticeship length combined with a judiciously chosen

upper bound on hours worked.

These results follow from our assumption that the agent is unable to commit to keep

working for the principal after being trained. If the agent has full commitment power,

the optimal contract will immediately fully train the agent, and specify the corresponding

first-best level of effort. The many complaints about slow training and excess effort that

we discussed in the introduction suggest that in practice the agent commonly does not

have this sort of commitment ability.

Finally, we should point out that we have abstracted away from the idea that the

agent learns by doing, so that the rate of knowledge transfer depends on the amount of

skilled effort, and also abstracted away from the possibility that the agent, principal, or

both, are learning about the agent’s ability over time. We have also assumed that there

is only a single potential agent. If the principal can only train one (or a small number) of

agents at a time, then training a given agent has an opportunity cost, and in some cases

this might lead to “incomplete training,”that is the principal might switch to training a

new agent before the current one acquires all of the principal’s knowledge. All of these

are important aspects of some apprenticeship relationships, and we plan to explore them

in future work.36
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8 Appendix A: General Contracts

In this appendix we show that the restricted contracts we considered in the main text

are in fact optimal in the larger space of contracts where the principal can pay wages,

the agent can save, apprenticeships can last infinitely long, training may be incomplete, a

given amount of total effort need not be effi ciently allocated between the two tasks, and

the ongoing participation constraint can be slack.

We now suppose that the principal can pay nonzero wages at any time, and that the

agent has access to a savings account that pays interest r, but has no capital up-front

and has no ability to borrow. We do not allow the agent to go into debt, but we do

allow the wage payments to be negative —this allows the agent to give money back to

the principal once they have accumulated some. We model this by the liquidity constraint∫ t
0
e−rτwτdτ ≥ 0 at all t.

We no longer require the graduation date T to be finite. Instead, we set X∞ :=

limt→∞Xt, and say that the agent graduates at time T = inf {t : Xt ≥ X∞} .
At time 0, the principal offers the agent an employment contract, denoted C =

(T, a,b,w,X) where T ∈ [0,∞] is the graduation date, and a,b,w, and X are the time

paths of a, b, w, and X respectively. Between dates 0 and T, all output net of wages be-

longs to the principal. After date T, the agent works on their own and keeps all output.37

While the principal can commit to this contract, the agent can walk away at any time; if

the agent does so, the principal does not hire them back.

Given contract S, the principal’s and agent’s continuation values from date t ≤ T

onward are now

Πt (C) =

T∫
t

e−r(τ−t) [yτ − wτ ] dτ and (7)

Ut (C) =

T∫
t

e−r(τ−t) [wτ − cτ ] dτ + e−r(T−t)
1

r
v (XT ) .

The principal’s problem is to maximize discounted payoff
∫ T

0
e−rt [yt − wt] dt over con-

37Contracts where the agent continues to work for the principal after T are weakly dominated because
once the knowledge transfer has ended, the agent demands wages at least equal to output. Contracts
where the agent works on their own during some periods prior to T are strictly dominated because this
delays the principal’s profit flow.
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tracts (T, a,b,w,X) that satisfy the liquidity constraint and the participation constraint

Ut(C) ≥ 1
r

max {v, v (Xt)} , subject to the technological constraints at, bt ≥ 0, at + bt ≤ 1,

and Xt ∈
[
X,X

]
non-decreasing and right continuous in t, and the technical condition

that at + bt is Lipschitz continuous.

The proofs of the following two lemmas are in the Online Appendix.

Lemma A1

1. The principal can obtain a strictly positive profit by contracting with the agent.

2. Any contract with W∞ > 0 is strictly dominated by a contract with 0 net

payment, and any contract where the agent does not acquire all of the principal’s

knowledge in finite time is strictly dominated by a contract where they do.

Moreover, it is without loss to require that wt = 0 at all times t.

To gain intuition for part 1 of this lemma, note that the principal can train the agent to

an intermediate level X ′ ∈ (X,X) such that v(X ′) > v, and induce them to work at zero

wages for some short period of time in exchange for receiving the remaining knowledge at

the end of the contract.

The key to the second part is that any contract with W∞ > 0 can be improved

by a contract with an earlier graduation date, the same effort path up to graduation,

0 wages, and the same initial value for the agent. Because the new contract replaces

wages with a more valuable final reward, the agent is less tempted to walk away while

being trained, and so the new contract meets all of the participation constraints. Then

because the two sides have the same discount rate, and it is effi cient to transfer knowledge

earlier, the new 0-wage contract has higher joint surplus, and since the agent is indifferent

between the two contracts the new one makes the principal strictly better off. Infinite-

length apprenticeships are dominated because they would require a net payment to the

agent, and the principal can improve a finite-length apprenticeship that doesn’t transfer

all knowledge by trading the rest of it for some more work. Moreover, it is without loss

to set wages to be zero at all times, because there is no gain to the principal making a

loan to the agent.

Lemma A2 Any contract is weakly dominated by a contract that at all times sets the

agent’s participation constraint to hold with equality and allocates total effort qt =
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at + bt across tasks so as to maximize output.38

For intuition, note that since output is strictly increasing inXt, and knowledge transfer

is costless, the principal wishes to raise Xt to the point where the agent’s participation

constraint holds with equality. In addition, since the allocation of total effort across tasks

does not affect the agent’s utility, it is optimal for the expert to choose an allocation that

maximizes output.

The principal’s problem therefore simplifies to the program of the main text.

9 Appendix B: Proofs

9.1 Optimal Control

We state the principal’s problem as an optimal control problem with control variables T

and qt, and state variable ut := rUt. By assumption, the ongoing participation constraint

holds with equality, so Xt is given by φ (ut) := v−1 (ut) . The terminal value of the state is

uT = v
(
X
)
, while its initial value is unknown and subject only to the initial participation

constraint u0 ≥ v(X). Whenever u0 > v(X) there is an instantaneous knowledge gift at

time 0.

From the definition of Ut we see that
·
ut = r [ut + c (qt)]. Thus the optimal control

problem is:

max
T,q

T∫
0

e−rty∗ (φ (ut) , qt) dt (8)

subject to

uT = v
(
X
)
,
·
ut = r [ut + c (qt)] , u0 ≥ v(X),

0 ≤ qt ≤ 1,

where qt satisfies a Lipschitz condition.

Let λt denote the co-state variable, form the Hamiltonian H = e−rt y∗ (φ (ut) , qt) −
λt
·
ut, and adjoin the effort constraints with multipliers ηt, γt to form the Lagrangian L =

H + ηt [1− qt] + γtqt.

38The contract is strictly dominated if it fails to satisfy any of these two properties over a positive-
measure fraction of time.
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Lemma A3 A solution to problem (8) exists. Moreover, the following system is necessary

for optimality:

·
ut = rut + rc (qt) ;

·
λt = ∂L/∂ut (9)

∂L/∂qt = 0 (10)

ηt, γt ≥ 0; ηt [1− qt] = γtqt = 0 (11)

HT = 0; λ0 ≥ 0; λ0 [u0 − v (X)] = 0. (12)

Proof. The agent won’t work longer than Tmax := 1
r

log
(
v
(
X
)
/v (X)

)
even if asked to

exert 0 effort for all t. Because we restrict to Lipschitz continuous controls, from Kumar

(1969) a solution to (8) exists for any fixed T ∈ [0, Tmax]. Moreover, an optimal T exists

because the principal’s optimized profits are continuous in T.

To show the necessity of the system (9)-(12), let time run in reverse from T to 0, let

uT denote the fixed initial state, and change the signs of
·
u and of the co-state evolution

equation (which is now
·
λt = ∂L/∂ut). Any T ∈ [0, Tmax] can be implemented by some

choice of controls, so the reachability condition of Chachuat (2007) Remark 3.19 is sat-

isfied, and the inequality constraints on qt are linearly independent, so the necessity of

conditions (9)-(12) follows from Chachuat (2007) Theorems 3.18 and 3.33, and Remark

3.23 (on extending to inequality constraints on the terminal condition T ). To obtain the

transversality condition for λ0 in condition (12), assign to constraint u0 ≥ v (X) a multi-

plier ζ with associated complementary-slackness condition ζ ≥ 0 and ζ [u0 − v (X)] = 0.

Chachuat’s Theorems 3.18 implies that λ0 = ζ and so λ0 ≥ 0 and λ0 [u0 − v (X)] = 0.

Expression (9) contains the state and co-state evolution equations; (10) contains the

first-order condition for qt; (11) contains the complementary slackness conditions for the

Lagrange multipliers ηt, γt; and (12) contains the transversal condition for the terminal

time T, where λ0 is the multiplier for the constraint u0 ≥ v (X) .39

9.2 Preliminary Lemmas

Recall that, for all t, ρt := ρ (φ (ut) , at) = fX(X,at)
fX(X,a∗(X))

∣∣∣
X=φ(ut)

≥ 0 and at = a∗ (Xt, qt) :=

arg maxa∈[0,qt] f (Xt, a) + g (qt − a) .

39We omit the constraint u0 ≤ v
(
X
)
here because it cannot bind.
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Lemma A4

1. The co-state evolution equation can be written as

λt = e−rt
[
erTλT −

∫ T

t

ρτdτ

]
. (13)

2. In every solution to the optimal control problem we have λT = e−rT/r, qT =

q∗
(
X
)
, and ηT = 0.

Proof. Part 1. Using the facts that v′ (φ (u)) = fX (φ (u) , a∗ (φ (u))) (from the en-

velope theorem) and φ′ (ut) = 1
v′(φ(u))

(from the implicit function theorem) we obtain
d
du
f (φ (u) , a) = fX (φ (u) , a) 1

v′(φ(u))
= fX(X,a)

fX(X,a∗(X))

∣∣∣
X=φ(u)

. Thus the co-state evolution

equation is
·
λt = −rλt + e−rt d

du
f (φ (ut) , at) = −rλt + e−rtρt, which is equivalent to (13).

Part 2. The first-order condition for T is e−rT y∗ (φ (uT ) , qT ) − λT r [uT + c (qT )] =

0 and the first-order condition for qT implies that λT r =
[
e−rT ∂y

∗

∂q

(
X, qT

)
− ηT

]
/c′ (qT ) .

Substituting this into the first-order condition for T yields

c′ (qT ) y∗
(
X, qT

)
− ∂y∗

∂q

(
X, qT

) [
v
(
X
)

+ c (qT )
]

︸ ︷︷ ︸
=: h(qT )

= − erTηT
[
v
(
X
)

+ c (qT )
]
. (14)

Notice that h(qT ) = 0 when qT = q∗
(
X
)
. In addition, since c, c′, and y∗ are all differen-

tiable in q, and ∂y∗

∂q
is continuous and almost-everywhere differentiable in q, the function

h(qT ) is continuous, almost-everywhere differentiable, and at each point of differentiability,

h′ (qT ) = c′′ (qT ) y∗
(
X, qT

)
− ∂2y∗

∂q2

(
X, qT

) [
v
(
X
)

+ c (qT )
]
> 0,

where the inequality follows from the fact that c′′ > 0 and at each point of differentiability
∂2y∗

∂q2
≤ 0 (since faa, g′′ ≤ 0).As a result, h(qT ) is strictly increasing. It follows that ηT = 0;

otherwise, we would have ηT > 0 and qT = 1 > q∗
(
X
)
, and so the left-hand side of (14)

would be positive and its right-hand side would be negative. Once we set ηT = 0 it follows

that qT = q∗
(
X
)
and λT = e−rT/r.

Lemma A5 For any given λt the first-order condition for qt and complementary slack-

ness conditions for ηt, γt have a unique solution, denoted q̃ (λt) , η̃ (λt) , γ̃ (λt) .More-
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over, this solution satisfies γ̃ (λt) = 0 and

c′ (q̃ (λt)) =
e−rt ∂y

∗

∂q
(φ (ut) , q̃ (λt))− η̃ (λt)

λtr
, (15)

η̃ (λt) = max

{
0, e−rt

∂y∗

∂q
(φ (ut) , 1)− λtrc′ (1)

}
.

Proof. The first-order condition for qt is e−rt ∂y
∗

∂q
(φ (ut) , qt) − λtrc

′ (qt) − ηt + γt = 0.

This has a unique solution because c′′ > 0 and y∗ is concave in qt. The optimal qt must

be strictly positive because ∂y∗

∂q
(φ (ut) , 0) > c′ (0) . If c′ (1) <

e−rt ∂y
∗

∂q
(φ(ut),1)

λtr
, the solution

is that qt = 1 and then ηt = e−rt ∂y
∗

∂q
(φ (ut) , 1) − λtrc

′ (1) . If c′ (1) ≥ e−rt ∂y
∗

∂q
(φ(ut),1)

λtr
then

the constraint qt ≤ 1 is slack, so ηt = 0 and c′ (q̃ (λt)) =
e−rt ∂y

∗
∂q

(φ(ut),q̃(λt))

λtr
.

9.3 Proof of Theorems 1 and 2

Our goal here is to prove that the solutions to the two optimal control problems of the

theorems are given by the solutions to the necessary conditions. To do this, we argue that

the necessary conditions have a unique solution. Because solutions exist from Lemma A3,

this guarantees that the necessary conditions are suffi cient.

Rewrite the co-state equation (13) as

λt = e−rt
[

1

r
−
∫ T

t

ρτdτ

]
, (16)

which follows from erTλT = 1
r
. Upon rearranging terms, equation (15) yields

c′ (qt) =

∂y∗

∂q
(Xt, qt)− ertηt
rertλt

, (17)

ertηt = max

{
0,

∂y∗

∂q
(Xt, 1)− rertλtc′ (1)

}
.

Next, we ignore both the complementary slackness condition for λ0 and constraint u0 ≥
v (X), and claim that for any fixed terminal time T, the remaining necessary conditions

in Lemma A3, together with the terminal condition uT = v
(
X
)
, have a unique solution,

which we denote uTt , q
T
t , λ

T
t (and ρ

T
t , η

T
t ). To prove this claim, write t = T − s for s ≥ 0,
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and use (17) to obtain

c′ (qT−s) =

 min

{
∂y∗
∂q

(XT−s,qT−s)

rer(T−s)λT−s
, c′ (1)

}
when λT−s ≥ 0,

c′ (1) otherwise.
(18)

Second, note that since c′′ > 0 and ∂y∗

∂q
is weakly decreasing in q, for any given s, XT−s,

and λT−s there is a unique qT−s that satisfies (18). Therefore, because
·
ut = rut+rc (qt) is

continuously differentiable in u, there is a unique solution uTT−s, q
T
T−s, λ

T
T−s to the system

uT = v
(
X
)
,
·
uT−s = r [uT−s + c (qT−s)] , (18), (19)

λT = e−rT/r, and
·
λT−s = −rλT−s + e−r(T−s)ρT−s for s ≥ 0,

where ρT−s = ρ (φ (uT−s) , a
∗ (φ (uT−s) , qT−s)) . (The resulting paths ηTT−s = η̃

(
λTT−s

)
and ρTT−s = ρ

(
φ
(
uTT−s

)
, a∗
(
φ
(
uTT−s

)
, qTT−s

))
are also unique.) Notice that the value of

T enters this system only as a subindex for uT−s, qT−s, λT−s. Therefore, for any given

s ≥ 0 the solution uTT−s, q
T
T−s, λ

T
T−s is independent of the chosen value of T. Moreover,

since uT0 = uTT−s
∣∣
s=T

, we have d
dT
uT0 = − d

dt
uTt
∣∣
t=0

= −r
[
uT0 + c

(
qT0
)]
. Thus, whenever

uT0 is positive, it is strictly decreasing in T. Notice also that qTt ≥ q∗
(
φ
(
uTt
))
(since

rertλt = 1− r
∫ T
t
ρτdτ ≤ 1) and therefore ρTt ≥ 1.

Proof of Theorem 1

To obtain the solution to the relaxed problem set v (X) = −∞ and λT0 = 0. Part 1 of

the theorem follows from the equality λT0 = 1 − r
∫ T

0
ρTT−sds = 0. Part 2 follows from the

fact that, for all 0 ≤ s ≤ T, we have r
∫ s

0
ρT−τdτ ≤ r

∫ T
0
ρT−τdτ = 1. Therefore eq. (18),

upon setting λt = e−rt
[

1
r
−
∫ T
t
ρτdτ

]
(from eq. (16)) and rearranging terms, implies that

for all 0 ≤ s ≤ T ,

∂y∗

∂q
(XT−s, qT−s) /c

′ (qT−s) = min

{
1− r

∫ s

0

ρT−τdτ ,
∂y∗

∂q
(XT−s, 1) /c′ (1)

}
, (20)

which is equivalent to (5) because r
∫ T

0
ρT−τdτ = 1. The claim that effort is effi cient at

the terminal time T , and exceeds the effi cient level at all earlier times, follows from the

facts that ∂y∗

∂q
(X, q∗ (X)) /c′ (q∗ (X)) = 1 for all X, ∂

2y∗

∂q2
≤ 0, c′′ > 0, and r

∫ s
0
ρT−τdτ is

strictly positive for all s > 0.
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Finally, because system (19) has a unique solution, the solution to the relaxed problem

is unique. �

Proof of Theorem 2

We claim that there is a unique T that satisfies the complementary slackness condition

for λT0 , namely, λ
T
0 ≥ 0 and λT0 [u0 − v (X)] = 0, together with the constraint uT0 ≥ v (X) .

Notice that since λT0 = 1 − r
∫ T

0
ρTT−sds is strictly decreasing in T , there is a unique T̂

such that λT̂0 = 1− r
∫ T̂

0
ρtdt = 0; and since λT0 ≥ 0, we may restrict our search to T ≤ T̂ .

Hence, there are two cases to consider: (a) uT̂0 ≥ v (X), and (b) uT̂0 < v (X) .

In case (a), we must have T = T̂ and therefore r
∫ T

0
ρtdt = 1. Otherwise T < T̂ ,

λT0 > 0, and uT0 > v (X) , violating the complementary slackness condition. In case (b),

we must have T < T̂ , λT0 > 0, and uT0 = v (X) . Hence, T is uniquely given by the equality

uT0 = v (X) . Notice, finally, that for any given X, system (19) implies that case (a) arises

when X is below a threshold X̂, and case (b) arises otherwise.

For part 1 of the theorem, notice that in case (a) the solution is identical to that of the

relaxed problem. For part 2 of theorem, notice that in case (b) the solution is a truncated

version of the relaxed solution because, for any given s ≥ 0, the solution uTT−s, q
T
T−s, ρ

T
T−s

of system (19) is independent of the chosen value of T. �

9.4 Proofs of Corollaries 1 and 2

Proof of Corollary 1

Since total effort is allocated effi ciently between the two tasks, Theorems 1 and 2 imply

that

∂

∂a
f (Xt, at) /c

′ (at + bt) = (resp. ≥) (resp. ≤) 1− r
∫ T

t

ρτdτ (21)

whenever 0 < at < 1 (resp. at = 1) (resp. at = 0),

and

g′ (bt) /c
′ (at + bt) = (resp. ≥) (resp. ≤) 1− r

∫ T

t

ρτdτ (22)

whenever 0 < bt < 1 (resp. bt = 1) (resp. bt = 0).
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Recall that Xt and 1 − r
∫ T
t
ρτdτ are strictly increasing in t and continuous; as result at

and bt are continuous as well. Recall also that faa, g′′ ≤ 0 and c′′ > 0.

We now claim that bt is strictly decreasing in t whenever bt ∈ (0, 1) , which in turn

implies that bt is weakly decreasing whenever bt ∈ {0, 1}. Suppose toward a contradiction
that there are two times t, s, with t < s, such that 0 < bt ≤ bs < 1. Then g′ (bt) ≥ g′ (bs) ,

and because 1 − r
∫ T
t
ρτdτ < 1 − r

∫ T
s
ρτdτ , condition (22) implies that c

′ (at + bt) >

c′ (as + bs) and therefore as < at. It follows from (21) and (22) that

∂

∂a
f (Xt, at) /c

′ (at + bt) ≥ 1− r
∫ T

t

ρτdτ = g′ (bt) /c
′ (at + bt)

and
∂

∂a
f (Xs, as) /c

′ (as + bs) ≤ 1− r
∫ T

s

ρτdτ = g′ (bs) /c
′ (as + bs) .

These two conditions imply that ∂
∂a
f (Xt, at) ≥ = g′ (bt) ≥ g′ (bs) ≥ ∂

∂a
f (Xs, as) , which

is impossible because Xs > Xt and as < at imply that ∂
∂a
f (Xs, as) >

∂
∂a
f (Xt, at) . �

Proof of Corollary 2

Theorems 1 and 2 imply that whenever the initial participation constraint is slack, we

have r
∫ T

0
ρtdt = 1. If at = a∗ (Xt) for all t, then ρt = 1 for all t, and hence r

∫ T
0
dt = 1.

Conversely, if at > a∗ (Xt) for some t, then because at and a∗ (Xt) are continuous in time,

then
∫ 1

r

0
ρtdt >

1
r
, and hence T < 1

r
. �

9.5 Proofs of Propositions 1 and 2

Proof of Proposition 1

Let C = (T,q,X) be a Pareto-effi cient contract. Recall that C is the (unique) principal-
optimal contract such that the agent’s time-zero knowledge is no smaller than X0, or,

equivalently, such that the agent’s payoff is no smaller than v (X0) /r.

Now suppose the planner imposes: (1) a cap on contract length equal to T ; and (2)

for any given terminal time T ′ ≤ T chosen by the principal, and any 0 ≤ s ≤ T ′, a cap

on effort at time T ′ − s equal to qT−s. Any feasible contract C ′ = (T ′,q′,X′) that meets
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these constraints gives the agent payoff

e−rT
′
v
(
X
)
/r −

∫ T ′

0

e−rtc (q′t) dt ≥ e−rTv
(
X
)
/r −

∫ T

0

e−rtc (qt) dt = v (X0) /r,

where the inequality follows from the facts that T ′ ≤ T and q′T ′−s ≤ qT−s for all 0 ≤ s ≤ T ′,

and the equality follows from the fact that contract C satisfies the agent’s participation
constraint with equality at all times. Hence C ′ gives the agent a payoff no smaller than
v (X0) /r.

Since C remains a feasible choice for the principal, it follows from the above ob-

servations that C is the (unique) optimal contract for the principal given the planner’s
constraints. �

Proof of Proposition 2

Let C ′ = (T ′,q′,X′) be a principal-optimal contract given the above caps. We claim

that q′t ≥ q∗ (X ′t) for (almost) all t. To see why, notice that if q
′
t < q∗ (X ′t) at some time t,

the principal can raise her flow profit by raising q′t to q
∗ (X ′t) and using a cash payment

to compensate the agent for the additional effort cost.40

We now claim that X ′T ′−s ≥ XT−s for all 0 ≤ s ≤ T ′. To see why, notice that because

the principal optimally meets the agent’s ongoing participation constraint with equality

at all times, for all 0 ≤ s ≤ T ′ we have

v
(
X ′T ′−s

)
= e−rsv

(
X
)
− r

∫ s

0

e−r(s−τ)c
(
q′T ′−τ

)
dτ

≥ e−rsv
(
X
)
− r

∫ s

0

e−r(s−τ)c (qT−τ ) dτ = v (XT−s) ,

where the inequality follows from the fact that q′T ′−τ ≤ qCAP ≤ qT−τ for all 0 ≤ τ ≤ s,

and the last equality follows from the fact that the original contract (T,q,X) also meets

the agent’s participation constraint with equality at all times.

40As can be seen from the proof of Lemma A1, part 2, the principal can further raise her profits by
replacing this cash payment with an earlier graduation date.
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It follows that C ′ delivers surplus∫ T ′

0

e−r(T
′−s) [y∗ (X ′T ′−s, q′T−s)− c (q′T−s)] ds+ e−rT

′
v
(
X
)
/r (23)

≥
∫ T ′

0

e−r(T
′−s) [y∗ (XT−s, qT−s)− c (qT−s)] ds+ e−rT

′
v
(
X
)
/r

≥
∫ T

0

e−r(T−s) [y∗ (XT−s, qT−s)− c (qT−s)] ds+ e−rTv
(
X
)
/r,

where the first inequality follows from the fact that q∗
(
X ′T−s

)
≤ q′T−s ≤ qCAP ≤ qT−s and

X ′T ′−s ≥ XT−s for all 0 ≤ s ≤ T ′, and the second inequality follows from the fact that

T ′ ≤ TCAP ≤ T and y∗ (XT−s, qT−s) − c (qT−s) ≤ v
(
X
)
for all 0 ≤ s ≤ T.

The proposition then follows from noting that: (1) the far right-hand side of (23) is

the surplus generated by (T,q,X); (2) the last inequality in (23) becomes strict whenever

T ′ < T ; and (3) the first inequality in (23) becomes strict whenever T
′

= T and qT−s >

qCAP for some 0 ≤ s ≤ T (because qT−s is continuous in s, and q∗
(
X ′T−s

)
≤ q′T−s ≤ qCAP

and X ′T ′−s ≥ XT−s for all 0 ≤ s ≤ T ′). �

9.6 Proof of Remark 1

Notice that when y∗ (X, q) = X + q we have ρt = 1 for all t. Recall from Lemma A3 that

λ0 is the multiplier for the initial participation constraint u0 ≥ v (X), and so λ0 ≥ 0 and

λ0 [u0 − v (X)] = 0.

Now set ertλt = λ0 + t (from Lemma A4, part 1) and combine with Lemma A5 to

obtain

c′ (qT−s) = min

{
1

r [λ0 + T − s] , c
′ (1)

}
. (24)

Before any cap is imposed, since X is above the unconstrained initial knowledge level X̂

in Theorem 2, we have λ0 > 0 and u0 = v (X0) = v (X) . Moreover, since effort is effi cient

at the terminal time, we have λ0 + T = 1
r
.

Now impose a cap TCAP = T − ε for some ε > 0. We claim that whenever ε is small,

the initial participation constraint binds. If not, then after the cap is imposed, λ0 = 0

and eq. (24) becomes

c′
(
q′TCAP−s

)
= min

{
1

r [TCAP − s] , c
′ (1)

}
= min

{
1

r [T − ε− s] , c
′ (1)

}
,
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where q′TCAP−s is the new optimal effort path. As a result the cap causes effort to jump

discontinuously for all s ≤ TCAP for which the effort upper bound was originally slack. It

follows from the agent’s participation constraint (4) that if TCAP is close to T , the initial

knowledge level X0 drops below X, a contradiction.

Consider now a cap on effort qCAP = supt qt − ε = q0 − ε. We claim that whenever ε

is small, the initial participation constraint binds. If not, then after the cap is imposed,

λ0 = 0 and eq. (24) becomes

c′
(
q′T ′−s

)
= min

{
1

r [T ′ − s] , c
′ (qCAP )} ,

where T ′ and q′T ′−s are the new optimal length and effort path. Because effort remains

effi cient at the terminal time, we have T ′ = 1/r, and so the cap causes the contract’s length

to grow discontinuously. It follows from the agent’s participation constraint (4) that if

qCAP is close to supt qt, the initial knowledge level X0 drops below X, a contradiction.

In sum, whenever ε is small, both types of caps leave the agent’s overall payoff u0/r

unchanged. But since both types of caps reduce the principal’s profits, they reduce overall

surplus as well. �
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