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Abstract

Given any two-person economy, consider an alternating-offer bargaining game

with complete information where the proposers offer prices, and the responders

either choose the amount of trade at the offered prices or reject the offer. We

provide conditions under which the outcomes of all subgame-perfect equilibria

converge to theWalrasian equilibrium (the price and the allocation) as the discount

rates approach 1. Therefore, price-taking behavior can be achieved with only two

agents.
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1 Introduction

It is commonly believed that, in a sufficiently large, frictionless economy, trade results

in an approximately competitive (Walrasian) allocation. In fact, the core of such an

economy consists of the approximately Walrasian allocations. Moreover, in a bargaining

model with a continuum of anonymous agents, Gale (1986) shows that the allocation
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is competitive in any subgame-perfect equilibrium (henceforth, SPE). In contrast, when

there are only two agents, it is believed that we have a bilateral monopoly case, and

the outcome is indeterminate (Edgeworth (1881)). Accordingly, in that case, the core

is very large, and the SPE outcome typically differs from the competitive allocation in

the usual bargaining models, in which the agents are allowed to offer any allocation.1

In this paper, we analyze a simple two-agent bargaining model in which the agents

offer price vectors (henceforth, prices) rather than allocations. We show that, under

certain conditions, as the agents’ discount rates approach 1, all the SPE allocations and

prices converge to the competitive allocation and price, respectively. Our result suggests

that the Walrasian equilibrium does not necessarily require a large economy. It simply

corresponds to price-taking behavior, which can be achieved even with only two agents.

Therefore, the Walrasian equilibrium may have stronger foundations than commonly

thought.

Considering a pure-exchange economy with only two agents, we analyze the following

alternating-offer bargaining game with complete information: Agent 1 offers a price.

Agent 2 either demands a feasible trade at that price, or rejects the offer. If he demands

a trade, the demanded trade is realized, and the game ends. If he rejects the offer, we

proceed to the next date, when Agent 2 offers a price, and Agent 1 either demands a

feasible trade or rejects the offer. This goes on until they reach an agreement. Each

agent’s utility function is normalized by setting it to 0 at the initial endowment. Agents

cannot consume their goods until they reach an agreement, and each discounts the future

at a constant discount rate.

Notice that we restrict the proposer to offering prices, and allow the other agent

to choose the amount of trade at the offered price. For instance, in the case of wage

bargaining, if the union sets the wage, the firm has the right to choose how much labor

to hire. Likewise, if the firm sets the wage, the workers or the union have the right

to choose the amount of labor they provide. In contrast, in the standard models, the

proposer is allowed to offer any allocation, while the other agent can only accept or

reject the offer. This is the only major difference.

In this model with price offers, price-taking behavior emerges. To see this, consider

an economy with two goods. When an agent i accepts a price, the game ends, hence

1For instance, as the common discount rate approaches 1, the SPE outcome in Rubinstein (1982)
converges to the Nash (1950) bargaining solution (Binmore, Rubinstein, and Wolinsky (1987)), which
is different from the Walrasian outcome, as noted by Binmore (1987). (Rubinstein’s model is more
general and abstract, but the set of feasible payoffs is typically taken to be the set of all materially
feasible payoffs, allowing the agents to offer any allocation.)
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he demands the optimal trade for himself at that price. Effectively, this restricts the

other agent to offer a payoff vector on the offer curve of agent i, the payoff vectors that

can be achieved when i is a price-taker. For discount rates that are close to 1, consider

any stationary SPE (henceforth, SSPE) in which all the offers are accepted. Now, both

agents are approximately indifferent between the allocations today and tomorrow, and

the payoffs associated with these allocations are on the offer curves of two distinct agents.

Therefore, the payoffs in such a SSPE must be very close to an intersection of the offer

curves. Of course, each Walrasian payoff-vector is at such an intersection. Moreover, in

many canonical economies with a unique Walrasian equilibrium, the Walrasian payoff-

vector is the only intersection of the offer curves in the relevant region. Therefore, for

such economies, the payoffs in these SSPE must converge to the Walrasian payoffs as

the discount rates approach 1. Moreover, the Walrasian payoffs are obtained only at the

Walrasian allocation, as we have strictly quasi-concave utility functions. By continuity,

this also shows that the allocations at these SSPE converge to the Walrasian allocation.

Finally, when we have a continuous inverse-demand function, we can also conclude that

the prices in these SSPE converge to the Walrasian price.

We further show that in any other possible SSPE, an agent must act as a natural

monopoly; he must offer his monopoly price, and it must be accepted. In order for this

to be an equilibrium for large values of discount rates, the monopoly outcome must be

Pareto-optimal under the constraint that one of the agents is a price-taker. We rule out

such SSPE, by assuming that no monopoly is efficient in this sense. It turns out that,

under these assumptions, SPE must be in between some SSPE payoffs, and hence all

SPE allocations (and prices) must converge to the Walrasian allocation (and price) of the

static pure-exchange economy at hand. This convergence to the Walrasian equilibrium

of the static economy is independent of the way the discount rates approach 1. This

further implies that this convergence does not depend on relative frequency of offers,

and one can easily extend this result beyond alternating-offer bargaining.

This limiting behavior is strikingly different from that of the Rubinstein (1982) model

where agents can offer any allocation. In that model, for a quasi-linear economy, how

the agents share the gains from trade in the limit is solely determined by the relative

frequencies the agents make offers, or the logarithmic ratio of the discount rates (as

they approach 1). More generally, in such sequential bargaining models, the outcome

is determined by which agent makes an offer and when. Some authors find this a

weakness of the model and adhere to the traditional view that the bargaining outcome

should be determined by the property rights – not by the details of the procedure (see
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Nash (1950), Harsanyi (1977), Aumann (1987), Perry and Reny (1993), and Smith and

Stacchetti (2001)). Some others (such as Binmore (1987)) take the position that the

terms in which the bargaining is conducted may be relevant to the bargaining outcome.

Our theorem has two implications on this issue. On the one hand, a change in the

procedure (that the proposers are required to offer prices rather than allocations while

the responders are allowed to choose the size of the trade) has a profound effect on the

outcome. Therefore, the allocation of procedural rights matters. On the other hand, the

limiting behavior under the new allocation of the procedural rights does not depend

on how the discount rates approach 1–or which agent makes an offer when, provided

that each agent makes offers sufficiently frequently (see footnote 5). Therefore, such

procedural details do not matter for the limiting behavior under the new allocation of

procedural rights.

This result is also relevant to the implementation literature, where there is an interest

in implementing the Walrasian allocation in a Nash environment (see Hurwicz (1979),

Schmeidler (1980), Hurwicz, Maskin, and Postlewaite (1995), and Bochet (2002)). Here

we have a simple bargaining procedure that approximately implements the Walrasian

allocation in SPE under certain conditions. Our result may appear to be weaker than

the results cited above, as we use stronger concept of SPE while the previous results

consider all Nash equilibria. Nevertheless, the epistemic assumptions behind a solution

depend on the game. In our game, the SPE can be obtained by iteratively eliminating

conditionally dominated strategies, and hence can be supported by some sequential-

rationality assumptions. In contrast, it would be very hard to find any set of sensible

epistemic assumptions that would support the Nash equilibrium in the above games, as

these games typically involve roulette games and simultaneous declaration of types.

There is also a literature that focuses on the Walrasian payoffs in the axiomatic

framework of Nash (1950) (e.g., Binmore (1987), Sertel and Yildiz (1994), and Serrano

and Volij (2000)). Most notably, Binmore (1987) illustrates that the Nash bargaining-

solution may yield non-Walrasian payoffs, but then characterizes the Walrasian payoffs

by certain axioms on the space of allocations that are similar to the axioms of Nash

(1950), which were stated in utility space. He also presents a direct mechanism and a

version of the Nash Demand Game in which each player simultaneously commits to a

“worst price” and a ceiling on the amount of trade. The largest possible trade under

these commitments is then realized. Even though the induced game possesses abundance

of equilibria (including no trade), he shows that all Pareto-efficient equilibria yield the

unique Walrasian allocation.
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One question remains. Is impatience or the relative frequency of offers irrelevant?

We show that the standard comparative static holds: if an agent becomes more patient,

he becomes better off, and his opponent becomes worse off. In fact, when the discount

rates are away from 1, impatience of players has a significant effect on the SPE outcome.

That is, if the agents are making offers once a year, then it does matter how patient

each player is, or which player makes an offer when. But, if the agents are going to make

offers every other split second, then these details do not matter.

In the next section, we lay out our model. In Section 3, we explain why the SPE

outcome in the standard model is unrelated to the competitive outcome, and why our

theorem is still true. In Section 4, we derive our main results and provide counterex-

amples. Section 5 contains extensions of the main result; Section 6 is about the role of

impatience and the frequency of offers, and Section 7 concludes. Some proofs are in the

Appendix.

2 Model

Let X = Rn
+ be a commodity space with n goods, and P be the set of all price vectors

p = (p1, . . . , pn) ∈ Rn
++ where p

1 = 1, and pk > 0 for all k.2 (Henceforth, we will simply

say prices instead of price vectors.) Consider a set N = {1, 2} of two agents and their
pure-exchange economy e = ((u1, x̄1) , (u2, x̄2)), where x̄i ∈ X and ui : X → R are

the initial endowment and the utility function of agent i, respectively, for each i ∈ N .

For each i ∈ N , assume that ui is strictly quasi-concave, continuous, monotonically-

increasing, and ui (x̄i) = 0. Write w = x̄1 + x̄2.

We wish to understand the relation between the Walrasian equilibrium of e and the

SPE of the following perfect-information bargaining game G (δ1, δ2) with alternating

offers. Let T = {0, 1, 2, . . .} be the set of all dates. At date t = 0, Agent 1 offers a price
p1 ∈ P . Agent 2 either demands a consumption x2 ∈ {x ∈ X|(x− x̄2) · p1 = 0, x ≤ w}
or rejects the offer. (Note that x2 is feasible and can be reached by reallocating the

endowments at price p1.) If she demands x2, the game ends yielding the payoff vector¡
δt1u1 (w − x2) , δ

t
2u2 (x2)

¢
, which is associated with the allocation (w − x2, x2), where

(δ1, δ2) ∈ (0, 1)2. If she rejects, we proceed to the next date. At t = 1, Agent 2 offers
a price p2, and Agent 1 either demands x1 ∈ {x ∈ X|(x − x̄1) · p2 = 0, x ≤ w}, when
the game ends yielding the payoff vector

¡
δt1u1 (x1) , δ

t
2u2 (w − x1)

¢
, or rejects the offer,

2We write R for the set of real numbers, Rn+ for the non-negative orthant of a n-dimensional Euclidean
space, Rn++ for the interior of Rn+.
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when we proceed to the next date, when Agent 1 offers a price again. This goes on

indefinitely until they reach an agreement. If they never reach an agreement, each gets

0. We are most interested in the behavior of the SPE as (δ1, δ2) approaches (1, 1).

Any stationary subgame-perfect equilibrium (SSPE) is represented by a list (p̂1, x̂1, p̂2, x̂2)

where, for each i ∈ N , p̂i ∈ P is the price that the agent i offers whenever he is to make

an offer, and x̂i : P → X ∪{Reject} is the function that determines his responses: when
offered a price pj, the agent i demands x̂i (pj) if x̂i (pj) ∈ X, and rejects the offer if

x̂i (pj) = Reject. Likewise, any subgame-perfect equilibrium (SPE) is represented by a

list (p̂1,2k, x̂1,2k+1, p̂2,2k+1, x̂2,2k)
∞
k=0 where the offer p̂i,t (by i) and the response x̂j,t at any

t depends on the entire history.

Basic Definitions and Assumptions For each i ∈ N , define the (constrained) de-

mand function Di : P → X by

Di (p) ∈ argmax {ui (x) | (x− x̄i) · p ≤ 0, x ≤ w, x ∈ X} (∀p ∈ P ) .

Since ui is continuous and strictly quasi-concave, Di is a well-defined function. Since ui is

continuous, by the MaximumTheorem,Di is also continuous. A (constrained)Walrasian

equilibrium is any pair (p, (x1, x2)) of a price p ∈ P and an allocation (x1, x2) ∈ X2 such

that xi = Di (p) for each i, and x1 + x2 = w.

Assumption 1 There exists a Walrasian equilibrium
¡
pW ,

¡
xW1 , xW2

¢¢
;
¡
xW1 , xW2

¢ 6=
(x̄1, x̄2), and xWi is in the interior of X for each i ∈ N .

Together with strict quasi-concavity, the assumption that
¡
xW1 , xW2

¢ 6= (x̄1, x̄2) guar-
antees that ui

¡
xWi
¢
> 0 for each i. In that case, the initial allocation is not Pareto

optimal, hence there are gains from trade. The assumption that xWi is in the interior

of X for each i is made only to make sure that
¡
pW ,

¡
xW1 , xW2

¢¢
is an “unconstrained”

Walrasian equilibrium.

Define the offer curves of agents 1 and 2 as

OC1 = {(u1 (D1 (p)) , u2 (w −D1 (p))) |p ∈ P}

and OC2 = {(u1 (w −D2 (p)) , u2 (D2 (p))) |p ∈ P}, respectively. OCi is the set of all

utility pairs that can be reached by offering a price to agent i, who will then maximize

his payoff given the price. In general, given any payoff vj for an agent j, there might be

multiple pairs (v1, v2) in OCj. In that case, if the other agent i is to choose between
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these pairs by offering different prices, he will choose the pair with maximum vi. To

formulate this, for each distinct i and j, define function Ui by

Ui (vj) = max{vi| (v1, v2) ∈ OCj}.

Note that the Walrasian payoff-vector vW ≡ ¡u1 ¡xW1 ¢ , u2 ¡xW2 ¢¢ is in OC1 ∩ OC2, and
satisfies the equations

vW1 = U1
¡
vW2
¢
and vW2 = U2

¡
vW1
¢
. (1)

That is, the graphs of U1 and U2 (which are typically the offer curves OC2 and OC1)

intersect each other at the Walrasian payoff-vector. For our main result, we will assume

that this is the only intersection in the relevant region (see Assumption 4 below).

Throughout the paper, we will make the following assumption, which is satisfied by

many economies, such as the Cobb-Douglas economies in the Edgeworth box.

Assumption 2 For each i ∈ N , Ui is continuous and single-peaked.

Since Ui is single-peaked and cannot be monotonically increasing, it is maximized at

some vMj ∈ R. (Note that Ui is strictly increasing at any vj < vMj and strictly decreasing

at any vj > vMj .) By a monopoly price of an agent i, we will mean any price p
M
i ∈ P

with uj
¡
Dj

¡
pMi
¢¢
= vMj and ui

¡
w −Dj

¡
pMi
¢¢
= Ui

¡
vMj
¢
.

3 An Example

In this section, using a canonical example, we explain our formulation, and show how

the Walrasian outcome typically differs from the SPE outcome in Rubinstein’s model in

which the agents offer allocations. We then explain why our theorem is true.

Consider a quasi-linear economy e = ((u1, (0, 1)) , (u2, (M, 0))) with two goods where

u1 (m, y) = m+ yα − 1, u2 (m, y) = m+ yα −M , α ∈ (0, 1), and M > 0. Since we have

quasi-linear utility functions, take X = R× R+, allowing negative amounts of the first
good – money.

The offer curves are plotted in Figure 1 for α = 0.5. Notice that both U1 and U2 are

single peaked and continuous. The offer curves OC1 and OC2 are simply the graphs of

U2 and U1, respectively. They intersect each other only at the origin and the Walrasian

payoff-vector. Notice that the Walrasian payoffs are very asymmetric.
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Figure 1: Offer curves for α = 1/2, δ1 = δ2 = 0.9.

One can compute that the Walrasian price is pW = (1, α21−α), yielding the Walrasian
payoff vector

vW =

µ
1 + α

2α
− 1, 1− α

2α

¶
.

Hence, at the Walrasian equilibrium, the ratio of Agent 2’s share to Agent 1’s share is

(1− α) / (1 + α− 2α), determined by α.
On the other hand, we are in a transferable-utility case: in any Pareto-optimal

allocation, the payoffs add up to 21−α−1. Then, the unique SPE outcome in Rubinstein’s
model is

vR (δ1, δ2) =
£
21−α − 1¤µ 1− δ2

1− δ1δ2
,
δ2 (1− δ1)

1− δ1δ2

¶
.

As (δ1, δ2)→ (1, 1) at the rate r = log (δ1) / log (δ2),

vR (δ1, δ2)→
£
21−α − 1¤µ 1

1 + r
,

r

1 + r

¶
.

Therefore, in the limit, the ratio of Agent 2’s share to Agent 1’s share is r, determined

solely by the discount rates, or the frequencies at which the agents make offers. This

well-known fact implies that, in the limit, the SPE payoffs in Rubinstein’s model cannot
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possibly be related to the Walrasian payoffs, which are determined by α. In particular,

when there is a common discount rate, in the limit, the SPE distributes the gains from

trade equally, while the Walrasian payoffs are very asymmetric.

Now consider the bargaining procedure in G (δ1, δ2). Whenever an agent i accepts a

price pj, he demands the optimal consumption Di (pj)– for the game ends there. Thus,

our bargaining procedure can be considered as the Rubinstein’s bargaining model in

which each agent is restricted to offer payoffs on the other agent’s offer curve. Therefore,

as in Rubinstein (1982), there is a SPE that is determined by the intersection v̂ (δ1, δ2)

of the graphs of δ1U1 and δ2U2 (see Figure 1). In this SPE, an agent i accepts an offer

iff he gets at least v̂i (δ1, δ2), and the other agent j offers a price that gives v̂i (δ1, δ2) to

i and Uj (v̂i (δ1, δ2)) to j. But vW is the unique intersection of the graphs of U1 and U2.

Therefore, as (δ1, δ2)→ (1, 1),

v̂ (δ1, δ2)→ vW .

In the limit, the SPE payoff-vector itself is vW . This convergence is independent of the

rate at which the discount rates go to 1. Therefore this convergence to the Walrasian

equilibrium would hold even if the agents made offers at different frequencies. (See

Section 6 for a further discussion.)

Notice in Figure 1 that
¡
vM1 , U2

¡
vM1
¢¢
and

¡
U1
¡
vM2
¢
, vM2

¢
are below the graphs

of U1 and U2, respectively. That is, if an agent offers his monopoly price, then (for

large values of discount rates) the other agent can reject that offer and make a Pareto-

improving counter-offer. Under this condition, for large values of discount rates, we

further show that there cannot be other SPE. Therefore, when this condition and the

unique intersection property of U1 and U2 hold, as in this example, all the SPE outcomes

converge to the Walrasian outcome.

4 Theorem

In this section, we will describe the SSPE of game G (δ1, δ2). We will then formally state

our sufficient conditions under which the allocations and the prices at all SPE converge

to the Walrasian allocation and the price, respectively, as (δ1, δ2)→ (1, 1).

Our first lemma describes the basic properties of SSPE.

Lemma 1 Given any δ1, δ2 ∈ (0, 1), any i 6= j ∈ N , any SSPE (p̂1, x̂1, p̂2, x̂2) of

G(δ1, δ2), under Assumption 2, the following are true:

1. x̂j (pi) ∈ {Dj (pi) ,Reject} for all pi ∈ P ;
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2. if x̂j (p̂i) 6= Reject, then ui (w −Dj (p̂i)) = Ui (uj (Dj (p̂i)));

3. if x̂j (p̂i) 6= Reject, then uj (Dj (p̂i)) ≥ vMj .

Proof. The proofs omitted in the text are in the appendix.
Part 1 states that, if an agent accepts a price, he demands his optimal consumption

at that price, for the game ends there. Hence, in terms of equilibria, our game is

equivalent to a bargaining game where each agent is restricted to offer a payoff vector

in the other agent’s offer curve. In that case, each agent i offers a point on the graph

of Ui –hence the second part. The proof of this part uses the continuity of Ui and

the availability of the prices that allow the other agent to demand consumptions better

than his equilibrium demand. Part 3 simply states that each agent’s offer is at least as

generous as his monopoly price.

Our next lemma lists some necessary conditions for a SSPE. This is the main step

towards proving our Theorem. The basic argument is the following. Under Assumption

2, if an agent j is offering a price p̂j that will be accepted and that allows the other agent

i to obtain a higher payoff than his continuation value, then p̂j must be a monopoly price

of j. For, otherwise, j would offer a less generous price that would be accepted and would

yield a higher payoff for j. This implies that either (i) or (ii) below must hold.

Lemma 2 Under Assumptions 1 and 2, for any SSPE (p̂1, x̂1, p̂2, x̂2) of any G (δ1, δ2),
either (i) or (ii) is true:

(i) Type 1 equilibria: for all distinct i, j ∈ N , we have x̂i (p̂j) = Di (p̂j) and

ui (Di (p̂j)) = δiui (w −Dj (p̂i)) = δiUi (uj (Dj (p̂i))) ; (2)

(ii) Type 2 equilibria: there exist distinct i and j such that x̂i (p̂j) = Di (p̂j) and

ui (Di (p̂j)) = vMi . (3)

Type 1 equilibria are similar to the SPE in Rubinstein (1982): each equilibrium-offer

is accepted, and the equilibrium offers leave the other agents indifferent between accept-

ing (and demanding the optimal consumption) and rejecting the offer. This indifference

yields the equation system (2). At δ1 = δ2 = 1, this equation system is identical to (1),

the system of equations satisfied by the Walrasian prices.

In a Type 2 equilibrium, there exists an agent j who always offers his monopoly

price, which is accepted by the other agent. The other agent’s offer is typically rejected.
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This is an equilibrium iff there is no point on the offer curve of j that gives each agent

at least the continuation value – the discounted value of payoffs when j is a monopoly.

In that case, the other agent (i) cannot offer any price that must be accepted by the

sequentially-rational agent j.3

Lemma 3 Under Assumptions 1 and 2, for δ1, δ2 ∈ (0, 1), G (δ1, δ2) has an equilibrium
of type 2 iff there does not exist any distinct i and j and any pi ∈ P such that

(δiui (w −Dj (pi)) , uj (Dj (pi))) >
¡
vMi , δjUj

¡
vMi
¢¢

. (4)

In order to rule out the equilibria of type 2, we will assume:

Assumption 30 For all i, j ∈ N , there exists some pi ∈ P that satisfies (4).

Assumption 30 holds iff δiUi

¡
δjUj

¡
vMi
¢¢

> vMi . That is, if j offers his monopoly

price vMi at some t, the other agent i can gain by rejecting the offer and offering at

t+ 1 another price pi such that j is indifferent between maximizing his payoff at pi and

enjoying his monopoly payoff at t+2. This assumption not only rules out the equilibria

of type 2 but also guarantees the existence of an equilibrium type 1:

Theorem 1 Under assumptions 1 and 2, G (δ1, δ2) has a SSPE. Moreover, if Assump-
tion 30 also holds, then all SSPE of G (δ1, δ2) are of type 1.

We now assume that Assumption 30 holds at δ1 = δ2 = 1; it will hold for all large

values of δ1 and δ2 by continuity.

Assumption 3 For all i, j ∈ N , there exists some pi ∈ P such that

(ui (w −Dj (pi)) , uj (Dj (pi))) >
¡
vMi , Uj

¡
vMi
¢¢

.

That is, an agent i can offer a price that is better than the monopoly price of the other

agent j for both of them, provided that j maximizes his payoff given the price offered

by i. In other words, any monopoly is Pareto-inefficient even under the constraint that

the agents trade through prices. This assumption is the most crucial assumption in this

paper, and it is used for several purposes. I do not know any set of assumptions on the

preferences that imply this assumption. Under Assumptions 2 and 3, there exists some

δ̃ ∈ (0, 1) such that Assumption 30 holds for all δ1, δ2 ∈ (δ̃, 1). Together with Theorem
1, this yields:

3In a bargaining model where the agents bargain over trades (rather than prices), an agent can
always offer the trade that will take place in the next date, guaranteeing the continuation value to each
agent, but this is not true in our model.
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Lemma 4 Under Assumptions 1-3, there exists δ̃ ∈ (0, 1) such that, for all δ1, δ2 ∈
(δ̃, 1), all SSPE of G (δ1, δ2) are of type 1.

We now assume that the graphs of U1 and U2 has a unique intersection in the relevant

region:

Assumption 4 There exists a unique (v1, v2) ≥
¡
vM1 , vM2

¢
such that

U1 (v2) = v1 and U2 (v1) = v2.

At any Walrasian equilibrium, each agent i gets at least vMi , and the graphs of U1
and U2 intersect each other. Therefore, we have the following lemma.

Lemma 5 Under Assumptions 1 and 4, given any p1, p2 ∈ P , we have

Ui (uj (Dj (pi))) = ui (Di (pj)) ≥ vMi (∀i 6= j ∈ N)

iff p1 = p2 = pW .

This gives us our main theorem for SSPE.

Theorem 2 Under Assumptions 1-4, let
¡
p̂δ1, x̂

δ
1, p̂

δ
2, x̂

δ
2

¢
be a SSPE of games G (δ) for

each δ = (δ1, δ2) ∈ (0, 1)2. Then,

lim
δ→(1,1)

x̂δj
¡
p̂δi
¢
= xWj (5)

for each distinct i, j ∈ N . Moreover, if u1 and u2 are continuously differentiable, then

lim
δ→(1,1)

p̂δ1 = lim
δ→(1,1)

p̂δ2 = pW . (6)

That is, as the discount rates approach 1, under Assumptions 1-4, the SSPE allo-

cations converge to the Walrasian allocation. If the utility functions are continuously

differentiable, this also implies that the SSPE prices converge to the Walrasian price.

(We will later prove stronger results, but a direct proof of this result is given right away,

as it is much more transparent than the proofs of the stronger results.)

Proof. Let A = (D1 (P )×D2 (P )) ∩
©
(x1, x2) ∈ X2|∀i ∈ N , ui (xi) ≥ vMi

ª
. Define

the function φ : (0, 1)2 ×A→ R2 by

φi (δ1, δ2, x1, x2) = δiUi (uj (xj))− ui (xi) (i 6= j ∈ N)
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and the correspondence ξ : [0, 1]2 → 2A by

ξ (δ1, δ2) = {(x1, x2) ∈ A|φ (δ1, δ2, x1, x2) = 0} .

By Lemma 5,

ξ (1, 1) =
©¡
xW1 , xW2

¢ª
.

Moreover, since φ is continuous, ξ has a closed graph. Since A is compact, this implies

that ξ is upper semi-continuous. Hence, given any > 0, there exists δ̂ ∈ (0, 1) such
that, for each δ1, δ2 > δ̂, for each (x1, x2) ∈ ξ (δ1, δ2), and for each j ∈ N , we have°°xj − xWj

°° < . (7)

On the other hand, by Lemma 4, there exists a δ̄ ∈ (0, 1) such that, for each δ =

(δ1, δ2) ∈ (δ̄, 1)2, ¡
x̂δ1
¡
p̂δ2
¢
, x̂δ2

¡
p̂δ1
¢¢ ∈ ξ (δ1, δ2) . (8)

Therefore, by (7) and (8), given any > 0, there exists δ∗ ≥ max{δ̂, δ̄} such that, for
each δ = (δ1, δ2) ∈ (δ∗, 1)2, we have

°°x̂δj ¡p̂δi¢− xWj
°° < , proving (5).

Towards proving the second part, define X̊ =
©
x ∈ X|0 < xk < wk ∀k ≤ n

ª
, the set

of consumption bundles corresponding to the interior allocations. For any distinct i, j ∈
N , if ui is continuously differentiable, then inverse-demand function D−1

i : X̊∩Di (P )→
P exists and continuous, where Di

¡
D−1

i (xi)
¢
= xi for each xi ∈ X̊∩Di (P ). But, since

x̂δj
¡
p̂δi
¢→ xWj , by continuity, p̂

δ
i = D−1

i

¡
x̂δj
¡
p̂δi
¢¢→ D−1

i

¡
xWj
¢
= pW .

An intuition for Theorem 2 is the following. In equilibrium, Agent 1 must be max-

imizing his utility at the price set by Agent 2, and Agent 2 must be maximizing his

utility at the price set by Agent 1. The markets clear by definition. As the discount

rates converge to 1, one would expect that the prices set by different agents will become

similar, and each agent will become indifferent between today and tomorrow. That

is, approximately, each agent i is indifferent between he himself maximizing his utility

at the price set by the other agent j and the other agent j maximizing her payoff at

approximately the same price set by i. Therefore, we must be approximately at a Wal-

rasian equilibrium. (The logic of our proof is clearly different from this intuition, for

proving convergence to a Walrasian equilibrium turns out to be more straightforward

than proving that the prices converge to the same price.)

Our proof utilizes a more general fact about sequential bargaining: if (in equilibrium)

we can restrict the agents to make offers from two sets whose Pareto-frontiers have a

unique intersection with each other, then all SPE of the form that appears in Rubinstein

13



(1982) (namely the SPE of type 1) converge to the intersection as the discount rates

approach 1. The limit is independent of how the discount rates approach 1. In contrast,

in the original model of Rubinstein (1982) these two sets (and therefore their Pareto-

frontiers) coincide, hence the limit depends on how the discount rates approach 1.

The crucial assumption behind Theorem 2 is Assumption 3 – that the monopolies

are inefficient even under the constraint that one of the agents is a price-taker. Our next

example illustrates that this assumption is not superfluous.

Example 1 Consider the economy e = ((u1, (9, 1)) , (u2, (1, 9))) where u1 (x, y) =

xαy1−α − 9α and u2 (x, y) = x1−βyβ − 9β. In Figure 2, we plot the offer curves for
α = 0.6, β = 0.1, and δ1 = δ2 = 0.9. Notice that U1

¡
vM2
¢
> max {v1|U2 (v1) ≥ 0}.

Hence, for large values of (δ1, δ2), we have a SSPE
¡
pM1 , x̂1, p

M
2 , x̂2

¢
where x̂1 (p) = D1 (p)

iff u1 (D1 (p)) ≥ δ1U1
¡
vM2
¢
and x̂2 (p) = D2 (p) iff u2 (D2 (p)) ≥ δ22v

M
2 . (Recall that p

M
i

is the monopoly price of i.) In this SSPE, Agent 1 emerges as a monopoly: he offers his

monopoly price pM1 , and it is accepted. There is no price that Agent 1 would accept and

that gives positive payoff to Agent 2, so he offers the non-serious price pM2 , which will

be rejected. Clearly, this SSPE does not converge to the Walrasian equilibrium.
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Figure 2: The offer curves for Example 1.

Observe that, for δ1 = δ2 = 0.9, the graphs of δ1U1 and δ2U2 intersect each other at

two distinct points v and v0, yielding two more SSPE. The existence of such intersections

14



depends on δ1 and δ2, but we can find a sequence of discount rates (δ1, δ2) converging

to (1, 1) for which there are two such SSPE. Both of these equilibria converge to the

Walrasian outcome. Since we can construct non-stationary subgame-perfect equilibria

using these SSPE, this reveals a weakness of Theorem 2: even if all SSPE converge to

the Walrasian equilibrium, we may have non-stationary SPE, which may not converge

to the Walrasian equilibrium.

It turns out that Assumptions 3 and 4 rule out this possibility. Under these as-

sumptions, we show in the Appendix that, when U1 and U2 are smooth and δ1 and δ2

are sufficiently large, δ1U1 and δ2U2 have a unique intersection in the relevant region.

Together with Assumption 3, this allows us to extend Shaked-Sutton (1984) argument

for the uniqueness of SPE to our model, albeit in a more complicated form.4

Theorem 3 Under Assumptions 1-4, assume that U1 and U2 are analytical at the

Walrasian payoff vector vW . Then, there exists some δ̄ ∈ (0, 1) such that, whenever
δ1, δ2 ∈

¡
δ̄, 1
¢
, the game G (δ1, δ2) has a unique SPE payoff-vector, which is obtained at

a SSPE.

Since the proof of this theorem requires several technical lemmas, it is relegated to

the Appendix. For sufficiently large values of discount rates, under Assumptions 1-4 and

for smooth offer curves, this theorem establishes the uniqueness of SPE payoffs. These

payoffs are obtained at a SSPE. Combining this with Theorem 2, we can conclude that,

under the above conditions, as the discount rates approach 1, all SPE outcomes converge

to the Walrasian outcome (price and allocation). It turns out that we do not need the

smoothness assumptions for convergence, as the next theorem states.

Theorem 4 Under Assumptions 1-4, for each δ = (δ1, δ2) ∈ (0, 1)2, let
¡
p̂δ1,2k, x̂

δ
1,2k+1, p̂

δ
2,2k+1, x̂

δ
2,2k

¢∞
k=0

be a SPE of game G (δ). Then,

lim
δ→(1,1)

x̂δj,t
¡
p̂δi,t
¢
= xWj (9)

for each t ∈ T at which i makes an offer and j responds. Moreover, if u1 and u2 are

continuously differentiable, then

lim
δ→(1,1)

p̂δ1,t = lim
δ→(1,1)

p̂δ2,t0 = pW (10)

at each even t and odd t0.
4The arguments are more complicated in our model, because (in utility space) our agents make offers

from two distinct sets, and therefore it is conceivable that an agent gets his highest SPE payoff when
his offer is rejected and he is offered a more generous price in the next period.
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Proof. It is a immediate corollary to Theorem 6 below.

It is crucial for Theorems 3 and 4 that the graphs of U1 and U2 have a unique

intersection in the relevant region (Assumption 4). Without this assumption, there

could have been multiple SSPE converging to some of these intersections. In that case,

we would also have non-stationary SPE, which might not converge to any of these

intersections (see the next section for extensions beyond this assumption). On the other

hand, for Theorem 2, we only need that all these intersections correspond to Walrasian

equilibria. The next Example illustrates that this assumption is needed even for Theorem

2, that is, if the graphs of U1 and U2 intersect each other at non-Walrasian payoff vectors,

the SSPE can converge to non-Walrasian outcomes. This example is taken from Sertel

and Yildiz (1994), who use this economy to show that there cannot be an axiomatic

bargaining solution that always picks the Walrasian payoff-vectors.

Example 2 (Sertel and Yildiz (1994)) Consider the economy e = ((u, (0, 10)), (u, (10, 0)))

where u(x, y) = (1/45)min{24x+3y+15, 9x+18y, 4x+23y+5}− 1. The indifference
curves and the offer curves (in utility space and in the Edgeworth box) are plotted in

Figure 3. The indifference curves are tangent to each other only at the strip around

the diagonal, when the common slope of the indifference curves is −1/2. Therefore,
the unique Walrasian price is pW = (1, 2), yielding a unique Walrasian payoff-vector

vW = (4, 1). In the Edgeworth box, the offer curves of Agent 1 and Agent 2 are the line

segments connecting the points [x̄, a, b, b0, c, d] and [x̄, a0, b, b0, g, h], respectively. But in
the utility space, the graphs of U1 and U2 coincide: U2 (v1) = 5−v1 and U1 (v2) = 5−v2.
Then, the SSPE in this economy is as in Rubinstein (1982): For any δ1 = δ2 = δ ∈ (0, 1),
the unique SSPE payoff-vector is (5/ (1 + δ) , 5δ/ (1 + δ)). As δ → 1, the SSPE payoffs

converge to (5/2, 5/2), distinct from the Walrasian payoff-vector vW = (4, 1). The SSPE

prices p̂δ1 and p̂δ2 converge to p1 = (1, 29/37) and p2 = (1, 7/11), respectively.

5 Extensions

After circulation of an earlier version of this paper that contained the results above,

Davila and Eeckhout (2002) have shown that the combination of Assumptions 3 and

4 is too strong: under these two assumptions, by changing the endowments and the

preferences, we can find a nearby economy in which U1 and U2 have a (nearby) non-

Walrasian intersection. In this section, we extend our results beyond Assumption 4.

First, under Assumption 30, for any δ1, δ2 ∈ (0, 1) and any i 6= j ∈ N , let vi (δ1, δ2)
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Figure 3: The offer curves for economy e of Example 2 – in the Edgeworth box and in

the utility space. (The hyperplanes are indicated by the associated prices.)

and v̄i (δ1, δ2) be the ith coordinates of the worst and the best intersections of the graphs

of δ1U1 and δ2U2 for agent i in the relevant region, respectively. That is,

vi (δ1, δ2) = min
©
vi ≥ vMi |∃vj ≥ vMj : vi = δiUi (vj) , vj = δjUj (vi)

ª
, (11)

v̄i (δ1, δ2) = max
©
vi ≥ vMi |∃vj ≥ vMj : vi = δiUi (vj) , vj = δjUj (vi)

ª
. (12)

Note that vi (δ1, δ2) and v̄i (δ1, δ2) are well defined by Assumption 30; vi (δ1, δ2) /δi and
v̄i (δ1, δ2) /δi are the lowest and the highest SSPE payoffs i expects when he makes an

offer, and finally v̄i (δ1, δ2) = δiUi

¡
vj (δ1, δ2)

¢
for i 6= j. Our first result states that,

under Assumption 3, the extremal SPE payoffs are obtained in SSPE, and hence the

expected payoffs from all SPE are contained in the rectangle generated by the SSPE.

Theorem 5 Under Assumptions 1, 2, and 30, for any δ1, δ2 ∈ (0, 1) and any i ∈ N , the

lowest and the highest expected SPE payoffs of i at the beginning of any date at which i

makes an offer are

mi ≡ vi (δ1, δ2) /δi and Mi ≡ v̄i (δ1, δ2) /δi, (13)

respectively.
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Since the limit of SSPE payoffs must be an intersection of the offer curves, this yields

bounds for the limit of the SPE payoffs.

Theorem 6 Under Assumptions 1-3, for each distinct i, j ∈ N , let

vi = min
©
vi ≥ vMi |∃vj ≥ vMj : vi = Ui (vj) , vj = Uj (vi)

ª
and v̄i = Ui

¡
vj
¢
. For each δ ∈ (0, 1)2 and i ∈ N , let vδi be a SPE payoff for i in game

G (δ), such that limδ→(1,1) vδi = v∗i for some v
∗
i . Then,

v∗i ≥ vi. (14)

Moreover, for any Walrasian payoff vector
¡
vW1 , vW2

¢
and any > 0, there exists δ̄ ∈ (0, 1)

such that for all δ1, δ2 ∈
¡
δ̄, 1
¢
, for all i ∈ N , and for all SPE payoff vi of i in game

G (δ1, δ2), we have ¯̄
vi − vWi

¯̄
< +max

©
v̄i − vWi , vWi − vi

ª
. (15)

That is, all the limiting SPE payoffs are located in the smallest rectangle that includes

all the intersections of the graphs of U1 and U2. If there are intersections that are

far apart, as in the Rubinstein’s model, this theorem does not have much predictive

power. But if all the intersections are located around a unique Walrasian payoff vector,

then all SPE payoffs will be close to the Walrasian payoffs for high values of discount

rates. Therefore, existence of nearby non-Walrasian intersections does not weaken our

results much. Finally, under Assumption 4, by (15), all SPE converge to the Walrasian

equilibrium.

6 Comparative Statics

In this section we will show that under our assumptions, if an agent gets more patient,

then in equilibrium, he will be better off and the other agent will be worse off.

Theorem 7 For any distinct i and j, and any δ1, δ
0
1, δ2, δ

0
2 with δj = δ0j, under As-

sumptions 1 and 2, let (v1, v2) and (v01, v
0
2) be SSPE payoffs for G (δ1, δ2) and G (δ

0
1, δ

0
2),

respectively. Assume that G (δ1, δ2) has a unique SSPE and Assumption 30 is satisfied
throughout. Then,

v0i > vi and v0j < vj whenever δ0i > δi, and (16)

v0i < vi and v0j > vj whenever δ0i < δi.
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Figure 4: Agent 2 is hurt by his impatience. (δ1 = δ2 = 0.9.)

Theorem 7 is illustrated in Figure 4. Consider the economy in Section 3. The graphs

of δ1U1 and δ2U2 have a unique intersection v̂. Decrease δ2 to δ22. In the region to the

left of v̂, δ2U2 lies below δ1U1. Hence, all the new intersections must be to the right of v̂.

Since δ1U1 is decreasing in this region, they must be located below v̂. Then, the change

hurts Agent 2 and benefits Agent 1.

In this result, Assumption 30 plays two roles. Firstly, it guaranties that the equilibria
are of type 1; the allocations in type 2 equilibria do not depend on the discount rates.

Second, combined with the uniqueness of SPE in the original economy, it guarantees

that the graph of δ2U2 intersects the graph of δ1U1 from below –as in Figure 4. To

see why we need this, consider Figure 2. If we decrease δ2 slightly, v and v0 move in
opposite directions. In the equilibrium corresponding to v (where δ2U2 intersects δ1U1
from below), this change makes Agent 1 better off and Agent 2 worse off. In the SPE

corresponding to v0 (where δ2U2 intersects δ1U1 from above), Agent 2 gains from his

impatience, which hurts his opponent.

Figure 4 also illustrates that we do have a proposer advantage in our model. To see

this, modify the bargaining procedure so that Agent 1 makes two offers in a row and

Agent 2 makes only one offer. (The order of proposers is 112112112. . . .) The SPE under
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Figure 5: The SPE payoffs (a) and the prices (b) as functions of δ1. The superscript

R and the prime signify Rubinstein’s model and r2 = 2r1, respectively. (In (a), the

Walrasian payoffs of the Agents 1 and 2 are located at the lower and the upper ends of

the graph, respectively.)

the new bargaining procedure can be obtained from the SPE when the discount rate of

Agent 2 is δ22:
5 In the utility space, Agent 1 first offers a, and then offers b, while Agent

2 offers c; any less generous offer is rejected. Under the new procedure, Agent 1 is better

off, and Agent 2 is worse off.

In summary, the time preferences and the relative frequency of the offers do affect the

bargaining outcome in the predictable way, even though all these are irrelevant to the

limit as the discount rates approach 1 or as the real-time delay between the consecutive

offers vanishes.

When we are away from the limit, the effect is significant: Consider the economy

in Section 3, and let δ1 = e−r1∆ and δ2 = e−r2∆ with the understanding that the index
time is a grid in a continuum of real time. We are interested in how the equilibrium is

affected for various values of ∆ when we double r2. Recall that doubling r2 represents

either making Agent 2 more impatient, or letting Agent 1 make two offers in a row (when

∆ is doubled for Agent 2). Take r1 = r2. As exhibited in Figure 6(a), in Rubinstein’s

model with unrestricted offers, the agents share the surplus equally, except for a relatively

small first-mover advantage that vanishes as ∆→ 0. Doubling r2 changes the outcome

dramatically: now Agent 1 gets two-thirds of the surplus, in addition to the vanishing

5This also illustrates how our theorems can be extended beyond alternating offers.
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first-mover advantage. Now consider our model. The outcome is in between the equal

split and the Walrasian payoff-vector, in which Agent 2 gets a disproportionately higher

share. In equilibrium the price offered by each agent for the good owned by Agent 1 is

higher than the competitive price –as illustrated in Figure 6(b). Doubling r2 benefits

Agent 1 and hurts Agent 2, as the good Agent 1 owns becomes even more expensive.

When ∆ is away from 0, the effect is significant, even though it is not as dramatic as

in the Rubinstein’s model. As ∆ → 0, all these prices and the payoff vectors converge

to the Walrasian price and payoff-vector, respectively. Hence, the impact of doubling r2
monotonically decreases, and disappears in the limit.

7 Conclusion

Consistent with common sense, the SPE in usual bargaining models yield the Walrasian

allocation in a large economy (Gale (1986)), while they typically yield non-Walrasian

outcomes when there are only limited number of agents. In these bargaining models,

agents are allowed to offer any trade among the bargaining parties. Here, we present a

simple bargaining procedure where the agents are restricted to offer prices, while their

trading partners optimize at these prices. As the discount rates go to 1, under certain

conditions, the SPE of this mechanism yields the Walrasian equilibrium. Therefore, the

Walrasian equilibrium does not necessarily require a large economy. It simply corre-

sponds to price-taking behavior, which can be achieved even with only two agents.

A Omitted Proofs

Proof of Lemma 1. (Part 1) If x̂j (pi) 6= Reject, then we are in a final decision node, hence
we must have x̂j (pi) = Dj (pi).

Claim: Assume that x̂j (p̂i) = Dj (p̂i). Then, there exists p̃i ∈ P such that uj (Dj (p̂i)) <

uj (Dj (p̃i)).

Proof of Claim. If uj (Dj (p̂i)) = 0, p̃i = pW fits the bill. Assume that uj (Dj (p̂i)) > 0.

Hence, Dj (p̂i) 6= x̄j , and w − Dj (p̂i) 6= x̄i. By the Separating Hyperplane Theorem, there

exists a price p̃i such that Di (p̃i) = x̄i. For any x 6= x̄i with p̃i · (x− x̄i) ≤ 0, we have

ui (x) < 0. But ui (w −Dj (p̂i)) ≥ 0 (for i offers p̂i). Hence, this implies that 0 < p̃i ·
(w −Dj (p̂i)− x̄i) = p̃i · (x̄j −Dj (p̂i)), i.e., p̃i · (Dj (p̂i)− x̄j) < 0. Since ui is increasing, this

yields uj (Dj (p̂i)) < uj (Dj (p̃i)).

(Part 2) Assume that x̂j (p̂i) 6= Reject, i.e., x̂j (p̂i) = Dj (p̂i). But, by stationarity,

the continuation values do not depend on which offers are rejected, hence, for any pi with
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uj (Dj (pi)) > uj (Dj (p̂i)), we must have x̂j (pi) 6= Reject, and thus x̂j (pi) = Dj (pi). Sup-

pose that ui (w −Dj (p̂i)) < Ui (uj (Dj (p̂i))). Since Ui is continuous, by Claim above, there

then exists some > 0 and some price p0 such that Ui (uj (Dj (p̂i)) + ) > ui (w −Dj (p̂i)) and

uj (Dj (p
0)) = uj (Dj (p̂i)) + . Now, if i offers p0, it will be accepted, yielding higher payoff

Ui (uj (Dj (p̂i)) + ), a contradiction.

(Part 3) Suppose that x̂j (p̂i) 6= Reject and uj (Dj (p̂i)) < vMj ≡ uj
¡
Dj

¡
pMi
¢¢
. Then, by

stationarity, x̂j
¡
pMi
¢ 6= Reject, i.e., x̂j

¡
pMi
¢
= Dj

¡
pMi
¢
. Thus, offering pMi is a profitable

deviation for i, a contradiction.

Proof of Lemma 2. There are two cases.

Case 1: Assume that x̂1 (p̂2) 6= Reject 6= x̂2 (p̂1). Then, by Lemma 1.2, for each distinct

i, j ∈ N , we have ui (w −Dj (p̂i)) = Ui (uj (Dj (p̂i))). Since x̂j (p̂i) 6= Reject, it follows that

the continuation value of i at the beginning of any date t + 1 at which he makes an offer is

Ui (uj (Dj (p̂i))). This has two implications. First, since p̂j is accepted,

ui (Di (p̂j)) ≥ δiUi (ui (Di (p̂j))) . (17)

Second, at t, for any pj , if ui (Di (pj)) > δiUi (uj (Dj (p̂i))), player i must accept the price pj
and demand Di (pj) (see Lemma 1.1). Since j offers p̂j , it must be true that

Uj (ui (Di (p̂j))) ≥ Uj (vi) (18)

for each vi > δiUi (uj (Dj (p̂i))). Now, assume that (i) is not true. Then, by (17), ui (Di (p̂j)) >

δiUi (ui (Di (p̂j))). Hence, by (18), Uj (ui (Di (p̂j))) ≥ Uj (vi) for each vi with vi > δiUi (ui (Di (p̂j))).

Since ui (Di (p̂j)) > δiUi (ui (Di (p̂j))), this implies that Uj has a local maximum at ui (Di (p̂j)).

Thus, by Assumption 2, ui (Di (p̂j)) = vMi .

Case 2 : Assume that x̂j (p̂i) = Reject for some i, j ∈ N . If we also had x̂i (p̂j) = Reject,

agents would never reach an agreement, thus their continuation values would be zero. Since

the Walrasian payoffs are strictly positive (by Assumption 1), this would yield a contradiction:

In that case, in a stationary equilibrium each agent must accept the Walrasian price pW ,

providing a profitable deviation (pW ) for the agent who makes an offer. Therefore, x̂i (p̂j) 6=
Reject = x̂j (p̂i). Then, x̂i (pj) = Di (pj) if ui (Di (pj)) > δ2iui (Di (p̂j)) . Since j offers p̂j , if

ui (Di (p̂j)) = 0, then Uj (vi) ≤ Uj (0) for each vi > 0; i.e., vMi = 0 = ui (Di (p̂j)). On the

other hand, if ui (Di (p̂j)) > 0, then ui (Di (p̂j)) > δ2iui (Di (p̂j)). As in Case 1, this yields

ui (Di (p̂j)) = vMi .

Proof of Lemma 3. Assume there exists such pi ∈ P . Then, if i offers pi, it will be

accepted, yielding a payoff higher than vMi /δi. Then, at the previous date, i should not accept

p̂j , which gives him only vMi .

Proof of Theorem 1. The second statement is an immediate corollary to Lemma 3 and

Assumption 30; we prove the first statement. If Assumption 30 does not hold, we have an equi-
librium of type 2 by Lemma 3. Assume Assumption 30 holds. Write v1 = δ1U1

¡
δ2U2

¡
vM1
¢¢
,
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v01 = δ1U1
¡
vM2
¢
, and write h for the inverse of the restriction of δ1U1 to [vM2 ,∞). By As-

sumption 30, v1 > vM1 , hence h (v1) ≡ δ2U2
¡
vM1
¢
> δ2U2 (v1). Also, by Assumption 30,

h (v01) ≡ vM2 < δ2U2
¡
δ1U1

¡
vM2
¢¢
= δ2U2 (v

0
1). Since h and δ2U2 are continuous on a convex

domain, by the intermediate-value theorem, the graph of δ2U2 intersects the graph of h, which

is a part of the graph of δ1U1, at some v̂. That is, (2) is satisfied at some (p̂1, p̂2). Then,

(p̂1, x̂1, p̂2, x̂2) is a SSPE, where x̂i (p) = Di (p) iff ui (Di (p)) ≥ v̂i for each i ∈ N .

In the sequel we prove Theorems 3 and 7. First a technical lemma:

Lemma 6 For any [v, v̄] ⊂ R, define f : [0, 1]× [v, v̄]→ R by

f (δ, v) = δg (v)− h (v)

where g : [v, v̄]→ R and h : [v, v̄]→ R are any two positive, decreasing, and analytical functions
with g (v) < h (v) and g (v̄) > h (v̄). Assume that f (δ, v) = 0 has a unique solution ṽ (1) at

δ = 1. Then, there exists a δ̂ ∈ (0, 1) such that f (δ, v) = 0 has a unique solution ṽ (δ) at each

δ > δ̂.

Proof. Firstly, given any v ∈ [ṽ (1) , v̄], since f (1, v) > 0 > f (0, v) and f is continuous in δ,

f (δ, v) = 0 has a solution δ̃ (v). Since ∂f/∂δ = g > 0, δ̃ (v) is unique. Second, since ṽ (1) is the

unique solution to f (1, v) = 0, we must have δ̃ (v) < 1 at each v > ṽ (1). Since δ̃ is analytical

(by the implicit function theorem), this implies that δ̃ is decreasing on [ṽ (1) , ṽ (1) + ) for

some > 0. Letting LM be the set of all local maxima of δ̃, set

δ̂ = sup
v∈LM\{ṽ(1)}

δ̃ (v) .

Note that LM\ {ṽ (1)} ⊂ [ṽ (1) + , v̄]. This implies that δ̂ < 1, for δ̃ is continuous, [ṽ (1) + , v̄]

is compact, and δ̃ (v) < 1 at each v ∈ [ṽ (1) + , v̄]. Now, by construction, δ̃ is decreasing on

{v|δ̃ (v) > δ̂}, hence there exists a unique solution ṽ (δ) to f (δ, v) = 0 at each δ > δ̂, where

δ̃ (ṽ (δ)) = δ.

Lemma 7 Under Assumptions 1-4, assume that U1 and U2 are analytical at the Walrasian

payoff vector vW . Then, there exists some δ̄ ∈ (0, 1) such that, whenever δ1, δ2 ∈
¡
δ̄, 1
¢
, the

equation system

vi = δiUi (vj) (i 6= j ∈ N)

possesses a unique solution v̂ (δ1, δ2) with v̂ (δ1, δ2) >
¡
vM1 , vM2

¢
.

Proof. Without loss of generality, assume that Ui is analytical on some interval [vi, v̄i] ⊂¡
vMi , Uj

¡
vMi
¢¢
for each i 6= j where vi < vW < v̄i. We want to show that the graphs of

δ1U1 and δ2U2 have a unique intersection in a neighborhood of vW whenever (δ1, δ2) is in a
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neighborhood of (1, 1). To this end, we will apply Lemma 6 twice. First, set g = U1 and

h =
³
U2|[vM1 ,∞)

´−1
. By Assumptions 2, 3 and 4, g (v2) < h (v2) and g (v̄2) > h (v̄2). Then,

by Lemma 6, there exists a δ̂1 ∈ (vW1 /v̄1, 1) such that the graph of δ1U1 intersects the graph

of U2 uniquely in [v1, v̄1] × [v2, v̄2] whenever δ1 > δ̂1. Take any δ1 > δ̂1. In Lemma 6, now

set g = U2 and h =
³
U1|[vM2 ,∞)

´−1
. Take [v, v̄] = [v1, δ̂1v̄1]. (Together with Assumptions

2 and 3, Lemma 6 already implies that g (v1) < h (v1) and g (δ1v̄1) > h (δ1v̄1).) Then, by

Lemma 6, there exists δ̂2 (δ1) < 1 such that the graph of δ1U1 intersects the graph of δ2U2
uniquely in [v1, δ̂1v̄1]× [v2, v̄2] whenever δ2 > δ̂2 (δ1). By construction δ̂2 (δ1) is continuous in

δ1. Therefore, there exists a neighborhood η1 of (1, 1) such that δ1U1 intersects the graph of

δ2U2 uniquely in [v1, δ̂1v̄1]× [v2, v̄2] whenever (δ1, δ2) ∈ η1. Of course, by upper-semicontinuity

and Assumption 4, there is also a neighborhood η2 of (1, 1) such that all the intersections in¡
vM1 ,∞¢×¡vM2 ,∞¢ are in [v1, δ̂1v̄1]× [v2, v̄2] whenever (δ1, δ2) ∈ η2. Therefore, δ1U1 and δ2U2
have a unique intersection in

¡
vM1 ,∞¢× ¡vM2 ,∞¢ whenever (δ1, δ2) ∈ η1 ∩ η2.

Lemmas 4 and 7 imply the following.

Lemma 8 Under the assumptions and the notation of Lemma 7, given any discount rates
δ1, δ2 ∈ (δ̄, 1), there exists a unique SSPE payoff-vector, in which the proposer i gets v̂i (δ1, δ2) /δi
and j 6= i gets v̂j (δ1, δ2).

For each i 6= j ∈ N , define a function Ūi through

Ūi (vj) =

(
Ui (vj) if vj ≥ vMj

Ui

³
vMj

´
otherwise.

Recall also the definitions of vi (δ1, δ2), v̄i (δ1, δ2), vi, v̄i, mi and Mi given by (11)-(13) and

Theorem 6.

Lemma 9 Under Assumptions 1, 2, and 30, for all distinct i and j, we have

1. mi ≥ Ūi (δjMj);

2. Mi ≤ Ūi (δjmj);

3. mi ≥ Ūi

¡
δjŪj (δimi)

¢
, and

4. Mi ≤ Ūi

¡
δjŪj (δiMi)

¢
.

Proof. (Part 1) In any SPE, if j rejects an offer he will get maximum δjMj . Hence, he

will accept any price p with uj (Dj (p)) > δjMj . Then, by Assumption 2, player i must be

getting at least Ūi (δjMj) – see the proof of Lemma 1.2.
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(Part 2) Consider any SPE in which the continuation value of i isMi ≤ vMi at some history

at which i makes an offer. Since j expects to get at least mj the next day if he rejects the

offer now, he will reject any offer p with uj (Dj (p)) < δjmj . Hence, i cannot get more than

Ūi (δjmj) when his offer is accepted. If his continuation value Mi is more than Ūi (δjmj), it

must be that his offer is rejected and j offers in some future period a price that gives at least

Mi/δi to player i. But i would accept any offer that gives i more than δiMi, which is less than

Mi/δi. In order this to be an equilibrium, we must haveMi ≤ vMi . But this is a contradiction,

because Mi ≥ v̂i/δi > vMi by Theorem 1, where v̂i is defined in the proof of Theorem 1.

(Part 3) By part 2, Mj ≤ Ūj (δimi). Hence, by part 1, mi ≥ Ūi (δjMj) ≥ Ūi

¡
δjŪj (δimi)

¢
.

The last inequality is due to the fact that Ūi is non-increasing. The proof of part 4 is similar.

Lemma 10 Under Assumptions 2 and 30, for each distinct i, j ∈ N , we have

Ūi

¡
δjŪj (δivi)

¢
> vi whenever vi < vi (δ1, δ2) /δi, and (19)

Ūi

¡
δjŪj (δivi)

¢
< vi whenever vi > v̄i (δ1, δ2) /δi. (20)

Proof. Take any vi < vi (δ1, δ2) /δi. Since Ūj is non-increasing, we have δj v̄j (δ1, δ2) =

δjŪj (vi (δ1, δ2)) ≤ δjŪj (δivi) ≤ δjŪj

¡
vMi
¢
. By Assumption 30, the domain of Ūi contains

some vj > δjŪj

¡
vMi
¢
. Hence, δjŪj (δivi) is in the domain of Ūi. Moreover, by Assumptions

2 and 30, the graph of δiŪi is above that of δjŪj in this region, i.e., δiŪi

¡
δjŪj (δivi)

¢
> δivi,

showing the first part. The proof of the second part is similar.

Proof of Theorem 5. By Lemma 9.3 and (19), mi ≥ vi (δ1, δ2) /δi. But, by definition

of vi (δ1, δ2), there exists a SSPE in which i gets vi (δ1, δ2) /δi, yielding vi (δ1, δ2) /δi ≥ mi.

Therefore, mi = vi (δ1, δ2) /δi. Similarly, Mi = v̄i (δ1, δ2) /δi.

Proof of Theorem 3. By Lemma 7, we have vi (δ1, δ2) = v̄i (δ1, δ2), yielding mi =Mi

by Theorem 5.

Proof of Theorem 6. Under Assumption 3, there exists δ̃ ∈ (0, 1) such that Assumption
30 holds whenever (δ1, δ2) ∈

³
δ̃, 1
´2
. Hence, by Theorem 5, for any δ ∈

³
δ̃, 1
´2
, vδi ≥ vi, yielding

(14). To prove the second statement, define the correspondence ξ by

ξ (δ1, δ2) =
©
(v1, v2) ≥

¡
vM1 , vM2

¢ |v1 = δ1U1 (v2) , v2 = δ2U2 (v1)
ª
.

Write Pi for the projection operator to the ith coordinate. By Assumption 2, ξ is upper semi-

continuous, and Pi is continuous. Hence, for any > 0, there exists δ̄ ≥ δ̃ such that, for all

(δ1, δ2) ∈
¡
δ̄, 1
¢2,

vi (δ1, δ2) = minPi (ξ (δ1, δ2)) > minPi (ξ (1, 1))− = vi −

and

v̄i (δ1, δ2) = maxPi (ξ (δ1, δ2)) < δi (maxPi (ξ (1, 1)) + ) = δi (v̄i + ) .
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By Theorem 5, for any such (δ1, δ2), we have vi ∈ [vi (δ1, δ2) /δi, v̄i (δ1, δ2) /δi] ⊂ (vi − , v̄i + ).

Since vMi ∈ [vi, v̄i], this yields (15).
Proof of Theorem 7. We prove (16). By Theorem 1, (v1, v2) = (U1 (v̂2 (δ1, δ2)) , v̂2 (δ1, δ2))

and (v01, v02) =
¡
U1
¡
v̂2
¡
δ01, δ

0
2

¢¢
, v̂2

¡
δ01, δ

0
2

¢¢
where v̂ (δ1, δ2) (resp. v̂

¡
δ01, δ

0
2

¢
) is an intersection

of the graphs of δ1U1 and δ2U2 (resp. δ01U1 and δ02U2). Let h be the inverse of the restriction
of δjUj to [vMi ,∞). Since v̂ (δ1, δ2) is the unique intersection, by Assumption 30, for each
vj ≥ v̂j (δ1, δ2) in the domain of h, we have δiUi (vj) ≥ h (vj). Assume that δ0i > δi. Then,

for each vj ≥ v̂j (δ1, δ2) in the domain of h, we have δ0iUi (vj) > δiUi (vj) ≥ h (vj). Therefore,

v̂j
¡
δ01, δ

0
2

¢
< v̂j (δ1, δ2). Since h is decreasing, this implies that v̂i

¡
δ01, δ

0
2

¢
> v̂i (δ1, δ2). Since

U1 is decreasing in this region, this completes the proof.
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