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Wanna Get Away? Regression Discontinuity
Estimation of Exam School Effects Away From

the Cutoff
Joshua D. ANGRIST and Miikka ROKKANEN

5
In regression discontinuity (RD) studies of applicants who face an award or admissions cutoff, causal effects are nonparametrically identified
for those near the cutoff. The effect of treatment on inframarginal applicants is also of interest, but identification of such effects requires
stronger assumptions than those required for identification at the cutoff. This article discusses RD identification away from the cutoff.
Our identification strategy exploits the availability of dependent variable predictors other than the running variable. Conditional on these
predictors, the running variable is assumed to be ignorable. This identification strategy is used to study effects of Boston exam schools
for inframarginal applicants. Identification based on RD-specific conditional independence assumptions produces reasonably precise and
surprisingly robust estimates of the effects of exam school attendance on inframarginal applicants. These estimates suggest that the causal
effects of exam school attendance for 9th grade applicants with running variable values well away from admissions cutoffs differ little from
those for applicants with values that put them on the margin of acceptance. An extension to fuzzy designs is shown to identify causal effects
for compliers away from the cutoff. Supplementary materials for this article are available online.
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1. INTRODUCTION

Q1

Q2

In a regression discontinuity (RD) framework, treatment sta-
tus changes discontinuously as a function of an underlying co-20
variate, often called the running variable. Provided conditional
mean functions for potential outcomes given the running vari-
able are smooth, changes in outcome distributions at the assign-
ment cutoff must be driven by discontinuities in the likelihood
of treatment. RD identification comes from a kind of virtual25
random assignment, where small and presumably serendipitous
variation in the running variable manipulates treatment. On the
other hand, because running variables are usually related to out-
comes, claims for unconditional “as-if random assignment” are
most credible for samples near the point of discontinuity. RD30
methods need not identify causal effects for larger and perhaps
more representative groups of subjects.

A recent study of causal effects at Boston’s selective public
schools—known as “exam schools”—highlights the possibly
local and potentially limiting nature of RD findings. Boston35
exam schools choose their students based on an index that com-
bines admissions test scores with a student’s grade point average
(GPA). Abdulkadiroğlu, Angrist, and Pathak (2014) used para-
metric and nonparametric RD estimators to capture the causal
effects of exam school attendance for applicants with index val-40
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ues in the neighborhood of admissions cutoffs. In this case, non-
parametric RD compares students just to the left and just to the
right of each cutoff. For most of these marginal students, the re-
sulting estimates suggest that exam school attendance does little
to boost achievement (Dobbie and Fryer 2014 reported similar 45
findings for New York exam schools). But applicants who only
barely manage to gain admission to, say, the highly selective
Boston Latin School (BLS), might be unlikely to benefit from
an advanced exam school curriculum. Stronger applicants who
qualify more easily may get more from an elite public school 50
education. Debates over affirmative action also focus attention
on inframarginal applicants, including some who stand to gain
seats and some who stand to lose their seats should affirmative
action considerations be brought in to the admissions process.

Motivated by the question of how exam school attendance af- 55
fects achievement for inframarginal applicants, this article tack-
les the theoretical problem of how to capture causal effects for
applicants other than those in the immediate neighborhood of
admissions cutoffs. The special nature of RD assignment leads
us to a conditional independence assumption (CIA) that iden- 60
tifies causal effects by conditioning on covariates besides the
running variable, with an eye to eliminating the relationship be-
tween running variable and outcomes. It is not always possible
to find such good controls, of course, but, as we show below,
a straightforward statistical test isolates promising candidates. 65
As an empirical matter, we show that conditioning on baseline
scores and demographic variables largely eliminates the rela-
tionship between running variables and test score outcomes for
9th grade applicants to Boston exam schools, though not for
7th grade applicants (for whom the available controls are not as 70
good). These results lay the foundation for a matching strategy
that identifies causal effects for inframarginal 9th applicants. We
also experimented with parametric extrapolation. The resulting
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estimates are mostly imprecise and sensitive to the polynomial
used for extrapolation (see the online appendix for details).75

2. CAUSAL EFFECTS AT BOSTON EXAM SCHOOLS

Boston’s three exam schools serve grades 7–12. The high-
profile Boston Latin School (BLS), which enrolls about 2400
students, is the oldest American high school, founded in 1635.
BLS is a model for other exam schools, including New York’s80
well-known selective high schools. The second oldest Boston
exam school is Boston Latin Academy (BLA), formerly Girls’
Latin School. Opened in 1877, BLA first admitted boys in
1972 and currently enrolls about 1700 students. The John D.
O’Bryant High School of Mathematics and Science (formerly85
Boston Technical High) is Boston’s third exam school; O’Bryant
opened in 1893 and now enrolls about 1200 students.

Between 1974 and 1998, Boston exam schools reserved seats
for minority applicants. Though quotas are no longer in place,
the role of race in exam school admissions continues to be90
debated in Boston and is the subject of ongoing litigation in
New York. Our CIA-driven matching strategy is used here to
answer two questions about the most- and least-selective of
Boston’s three exam schools; both questions are motivated by
the contemporary debate over affirmative action in exam school95
admissions. Specifically, we ask:

1. How would inframarginal low-scoring applicants to
O’Bryant, Boston’s least selective exam school, do if they
were lucky enough to find seats at O’Bryant in spite of
falling a decile or more below today’s O’Bryant cutoff? In100
other words, what if poorly qualified O’Bryant applicants
now at a regular BPS school were given the opportunity
to attend O’Bryant?

2. How would inframarginal high-scoring applicants to BLS,
Boston’s most selective exam school and one of the most105
selective in the country, fare if their BLS offers were with-
drawn in spite of the fact that they qualify easily by today’s
standards? In other words, what if highly qualified appli-
cants now at BLS had to settle for BLA?

The first of these questions addresses the impact of exam school110
attendance on applicants who currently fail to make the cut for
any school but might do so with minority preferences restored
or exam school seats added in an effort to boost minority en-
rollment. The second question applies to applicants like Julia
McLaughlin, whose 1996 lawsuit ended racial quotas at Boston115
exam schools. McLaughlin was offered a seat at BLA, but sued
for a seat at BLS, arguing, ultimately successfully, that she was
kept out of BLS solely by unconstitutional racial quotas. The
thought experiment implicit in our second question sends high-
scoring BLS students like McLaughlin back to BLA.120

2.1 Data

The data used here merge BPS enrollment and demographic
information with Massachusetts Comprehensive Assessment
System (MCAS) test scores. MCAS tests are taken each spring,
typically in grades 3–8 and 10. Baseline (i.e., preapplication)125
scores for 7th grade applicants are from 4th grade. Baseline
scores for 9th grade applicants are from 4th grade and from 8th
grade math and 7th grade English Language Arts (ELA) tests
(the 8th grade English exam was introduced in 2006). We lose

some applicants with missing baseline scores. Scores were stan- 130
dardized by subject, grade, and year to have mean zero and unit
variance in the BPS population.

Data on student enrollment, demographics, and test scores
were combined with the BPS exam school applicant file. This
file records applicants’ current grade and school enrolled, appli- 135
cants’ preference ordering over exam schools, and applicants’
Independent Schools Entrance Exam (ISEE) test scores, along
with each exam schools’ ranking of its applicants as determined
by ISEE scores and GPA. These school-specific rankings be-
come the exam school running variables in our setup. 140

Our initial analysis sample includes BPS-enrolled students
who applied for exam school seats in 7th grade from 1999 to
2008 or in 9th grade from 2001 to 2007. We focus on applicants
enrolled in BPS at the time of application (omitting private
school students) because we are interested in how an exam 145
school education compares to regular district schools. Moreover,
many private school applicants remain outside the BPS district
and hence out of our sample if they fail to get an exam school
offer. Applicants who apply to transfer from one exam school
to another are also omitted. 150

2.2 Exam School Admissions

The sharp CIA-based estimation strategy developed here is
predicated on the notion that exam school offers are a determin-
istic function of school-specific applicant rankings. In practice,
however, Boston exam school offers also take account of stu- 155
dent preferences over schools. Each student receives at most
one offer that is determined by a student-proposing deferred ac-
ceptance algorithm. This process complicates our RD analysis
because it loosens the direct link between running variables and
offers. As in Abdulkadiroğlu, Angrist, and Pathak (2014), our 160
econometric strategy begins by constructing analysis samples,
referred to as sharp samples, which restore a deterministic link
between exam school offers and running variables, so that of-
fers are sharp around admissions cutoffs. A detailed description
of the admissions process and construction of sharp samples is 165
given in Abdulkadiroğlu, Angrist, and Pathak (2014).

The sharp RD treatment variable is an offer dummy, denoted
Dik , indicating applicant i is offered a seat at school k, deter-
mined separately as a function of rank for applicants in each
school-specific sharp sample. For the purposes of empirical 170
work, school-specific rankings are centered and scaled to pro-
duce the following running variable:

rik = 100

Nk
× (τk − cik) , (1)

where Nk is the total number of students who ranked school k
(not the number in the sharp sample), τk is the admissions cutoff
for school k, and cik is the ranking of student i by school k (with 175
lower numbers constituting a better ranking). The running vari-
ables, rik , equal zero at the cutoff rank for school k, with positive
values indicating students who ranked and qualified for admis-
sion at that school. Absent centering, the running variables give
applicants’ position in the distribution of applicants to school k. 180
Within sharp samples, we focus on a window limited to appli-
cants with running variables no more than 20 units (percentiles)
away from the cutoff. For qualified 9th grade applicants at BLS,
this is nonbinding since the BLS cutoff is closer to the top of
the 9th grade applicant distribution than the 0.8 quantile. 185
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Figure 1. Offer and enrollment at O’Bryant and Boston Latin School.

In sharp samples, offers are determined by the running vari-
able, but not all offers are accepted. This can be seen in
Figure 1(a) and 1(b), which plot school-specific offer and en-
rollment rates around O’Bryant and BLS admissions cutoffs.
Specifically, the figures show conditional means for sharp sam-190
ple applicants in a one-unit binwidth, along with a conditional
mean function smoothed using local linear regression (LLR).
Our LLR implementation uses the edge kernel and a version of
the DesJardins and McCall (2008) bandwidth (hereafter DM)
studied by Imbens and Kalyanaraman (2012).195

2.3 Results at the Cutoff

As a benchmark, we begin with estimates for marginal ap-
plicants. Figure 2(a) and 2(b) shows little evidence of gains in
10th grade math scores for 7th grade applicants offered exam
school seats. On the other hand, among both 7th and 9th grade 200
applicants, 10th grade ELA scores seem to jump at the O’Bryant
cutoff. The figures also hint at an O’Bryant-induced gain in math
scores, though only for 9th grade applicants.

Our estimators of the effect of an exam school offer are de-
rived from models for potential outcomes. Let Y1i and Y0i denote 205
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Figure 2. 10th grade math and ELA scores at O’Bryant and Boston Latin Schools.

potential outcomes in treated and untreated states, with the ob-
served outcome determined by

yi = Y0i + (Y1i − Y0i)Di.

In a parametric setup, the conditional mean functions for poten-
tial outcomes given the running variable are modeled as

E [Y0i | ri] = f0 (ri)

E [Y1i | ri] = ρ + f1 (ri) ,

using polynomials, fj (ri) ; j = 0, 1, that have the same inter-210
cept.

Substituting polynomials in E [yi | ri] = (1 −Di)
E [Y0i | ri] +DiE [Y1i | ri], and allowing for the fact that
the estimation sample pools data from different test years and
application years, the equation used to construct parametric 215
estimates, fit by ordinary least squares, is

yi =
∑
t

αtwit +
∑
j

βjpij +
∑
�

δ�di� + (1 −Di) f0 (ri)

+Dif1 (ri) + ρDi + ηi. (2)

This model controls for test year, indexed by t and indicated
by dummies wit , and for application year, indexed by � and
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indicated by dummies di�. The model also includes a full set
of application preference dummies, denoted pij (this controls220
for applicant-preference-group composition effects in the sharp
sample; see Abdulkadiroğlu, Angrist, and Pathak 2014 for de-
tails). The effects of the running variable are controlled by a pair
of third-order polynomials that potentially differ on either side
of the cutoff.225

Our nonparametric RD estimators differ from parametric in
three ways. First, they narrow the estimation window when the
optimal data-driven bandwidth falls below 20. The nonpara-
metric estimators also use a tent-shaped edge kernel centered
at admissions cutoffs, instead of the uniform kernel implicit in230
parametric estimation. Finally, our nonparametric models con-
trol for linear functions of the running variable only, omitting
higher-order terms. The equation used to construct nonpara-
metric estimates, fit by weighted least squares with weights
determined by the nonparametric bandwidth, is235

yi =
∑
t

αtwit +
∑
j

βjpij +
∑
�

δ�di� + γ0 (1 −Di) ri

+ γ1Diri + ρDi + ηi. (3)

Consistent with the figures, estimates of ρ in Equations (2)
and (3), reported in Table 1, show little in the way of score gains
at BLS. But the nonparametric estimates suggest an O’Bryant
offer may boost 10th grade ELA scores for both 7th and 9th240
grade applicants. Other estimates are either smaller or less pre-
cise, though among 9th grade O’Bryant applicants, we see a
marginally significant effect on math. Additional estimates, not
reported here, present a broad picture of small effects on 7th
grade exam school applicants tested in 7th and 8th grade (see245

Table 1. Reduced form estimates for 10th grade MCAS scores

Parametric Nonparametric

Latin Latin
O’Bryant School O’Bryant School

(1) (3) (4) (6)

Panel A. 7th grade applicants
Math −0.011 −0.034 0.034 −0.055

(0.100) (0.060) (0.056) (0.039)
1832 1854 1699 1467

ELA 0.059 0.021 0.125∗∗ 0.000
(0.103) (0.095) (0.059) (0.061)
1836 1857 1778 1459

Panel B. 9th grade applicants
Math 0.166 −0.128 0.128∗ −0.144∗

(0.109) (0.117) (0.066) (0.076)
1559 606 1386 361

ELA 0.191∗ 0.097 0.180∗∗∗ 0.048
(0.112) (0.187) (0.066) (0.106)
1564 607 1532 458

NOTES: This table reports estimates of the effects of exam school offers on 10th grade
MCAS scores. The sample covers students within 20 standardized units of offer cutoffs.
Parametric models include a cubic function of the running variable, allowed to differ on
either side of offer cutoffs. Nonparametric estimates use the edge kernel, with bandwidth
computed following DesJardins and McCall (2008) and Imbens and Kalyanaraman (2012).
Optimal bandwidths were computed separately for each school. Robust standard errors
are shown in parentheses. The number of observations is reported below standard errors.
∗significant at 10%; ∗∗significant at 5%; ∗∗∗significant at 1%.

Abdulkadiroğlu, Angrist, and Pathak 2014 for effects on mid-
dle school scores). Results for the 10th grade ELA scores of
O’Bryant applicants offer the strongest evidence of an exam
school gain.

3. CALL IN THE CIA 250

RD designs take the mystery out of treatment assignment. In
sharp samples of applicants to Boston exam schools, we know
that exam school offers are determined by

Di = 1 [ri > 0] .

This signal feature of the RD design implies that failure to con-
trol for ri is the only source of omitted variables bias in estimates 255
of the causal effect ofDi (Cook 2008 credited Goldberger 1972a
and Goldberger 1972b for the observation that when treatment
status is determined solely by a pretreatment test score, regres-
sion control for pretreatment scores eliminates omitted variables
bias; Goldberger credited Barnow 1972 and Lord and Novick 260
1972 for similar insights).

Armed with precise knowledge of the source of omitted vari-
ables bias, we propose to identify causal effects by means of a
conditional independence argument. In sharp samples, Boston
exam school offers are determined by measures of past achieve- 265
ment, specifically ISEE scores and students’ GPAs. But these
are not the only lagged achievement measures available. In ad-
dition to demographic variables that predict achievement, we
observe preapplication scores on MCAS tests taken in 4th grade
and, for high school applicants, in 7th or 8th grade. Condition- 270
ing on this rich and relevant set of controls may serve to break
the link between running variables and outcomes.

To formalize this identification strategy, we gather the set
of available controls in a covariate vector, xi. Our conditional
independence assumption (CIA) asserts that: 275

Conditional independence assumption (CIA)

E
[
Yji | ri, xi

] = E
[
Yji | xi

]
; j = 0, 1.

In other words, potential outcomes are assumed to be mean-
independent of the running variable conditional on xi. We also
require treatment status to vary conditional on xi :

Common support 280

0 < P [Di = 1 | xi] < 1 a.s.

The CIA and common support assumptions identify any coun-
terfactual average of interest. For example, the average of Y0i to
the right of the cutoff is

E [Y0i | Di = 1] = E {E [Y0i | xi,Di = 1] | Di = 1}
= E {E [yi | xi,Di = 0] | Di = 1} , (4)

while the average treatment effect on the treated is captured by
a matching-style estimand: 285

E [Y1i − Y0i | Di = 1]
= E {E [yi | xi,Di = 1] − E [yi | xi,Di = 0] | Di = 1} .

We can interpret the CIA using notation suggested by Lee
(2008). The running variable ri can be modeled as a function of
two parts g (xi, εi), where xi is observed and εi is not. Condi-
tional on xi the only source of variation in ri , and consequently
in Di , is εi . Thus, the CIA requires that, conditional on the 290
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observed xi , potential outcomes are mean-independent of unob-
served determinants of the running variable.

3.1 Testing

Just as with conventional matching strategies (as in, e.g.,
Heckman, Ichimura, and Todd 1998; Dehejia and Wahba 1999),295
the CIA assumption invoked here breaks the link between treat-
ment status and potential outcomes, opening the door to identi-
fication of a wide range of average causal effects. In this case,
however, the prior information inherent in an RD design is also
available to guide our choice of the conditioning vector, xi .300
Specifically, under the CIA, we have

E [Y1i | ri, xi, ri > 0] = E [Y1i | xi] = E [Y1i | xi, ri > 0] ,

so we should expect that

E [yi | ri, xi,Di = 1] = E [yi | xi,Di = 1] , (5)

to the right of the cutoff. Likewise, the CIA implies

E [Y0i | ri, xi, ri < 0] = E [Y0i | xi] = E [Y0i | xi, ri < 0] ,

so we should expect that

E [yi | ri, xi,Di = 0] = E [yi | xi,Di = 0] , (6)

to the left of the cutoff.305
Regressions of outcomes on xi and ri on either side of the

cutoff provide a simple test for restrictions (5) and (6). Mean in-
dependence is stronger than regression independence, of course,
but regression testing procedures can embed flexible, nonlinear
conditional mean functions. In practice, simple regression-based310
tests seem preferable to more elaborate tests that may lack the
power to detect violations.

The CIA has a further testable implication: RD estimates
and matching-style estimates differ only in how they weight
covariate-specific treatment effects. The CIA can therefore be315
evaluated by comparing RD estimates to properly reweighted
(using the distribution of covariates at the cutoff) matching-style
estimates. See the online appendix for details and an application
of this test in the Boston exam school setting.

3.2 Alternative Approaches320

Battistin and Rettore (2008) considered matching estimates
in an RD setting, though they focused on fuzzy RD with one-
sided noncompliance and did not exploit an RD-specific condi-
tional independence condition. In the spirit of Lalonde (1986),
Battistin and Rettore validated a generic matching estimator325
for average treatment effect on the treated by comparing non-
parametric RD estimates with conventional matching estimates
constructed at the cutoff. They argued that when matching and
RD produce similar results at the cutoff, matching seems worth
exploring away from the cutoff as well. Mealli and Rampichini330
(2012) considered a similar approach that also uses information
away from the cutoff.

Other related discussions of RD identification away from the
cutoff include DiNardo and Lee (2011) and Lee and Lemieux
(2010), both of which note that the local interpretation of non-335
parametric RD estimates can be relaxed by treating the running
variable as random rather than conditioning on it. In this view,
observed running variable values are the realization of a nonde-
generate stochastic process that assigns values to individuals of

an underlying type. Each type contributes to local-to-cutoff av- 340
erage treatment effects in proportion to that type’s likelihood of
being represented at the cutoff. Since “type” is an inherently la-
tent construct, this random running variable interpretation does
not seem to offer concrete guidance as to how causal effects
might change away from the cutoff. In the spirit of this notion 345
of latent conditioning, however, we might model running vari-
ables and the conditioning variables in our CIA assumption as
noisy measures of a single underlying ability measure. Rokka-
nen (2014) explored RD models where identification is based
on this sort of latent factor ignorability in a structural econo- 350
metric framework. Finally, Dong and Lewbel (2012) explored
identification of the effect of changing the threshold in an RD
design.

3.3 CIA-Based Estimators

At specific running variable values, the CIA leads to the fol- 355
lowing matching-style estimand:

E[Y1i − Y0i | ri = c] = E[E[yi | xi,Di = 1]

− E[yi | xi,Di = 0] | ri = c]. (7)

Alternately, on the right-hand side of the cutoff, we might con-
sider causal effects averaged over all positive values up to c, a
bounded effect of treatment on the treated:

E[Y1i − Y0i | 0 < ri ≤ c] = E{E[yi | xi,Di = 1]

− E[yi | xi,Di = 0] | 0 < ri ≤ c}. (8)

Paralleling this on the left, the bounded effect of treatment on 360
the nontreated is

E[Y1i − Y0i | −c ≤ ri < 0] = E{E[yi | xi,Di = 1]

− E[yi | xi,Di = 0] | −c ≤ ri < 0}. (9)

We consider two estimators of Equations (7)–(9). The first is
a linear reweighting estimator discussed by Kline (2011). The
second is a version of the Hirano, Imbens, and Ridder (2003)
propensity score estimator based on Horvitz and Thompson 365
(1952). We also use the estimated propensity score to document
common support, as in Dehejia and Wahba’s (1999) pioneering
propensity score study of the effect of a training program on
earnings.

Kline’s reweighting estimator begins with linear models for 370
conditional means, which can be written as

E [yi | xi,Di = 0] = x ′
iβ0 (10)

E [yi | xi,Di = 1] = x ′
iβ1.

Linearity is not very restrictive since the parameterization for
x ′
iβj can be rich and flexible. Substituting in Equation (7), we

have

E [Y1i − Y0i | ri = c]
= (β1 − β0)′ E [xi | ri = c] , (11)

with similar expressions based on Equations (8) and (9). 375
Let λ (xi) ≡ E [Di | xi] denote the propensity score.

Our propensity score weighting estimator begins with the
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observation that the CIA implies

E

[
yi (1 −Di)

1 − λ (xi)
| xi

]
= E [Y0i | xi]

E

[
yiDi

λ (xi)
| xi

]
= E [Y1i | xi] .

Bringing these expressions inside a single expectation and over
a common denominator, the treatment effect on the treated for380
those with 0 < ri ≤ c is given by

E [Y1i − Y0i | 0 < ri ≤ c]

= E

{
yi [Di − λ (xi)]

λ (xi) [1 − λ (xi)]
× P [0 < ri ≤ c | xi]

P [0 < ri ≤ c]

}
. (12)

Similar formulas give the average effect for nontreated appli-
cants and average effects at specific, possibly narrow, ranges of
running variable values. The empirical counterpart of Equation
(12) requires a model for the probability P [0 < ri ≤ c | xi] as385
well as for λ (xi). It seems natural to use the same parameteri-
zation for both. Note also that if c equals the upper bound of the
support of ri , the estimand in Equation (12) simplifies to

E [Y1i − Y0i | Di = 1] = E

{
yi [Di − λ (xi)]

[1 − λ (xi)]E [Di]

}
,

as in Hirano, Imbens, and Ridder (2003).
When the estimand targets average effects at specific ri = c,390

as opposed to over an interval, the probabilities P [ri = c | xi]
and P [ri = c] that appear in Equation (12) become densities.
Note also that the estimand in Equation (12) can be written as
E [ω1iyi − ω0iyi], where E [ω0i] = E [ω1i] = 1. As noted by
Imbens (2004), however, this need not hold in finite samples.395
We therefore normalize the sum of these weights to be 1.

4. THE CIA IN ACTION AT BOSTON EXAM SCHOOLS

We start by testing CIA in estimation windows of ±20 around
the O’Bryant and BLS cutoffs. We limit our attention to these
narrower windows to avoid bias from changing counterfactuals400
as distance from the cutoff grows. Moving, say, to the left of the
BLS cutoff, BLS applicants start to fall below the BLA cutoff
as well, thereby changing the relevant counterfactual school
from BLA to O’Bryant for BLS applicants not offered a seat
there. The resulting change in Y0i (where potential outcomes405
are indexed against BLS offers) is likely to be correlated with
the BLS running variable with or without conditioning on xi .

To see how this correlation arises, note that when estimating a
BLS treatment effect, outcomes at BLS provide the relevant Y1i ,
while those at other schools provide Y0i . Just to the left of the410
BLS cutoff, most applicants enroll at BLA, generating Y BLA

0i .
Further to the left, however, below a cutoff, b, BLS applicants
no longer qualify for BLA, and therefore end up at O’Bryant.
The outcome observed for this group is YOBR

0i . Therefore, for
those in the BLS applicant pool, we can write415

Y0i = Y BLA
0i + (

YOBR
0i − Y BLA

0i

)
1 [ri < b] .

Under CIA, conditioning on xi eliminates the dependence of
component potential outcomes Y BLA

0i and YOBR
0i on ri . But the

switch from Y BLA
0i to YOBR

0i at b remains, inducing dependence
between Y0i and ri unless the distinction between BLA and
O’Bryant is of no consequence. We therefore insure against420

Table 2. Conditional independence tests

O’Bryant Latin School

D = 0 D = 1 D = 0 D = 1
(1) (2) (3) (4)

Panel A. 7th grade applicants
Math 0.022∗∗∗ 0.015∗∗∗ 0.008∗∗∗ 0.014∗∗∗

(0.004) (0.004) (0.002) (0.002)
838 618 706 748

ELA 0.015∗∗∗ 0.006 0.013∗∗∗ 0.018∗∗∗

(0.004) (0.005) (0.003) (0.003)
840 621 709 750

Panel B. 9th grade applicants
Math 0.002 0.005 0.008∗∗ 0.018

(0.004) (0.003) (0.003) (0.028)
513 486 320 49

ELA 0.003 0.002 0.006 0.055
(0.004) (0.004) (0.005) (0.053)

516 489 320 50

NOTES: This table reports regression-based tests of the conditional independence assump-
tion described in the text. Cell entries show the coefficient on the same-subject running
variable in models for 10th grade math and ELA scores that control for baseline scores,
along with indicators for special education status, limited English proficiency, eligibility for
free or reduced price lunch, race (black/Asian/Hispanic), and sex. Estimates use only ob-
servations to the left or right of the cutoff as indicated in column headings. Robust standard
errors are reported in parentheses. ∗significant at 10%; ∗∗significant at 5%; ∗∗∗significant
at 1%.

bias from changing counterfactuals by limiting extrapolation to
the left of the BLS cutoff when looking at BLS applicants.

The regressions we use to test the CIA include controls for
baseline test scores along with indicators of special education
status, limited English proficiency, eligibility for free or reduced 425
price lunch, race (black/Asian/Hispanic), and sex, as well as
indicators for test year, application year, and application prefer-
ences. Baseline score controls for 7th grade applicants include
4th grade math and ELA scores, while for 9th grade applicants,
baseline score controls include 7th grade ELA scores and 8th 430
grade math scores. Q3

CIA test results, reported in Table 2, show that conditioning
fails to eliminate the relationship between running variables and
potential outcomes for 7th grade applicants: most of the esti-
mated coefficients are significantly different from zero for both 435
10th grade math and ELA scores. At the same time, test results
for 9th grade applicants are promising. Most test statistics (i.e.,
running variable coefficient estimates) for 9th grade applicants
are smaller than the corresponding statistics for 7th grade ap-
plicants, and only one is significantly different from zero (this 440
is for math scores to the left of the BLS cutoff). It should be
noted, however, that few 9th grade applicants fall to the right of
the BLS cutoff. CIA tests for BLS applicants with Di = 1 are
forgiving in part because the sample for this group is small.

We complement formal CIA testing with a graphical tool 445
motivated by an observation in Lee and Lemieux (2010): in a
randomized trial using a uniformly distributed random number
to determine treatment assignment, the randomizer becomes the
running variable for an RD design. The relationship between
outcomes and this running variable should be flat, however, 450
except possibly for a jump at the quantile cutoff that deter-
mines proportion treated. Our CIA assumption implies this same
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Figure 3. Visual evaluation of CIA in the window [−20,20].

pattern. Figure 3 therefore plots 10th grade math and ELA resid-
uals (after regressing the outcomes on xi) against running vari-
ables. The figure shows conditional means for all applicants455
in one-unit binwidths, along with conditional mean functions
smoothed using local linear regression. Consistent with the test
results reported in Table 2, Figure 3 shows a strong positive
relationship between outcome residuals and running variables
for 7th grade applicants. For 9th grade applicants, however, the460

relationship between outcome residuals and running variables
is essentially flat, except perhaps for ELA scores in the BLS
sample.

In combination with demographic control variables and 4th
grade scores, 7th and 8th grade MCAS scores appear to do a 465
good job of eliminating the running variable from 9th graders’
conditional mean functions for 10th grade scores. The difference
in CIA test results for 7th and 9th grade applicants may be
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Table 3. CIA estimates of the effect of exam school offers for 9th
grade applicants

Math ELA

Latin Latin
O’Bryant School O’Bryant School

(1) (2) (3) (4)

Linear reweighting 0.156∗∗∗ −0.031 0.198∗∗∗ 0.088
(0.039) (0.094) (0.041) (0.084)

N untreated 513 320 516 320
N treated 486 49 489 50
Propensity score weighting 0.148∗∗∗ −0.028 0.251∗∗∗ 0.054

(0.052) (0.192) (0.090) (0.207)
N untreated 509 320 512 320
N treated 482 49 485 50

NOTES: This table reports CIA estimates of the effect of exam school offers on MCAS
scores for 9th grade applicants to O’Bryant and BLS. The first row reports results from a
linear reweighting estimator, and the second row reports results from inverse propensity
score weighting, as described in the text. Controls are the same as used to construct the
test statistics except that the propensity score models for Latin School omit test year
and application preference dummies. The O’Bryant estimates are effects on nontreated
applicants to the left of the admissions cutoff; the BLS estimates are effects on treated
applicants to the right of the cutoff. Standard errors (shown in parentheses) were computed
using a nonparametric bootstrap with 500 replications. The table also reports the number of
treated and untreated (offered and not offered) observations in the relevant outcome sample.
∗significant at 10%; ∗∗significant at 5%; ∗∗∗significant at 1%.

because baseline scores for 9th grade applicants come from tests
taken in a grade closer to the outcome test grade than baseline470
scores for 7th grade applicants. By contrast, the most recent
baseline test scores available for 7th grade applicants are from
4th grade tests. In view of the results in Table 2 and Figure 3,
the CIA-based estimates that follow are for 9th grade applicants
only.475

The first row of Table 3 reports linear reweighting
estimates of average treatment effects. These are esti-

mates of E [Y1i − Y0i | 0 < ri < 20] for BLS applicants and
E [Y1i − Y0i | −20 < ri < 0] for O’Bryant applicants. Specifi-
cally, the estimand for BLS is 480

E [Y1i − Y0i | 0 < ri ≤ 20]
= (β1 − β0)′ E [xi | 0 < ri ≤ 20] , (13)

while that for O’Bryant is

E [Y1i − Y0i | −20 ≤ ri < 0]
= (β1 − β0)′ E [xi | −20 ≤ ri < 0] , (14)

where β0 and β1 are defined in Equation (10). The BLS es-
timand is an average effect of treatment on the treated, while
the O’Bryant estimand is an average effect of treatment on the
nontreated. 485

As with RD estimates at the cutoff, the CIA results in
Table 3 show no evidence of a BLS achievement boost. At
the same time, results for inframarginal unqualified O’Bryant
applicants offer some evidence of gains. The estimates for math
and ELA are 0.16σ and 0.2σ , both significantly different from 490
zero. These CIA estimates are remarkably consistent with the
corresponding RD estimates at the cutoff.

Figure 4 completes the picture of effects away from the cutoff
by plotting linear reweighting estimates of E [Y1i | ri = c] and
E [Y0i | ri = c] for all values of c in the [−20, 20] interval. To 495
the left of the O’Bryant cutoff, the estimates of E [Y0i | ri = c]
are fitted values from regression models for observed outcomes,
while the estimates ofE [Y1i | ri = c] are an extrapolation based
on Equation (10). To the right of the BLS cutoff, the esti-
mates of E [Y1i | ri = c] are fitted values while the estimates 500
of E [Y0i | ri = c] are an extrapolation based on Equation (10).
The conditional means in this figure were constructed by plug-
ging individual values of xi into Equation (10) and smoothing
the results using local linear regression (using the edge kernel

Figure 4. CIA-based estimates of E [Y1i | ri = c] and E [Y0i | ri = c] for c in the window[−20, 20] for 9th grade applicants.
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Figure 5. Histograms of estimated propensity scores in the window[−20, 20] for 9th grade applicants to O, Bryant and BLS.

with Stata’s default bandwidth). The figure presents a picture505
consistent with that arising from the estimates in Table 3. In
particular, the extrapolated BLS effects are small (for ELA) or
noisy (for math), while the O’Bryant extrapolation reveals a re-
markably stable gain in ELA scores away from the cutoff. The
extrapolated effect of O’Bryant offers on math scores appears510
to increase modestly as a function of distance from the cutoff, a
finding probed further below.

4.1 Propensity Score Estimates

CIA-based estimation of the effect of exam school offers
seems like a good setting for propensity score methods, since515
the conditioning set in this case includes multiple continuously
distributed control variables. These features of the data compli-
cate full covariate matching. Our logit model for the propensity
score uses the control variables and parameterization used to
construct the tests in Table 2 and the linear reweighting esti-520
mates in the first row of Table 3 (the logit model for the smaller
sample of BLS applicants omits test year and application pref-
erence dummies).

The estimated propensity score distributions for admitted and
rejected applicants exhibit a substantial degree of overlap. This525
is documented in Figure 5, which plots the histogram of propen-
sity score fitted values for treated and control observations above
and below a common horizontal axis. Not surprisingly, the larger
sample of O’Bryant applicants generates more overlap than the
sample for highly selective BLS. Most score values for un-530
treated O’Bryant applicants fall below about 0.6. Each decile in
the O’Bryant score distribution contains at least a few treated
observations; above the first decile, there appear to be more than
enough for accurate inference. By contrast, few untreated BLS
applicants have covariate values for which a BLS offer is highly535

likely. We should therefore expect the BLS counterfactual to be
estimated less precisely than that for O’Bryant.

The propensity-score-weighted estimates reported in the sec-
ond row of Table 3 are consistent with the linear reweighting
estimates shown in the first row of the table. In particular, the 540
estimates here suggest most BLS students would do no worse if
they had had to go to BLA instead, while low scoring O’Bryant
applicants might enjoy substantial gains in ELA where they of-
fered a seat at O’Bryant. At the same time, the propensity score
estimates for BLS applicants are highly imprecise. These BLS 545
estimates are not only much less precise than the corresponding
O’Bryant estimates, the standard errors here are two–four times
larger than those generated by linear reweighting for the same
samples (standard errors come from a bootstrap with 500 repli-
cations). Linear reweighting looks like an attractive procedure 550
in this context.

5. FUZZY CIA MODELS

Exam school offers affect achievement by facilitating exam
school enrollment. The magnitude of reduced form offer com-
parisons is therefore easier to interpret when the relevant enroll- 555
ment first-stage estimates scale these effects. If the first stage
changes as a function of the running variable, comparisons of
reduced form estimates across running variable values are mean-
ingful only after rescaling. In principle, IV methods make the
appropriate adjustment. A question that arises here, however, is 560
how to interpret IV estimates constructed under the CIA in a
world of heterogenous potential outcomes, where the average
causal effects identified by IV potentially vary with the running
variable.

We estimate and interpret the causal effects of exam school 565
enrollment by adapting the dummy treatment/dummy instru-
ment framework outlined in Abadie (2003). This framework
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allows for unrestricted treatment effect heterogeneity in poten-
tially nonlinear IV models with covariates. The starting point
is notation for potential treatment assignments, W0i and W1i ,570
indexed against the instrument, in this case, exam school offers
indicated by Di. Thus, W0i indicates (eventual) exam school
enrollment among those not offered a seat, while W1i indicates
(eventual) exam school enrollment among those offered a seat.
Observed enrollment status is575

Wi = W0i (1 −Di) +W1iDi.

The core identifying assumption in our IV setup, together with
the common support assumption given in Section 3, is a gener-
alized version of CIA:

Generalized conditional independence assumption (GCIA)

(Y0i , Y1i ,W0i ,W1i) ⊥⊥ ri | xi.
The GCIA generalizes simple CIA in three ways. First, GCIA580
imposes full independence instead of mean independence; this
seems innocuous since any behavioral or assignment mecha-
nism satisfying the latter is likely to satisfy the former. Second,
along with potential outcomes, the pair of potential treatment
assignments (W0i and W1i) is taken to be conditionally inde-585
pendent of the running variable. Finally, GCIA requires joint
independence of all outcome and assignment variables, while
the CIA in Section 3 requires only marginal (mean) indepen-
dence. Again, it is hard to see why we would have the latter
without the former.590

5.1 Fuzzy Identification

5.1.1 Local Average Treatment Effects. In a local average
treatment effects (LATE) framework with Bernoulli treatment
and Bernoulli instrument, the subset of compliers consists of
people whose treatment status can be changed by changing the595
instrument. This group is defined here by W1i > W0i . A key
identifying assumption in the LATE framework is monotonicity:
the instrument shifts treatment only one way. Assuming that the
instrument Di satisfies monotonicity with W1i ≥ W0i , and that
for some i the inequality is strict, so there is a first stage, the600
LATE theorem (Imbens and Angrist 1994) tells us that

E [yi | Di = 1] − E [yi | Di = 0]

E [Wi | Di = 1] − E [Wi | Di = 0]

= E [Y1i − Y0i | W1i > W0i] .

In other words, a simple Wald-type IV estimator captures aver-
age causal effects on exam school applicants who enroll when
they receive an offer but not otherwise.

Abadie (2003) generalized the LATE theorem by showing605
that the expectation of any measurable function of treatment,
covariates, and outcomes is identified for compliers. This result
facilitates IV estimation using a wide range of causal models,
including nonlinear models such as those based on the propen-
sity score. Here, we adapt the Abadie (2003) result to a fuzzy610
RD setup that identifies causal effects away from the cutoff.
This requires a conditional first stage, described below:

Conditional first stage

P [W1i = 1 | xi] > P [W0i = 1 | xi] a.s.

Given GCIA, common support, monotonicity, and a condi-
tional first stage, the following identification result can be es- 615
tablished (see our online appendix for proof):

Theorem 1 (Fuzzy CIA Effects)

E [Y1i − Y0i | W1i > W0i , 0 < ri ≤ c]

= 1

P [W1i > W0i | 0 < ri ≤ c]

×E
{
ψ (Di, xi)

P [0 < ri ≤ c | xi]
P [0 < ri ≤ c]

yi

}
, (15)

where ψ (Di, xi) ≡ Di − λ (xi)

λ (xi) [1 − λ (xi)]
.

Estimators based on Equation (15) capture causal effects for
compliers with running variable values falling into any range 620
over which there is common support.

At first blush, it is not immediately clear how
to estimate the conditional compliance probability,
P [W1i > W0i | 0 < ri ≤ c], appearing in the denomina-
tor of Equation (15). Because everyone to the right of the cutoff 625
is offered treatment, there would seem to be no data available
to estimate compliance rates conditional on 0 < ri ≤ c (in
the original LATE framework, the IV first stage measures the
probability of compliance). Paralleling an argument in Abadie
(2003), however, the online appendix shows that 630

P [W1i > W0i | 0 < ri ≤ c]

= E

{
κ (Wi,Di, xi)

P [0 < ri ≤ c | xi]
P [0 < ri ≤ c]

}
,

(16)

where

κ (Wi,Di, xi) ≡ 1 − Wi (1 −Di)

1 − λ (xi)
− (1 −Wi)Di

λ (xi)
.

5.1.2 Average Causal Response. The causal framework
leading to Theorem 1 is limited to Bernoulli endogenous vari-
ables. For some applicants, however, the exam school treatment
is mediated by years of attendance rather than a simple go/no-go
decision. We develop a fuzzy CIA estimator for such ordered 635
treatments by adapting a result from Angrist and Imbens (1995).
The ordered treatment framework relies on potential outcomes
indexed against an ordered treatment,wi . In this context, poten-
tial outcomes when wi = j , for j = 0, 1, 2, . . . , J , are denoted
by Yji . We assume also that potential treatments, w1i and w0i , 640
satisfy monotonicity with w1i ≥ w0i , and that these potential
treatments generate a conditional first stage. In other words, we
assume that

E [w1i | xi] �= E [w0i | xi]
for the same conditioning variables that give us a valid CIA.

The Angrist and Imbens (1995) average causal response 645
(ACR) theorem is a key building block in our analysis of or-
dered treatment effects identified using the GCIA. This theorem
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describes the Wald IV estimand as follows:

E [yi | Di = 1] − E [yi | Di = 0]

E [wi | Di = 1] − E [wi | Di = 0]

=
∑
j

νjE
[
Yji − Yj−1,i | w1i ≥ j > w0i

]
,

where νj = P [w1i ≥ j > w0i]∑
� P [w1i ≥ � > w0i]

= P [wi ≤ j | Di = 0] − P [wi ≤ j | Di = 1]

E [wi | Di = 1] − E [wi | Di = 0]
.

Wald-type IV estimators therefore capture a weighted average
of the average causal effect of increasing wi from j − 1 to j, for650
compliers whose treatment intensity is moved by the instrument
from below j to above j. The weights are given by the impact of
the instrument on the cumulative distribution function (CDF) of
the endogenous variable at each intensity.

The GCIA assumption allows us to establish a similar result655
in a fuzzy RD setup with an ordered treatment. The following
is shown in our online appendix:

Theorem 2 (Fuzzy Average Causal Response)

E {E [yi | Di = 1, xi] − E [yi | Di = 0, xi] | 0 < ri ≤ c}
E {E [wi | Di = 1, xi] − E [wi | Di = 0, xi] | 0 < ri ≤ c}

=
∑
j

νjcE
[
Yji − Yj−1,i | w1i ≥ j > w0i , 0 < ri ≤ c

]
,

(17)

where660

νjc = P [w1i ≥ j > w0i | 0 < ri ≤ c]∑
� P [w1i ≥ � > w0i | 0 < ri ≤ c]

. (18)

This theorem says that a Wald-type estimator constructed by
averaging covariate-specific first stages and reduced forms can
be interpreted as a weighted average causal response for com-
pliers with running variable values in the desired range. The in-
cremental average causal response,E[Yji − Yj−1,i | w1i ≥ j >665
w0i , 0 < ri ≤ c], is weighted by the conditional (on 0 < ri ≤ c)
probability the instrument moves the ordered treatment through
the point at which the incremental effect is evaluated.

In practice, we estimate the left-hand side of Equation (17)
by fitting linear models that include covariate interactions to the670
reduced form and first stage. The resulting estimation proce-
dure adapts Kline (2011) to an ordered treatment and works as
follows: estimate conditional linear reduced forms interacting
Di and xi ; use these estimates to construct the desired average
reduced form effect as in Equations (13) and (14); divide by a675
similarly constructed average first stage. The same procedure
can be used to estimate Equation (17) for a Bernoulli treatment
like Wi , in which case the average causal response identified
by Theorem 2 becomes the average causal effect identified by
Theorem 1.680

5.2 Fuzzy Estimates

The first row of Table 4 shows estimates of the effect of
exam school offers on exam school enrollment, constructed sep-
arately for O’Bryant and BLS applicants using Equation (16).
The propensity score model used to construct these estimates is685

Table 4. Fuzzy CIA estimates of LATE (exam school enrollment) for
9th grade applicants

Math ELA

Latin Latin
O’Bryant School O’Bryant School

(1) (2) (3) (4)

First stage 0.659∗∗∗ 0.898∗∗∗ 0.660∗∗∗ 0.900∗∗∗

(0.062) (0.054) (0.062) (0.052)
N untreated 509 320 512 320
N treated 482 49 485 50
LATE 0.225∗∗ −0.031 0.380∗∗ 0.060

(0.088) (0.217) (0.183) (0.231)
N untreated 509 320 512 320
N treated 482 49 485 50

NOTES: This table reports fuzzy CIA estimates of the effect of exam school enrollment on
MCAS scores for 9th grade applicants to O’Bryant and BLS. The O’Bryant estimates are
effects on nontreated applicants to the left of the admissions cutoff; the BLS estimates are
for treated applicants to the right of the cutoff. The first-stage estimates in the first row and
the estimated causal effects in the second row are from a modified propensity-score style
weighting estimator described in the text. Standard errors (shown in parentheses) were
computed using a nonparametric bootstrap with 500 replications. The table also reports
the number of treated and untreated (offered and not offered) observations in the relevant
outcome sample. ∗significant at 10%; ∗∗significant at 5%; ∗∗∗significant at 1%.

the same as that used to construct the estimates in Table 3 (Table
4 shows separate first-stage estimates for the math and ELA sam-
ples, as these differ slightly). The second row of the table re-
ports estimates of E [Y1i − Y0i | W1i > W0i , 0 < ri ≤ 20]. The
pattern here is consistent with that in Table 3, with small and 690
statistically insignificant effects at BLS and evidence of large
effects at O’Bryant. The estimates of O’Bryant effects on ELA
and math scores show impressive gains of 0.38σ and 0.23σ .

The estimates for inframarginal applicants who enroll at
O’Bryant are perhaps too large to be credible and may there- 695
fore signal failure of the underlying exclusion restriction, which
channels all causal effects of an exam school offer through an
enrollment dummy. Many who start in an exam school dropout,
so we would like to adjust reduced form estimates for years of
exam school exposure. We therefore treat years of exam school 700
enrollment as the endogenous variable and estimate the ACR
parameter on the right-hand side of Equation (17), using the
modified linear reweighting procedure described above (the co-
variate parameterization used to construct both reduced form
and first-stage estimates is the same as that used to construct the 705
sharp estimates in Table 3).

First-stage estimates for years of exam school enrollment,
reported in the first row of Table 5, indicate that successful BLS
applicants spent about 1.8 years in BLS between application
and test date, while successful O’Bryant applicants spent about 710
1.4 years at O’Bryant between application and test date. The as-
sociated ACR estimates, reported in the second row of Table 5,
are in line with the LATE estimates in Table 4, but considerably
more precise. For example, the effect of a year of BLS exposure
on ELA scores is estimated to be no more than about 0.05σ , with 715
a standard error of roughly the same magnitude. This compares
with an estimate of about the same size in column 4 of Table
4, but the standard error for the latter is five times larger. The
precision gain here would seem to come from linearity of the
estimator and not from the change in endogenous variable, par- 720
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Table 5. Fuzzy CIA estimates of average causal response (years of
exam school enrollment) for 9th grade applicants

Math ELA

Latin Latin
O’Bryant School O’Bryant School

(1) (2) (3) (4)

First stage 1.394∗∗∗ 1.816∗∗∗ 1.398∗∗∗ 1.820∗∗∗

(0.064) (0.096) (0.065) (0.093)
N untreated 513 320 516 320
N treated 486 49 489 50
ACR 0.112∗∗∗ −0.017 0.142∗∗∗ 0.048

(0.029) (0.050) (0.030) (0.045)
N untreated 513 320 516 320
N treated 486 49 489 50

NOTES: This table reports fuzzy RD estimates of the effect of years of exam school
enrollment on MCAS scores for 9th grade applicants to O’Bryant and BLS. The O’Bryant
estimates are effects on nontreated applicants to the left of the admissions cutoff; the BLS
estimates are for treated applicants to the right of the cutoff. The first-stage estimates in the
first row and the estimated causal effects in the second row are from a modified linear 2SLS
estimator described in the text. Standard errors (shown in parentheses) were computed
using a nonparametric bootstrap with 500 replications. The table also reports the number of
treated and untreated (offered and not offered) observations in the relevant outcome sample.
∗significant at 10%; ∗∗significant at 5%; ∗∗∗significant at 1%.

alleling precision gains seen in the switch from propensity score
to linear reweighting when constructing the sharp estimates in
Table 3. The ELA and math estimates for O’Bryant shows gains
of about 0.14σ and 0.11σ per year of exam school exposure.

6. SUMMARY AND DIRECTIONS FOR725
FURTHER WORK

The power of the RD framework comes in part from the
fact that the only source of omitted variables bias is the run-
ning variable. Our conditional independence assumption there-
fore makes the running variable ignorable, that is, independent730
of potential outcomes, by conditioning on other predictors of
outcomes. When the running variable is ignorable, treatment
is ignorable. Although our CIA framework is demanding and
would not be appropriate for all RD applications, the condi-
tional independence assumption has testable implications that735
are easily checked. Specifically, the CIA implies that in samples
limited to either treated or control observations, regressions of
outcomes on the running variable and the covariates supporting
CIA should show no running variable effects.

Among 9th grade applicants to O’Bryant school and BLS,740
the CIA appears to hold over a reasonably wide interval. Impor-
tantly, the conditioning variables supporting this result include
7th or 8th grade and 4th grade MCAS scores, all lagged ver-
sions of the 10th grade outcome variable. Lagged middle school
scores in particular seem like a key control, probably because745
these relatively recent baseline tests are a powerful predictor
of future scores. Lagged outcomes are better predictors, in fact,
than the running variable itself, which is a composite constructed
from applicants’ GPAs and a distinct exam school admissions
test.750

Results based on the CIA suggest that inframarginal high-
scoring BLS applicants gain little (in terms of achievement)
from BLS attendance, a result consistent with the RD estimates
of BLS effects at the cutoff reported in Abdulkadiroğlu, Angrist,

and Pathak (2014). At the same time, CIA-based estimates us- 755
ing both linear and propensity score models generate robust ev-
idence of strong gains in English for unqualified inframarginal
O’Bryant applicants. Evidence of 10th grade ELA gains also
emerge from the RD estimates of exam school effects reported
by Abdulkadiroğlu, Angrist, and Pathak (2014), especially for 760
nonwhites. The CIA-based estimates reported here suggest sim-
ilar gains would likely be observed should the O’Bryant cutoff
be reduced to accommodate currently inframarginal high school
applicants, perhaps as a result of reintroducing affirmative action
considerations in exam school admissions. 765

We also modify CIA-based identification strategies for fuzzy
RD and use this modification to estimate the effects of exam
school enrollment and years of exam school attendance, in ad-
dition to the reduced form effects of exam school admissions
offers. A fuzzy analysis allows us to explore the possibility that 770
changes in reduced form offer effects as a function of the run-
ning variable are driven by changes in an underlying first stage
for exam school exposure.

Our CIA-based extrapolation strategy is likely to prove use-
ful in other RD setting. We have seen our framework applied 775
in recent and ongoing studies of merit scholarships and college
enrollment (Bruce and Carruthers 2014), incumbency advan-
tage in elections (Hainmueller, Hall, and Snyder 2014), em-
ployment protection and job security (Hijzen, Mondauto, and
Scarpetta 2013), publicity requirements in public procurements 780
(Coviello and Mariniello in press), public guarantee schemes to
small and medium enterprise borrowing (de Blasio, De Mitri,
Alessio D’Ignazio, and Stoppani 2014), and public school fund-
ing (Kreisman 2013). Our fuzzy extension also opens the door
to identification of causal effects for compliers in RD models 785
for quantile treatment effects. As noted recently by Frandsen,
Frölich, and Melly (2012), the weighting approach used by
Abadie, Angrist, and Imbens (2002) and Abadie (2003) breaks
down in a conventional RD framework because the distribu-
tion of treatment status is degenerate conditional on the running 790
variable. By taking the running variable out of the equation,
our framework circumvents this problem, a feature we plan
to exploit in future work on distributional outcomes. Finally,
Rokkanen (2014) developed identification strategies for RD de-
signs in which the CIA conditioning variable is an unobserved 795
latent factor. Multiple noisy indicators of the underlying latent
factor provide the key to away-from-the-cutoff identification in
this new context.

SUPPLEMENTARY MATERIALS
Q4
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