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W hen we were graduate students at MIT (1977–81), the only game theory 
mentioned in the first-year core was static Cournot (1838) oligopoly, 
although Eric Maskin taught an advanced elective on game theory 

and mechanism design. Just ten years later, game theory had invaded mainstream 
economic research and graduate education, and instructors had a choice of three 
graduate texts: Fudenberg and Tirole (1991), Osborne and Rubinstein (1994), and  
Myerson (1997).  

Game theory has been successful in economics because it works empirically in 
many important circumstances. Many of the theoretical applications in the 1980s 
involved issues in industrial organization, like commitment and timing in patent 
races and preemptive investment. For example, Kreps and Wilson (1982) developed 
sequential equilibrium to analyze dynamic competition more effectively, Milgrom 
and Roberts (1982) showed how to apply game theory to limit pricing, and most of 
Tirole (1988)’s influential industrial organization textbook is applied game theory 
of one form or another. An array of other applications has followed, including prob-
lems ranging from auctions to market organization, and to monetary, fiscal, and 
international agreements involving trade and environmental issues. Many of these 
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theoretical applications have had successful empirical application: for example, a 
substantial fraction of the roughly 4,000 papers that cite the Berry, Levinsohn, and 
Pakes (1995) game-theoretic empirical study of oligopoly in automobile markets 
are themselves empirical game-theoretic studies. Moreover, feedback from theory 
to the laboratory and back has become an important way to refine and improve 
game theoretic predictions, as in the literatures on ultimatum-game experiments 
following Güth, Schmittberger, and Schwarze (1982), on inequity-averse prefer-
ences following Fehr and Schmidt (1999), and on the winner’s curse following 
Kagel and Levin (1986).

Now that the basic tools of Nash equilibrium analysis are well understood and 
have been widely applied, work by abstract game theorists is no longer as tightly 
focused and has diffused into a number of themes. This hardly means that interest 
in or use of game theory has declined, as illustrated by Figure 1, which compares 
Google Scholar hits for “Nash equilibrium” and “subgame perfect” to those for 
“economics” from 1980 to the present. The role of game theory in economics does 
not seem to be in much doubt. Moreover, game theory continues to draw top young 
scholars into the field, as indicated by the recent award in 2016 of the John Bates 
Clark medal to Yuliy Sannikov, a game theorist.  

There continue to be important theoretical developments in game theory: for 
example, over the last decade we have made tremendous progress in understanding 
the role of information in dynamic games. As theoretical understanding improves, 

Figure 1 
Google Scholar Results for “Nash equilibrium” and “subgame perfect” Relative to 
Results for “economics” for 1980 to the Present

Source: Authors using Google Scholar. 
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it is important also to improve our understanding of a wider range of field and lab 
settings. Theoretical research has helped explain the circumstances in which game 
theory does a good job empirically. It has also helped explain the circumstances 
in which game theory does a poor job empirically: for example, when equilibria 
are not robust, the environment is complex, or when circumstances are unfamiliar, 
standard game theory is less likely to perform well in the sense of making too wide 
a range of predictions (for example, Levine and Zheng 2015). Moreover, we know 
from laboratory studies—for example, those involving  “beauty contest” games in 
which the players must estimate what everyone else is going to choose—that equilib-
rium theory does a poor job when people have inadequate time to learn about the 
game and the behavior of their opponents. As we have argued in the past, learning 
theory offers a way to improve and widen game theory’s predictive power by shed-
ding light on what sorts of equilibria to expect in various contexts  (Fudenberg and 
Levine 1998; Fudenberg and Levine 2009). However, not enough is known about 
the speed of learning, an issue that we feel deserves much more attention. 

Game Theory and Learning

Nash equilibrium has proven itself to be a remarkably powerful tool for under-
standing human interactions. As one commonplace example, the rush-hour traffic 
game is played on weekday mornings in major cities in the world. It lasts several 
hours. The millions of players are the commuters traveling by car from home 
to school or work. The actions are the many different routes that they can take: 
main highway, side streets, a North or a South route, and so forth. Commuters 
may also have some leeway over their departure times. To the first approximation, 
their preferences are to reach their destination as quickly as possible (although an 
expanded game could include additional preferences about outcomes like time of 
arrival and safety during the trip). Nash equilibrium holds when no commuter can 
save any time by taking a different route. For this equilibrium to be approximately 
true, for example, it must be true that if you get off the congested main highway 
and dodge through side streets you find that just enough other people are doing 
the same thing that you derive no advantage from doing so. One of us has consid-
erable experience with a particular version of the rush-hour traffic game and, 
after extensive experimentation, has concluded that Nash equilibrium fits well. 
Less anecdotally, traffic engineers usually assume that traffic flow is well described 
by Nash equilibrium, although they call it “user equilibrium’’ (for example, 
Florian 1976).   

If we believe that Nash equilibrium is applicable in many practical situations, 
as the large body of empirical work using it suggests, then it is natural to inquire as 
to why this should be so. For several reasons, most economists have come to think 
of Nash equilibrium and its variations as arising not from introspection and calcula-
tion, but rather from some nonequilibrium adaptive process of learning, imitation, 
or evolution. First, as the rush-hour traffic game makes clear, in many practical 
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instances, it seems infeasible to find Nash equilibrium by rationality alone: after all, 
commuters do not and could not choose routes by contemplating the rational play 
of all other commuters and working out how they should best respond. Instead, 
commuters approximate an optimal choice through by trial and error learning. 
Second, initial choices in laboratory games do not usually resemble Nash equi-
librium (except in some special cases); instead, there is abundant experimental 
evidence that play in many games moves toward equilibrium as subjects play the 
game repeatedly and receive feedback (some classic citations include Smith 1962; 
Selten and Stoecker 1986; Van Huyck, Battallio, and Beil 1990, pp. 240–41). Finally, 
in many coordination problems with multiple equilibria, it is difficult to believe that 
reasoning from first principles could lead to Nash equilibrium. For example, the 
rush-hour traffic game can work equally well if the players all drive on the right or 
all on the left. But that coordination problem is not likely to be solved by introspec-
tion alone.

There are several reasons for our interest in the process by which Nash equilib-
rium is reached. First, “how we get there’’ may provide clues as to which of multiple 
equilibria are likely to be chosen. Second, as we shall discuss, there are cases where 
convergence to equilibrium does not occur quickly enough to be empirically 
observed. Third, even when a Nash equilibrium is reached and persists for a long 
time, regime changes may still occur. For example, in Sweden, the coordination 
equilibrium changed from driving on the left to driving on the right in 1967. We 
next offer two examples of significant regime change, one that took decades and 
one that took minutes.

Learning about Monetary Policy
Views about the tradeoff between inflation and unemployment have changed 

over time. The view of the Federal Reserve in the 1960s was summarized in this 
way by Ben Bernanke several decades later (as quoted in Domitrovic 2012):  
“[E]conomic theory and practice in the ’50s and early ’60s suggested that there was 
a permanent tradeoff between inflation and employment, the notion being that if 
we could just keep inflation a little bit above normal that we could get permanent 
increases in employment, permanent reductions in unemployment.” This view is 
now widely regarded as wrong. It took the Fed four decades to figure this out, which 
we would describe as “slow” learning (for example, see Sargent 1999). 

To help explain how it is possible to become stuck with a wrong theory, we 
use a simplified version of an idea from Sargent, Williams, and Zha (2006) that we 
described in Fudenberg and Levine (2009), which we will refer to as the Phillips 
curve game. There are two players: the Fed and a representative consumer. The 
Fed chooses a monetary policy, which we take to be either high or low inflation; the 
consumer observes the chosen policy and chooses either high or low unemployment. 
The Fed prefers low inflation, but is willing to choose high inflation if this leads to 
lower unemployment. Regardless of what inflation policy is chosen, the representa-
tive consumer always prefers low unemployment. For illustrative purposes we will 
suppose that the policymaker’s payoff is the sum of an unemployment term and an 
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inflation term, and that the policymaker gets 2 for low unemployment, 0 for high 
unemployment, 1 for low inflation, and 0 for high inflation. The representative 
consumer gets 1 for low unemployment and 0 for high unemployment.

The Phillips curve game has two different types of Nash equilibria. It is an 
equilibrium for the representative consumer to always choose low unemployment 
and for the Fed to choose low inflation. However, it is also a Nash equilibrium for 
the consumer to follow a strategy of “respond to low inflation by choosing high 
unemployment and high inflation by choosing low unemployment, and for the Fed 
to choose high inflation in response. Why should the consumer choose high unem-
ployment when we said low unemployment is preferred? The rationale behind this 
second outcome lies in a technicality in the definition of Nash equilibrium. Because 
the Fed is choosing high inflation in response to the consumer strategy, the way in 
which the representative consumer responds to low inflation is purely hypothet-
ical—it is “off the equilibrium path.” In effect, Nash equilibrium asks: would you 
choose high or low unemployment in response to low inflation? And the represen-
tative consumer answers: it does not really matter to me because I don’t expect to 
see low inflation in my lifetime. And the representative consumer is correct as the 
Fed is choosing high inflation. As a technical matter Nash equilibrium allows this 
possibility. Game theorists have developed two responses.

1) Fix the technicality. The requirement of subgame perfect equilibrium 
strengthens Nash equilibrium by requiring that players should choose best responses 
to all contingencies, whether or not these contingencies are expected to occur. In 
the example, subgame perfection requires that the consumer makes the optimal 
choice in response to low inflation even if the consumer never expects to see low 
inflation. Nash equilibrium makes no such requirement. However, there are issues 
with subgame perfection. In more complex games than the example used here, 
subgame perfection requires that players have extensive knowledge about oppo-
nents’ responses to hypothetical contingencies. For example, it can require that 
a player who has never seen opponents play a particular coordination subgame 
believe that the opponents will coordinate on one of the equilibria of that subgame 
and that the particular equilibrium that is coordinated on can be correctly forecast. 
Moreover, subgame perfection is often not robust to even small amounts of payoff 
uncertainty (Fudenberg, Kreps, and Levine 1988; Myerson 1978).

2) Take learning more seriously. An alternative story we can tell about the Phillips 
curve game is that the representative consumer always chooses low unemployment. 
However, the Fed chooses high inflation and incorrectly believes that if it were to 
choose low inflation, the representative consumer would choose high unemploy-
ment. If the Fed does not have detailed knowledge of consumer behavior and 
preferences, then when the Fed chooses high inflation it receives no feedback about 
the consequences of low inflation, and so has no basis on which to discover that 
its beliefs are incorrect. This leads to the concept of self-confirming equilibrium, 
which weakens Nash equilibrium by only requiring that player’s beliefs about other 
player’s strategies are consistent with what they observe when the game is played, 
and so allows players to have incorrect beliefs about how opponents would play.
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The story then that explains the misguided Fed beliefs of the 1960s is that it 
was stuck in a non-Nash self-confirming equilibrium in which the consumers would 
choose low unemployment in response to low inflation but the Fed mistakenly 
thinks they would choose high employment instead. Believing that low inflation 
would lead to high unemployment, the Fed in the 1960s and into the 1970s chose 
high inflation, and it took time to learn that its belief was wrong. However, while 
self-confirming equilibrium may be a good short-run description, it may not be a 
good long-run description, because players may eventually get enough evidence 
about off-path play to correct their mistaken beliefs.  

The Hijacking Game
We turn now to a case where Levine (2012) points out that learning was breath-

takingly fast. In response to changed circumstances, an equilibrium that involved 
millions of air passengers and had lasted for decades changed to an opposite equi-
librium, and the switch took place spontaneously and in less than half an hour. 

We start with a game-theoretic model of air hijackings with two players: hijackers 
and passengers. There are two types of hijackers: mild and severe. The hijackers’ 
type is private information, but the probabilities are common knowledge. The game 
proceeds sequentially. First, the hijackers decide to stay out or to hijack the plane. If 
they stay out, the game ends and everyone gets utility of 0. If the plane is hijacked, 
then the passengers must decide whether to fight or acquiesce. If the passengers 
fight, the hijackers are defeated with severe hijackers getting −1 and mild hijackers 
getting −2; because fighting generates a chance that the plane crashes, the passen-
gers get an expected payoff of −2. If the passengers acquiesce, then the hijackers get 
+1 and the amount that the passengers get depends on the type of hijacker. If the 
hijackers are of the mild type, the passengers are eventually released and get −1. If 
the hijackers are of the severe type the passengers may be killed, and we set payoff 
of the passengers to be −3.

Suppose initially all hijackers are mild, so there is no private information. Then 
there are two Nash equilibrium outcomes: either the hijackers stay out or they enter 
and the passengers acquiesce. The latter is the unique subgame perfect equilibrium.

What if an exogenous change in circumstances drops the probability of mild 
hijackers to 25 percent? Then hijack/acquiesce is no longer a Nash or even a self-
confirming equilibrium, and the only Nash equilibrium is for the hijackers to stay 
out and for the passengers to fight with at least 50 percent probability. Over time, 
the passengers learn that it is now better to fight, and when the hijackers in turn 
learn that passengers are choosing to fight, hijacking would diminish and we would 
reach the stay-out equilibrium. Formal learning models, as well as experimental 
studies involving unraveling in the finitely repeated prisoner’s dilemma, suggest 
that this process would take some time. That, however, is not how it happened.

The 1990s saw roughly 18 aircraft hijackings a year. Flight crews were trained 
in the rational and government-approved “Common Strategy.” Hijackers’ demands 
should be complied with, the plane should be landed safely as soon as possible, 
and security forces should be allowed to handle the situation. Passengers should 
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sit quietly, and nobody should play hero. This advice was well established, rational, 
successful, and validated by decades of experience. This was the hijack/acquiesce 
equilibrium. Most hijackings ended peacefully, and the longer a hijacking persisted, 
the more often there was a peaceful ending.

Circumstances changed on September 11, 2001, when hijackers used the 
aircraft for suicide attacks on ground targets. The theory predicts that the equilib-
rium should shift from hijack/acquiesce to stay out/fight. This indeed has been the 
case: there have been very few hijackings since September 11, 2001, and in those 
very few cases the passengers have always resisted. But in this example, learning 
was extremely fast (National Commission on Terrorist Attacks on the United States 
2004). American Airlines Flight 11 crashed into the North Tower of the World 
Trade Center at 8:42 am on September 11, 2011. Forty-two minutes later, United 
Airlines Flight 93 was hijacked. Only 29 minutes later, passengers and the flight crew 
on United Airlines Flight 93 assaulted their hijackers. A dramatic regime change 
happened on a plane already in the air based on limited information obtained 
through a few dozen telephone calls that relayed second-hand experience.

Of course, some ingredients are missing in the simple model. For example, one 
thing that was clear to the passengers, although it might not have been to a computer 
program implementing simple learning rules, that the other severe hijackings of the 
day made it virtually certain that their hijackers were of the severe type, too: after all, 
it would be a cosmic coincidence if severe hijackers had seized two planes and the 
third plane was seized by an independent group of mild hijackers. This highlights 
one problem with learning theory, namely that people are smart and sophisticated 
in ways it is hard to model.

Passive Learning

The basic concept of Nash equilibrium describes a situation where further 
learning about opponents’ strategies is not needed and cannot occur. That is, since 
everyone is doing the best they can given the play of the others, nobody will ever 
discover a better action than the one they are using. As noted earlier, players in a 
game observe only what actually happens (“the equilibrium path”) and not gener-
ally all the strategic choices of the other players.

However, in static simultaneous move games such as Cournot or Bertrand 
duopoly, the strategies are simply choices of actions. In this situation, observing the 
realized actions of others is enough for a player to determine what the outcome 
would have been had that player used a different strategy, so the question of 
“what would the opponent have done if I’d done something else” does not arise. To 
put it another way, all learning is “passive” in this situation, meaning that because 
what players do has no impact on what they see, players have no incentive to change 
their actions to gain additional information. 

There are two main models of passive learning. The first, called fictitious play, 
was introduced by Brown (1951) and analyzed by Shapley (1964), Fudenberg and 
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Kreps (1993), and Monderer, Samet, and Selta (1997), among others. In the first 
period, players make an arbitrary choice; no data has been received, no learning 
has taken place. Subsequently, players keep track of the frequency with which their 
opponent has played different actions. It is straightforward to show that if the 
actions of both players converge, they must converge to a Nash equilibrium, and 
only a bit harder to show that the same is true if the empirical marginal distributions 
of actions converge to a pair of mixed strategies (Fudenberg and Kreps 1993). The 
exact rule for forming beliefs does not matter for this result; all that matters is that 
(asymptotically) players choose actions that are a best response to the empirical 
distribution of play. Economists tend to think of learning in terms of Bayes’ law, and 
fictitious play can be interpreted in this way.

However, fictitious play raises two difficulties as a model of learning. First, ficti-
tious play involves a deterministic best response based on the information collected, 
which can open a player up to exploitation by a clever opponent (Blackwell 1956; 
Fudenberg and Kreps 1993). Second, from a purely descriptive point of view, the 
exact best response of fictitious play implies that a small change in beliefs can lead to 
a discontinuous change in response probabilities, which seems implausible. Indeed, 
even when we see convergence to Nash equilibrium in experimental data, the play 
of individual players is quite noisy and is better described by a random response. 

In response to these concerns, Fudenberg and Kreps (1993) replaced the 
exact best response of fictitious play with the assumption that payoffs are subject to 
independently distributed, privately observed payoff shocks. Introducing a degree 
of randomness means that the strategy is no longer deterministic and therefore is 
harder to exploit. More generally, this approach replaces the exact best response 
function of fictitious play with a smooth approximation to it, called “smooth ficti-
tious play,” which is both a better approximation of how players act and also has 
other analytical advantages. The resulting “Nash distribution”—the distribution 
over actions induced by the introduction of randomness—has over time become 
known as a “quantal response equilibrium” (McKelvey and Palfrey 1995).

The second class of passive learning models, reinforcement learning models, were 
drawn from the psychology literature and applied to learning in games by Roth 
and Erev (1995). These models do not deal with beliefs but rather directly update 
a measure of the utility of each action—called a “propensity”—and derive prob-
abilities so that actions with higher propensities are more likely to be played. For 
certain models of choice and certain parameters for converting expected utility into 
probabilities of play, this model can be formally equivalent to smooth fictitious play.

In the original Roth and Erev (1995) formulation, utility weights are updated 
only for the action that was chosen. This is the reinforcement learning idea: the 
action chosen is reinforced according to how well it did. After many years of study 
of experimental data using variations of this model (for example, Cheung and 
Freedman 1997; Camerer and Ho 1999; Salmon 2001), Ho, Camerer, and Chong 
(2007) proposed “self-tuning experience-weighted attraction,” which they report 
does a good job of fitting a variety of experimental data. In this model, weights are 
updated for every action that would have done at least as well as the action that was 
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chosen, although the utility of actions that are not used is depreciated. (Learners 
may depreciate the utility of unused actions by less when the data indicates a high 
degree of certainty about the environment, as in Fudenberg and Levine 2014 and 
Block, Fudenberg, and Levine 2016.) This method of updating has the property 
that if players are playing bad strategies they behave much as they would in ficti-
tious play, while if they are playing a good strategy they play much as they would 
in a pure reinforcement learning model. Ho, Camerer, and Chong view this as a 
model of limited attention: people are more “likely to focus on strategies that would 
have given higher payoffs than ... [those] actually received, because these strategies 
present missed opportunities.’’1

The Cobweb and Recency
The discussion of passive learning models up to this point has assumed that 

current and past observations are weighted the same. Recency is the idea that recent 
observations might get more weight than older observations. 

An extreme example of recency is to update using only data from the most 
recent period. Depending on the parameters, this can give rise to cycles, as in the 
famous “cobweb’’ first described in Kaldor (1934). Sutan and Willinger (2004) inves-
tigated this possibility. They studied a Cournot oligopoly market with five suppliers 
with increasing marginal costs, where the Cournot equilibrium is at a price of 65. 
The effects of recency can be demonstrated in such a setting by using the simpli-
fying assumptions that players assume today’s price will be the same as yesterday’s 
and that they ignore their own market power. This leads to the conclusion that if 
producers expect a low price, they produce 0, which causes the price to rise to 100, 
so the next period there is overproduction and a low price, leading to 0 output the 
period after that, and so on and so on. However, the laboratory investigation of this 
Cournot oligopoly market found that experimental participants converged rather 
quickly to about 65, as shown in Figure 2. 

This experiment (along with many others such as Hommes, Sonnemans, Tunis-
stra, and Van De Velden 2007) shows that extreme recency is not a good model. 
Interestingly our calculations show that if participants were to use an average of the 
prices in the last two periods, rather than just the last period, prices do converge, 
and the rate of convergence matches that in the experimental data rather well, as 
things settle down nicely after ten periods.  

When and why should we expect people to give recent observations more weight? 
If the process that is generating observations undergoes unobserved regime shifts, 
then older observations may indeed be less informative than recent ones. Psycholo-
gists talk of  “recency bias” because sometimes people do this even when they are told 
the environment they face is stationary (for example, Erev and Haruvy 2016).  

1  In the Ho, Camerer, and Chong (2007) approach, agents are homogeneous. Wilcox (2006) argues 
that agents are heterogeneous, and that assuming homogeneity biases the estimates of the learning 
parameters against belief learning and in favor of reinforcement learning. 
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There are two approaches to modeling recency. One is to develop explicit 
Bayesian models of changing environment. This approach is not widely used 
because models of this type are quite complex.2 Instead, most models of recency 
have instead focused on simple rules of thumb. A starting point is to modify the ficti-
tious play/reinforcement learning specification to specify that older observations 
receive exponentially less weight (as, for example, in the econometric specification 
of Cheung and Freedman 1997; see also the theoretical work of Benaïm, Hofbauer, 
and Hopkins 2009; Fudenberg and Levine 2014). 

In lab experiments, a recency model often does well in describing some learning 
paths. But in general, the discount rate placed on recency varies from experiment 
to experiment, and may well vary from subject to subject. However, when subjects 
get stochastic feedback, recency can lead to a distribution of play that is very 
different than any Nash equilibrium. Fudenberg and Peysakovich (2014) provide 
evidence on this point: in their experiment, subjects face a “lemons” problem in 
which the computer chooses a value v uniformly distributed on the interval [0,10] 
and the value of the object to the buyer is v + k, where k is a known parameter. The 
buyer makes a take-it-or-leave-it offer, which the computer accepts exactly when its 
value is below the offer. In one treatment (when k = 3) the Nash equilibrium is 3, 
while the actual mean bids converged to 5.18. However, in another treatment, the 

2  An example is hidden Markov models. Chen, Chen, and Levine (2015) develop techniques for 
 simulating learning in models of this sort—but the algorithms used to solve the hidden Markov model 
cannot be used to generate analytic results.

Figure 2 
Experimental Results from a Cournot Oligopoly Game

Source: Sutan and Willinger (2004).
Notes: Each solid line shows results from a group of five players playing a Cournot oligopoly game. The 
competitive price in this market is at a price of 60. The Cournot equilibrium is at a price of 65.
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Nash equilibrium bid is 6 while the actual mean bids converged to a bit less than 
that value. These outcomes can be matched by simulations with a high degree of 
recency, and in the data, even after some 20 rounds of play, participants appeared 
to place most of their weight on the most recent two observations.

Unfortunately, we do not yet have satisfactory models of recency. Here’s an 
example of one of the complications. It may seem intuitive that if things have 
been stable for a while, but then seem to have changed, then you use greater 
recency. This insight is similar in spirit to work that assumes people act “as if” 
the world is stationary unless the data looks “too non-stationary” as in Fudenberg 
and Kreps (1994), Sargent (1999), and Cho and Kasa (2015). However, this intu-
ition is incomplete. When we are surprised, we do not just put weight on more 
recent data, but we also re-evaluate our previous interpretations of old data. When 
the economy experienced an unusually severe recession as in 2007–2009, many 
analysts stopped looking for comparisons in post–World War II recessions and 
instead went back further to look for relevant lessons in the experience of the 
Great Depression.3

A thought experiment about the coordination game of driving on a certain 
side of the road helps to illustrate the difficulties. Imagine that you are driving on 
a deserted road and you encounter a driver who is on the wrong side. The next 
driver you encounter is also on the wrong side, and so is the next. Even so, you prob-
ably still would not conclude that the equilibrium had changed, but would instead 
contemplate the possibility that there was something unusual about this road at this 
particular time. The answer to the question of how many drivers in a row would you 
have to encounter before you concluded that the equilibrium had changed and 
all drivers everywhere were driving on the wrong side of the road is not obvious. 
Moreover, this example also highlights that real-world players are not operating in a 
vacuum. After encountering two or three wrong-side drivers in a row, you might well 
start listening to the radio or call someone on the phone, and ask if they had heard 
about anything funny going on.

From the Laboratory to the Field
There is a concern that the laboratory evidence on recency may not capture 

how real-world decisions are made. For example, Fudenberg and Peysakovitch 
(2014) find that when they give players a group of ten observations, the players 
display recency and the specific game does not converge to Nash equilibrium. 
However, if they give players a summary of those ten observations in the form of an 

3  One promising approach is the self-tuning experience-weighted attraction model of Ho, Camerer, and 
Chong (2007), which proposes a way to endogenize the “window” of time that players use in looking 
back. In this model, the window is taken to be the number of actions in the support of Nash equilibrium. 
The concept of the window seems an essential conceptual building block. However, it seems question-
able to base a learning equilibrium on computations of Nash equilibrium by players. The approach is not 
consistent with evidence about recency, which sometimes seems to take into account longer or shorter 
windows. It is unclear how the idea of a window takes the re-evaluation of older experience into account. 
Also, it is unclear how this approach is to be applied when there is more than one Nash equilibrium. 
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average, then the players no longer exhibit recency, and the game does converge to 
Nash equilibrium.

Are real-world decision makers more likely to be seeing a series of data or 
some summary of that data? Federal Reserve decisions, for example, are taken by a 
committee that looks a bit at specific data from last week or last month, but mostly 
uses sophisticated econometric models using data going back a long way. Invest-
ment banks do sophisticated analysis of the term structure of interest rates and look 
for arbitrage opportunities using historical data series. Some part of how people 
learn to play games should be conceived of as choosing between model A, model B, 
model C, and others because people learn about which model should be used in 
addition to learning the parameters of a specific model. 

Active Learning

Learning about Off-Path Play 
In some settings, a passive learning approach will not gather information about 

the outcomes of alternative strategies because much of the game is “off the equi-
librium path.” Yet players must still infer causality: if I were to cooperate, would 
my opponent reward me? If so, for how long? For this reason, players in a dynamic 
game may choose to experiment with actions that they think might prove to be 
suboptimal, just to learn more about their consequences. 

This perspective sheds additional light on the Sargent, Williams, and Zha 
(2006) analysis of the Federal Reserve and the Phillips curve game discussed earlier. 
If the game is fully understood by all players, then backward induction leads to 
the low inflation/low unemployment outcome. However, there is a self-confirming 
equilibrium in which the policymaker chooses high inflation due to a mistaken 
belief that low inflation leads to high unemployment. Sargent, Williams, and Zha 
argue that self-confirming equilibrium cannot adequately explain either the accel-
erating inflation of the 1970s nor the dramatic fall in inflation in the 1980s. They 
provide a more detailed model of active Bayesian learning that takes into account 
that some relevant data is revealed even in the high inflation regime, and argue that 
this learning model can explain many details of US monetary policy and inflation 
during 1970s and 1980s.

In incorporating learning about off-path play into learning models, several key 
issues must be addressed. First, the patience of the players matters—that is, time 
preference or discounting—because a patient player will be more willing to risk 
short-term mistakes in pursuit of better performance in the long run. Second, there 
seems to be a role here for random play. Remember that even in the passive models 
of fictitious play, random play helped in avoiding a situation where strategy choices 
became predictably exploitable by other players or unrealistically discontinuous. 
Here, randomness can also serve as a mechanism for learning about off-path play. 
Third, if the potential risks from experimentation are large and negative, then less 
of it will occur. Finally, some games may include many information sets, and thus it 
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would potentially require a lot of experimentation to figure out what was going on. A 
crucial case in point is that of repeated games, to which we turn our attention next.

Cooperation in Infinitely Repeated Games
The relations of consumers and businesses usually involve an important element 

of repetition, as do employment relationships, family relationships, and others. 
When games are repeated over time, the possibility of creating incentives through 
rewards and punishments arises. However, learning in these games is complicated by 
the need to infer causality “off the equilibrium path.”  To focus thoughts, we begin 
with the classic repeated prisoner’s dilemma game. In each period, two players play 
each other in a stage game and decide whether to cooperate C or defect D. Typical 
payoffs are given by the payoff matrix: 

C D

C 2,2 0,3

D 3,0 1,1

Each player has the defect choice D as the unique dominant strategy when 
the game is played only once. However, the infinitely repeated case, which can be 
considered as an idealized representation of settings without a commonly known 
ending date, is quite different. Consider the “grim trigger strategy’’ of cooperating 
in the first period and up until the other player defects, and then defecting forever 
afterwards. In this situation, if players do not have too high a discount rate on future 
payoffs, they will find it optimal to cooperate. This is a special case of the celebrated 
“Folk Theorem” as developed by Auman and Shapley (1992), Friedman (1971), 
Fudenberg and Maskin (1986), and Fudenberg, Levine, and Maskin (1994), among 
others: any payoff vector that is individually rational for the players is a subgame 
perfect equilibrium provided that the players are sufficiently patient (and assuming 
some technical conditions are satisfied). Although repeated games allow the possi-
bility of cooperation in which incentives are established through future rewards, 
they allow many other possibilities as well. 

What predictions should we make about repeated games with patient players? 
A common assumption in applied theory and theoretical industrial organization 
is that people cooperate whenever there is a cooperative equilibrium. Moreover, 
that prediction can be derived from various evolutionary game theory models, as 
in Axelrod and Hamilton (1981), Fudenberg and Maskin (1990), Binmore and 
Samuelson (1992), and Dal Bó and Pujals (2015). Unfortunately, there is little 
hard empirical support for this prediction, and laboratory evidence leans against it. 
Moreover, the laboratory provides a way to better understand what does happen in 
repeated games, and suggests that learning plays a key role.

Dal Bó (2005) relaunched the experimental study of repeated games by having 
participants play 7–10 iterations of the repeated game, with a different partner 
each time, as opposed to past work such as Murnighan and Roth (1983) in which 
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each subject played just once. There have now been a great many experimental 
studies of infinitely repeated games; there are 11 of them with 28 conditions in 
the meta-analysis of Dal Bó and Fréchette (2015). One main takeaway is that the 
discount factor matters much more once participants have played the game a few 
times. Another is that laboratory participants do respond to game parameters such 
as continuation probability and the payoff matrix in the direction suggested by 
theory, with the tendency to cooperate increasing in the gains from doing so, but 
it is not the case that players always succeed in cooperating whenever there is an 
equilibrium that supports cooperation.

Yet another take-away is that in contrast to predictions based on equilibrium 
analysis, the loss a cooperator incurs when the other player defects does matter. 
That is, whether an equilibrium exists in which players cooperate every period is 
theoretically independent of the loss a player incurs when that player cooperates 
and the other defects, because in an equilibrium where players always cooperate, 
no player ever expects that his opponent would be the first to play the defect 
choice D. In contrast, the loss that arises when one player cooperates and the other 
defects matters in practice because participants cannot be sure what strategies their 
partners are using, and even in treatments where most participants eventually coop-
erate, some of them do play the defect choice D. To try to capture the effect of 
this “strategic uncertainty,’’ Blonski, Ockenfels, and Spagnolo (2011) look at risk 
dominance in an associated game where the only strategies are “Tit for Tat,” which 
is repeating the choice just made by the other player, and “Always Defect’’ (Axelrod 
and Hamilton 1981). The payoff matrix is:  

Tit-for-Tat Always Defect

Tit-for-Tat 2, 2 δ, 3(1 − δ) + δ
Always Defect 3(1 − δ) + δ, δ 1, 1

They propose that players will only cooperate if the risk of a Tit-for-Tat choice 
dominates Always Defect choice, which in our example requires δ ≥  2/3, so that for 
2/3 > δ ≥ 1/2,  they would predict little or no cooperation. This criterion does a fairly 
good job of matching the data in the Dal Bó and Fréchette (2015) meta-study. To 
get more precise predictions, Dal Bó and Fréchette relate cooperation to the size 
of the “basin” of Tit-for-Tat, which is the probability of the opponent playing Always 
Defect that leaves the player just indifferent between Tit-for-Tat and Always Defect. 
However, even in “cooperative treatments”—where the payoff matrix and discount 
factor should lead to a high rate of cooperation—Dal Bó and Fréchette estimate 
that about 10–20 percent of the participants use Always Defect. There are similarly 
large shares of Always Defect in the “cooperative treatments” of the noisy prisoner’s 
dilemma in Fudenberg, Rand, and Dreber (2012), who also compute the payoffs of 
the estimated strategies against the estimated distribution and find that the Always 
Defect players do substantially worse than the conditional cooperators who use 
Tit-for-Tat. This heterogeneity of play does not seem to reflect social preferences, 
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and is uncorrelated with how the same participants play in a dictator game (Dreber, 
Fudenberg, and Rand 2014), so we interpret it as showing that people find it hard to 
learn which strategies will perform well, both because of the size of their own strategy 
space and because of the many possible strategies their opponents might be using. 

What Constitutes a Good Theory?

Game theory has become a basic working tool for economists—and not just 
for theoreticians, but for empirical investigation. So where do we go from here? We 
have argued here that improved models of learning can lead to a better theory. To 
see why, let us review what we would like to see in a good theory.

First, we would like precise and valid predictions. Our impression is that existing 
game theoretic methods often do pretty well on validity, at least when researchers 
use appropriately robust versions of the theory. However, precision means that the 
theory generates precise statements about what will happen: for example, speci-
fying which of several possible equilibria will occur. In some settings, for example 
in repeated games, game theory does not do well on this score. In other settings, 
equilibrium models have proven useful in structural estimation; see Bajari, Hong, 
and Nekipelov (2013) for a survey of recent work. In settings where equilibrium 
theory does not yield precise predictions, theoretical analysis of learning models 
has a great deal of promise both in explaining which equilibria are more likely to be 
observed and how initial conditions may matter. The extensive literature on evolu-
tionary games with random shocks is a step in this direction. Early work both in 
discrete time models (Kandori, Mailath and Rob 1993; Young 1993) and in contin-
uous time (Foster and Young 1990; Fudenberg and Harris 1992) gave conditions 
under which risk dominant equilibria are likely to be observed, and subsequent 
work such as Johnson, Levine, and Pesendorfer (2001) extended the idea that 
random shocks generate equilibrium selection to the case of dynamic games. These 
results are likely to expand, as there has been a recent resurgence of interest both 
in traditional evolutionary models, such as Levine and Modica (2016) and in fast 
learning, such as Kriendler and Young (2013) and Ellison, Fudenberg, and Imhof 
(2016). Applications of some of these recent results can be found in Block, Fuden-
berg, and Levine (2016).

Another way to use learning models to generate better predictions is by the 
use of simulations. For example, Brandts and Holt (1996) use this approach to 
argue that a form of myopic fictitious play fits experimental play of signaling games; 
Dal Bó and Fréchette (2015) used simulations of a belief-based learning model to 
predict how play in their repeated game experiment would have changed if subjects 
had played more games; and Fudenberg and Peysakovich (2014) argued that simu-
lations of a model of learning with recency fit their data better than either Nash or 
the “cursed equilibrium” of Eyster and Rabin (2005). More generally, while theory 
is useful for building insight and intuition into how models work, and crucial for 
understanding the generality and robustness of various conclusions, simulations 
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have proven to be useful for generating conjectures, and can be essential for devel-
oping quantitative results.

Second, we need theoretical simplicity. As time goes on, game theory may be 
able to deal with more sophisticated models of human behavior, but it is likely always 
to be the case that simple models will be helpful for providing understanding and 
intuition about how more elaborate models work. Of course, theories of learning 
are more complicated than static theories of equilibrium. However, existing models 
such as variations on fictitious play are quite tractable. We may hope that the 
 analysis remains tractable after adding important features such as events that trigger 
 re-evaluation of models.  

Third, we need breadth. A single unified theory is subject to a great deal of 
possible testing and falsification. On the other hand, a theory specifically tailored to 
explain only one fact cannot be tested at all. Game theory, both static and the theory 
of learning dynamics, fares well on this score. 

Finally, we would argue for the methodological value of conservatism. There 
is no point in introducing, say, a new theory of social preference and fairness that 
explains exactly one experiment and is inconsistent with many other facts for which 
we already have common and coherent explanations. The theory of Nash equilib-
rium has proven useful and accurate. Adding learning theory to the mix preserves the 
basic results and insights of Nash equilibrium, while also adding greater precision to 
prediction in many cases and offering new predictions about the speed of learning.

■ We are grateful to Juan Block, Michele Boldrin, Marco Casari, Pedro Dal Bó, Anna Dreber, 
Rohan Dutta, Ben Golub, Guillame Fréchette, Gabriel Kreindler, Salvatore Modica, Andrea 
Mattozzi, David Rand, and members of the EUI Theory Reading Group. This essay is based 
on our longer paper “Whither Game Theory” (Fudenberg and Levine 2016), which can be 
found at http://www.dklevine.com/archive/refs4786969000000001307.pdf. 
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