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Abstract. Towards developing a theory of systematic biases about strategies,

I analyze strategic implications of a particular bias: wishful thinking about

the strategies. I identify a player as a wishful thinker if she hopes to enjoy

the highest payoff that is consistent with her information about the others’

strategies. I develop a straightforward elimination process that characterizes the

strategy profiles that are consistent with wishful thinking, mutual knowledge of

wishful thinking, and so on. Every pure-strategy Nash equilibrium is consistent

with common knowledge of wishful thinking. For generic two-person games, I

further show that the pure Nash equilibrium strategies are the only strategies

that are consistent with common knowledge of wishful thinking. My analysis

also illustrates how one can characterize the strategic implications of general

decision rules using the tools of game theory.
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1. Introduction

Traditionally, game theory assumes rationality and focuses on Nash equilibrium.

In real life and in experiments, however, economic agents have systematically bi-

ased beliefs1 and use decision rules that are inconsistent with rationality. This has

inspired many non-rational theories of individual decision making. Clearly, in or-

der for these theories to be useful, we need to know how they can be incorporated

into strategic environments with multiple players. For the most part, the papers

that consider such decision rules in strategic environments resort to equilibrium

analysis. But equilibrium analysis assumes that players correctly guess the other

players’ strategies.2 This assumption is problematic in the presence of irrational-

ity: if there are enough repetitions for players to learn each others’ strategies,

then they would also learn to play a best response. Moreover, if a player uses a

non-rational rule of thumb as a decision rule, then she may also use some rule of

thumb in predicting other players’ strategies. Such rules of thumb may introduce

systematic biases, and the resulting beliefs may not correspond to an equilibrium.

Similarly, the papers that investigate the role of optimistic beliefs in economic

applications assume that players hold optimistic beliefs about some underlying

parameters, and then apply equilibrium analysis.3 The equilibrium assumption

is again problematic. Firstly, it is hard to interpret such equilibria as outcomes

of a learning process (Dekel, Fudenberg, and Levine (2004)). More importantly,

most observers agree that it is often harder to predict the outcome of strategic

interactions than to predict aspects of physical reality. This suggests that players

1For example, there is a large empirical literature on self-serving biases (e.g., Larwood and

Wittaker (1977), Weinstein (1980), and Babcock and Loewenstein (1997)). The common-prior

assumption rules out such biases (Aumann (1976,1987) and Feinberg (2000)).
2Even when there is uncertainty about strategies in the form of mixed strategies, in order to

justify equilibrium analysis, one needs to make similar assumptions, such as mutual knowledge

of players’ conjectures–which implies that players guess other players’ conjectures correctly–or

a common prior about strategies (Aumann and Brandenburger (1995)).
3There are applications on financial markets (Harrison and Kreps (1978), Morris (1996)),

bargaining (Posner (1972), Landes (1971), Yildiz (2003,2004), Ali (2003) Watanabe (2004)),

collective action (Wilson (1968), Banerjee and Somanathan (2001)), lending (Manove and Padilla

(1999)), and theory of the firm (van den Steen (2005)).



WISHFUL THINKING 3

have more substantial self-serving biases about the strategies of others than they

do regarding physical reality. Hence, it would be methodologically preferable to

model players having biased beliefs about strategic uncertainty whenever they

have biased beliefs about the underlying parameters of the real world.

In this paper, I take an epistemic approach to investigate the strategic implica-

tions of non-rational decision rules and systematic biases, allowing the players to

hold systematic biases about the other players’ strategies. I focus on the exam-

ple of wishful thinking, i.e., the extreme form of optimism, and characterize the

strategy profiles that are consistent with this decision rule, mutual knowledge of

this decision rule and so on. Similar analyses have been done for rationality and

some variations of it (see e.g., Bernheim (1984), Pearce (1984), Tan and Werlang

(1988), and Epstein (1997), who considers maximizing behavior without expected

utility). These studies allowed heterogenous beliefs about strategies, but they

have not considered systematic biases, the focus of the present work.

In my analysis, I use standard models of strategic uncertainty, as in Aumann

(1976, 1987). Any such model consists of several components. First, there are

states, each of which is the complete description of a strategic situation, including

what strategy each player plays, what each player believes about these strategies,

and so on. Players do not necessarily know the state. At each state, each player

has an information cell consisting of the states that she cannot rule out at that

state. This cell represents the set of correct assumptions that she takes as given,

which is sometimes referred to as her information. She also has a (conditional)

probability distribution on this cell, which is taken to represent her “subjective”

beliefs (about other players’ strategies, etc.).

I define wishful thinking as follows. Consider an information cell of a player.

This player takes the set of strategy profiles played by the other players on this

cell as given. She also knows that she can choose any strategy from the set of her

own strategies. The product of these two sets is the set of all possible outcomes

according to the information cell. I identify a player as a wishful thinker at a state

if her expected payoff (according to her own probability distribution) at that state
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coincides with the highest possible expected payoff one can ever expect within the

set of these possible outcomes.

My analysis involves determining strategy profiles that are played in models

in which the players are wishful thinkers. To do that, for each strategy profile,

one checks whether that strategy profile is consistent with wishful thinking, i.e.,

whether there exists a model with a state at which the strategy profile is played

and the players are wishful thinkers. We might also be interested in knowing

which strategy profiles are consistent with wishful thinking and some awareness

on the part of the players that their opponents are wishful thinkers. Indeed,

when a decision rule or a particular bias such as wishful thinking is common to

an environment, the players’ beliefs may reflect the fact that the other players

use that decision rule or have that bias. For example, Babcock and Loewenstein

(1997) report cases in which the seasoned negotiators are not only optimistic but

also aware that the other parties are optimistic. One can analyze such cases by

determining the strategy profiles that are consistent with mutual knowledge of

wishful thinking. As wishful thinking becomes more widely appreciated by the

players, one must further narrow the set of strategy profiles that can reasonably

emerge by requiring them to be consistent with higher order mutual knowledge of

wishful thinking. Again this will corresponds to considering models where there

are more states at which players are wishful thinkers. Researchers often assume

a decision rule or a bias throughout the model (e.g. in order to disentangle the

implications of self-serving biases from those of asymmetric information). The

strategy profiles played in such models are consistent with common knowledge

of wishful thinking. These are the strategy profiles that remain possible as we

assume more and more layers of knowledge of wishful thinking.

It is clearly too cumbersome to determine such strategy profiles through a model

of strategic uncertainty, which consists of a state space, partitions and conditional

probability distributions. More problematically, the resulting set depends on the

model, as models contain some "common knowledge" assumptions. To overcome

this, I develop a straightforward iterated elimination procedure directly on the

strategy profiles. The first round of this elimination procedure yields the set of

strategy profiles that are consistent with wishful thinking. The second round
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of elimination yields the set of strategy profiles that are consistent with mutual

knowledge of wishful thinking, and so on. The strategy profiles that survive the

elimination process correspond to common knowledge of wishful thinking.

Consider the simple case of the battle of the sexes game:

l r

t 2,1 0,0
b 0,0 1,2

The strategy profile (b, l) is not consistent with wishful thinking: it is impossible

for Player 1 to simultaneously be a wishful thinker, play b, and believe that it

is possible that Player 2 plays l. For if it is possible that Player 2 plays l, then

Player 1, being a wishful thinker, imagines that she could get a payoff of 2. But

the highest payoff that she can get from playing b is 1. Therefore, it is impossible

for a wishful thinking Player 1 to play b and to believe that it is possible that

Player 2 plays l. In accordance with this inconsistency, the strategy profile (b, l)

is eliminated at the first round of my elimination process. All the remaining

strategy profiles are consistent with wishful thinking, and consistent with common

knowledge of wishful thinking. Hence, no other strategy profile is eliminated.

To see that strategy profiles (t, l), (t, r), and (b, r) are consistent with common

knowledge of wishful thinking, consider the three state modelΩ = {(t, l) , (t, r) , (b, r)}
(where each state is fully specified by the strategy profile played at that state).

Each player knows only her own strategy, e.g., the partition of Player 1 consists

of {(t, l) , (t, r)} and {(b, r)}. As a wishful thinker, at {(t, l) , (t, r)}, Player 1 as-
signs probability 1 to state (t, l), where she gets the highest possible payoff. At

the cell {(b, r)}, she plays a best reply to r, the only possible strategy of Player
2, and hence she is again a wishful thinker. Similarly, Player 2 is also a wishful

thinker at all states. Since both players are wishful thinkers at all states, it is

common knowledge that they are wishful thinkers. Notice that non-equilibrium

profile (t, r) is consistent with common knowledge of wishful thinking. Indeed, in

this model, at state (t, r) players exhibit a clear form of wishful thinking. Each

player is certain that her own favored equilibrium–(t, l) for Player 1 and (b, r)
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for Player 2–is being played, but they both are wrong due to the mismatch of

expectations.

I show that a strategy profile (si, s−i) is consistent with wishful thinking of

player i if and only if there is s0−i against which si is a best reply and such that

the payoff of i at
¡
si, s

0
−i
¢
is at least as high as her payoff when she plays a best

reply to s−i. For example, in the battle of the sexes game, finding that (t, l) is

better than (b, r) for Player 1, one can conclude that (b, l) is not consistent with

wishful thinking of Player 1 and that (t, r) is consistent with wishful thinking of

Player 1. In the elimination procedure I will develop, this means that (b, l) will

be eliminated and (t, r) will be kept. One will then iteratively apply this test

to strategy profiles until all the remaining profiles pass the test. Note that we

eliminate strategy profiles, rather than strategies. This is because, as in the battle

of the sexes, (b, l) may not be consistent with wishful thinking, while both (t, l)

and (b, r) are.

It turns out that there is a strong relationship between common knowledge

of wishful thinking and Nash equilibria in pure strategies. Firstly, every pure-

strategy Nash equilibrium is consistent with common knowledge of wishful think-

ing, simply because it does not leave any room for any strategic uncertainty.

Hence, they survive the elimination process. More interestingly, for generic, two-

person games, I show that if a strategy is not played in a pure-strategy Nash

equilibrium, then it must be eliminated, eventually. That is, each strategy that

is consistent with common knowledge of wishful thinking must be played in some

pure-strategy Nash equilibrium. In other words, if players are wishful thinkers

throughout a model, then each player must be playing a Nash equilibrium strategy.

This yields a characterization: a strategy is consistent with common knowledge

of wishful thinking if and only if it is played in a pure-strategy Nash equilibrium.

This characterization reflects the broader fact that if one assumes a decision rule

or a bias throughout a model, then there will be relatively small strategic uncer-

tainty, and the scope of biases will be relatively small.

A number of authors have developed general game theoretical models that in-

corporate deviations from expected utility maximization (Dekel, Safra, and Segal
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(1991), Dow and Werlang (1994), Feinberg (2004)) and psychological motivations

(Geanakoplos, Pearce, Stacchetti (1989), Rabin (1993)). Another literature de-

veloped solution concepts that are based on bounded rationality, such as quantal-

response equilibrium (Mc Kelvey and Palfrey (1995)), limited-foresight models

(Jehiel (1995)), and games with procedurally-rational players (Osborne and Ru-

binstein (1998)). In the latter games, the players use a heuristic to guess the other

players’ strategies, just as random variables. In a more related work, Eyster and

Rabin (2005) propose an “equilibrium” notion in which players underestimate the

correlation between the other players’ actions and their private information while

they correctly estimate the distribution of actions. Jehiel (2005) proposes another

“equilibrium” notion in which players play a best reply to the average behavior in

coarse analogy groups. Rostek (2004) proposes some set-valued solution concepts

and discusses various decision rules on these sets. One of these decision rules

reflects wishful thinking, though with a somewhat different formulation. Speigler

(2004) analyzes a model in which consumers do not take the firms’ strategies into

account in forming their expectations.

I formulate the problem in the next section and investigate the strategic impli-

cations of wishful thinking in Section 3. In Section 4, I investigate the relation

between Nash Equilibrium and common knowledge of rationality. In Section 5,

I analyze the case that only some of the players are wishful thinkers. Section 6

concludes. All proofs can be found in the appendix.

2. Formulation

Consider a game (N,S, u) whereN = {1, 2, . . . , n} is the set of players, S = S1×
· · ·×Sn is the finite set of strategy profiles,4 and ui : S → R is the utility function
of player i for each i ∈ N . I consider the standard models of strategic uncertainty,

as formulated by Aumann (1976).5 A model is any quadruple (Ω, I, p, σ) where

4I use the notational convention of x = (x1, . . . , xn) ∈ X1 × · · · × Xn, x−i =

(x1, . . . , xi−1, xi+1, . . . , xn) ∈ X−i = Πj 6=iXj , and x = (xi, x−i). For any function f and any set

A, I write f (A) = {f (a) |a ∈ A}.
5See Dekel and Gul (1997) for a survey of alternative ways to model strategic uncertainty.
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• Ω is a state space, where each state ω ∈ Ω contains all information about

players’ strategies, including what each player knows and believes, at ω.

• I = (Ii)i∈N is a collection of partitions Ii of Ω. Ii is called the information

partition of player i, and Ii (ω) will denote the cell of Ii that contains ω.

The states in Ii (ω) are indistinguishable from ω for player i.

• p = (pi,ω)i∈N,Ii(ω)∈Ii, where pi,ω is a probability distribution on information

cell Ii (ω), representing the (subjective) beliefs of player i at ω, and pi,ω0 =

pi,ω whenever ω0 ∈ Ii (ω). The expectation operator with respect to pi,ω is

denoted by Ei,ω.

• Finally, σ : Ω → S, where σ (ω) = (σ1 (ω) , . . . , σn (ω)) is the strategy

profile played at ω and σi is constant on each cell Ii (ω).

Here (Ω, I, p) is equivalent to usual models of incomplete information, where

players observe signals (see Aumann (1999)). The mapping σ gives strategic

meaning to the abstract states in the model. The condition that σi is constant

on each information cell of i assures that player i knows her own strategy. The

players’ behavior at a state is governed by their subjective beliefs at that state,

and these beliefs are represented by p. Using pi,ω, one can compute the entire

hierarchy of beliefs of player i at ω, namely, her beliefs about the other players’

strategies, her beliefs about other players’ beliefs about the strategy profile that

is being played, and so on.

A model also contains information partitions. I use information partitions to

define wishful thinking, the decision rule this paper focuses on. I also use them

to characterize the strategic behavior implied by this decision rule in conjunction

with various assumptions, for example the assumption that a player correctly

assumes that the other player is a wishful thinker. An information partition may

be interpreted in two ways. First, it may represent all the "objective" information

player i has according to the model. In this interpretation, at ω, player i knows

that one of the states in Ii (ω) occurs but cannot rule out any of these states.

Alternatively, an information partition represents a set of assumptions a player

may take as given. In this interpretation, Ii (ω) corresponds to states at which

a certain set of assumptions holds. Player i takes these assumptions as given
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at ω, i.e., she does not assign positive probability outside Ii (ω). Notice that,

since ω ∈ Ii (ω), these assumptions indeed hold at ω. But no such restriction is

imposed on players’ actual beliefs, and these beliefs may incorporate other (and

possibly incorrect) assumptions. In particular, a wishful thinker will be often

certain of some state, making many other strong assumptions. In most states

these extra assumptions will be false and the player will be "delusional," in the

sense of assigning zero probability to the true state.

Decision rules and Rationality. A decision rule is any function that maps a
player’s information cells to her strategies (Aumann (1995)). Rationality simply

means expected utility maximization. Formally, a player i is said to be rational

at ω if and only if

(2.1) Ei,ω [ui (σ)] = max
si∈Si

Ei,ω [ui (si, σ−i)] .

That is, σi (ω) maximizes the expected value of ui given the beliefs of player i

about the other players’ strategies (induced by pi,ω and σ−i). The set of states at

which i is rational is denoted by Ri. Rationality is a restriction on decision rules:

the outcome of the decision rule at an information cell Ii (ω) is a best response

to a belief that puts probability one on σ−i (Ii (ω)). Since there are many such

beliefs, there are many decision rules consistent with rationality.

Wishful Thinking. I will define a wishful thinker as a player who expects to
enjoy the highest payoff that is possible given her information about the other

players’ strategies and given that she can choose any of her own strategies. For-

mally, a player i is said to be a wishful thinker at ω if and only if

(2.2) Ei,ω [ui (σ)] = max
s∈Si×σ−i(Ii(ω))

ui (s) .

Player i is a wishful thinker if her expected payoff (with respect to pi,ω) happens

to be the highest payoff that she could get if one considers all the strategy profiles

s−i ∈ σ−i (Ii (ω)) of other players that are possible according to Ii (ω) and all the

strategies of player i. I writeWi for the set of states at which i is a wishful thinker

and W = ∩i∈NWi for the set of states at which everybody is a wishful thinker.

Clearly, the maximization in (2.2) can be written as a maximization over strate-

gies si and beliefs µ on σ−i (Ii (ω)). This leads to other interpretations of wishful



10 MUHAMET YILDIZ

thinking. First, the strategy and the beliefs of a wishful thinker are as if she

chooses her strategies and beliefs in order to make herself feel as happy as possi-

ble. Second, wishful thinking is maximal optimism under rationality. The belief of

a wishful thinker maximizes her expected payoff among all allowed beliefs, given

that she will play a best response to these beliefs. Such extreme beliefs them-

selves can be considered as "irrational" in the popular sense, as they may involve

self deception and misperception of the world. Third, wishful thinking can also

be thought of as maximizing one’s own strategy while thinking that the other

players will react to one’s own strategy by playing strategies that are favorable to

her. Believing that one’s own strategy will have an impact on the other players’

strategies is clearly inconsistent with reality, and thus wishful thinking can be

interpreted as a form of irrationality in that sense. Nevertheless, wishful thinking

formally implies rationality in the sense of expected utility maximization:

Fact 1. If a player i is a wishful thinker at ω, then player i is rational at ω, i.e.,
Wi ⊆ Ri.

Proof. All the proofs are presented in the appendix. ¤

The next section explores the strategic implications of using a decision rule that

is consistent with wishful thinking. Fact 1 establishes that these decision rules are

also consistent with rationality. For generic utility functions, there exists a unique

decision rule consistent with wishful thinking, which picks the unique strategy s∗i
with ui (s∗) = maxs∈Si×σ−i(Ii(ω)) ui (s) at each information cell Ii (ω). Hence, I will

sometimes refer to wishful thinking as a decision rule.

Notation 1. Given any F ⊆ Ω,

Ki (F ) = {ω|Ii (ω) ⊆ F}

denotes the set of states at which player i knows (or correctly assumes) that F

occurs. The mutual knowledge at any order m ≥ 0 is represented by operator
Km where K0 (F ) = F and Km (F ) = ∩i∈NKi (K

m−1 (F )). The set of states

at which F is common knowledge is denoted by CK (F ), which is defined as

CK (F ) = ∩∞m=0Km (F ).
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Remark 1. At a state ω, a player i knows that a player j is a wishful thinker (i.e.,
ω ∈ Ki (Wj)) if and only if player j is a wishful thinker at each state ω0 ∈ Ii (ω).

In that sense, player i’s knowing that player j is a wishful thinker is related to

commonness of wishful thinking of player j in the model. Such commonness may

reflect an environment where j is known to have a tendency to hold excessively

optimistic beliefs. For example, this may be due to earlier interactions, or an

environment where wishful thinking is common. Also, a player always knows

whether she is to be identified as a wishful thinker in this paper: if ω ∈Wi, then

Ii (ω) ⊆Wi. Therefore,

(2.3) Ki (Wi) =Wi.

Wishful thinking is defined with respect to the information set of the player.

In certain situations, e.g., when players face a new decision problem, there is

significant uncertainty about players’ beliefs, their susceptibility towards certain

biases, and about what they would do. In that case, biases play significant role

in forming their beliefs. In models that describe such situations, the information

sets will be relatively large. A wishful thinker will form a strong belief that is

consistent with her information by often being certain that a particular state is

true. In that case, there will be large gap between what the player "knows" and

what she assumes on faith. Since the latter determines her behavior, its impact

will be large and her beliefs can be significantly different from what the analyst

would find reasonable. In certain situations, uncertainty will be small, and even

a wishful thinker may be aware of many facts of the case. For example, this may

be the case when the decision problem is similar to many earlier decisions. In the

models that describe those situations, the information sets will be small, and the

gap between what the player knows and what she takes on faith will be small.

In that case, biases will play relatively small role. For example, if it is clear that

a certain equilibrium is played (e.g., after a long repetition of a game), then the

relevant model may contain a single state, and even a wishful thinker’s beliefs

and action corresponds to an equilibrium. In this paper, I will allow all possible

models and find the outcomes of these models when players are wishful thinkers.
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3. Strategic Implications of Wishful Thinking

In this section, I explore the strategic implications of wishful thinking. I develop

an iterative elimination process that characterizes the strategy profiles that are

consistent with wishful thinking, the strategy profiles that are consistent with

mutual knowledge of wishful thinking, and so on.

Though I develop the elimination procedure in the context of wishful thinking,

I have a broader class of problems in mind. Consider a researcher who wants

predict the outcome of strategic play when players obey a general decision rule–

for example when they are wishful thinkers. To do this one can write a model

M = (Ω, I, p, σ) as described in the previous section and identify the states at

which the players use such a decision rule, checking which strategy profiles are

played at these states. In the case of wishful thinking, the set of such states will

be W , and the set of strategy profiles will be σ (W ). The latter set consists of the

strategy profiles implied by wishful thinking and the modelM , and it depends on

M . In order to find out the strategic implications of wishful thinking alone, one

considers the union of all the sets σ (W ) over all models. The resulting set will

be denoted by X0 in this paper. A strategy profile s is in X0 if and only if there

is a model M and a state ω such that players are wishful thinkers at ω and they

play s at ω. Such strategy profiles are said to be consistent with wishful thinking.

The researcher may be interested in applications where a decision rule is more

commonly used so that the players take into account that the other players also

use the decision rule. In that case, the researcher considers again a modelM , but

now identifies only the states such that the decision rule is applied and the players

know (or correctly assume) that the other players apply the decision rule. In the

case of wishful thinking, this set is

W ∩K1 (W ) .

The researcher is interested in the set of strategy profiles that are played at these

states, namely σ (W ∩K1 (W )), which is a subset of σ (W ). This set characterizes

the strategic implications of mutual knowledge of wishful thinking and the model.
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Again, in order to characterize the strategy profiles that are consistent with mu-

tual knowledge of wishful thinking, one takes the union of all sets of the form

σ (W ∩K1 (W )) over all models. That set will be denoted by X1 in this paper.

As the researcher considers the situations where the decision rule is more and

more common, strategic implications of higher-order knowledge of the decision

rule become more relevant.

In application, a researcher will often assume throughout the model that a

particular decision rule is applied. To find out what predictions the researcher

can get from such models, one characterizes the set of strategy profiles played in

such models. In the case of wishful thinking, this corresponds to finding the union

of all the sets of the form σ (CK (W )) over all models M , which will be denoted

by X∞. Such strategy profiles are said to be consistent with common knowledge

of wishful thinking. I will next develop a simple elimination procedure to compute

X0, X1, X2, . . . , X∞ without going through the cumbersome task of considering

arbitrary models. I need one more bit of notation.

Notation 2. For each s−i,

BRi (s−i) = argmax
si∈Si

ui (si, s−i)

denotes the set of best responses to s−i, and the graph of BRi is denoted by

Bi = {(ŝi, s−i) |ŝi ∈ BRi (s−i) , s−i ∈ S−i} .

The next lemma describes a defining property of the strategy profiles consistent

with wishful thinking of a player. I will use this property to define the elimination

procedure.

Lemma 1. For any X ⊆ S and any i ∈ N , let ŝ be a strategy profile played at a

state ω at which player i is a wishful thinker and knows that a strategy profile in

X is played. Then, there exists (ŝi, s−i) ∈ Bi ∩X such that

(3.1) ui (ŝi, s−i) ≥ max
si

ui (si, ŝ−i) .

The reasoning behind this lemma is simple. Since player i is a wishful thinker

at ω, by definition, she plays ŝi as a best reply to some s−i played by others at
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some ω0 in her information set. By definition of Bi, (ŝi, s−i) ∈ Bi. Since ω0 is in

her information set and she knows that the outcome is in X, the outcome (ŝi, s−i)

at ω0 must also be in X. Since she is a wishful thinker, her expected payoff,

ui (ŝi, s−i), cannot be lower than the payoff maxsi ui (si, ŝ−i) that she would get

when she played a best response to the belief that the state is ω, a belief that is

consistent with her information.

Using Lemma 1, one can rule out certain strategy profiles as possible strategic

outcomes when some of the players are wishful thinkers. For example, for the

battle of the sexes game in the Introduction, Lemma 1 implies that if there were

a state at which Player 1 is a wishful thinker and strategy profile (b, l) is played,

then u1 (t, l) ≤ u1 (b, r). Since the latter is not true, one then concludes that (b, l)

is not consistent with wishful thinking of Player 1. Iterative application of this

idea leads to a powerful elimination procedure, which characterizes the strategy

profiles that are consistent with wishful thinking, mutual knowledge of wishful

thinking, and so on.

Elimination Procedure.

(1) Initialization: Set X−1 = S.

(2) Elimination: For any m ≥ 0, for each strategy profile ŝ, eliminate ŝ if

there exists i for which there does not exists any (ŝi, s−i) ∈ Bi ∩ Xm−1

with ui (ŝi, s−i) ≥ maxsi ui (si, ŝ−i). Call the remaining strategy profile

Xm.

(3) Iterate step (2).

I will explain the logic of the elimination procedure and its relation to strategic

implications to wishful thinking in greater detail in the rest of this section. First,

let me indicate some of its properties.

• One eliminates strategy profiles, rather than strategies.
• If ŝ ∈ Bi, then ŝ is not eliminated for player i because in that case ŝ ∈
Bi ∩Xm−1 and ui (ŝ) = maxsi ui (si, ŝ−i).

• If ŝi is not a best reply to any strategy s−i where (ŝi, s−i) is still available,
then strategy ŝi is eliminated. That is, all strategy profiles in which player i
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plays si are eliminated. Hence, the elimination procedure contains iterated

elimination of strategies that are never a best reply to a pure strategy.

Therefore, X∞ refines rationalizability.

More formally, I define a mapping φ : 2S → 2S by setting

(3.2) φ (X) = X ∩
½
ŝ|∀i : max

si
ui (si, ŝ−i) ≤ max

(ŝi,s−i)∈Bi∩X
(ŝi, s−i)

¾
at each X, where I use the convention that the maximum over the empty set

yields −∞. The sequence (X−1,X0, . . .) is recursively defined by X−1 = S and

Xm = φ
¡
Xm−1¢ (m ≥ 0) .

The limit of the sequence is

X∞ =
∞\

m=0

Xm.

Since there are only finitely many strategy profiles, the elimination process stops

at some iteration m, and we have X∞ = Xm for some m.

Remark 2. The elimination process is monotonic, i.e., X ⊆ Y ⇒ φ (X) ⊆ φ (Y ).

Hence, the limit set X∞ does not change if one fails to eliminate certain strategies

at some step or applies different orders.

The next result states that Xm is precisely the strategies that are consistent

with mth-order mutual knowledge of wishful thinking. Therefore, using the elim-

ination procedure above, a researcher can investigate the strategic implications

of wishful thinking directly from the strategy profiles–without dealing with ab-

stract, complicated models of strategic uncertainty.

Proposition 1. For any model (Ω, I, p, σ), and any m ≥ 0,

σ (Km (W )) ⊆ Xm;

in particular,

σ (CK (W )) ⊆ X∞.

Moreover, there exist models (Ω, I, p, σ) in which the above inclusions are equali-

ties.



16 MUHAMET YILDIZ

The first statement is given by inductive applications of Lemma 1. The proof

of the second part involves constructing a submodel for each strategy profile in

Xm, where the strategy profile is played at a state in which wishful thinking is

mth-order mutual knowledge. One constructs such a model using information sets

with only one or two states. At such information cells, Lemma 1 characterizes the

wishful thinking behavior. Integrating these models into one model, one obtains

the desired model.

In the following example, I will illustrate how the elimination procedure is

applied and why each round of elimination corresponds to a new layer of knowledge

of wishful thinking, as stated in the previous result.

Example 1. Consider the following two-person game, where Player 1 chooses
between the rows, and Player 2 chooses between the columns:

α β γ δ

a 3∗, 0 −1, 0 0,0 0,2∗

b 0, 0 2∗, 1∗ 0,0 0,0

c 0,0 0,0 1∗, 2∗ 1∗,0

d 2,3∗ 1,0 0,0 0,0

In this table, the asterisk after a player’s payoff indicates that the player is play-

ing a best reply to the other player’s strategy at that profile. Notice that no

strategy is weakly dominated, and hence all strategies are rationalizable. Let us

apply the above elimination procedure. Take m = 0. In this round, we elimi-

nate the strategy profiles that are not played at a state at which both players

are wishful thinkers. Let us start with Player 1. Consider the strategy profile

(b, α). For Player 1, b is a best reply only to β, and her best reply to α is a.

Since u1 (b, β) < u1 (a, α), according to the elimination procedure, we eliminate

(b, α). (By Lemma 1, if (b, α) is played at a state at which Player 1 is a wishful

thinker, then max(b,s2)∈B1 u1 (b, s2) ≥ maxs1 u1 (s1, α).) Similarly, (c, α) and (c, β)
are eliminated. Finally, the strategy d is eliminated because d is not a best reply

to any s2. (Recall that a wishful thinker plays a best reply to a pure strategy.)

No other profile is eliminated for Player 1 at this round. For example, (a, β) is

not eliminated. For Player 1, a is a best reply to α, and the best reply to β is b.
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Since u1 (a, α) ≥ u1 (b, β), one does not eliminate (a, β) for Player 1.6 However,

(a, β) is eliminated for Player 2. For Player 2, β is a best reply to only b, and

her best reply to a is δ. Since u2 (a, δ) > u2 (b, β), we eliminate (a, β). No other

profile is eliminated. X0 consists of the strategy profiles in bold:

α β γ δ

a 3∗,0 −1, 0 0,0 0,2∗

b 0, 0 2∗,1∗ 0,0 0,0
c 0,0 0,0 1∗,2∗ 1∗,0
d 2,3∗ 1,0 0,0 0,0

By Proposition 1, X0 is precisely the set of strategy profiles that are played at

states at which players are wishful thinkers. The following model, denoted byM0,

contains such states. (For a visual description, see Figure 1, where the information

cells of Player 1 are rectangular.) Take Ω = X0 ∪ {(d, α)}; set σ (ω) = ω at each

ω, and let each player know precisely her own strategy, i.e.,

I1 = {{(a, α) , (a, γ) , (a, δ)} , {(b, β) , (b, γ) , (b, δ)} , {(c, γ) , (c, δ)} , {(d, α)}}

I2 = {{(a, α) , (d, α)} , {(b, β)} , {(a, γ) , (b, γ) , (c, γ)} , {(a, δ) , (b, δ) , (c, δ)}} .

Player 1 assigns probability 1 to the first state in each information cell. Player 2

assigns probability 1 to (d, α) at {(a, α) , (d, α)}, to (c, γ) at the cell with γ, and

to (a, δ) at the cell with δ. In her information cell with a, Player 1 expects the

highest payoff in the game, hence she is a wishful thinker. In the cell with b, she

expects the payoff of 2, the highest payoff she could expect given that Player 2

does not play α, as stipulated by the information cell. Hence, she is a wishful

thinker. At {(c, γ) , (c, δ)}, she is again a wishful thinker as her expected payoff of
1 is the highest payoff given that Player 2 plays γ or δ. Similarly, one can check

that Player 2 is a wishful thinker at each state. Notice that Player 1 is not a

wishful thinker at (d, α), as she could get 3 by playing a best reply to α. Hence,

at (a, α), Player 2 does not know that Player 1 is a wishful thinker, although both

of them are wishful thinkers.

6Indeed, if Player 1 has a information cell {ω,ω0} with σ (ω) = (a, β) and σ (ω0) = (a, α) and

if she puts probability 1 on ω0, then she is a wishful thinker.
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(d,α)

(a,α) (a,γ) (a,δ)

(b,β) (b,γ) (b,δ)

(c,γ) (c,δ)

1

1

1

1

1

1

0 0 0

0

0

0

0

0

0 0

(d,α)

(a,α) (a,γ) (a,δ)

(b,β) (b,γ) (b,δ)

(c,γ) (c,δ)

1

1

1

1

1

1

0 0 0

0

0

0

0

0

(d,α)

(a,α) (a,γ) (a,δ)

(b,β) (b,γ) (b,δ)

(c,γ) (c,δ)

1

1

1

1

1

1

(d,α)

(a,α) (a,γ) (a,δ)

(b,β) (b,γ) (b,δ)

(c,γ) (c,δ)

1

1

1

1

1

1

0 0 0

0

0

0

0

0

0 0

Figure 1. ModelM0 of Example 1; players are wishful thinkers at

all states except for (d, α), where Player 1 is not a wishful thinker.

Now consider m = 1. In this round we eliminate the strategy profiles that are

not played at a state at which players are wishful thinkers and know that their

fellow players are wishful thinkers. Since each player i knows that she is also a

wishful thinker, at each such state ω, σ (Ii (ω)) ⊆ X0. Then, we ignore the strategy

profiles eliminated in the previous round and apply Lemma 1. For example, the

strategy profile (a, α) is eliminated for Player 2. Mechanically, this is because α is

a best reply only against d, but (d, α) has been eliminated. The deeper reason for

this elimination is that there cannot be a state ω at which Player 2 is a wishful

thinker, knows that Player 1 is also a wishful thinker, and plays α. For such ω,

at each ω0 ∈ I2 (ω), we would have σ (ω0) ∈ X0–as she knows that players are

wishful thinkers–and σ2 (ω
0) = α, as she knows her own strategy. But the only

strategy profile (s1, s2) ∈ X0 with s2 = α is (a, α). Hence, σ (I2 (ω)) = {(a, α)}.
Then, the expected payoff of Player 2 at ω would be u2 (a, α) = 0. But the higher

payoff of u2 (a, δ) = 2 is consistent with σ1 (I2 (ω)). Hence, Player 2 would not be

a wishful thinker at ω–a contradiction.

It turns out that there are no more eliminations for m = 1, yielding X1 =

X0\ {(a, α)}. Indeed, in model M0, both players are wishful thinkers and know

that they are wishful thinkers at each state ω ∈ X1. For m = 2, strategy a
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(b,β) (b,γ)

(c,γ)

1 0

1

0
(b,β) (b,γ)

(c,γ)

1 0

1

0

Figure 2. A model with common knowledge of wishful thinking

in Example 1.

is eliminated as a is not a best reply for Player 1 in any remaining profile in

the first row. This is the only elimination. Hence, X2 consists of the boldface

strategy profiles in the second and third rows above. For m = 3, strategy δ is

eliminated. The elimination process stops here. Therefore, X3 = X4 = · · · =
X∞ = {(b, β) , (b, γ) , (c, γ)}.

In the following model, which is described in Figure 2, wishful thinking is

common knowledge, and each strategy profile in X∞ is played at some state.

Take Ω = X∞ and σ (ω) = ω at each ω. Each player knows her own strategy:

I1 = {{(b, β) , (b, γ)} , {(c, γ)}} and I2 = {{(b, β)} , {(b, γ) , (c, γ)}}. Take also
p1,(b,β) ((b, β)) = 1 and p2,(c,γ) ((c, γ)) = 1. Clearly, each player is a wishful thinker

at each state, and hence W = K1 (W ) = K2 (W ) = · · · = CK (W ) = Ω = X∞.

Therefore, σ (CK (W )) = X∞.

When a strategy profile (s1, s2) is not consistent with wishful thinking while

(s1, s
0
2) is, it is not clear that we can ignore strategy profile (s1, s2) when we

compute the strategy profiles that are consistent with wishful thinking and the fact

that Player 2 knows this. After all, strategy s1 is consistent with the assumption

that Player 1 is a wishful thinker. How can then Player 2 rule out the possibility

that Player 1 plays s1? The reason is as follows. We are trying to find out

whether there is a state ω of a model where Player 2 knows that players are

wishful thinkers and plays s2. At ω, knowing that players are wishful thinkers,
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she must know that a strategy profile in X0 is played. That is, at each ω0 ∈ Ii (ω),

the outcome (σ1 (ω0) , s2) is in X0. Since (s1, s2) 6∈ X0, σ1 (ω0) 6= s1. Therefore,

at ω, Player 2 knows that Player 1 does not play s1, and she can ignore s1. In

Example 1, using this reasoning, I concluded that (a, α) is not consistent with

wishful thinking and the assumption that Player 2 knows this.

A wishful thinker is often delusional as she often assigns probability one to a

state, assigning zero probability at all other states. Since the assumption that

players do not assign zero probability to the true state plays significant role in

many problems in the epistemic literature, one may wonder if this certainty of

players plays a significant role in the present analysis. The answer turns out to

be No. Given any state ω, say that a player i is strongly non-delusional at ω

if pi,ω (ω0) > 0 for each ω0 ∈ Ii (ω). For some ε ≥ 0, say that i is an ε-wishful

thinker at ω if Ei,ω [ui (σ)] ≥ maxs∈Si×σ−i(Ii(ω)) ui (s)− ε. Let Y m be the strategy

profiles that are consistent with mutual knowledge of strong non-delusionality

and ε-wishful thinking at order m. Clearly, in the models constructed in the

proof of Proposition 1, one can put very small probabilities to the states with zero

probability, making sure that wishful thinkers remain ε-wishful thinkers. Hence,

Y m containsXm. When ε is large, Y m may contain more strategy profiles. On the

other hand, when the game is generic in the sense that payoffs at different strategy

profiles are always different and ε is sufficiently small, the conclusion of Lemma 1

remains valid for ε-wishful thinkers (as shown by Lemma 3 in the Appendix). In

that case, Y m is also contained in Xm, and therefore Xm = Y m.

4. Nash Equilibrium and the Common Knowledge of Wishful

Thinking

In this section, I will focus on the strategy profiles that are consistent with

common knowledge of wishful thinking. These strategy profiles are important for

two reasons. Firstly, these are the strategy profiles that remain possible as we

allow more and more levels of knowledge of wishful thinking. More importantly,

it is highly desirable from a methodological point of view to disentangle the im-

plications of heterogeneous priors or self-serving biases from those of asymmetric
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information. Researchers commonly accomplish this by assuming that there is

no asymmetric information.7 (This also allows the researcher to focus on belief

differences without having to deal with asymmetric information.) In keeping with

this methodology, it is desirable to examine the implications of wishful thinking

when there is no asymmetric information about it–i.e., when wishful thinking is

common knowledge.

I will establish a close relationship between the pure strategy Nash equilibria

and common knowledge of wishful thinking. Firstly, since wishful thinking is

stronger than rationality, common knowledge of wishful thinking will lead to a

refinement of rationalizability, i.e., all non-rationalizable strategies will eventually

be eliminated. Secondly, any Nash equilibrium in pure strategies will survive the

iterated elimination process. More surprisingly, I will show that for generic two

person games, these are the only strategies that survive. This will yield an unlikely

epistemic characterization for pure-Nash-equilibrium strategies.

Let

NE =
\
i∈N

Bi

be the set of all pure-strategy Nash equilibria; recall that Bi is the set of profiles

in which player i plays a best reply to others’ strategies. Let also

NEi = {si|∃s−i : (si, s−i) ∈ NE}

be the set of all Nash-equilibrium strategies of a player i. Similarly, let

X∞
i = {si|∃s−i : (si, s−i) ∈ X∞}

be the set of all strategies of a player i consistent with common knowledge of

wishful thinking.

Recall that, if s ∈ Bi, we do not eliminate s for player i. But for any s ∈ NE,

s ∈ Bi for each player i, and hence s is not eliminated for any player. Therefore,

s survives the elimination process. This yields the following result.

7For example, all of the papers mentioned in Footnote 3 make this assumption. See Squintani

(2006) for an exception.
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Proposition 2. Every pure strategy Nash equilibrium is consistent with common
knowledge of wishful thinking:

NE ⊆ X∞.

In a pure-strategy Nash equilibrium there is no strategic uncertainty, and hence

players do not have any freedom of entertaining different beliefs. Hence, all play-

ers, independent of their level of optimism, hold the same correct beliefs. Formally,

any pure-strategy Nash equilibrium is consistent with a model with a single state

at which each player plays according to the equilibrium. In such a model, it

is common knowledge that each player is a wishful thinker. The next proposi-

tion states a more surprising and substantive fact about two-player games. The

assumptions of this proposition generically hold.8

Proposition 3. For any two-person game, assume (i) for each s−i, there exists

a unique best reply si ∈ BRi (s−i), and (ii) Player 1 is not indifferent between

any two distinct strategy profiles s, s0 ∈ B1. Then, only pure Nash equilibrium

strategies are consistent with common knowledge of wishful thinking:

(4.1) X∞
i = NEi (∀i ∈ N).

Moreover,

(4.2) X∞ = φ (NE1 ×NE2)

= {(ŝ1, ŝ2)|∃(ŝ1, s2), (s1, ŝ2) ∈ NE : u1(ŝ1, s2) ≥ u1(s1, ŝ2),

u2(s1, ŝ2) ≥ u2(ŝ1, s2)}.

The first part of the proposition characterizes common knowledge of wishful

thinking in terms of strategies. It states that in a generic two-person game, the

only strategies that are consistent with common knowledge of wishful thinking

are the pure Nash equilibrium strategies. The second part gives a practical char-

acterization for the strategy profiles that are consistent with common knowledge
8By definition, wishful thinking is an ordinal notion. The strategic implications of wishful

thinking are invariant to monotonic transformations of payoff functions. The only non-generic

situations one must ever rule out regarding wishful thinking are indifferences between certain

pure strategy profiles.
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of wishful thinking. It states that this set can be computed by simply applying

the elimination procedure only once to the set NE1 ×NE2.

The proof can be summarized as follows. First, under assumption (i), one

shows that the restriction of the best response function of each player i to X∞
j

is well-defined, one-to-one, and onto X∞
i . Together with assumption (ii), this

allows one to rearrange the strategies so that B1 ∩ X∞ is equal to the diagonal

of X∞
1 × X∞

2 and the payoff of Player 1 is decreasing along this diagonal–e.g.

(b, β) and (c, γ) in Example 1. This implies that all the strategy profiles that are

under the diagonal and in X∞
1 ×X∞

2 must have been eliminated–e.g. (c, β) in

Example 1. Using arguments similar to the one used to eliminate strategy profile

(a, α), one then shows that if Player 2 does not give a best reply in a strategy

profile on the diagonal, then the strategy of Player 2 must have been eliminated.

Therefore, the diagonal of X∞
1 ×X∞

2 is equal to NE. This proves (4.1). Since the

elimination process is monotonic, (4.1) implies that the result would not change

if one started elimination from the set NE1 ×NE2. The latter elimination stops

at the first step, yielding (4.2).

This provides an unusual epistemic characterization for pure-Nash-equilibrium

strategies in terms of common knowledge of wishful thinking. More importantly,

it suggests that there is little room left for optimism or pessimism when the

wishful thinking is common knowledge. In fact, (4.2) establishes that the strategic

uncertainty is reduced to uncertainty about the equilibrium played. Finally, this

characterization provides partial support for the theoretical literature that uses

equilibrium analysis to study the behavior of optimistic players. It shows that,

given a generic, two-player model, if a researcher allows wishful thinking but sticks

to the methodology in this literature, then she can simply focus on equilibrium

strategies.

I must emphasize that common knowledge of wishful thinking is characterized

by equilibrium strategies–not by equilibria. As stated in (4.2), two players may

play equilibrium strategies that correspond to two different equilibria at some

state in which wishful thinking is common knowledge. In such a state there is still

substantial strategic uncertainty remaining, and players exhibit a clear form of
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wishful thinking. For example, at state (b, γ) in Example 1, each player incorrectly

believes that they will play her favorite equilibrium. This is a general fact. By

(4.2), if the outcome ŝ = (ŝ1, ŝ2) ∈ X∞ is not an equilibrium already, then there

are two equilibria (ŝ1, s2) and (s1, ŝ2) ∈ NE that the players consider as possible

and rank in diagonally opposing orders: u1(ŝ1, s2) > u1(s1, ŝ2) and u2(s1, ŝ2) ≥
u2(ŝ1, s2). Each player plays according to her own favorite equilibrium, believing

that her own favorite equilibrium is to be played.

If the equilibria are strictly Pareto-ranked, then the players cannot have such

opposing rankings. In that case, the outcome is necessarily an equilibrium.

Corollary 1. Under the assumptions of Proposition 3, if the equilibria are Pareto-
ranked with strict inequalities, then

X∞ = NE.

Proposition 3 has established already that for generic two-person games, when

wishful thinking is common knowledge, strategic uncertainty is reduced to un-

certainty about which equilibrium strategies are played. As in Example 1, one

can indeed construct a model in which wishful thinking is common knowledge, all

strategy profiles that are consistent with common knowledge of wishful thinking

are played, and at each state each player assigns probability 1 to an equilibrium.

That is, the players are in agreement that an equilibrium is played, but they

may disagree about which equilibrium is played. This is stated by the following

corollary, which was suggested by Haluk Ergin.

Corollary 2. Under the assumptions of Proposition 3, there exists a model in
which σ (CK (W )) = X∞ and at each ω ∈ CK (W ), each player i is certain that

an equilibrium is played, i.e., pi,ω (σ−1 (NE) ∩ Ii (ω)) = 1.

Remark 3. Common knowledge of wishful thinking differs from usual epistemic

foundations for equilibrium, such as the sufficient conditions of Aumann and Bran-

denburger (1995). For example, at state (b, γ) in Example 1, rationality is common
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knowledge, but the players do not know each other’s conjectures, and these con-

jectures do not form a Nash equilibrium. Notice that each player is certain about

the other player’s conjecture, but she is wrong.

Counterexamples. The next three examples illustrate that the assumptions in
Proposition 3 are not superfluous. The first example illustrates that, with three

or more players, there may be non-equilibrium strategies that are consistent with

common knowledge of wishful thinking.

Example 2. Consider the following three-player game where Player 3 chooses
between the matrices λ and ρ.

λ

l r

t 2∗,−ε2,−ε3 −ε1,0∗,−ε3
b −ε1,−ε2,−ε3 1∗,1∗,1∗

ρ

l r

t −ε1,ε∗2,ε∗3 −ε1,−ε2,ε∗3
b ε∗1,ε

∗
2,3

∗ ε∗1,−ε2,−ε3

Above, in order to satisfy the genericity conditions in Proposition 3, I take εi : S →
(0, 1) as an arbitrary function of strategy profiles for each i ∈ N ; the arguments

are suppressed for simplicity. Check that NE = {(b, r, λ) , (b, l, ρ)}. I will show
that X∞ = S\ {(b, l, λ)}, so that the non-equilibrium strategy t is consistent with
common knowledge of wishful thinking. In the first round of elimination, strategy

profile (b, l, λ) is eliminated. This is because the highest payoff Player 1 gets when

she plays b is 1, and this payoff is smaller than the payoff she gets by playing a

best response to (l, λ) (i.e. a payoff of 2). No other strategy profile is eliminated

in any round. To see this, ignore the eliminated strategy profile (b, l, λ). Consider

(t, l, λ). Since (t, l, λ) ∈ B1, it is not eliminated for Player 1. When Player 2

plays l, she gets a positive payoff at (b, l, ρ) ∈ B2, and her payoff is zero when

she plays a best response to (t, λ). Hence, (t, l, λ) is not eliminated for Player

2, either. We do not eliminate (t, l, λ) for Player 3 because Player 3 gets payoff

of 1 at (b, r, λ) ∈ B3, while she would get only ε3 (t, l, ρ) < 1 if she played a

best response to (t, l). One can check similarly that no other strategy profile is

eliminated. Therefore, X∞ = S\ {(b, l, λ)}.
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The fact that (t, l, λ) is not eliminated in this example while (a, α) is eliminated

in Example 1 illustrates a key difference between the case of two players and the

case of many players. In the case of two players, when we fix the strategy of Player

2 as in the top-left corner, namely at (a, α), we can only consider the changes in

strategies of Player 1. When (a, α) is not in B2 already, α can be a best reply to

a strategy s1 only if (s1, α) is under the graph of B1, and such strategy profiles

have been eliminated in the first round. On the other hand, with more players,

when we fix the strategy of Player 2, we can consider joint changes in strategies

of multiple players and thereby consider other strategy profiles that are not under

the graph of B1, and therefore need not have been eliminated in the first round.

Some of these strategy profiles, such as (b, l, ρ), may be in B2 and may yield high

payoff for Player 2. Hence, the proof of Proposition 3 is not valid for more than

two players, and the proposition is not necessarily true in these games.

The next two examples show that the genericity assumptions in Proposition 3

are not superfluous. Recall that these assumptions are (i) for each s−i, there exists

a unique best reply si ∈ BRi (s−i) and (ii) Player 1 is not indifferent between any

two distinct strategy profiles s, s0 ∈ B1. First, I consider assumption (i).

Example 3. Consider the game

l r

t 2∗,2∗ 0,2∗

b 0,1∗ 1∗, 0

where assumption (i) fails while (ii) is satisfied. In this game, the only pure-

strategy Nash equilibrium is (t, l), whileX∞ = S\ {(b, l)}, containing non-equilibrium
strategies b and r. Hence, assumption (i) is not superfluous. The strategy profile

(b, l) is eliminated because u1 (t, l) > u1 (b, r) (as in Example 1). Ignoring (b, l),

let us check that no other strategy profile is eliminated. The Nash Equilibrium

(t, l) is not eliminated. The strategy profile (t, r) is not eliminated for Player 1

because (t, l) ∈ B1 gives Player 1 the highest possible payoff (more than that of

(b, r)); it is not eliminated for Player 2 because (t, r) ∈ B2. Since (b, r) ∈ B1,

(b, r) is not eliminated for Player 1. Since (t, r) ∈ B2 yields the highest payoff for

Player 2, (b, r) is not eliminated for Player 2, either.



WISHFUL THINKING 27

The next example illustrates that assumption (ii) is not superfluous.

Example 4. Consider the matching-pennies game

l r

t 1∗,−1 −1,1∗

b −1, 1∗ 1∗,−1

where assumption (ii) fails, while assumption (i) holds. In this game, NE = ∅,
but no strategy is eliminated, and X∞ = S. To see this, consider (b, l). The

payoff of Player 1 at (b, r) ∈ B1 is not less than what she would get if she played

a best response to l. Hence, (b, l) is not eliminated for Player 1. Since (b, l) ∈ B2,

it is not eliminated for Player 2, either.

Non-emptiness of X∞. By perturbing the payoff of Player 1 at (t, l) in the

matching-pennies game, one can satisfy assumption (i). Since there is no pure-

strategy Nash equilibrium, by Proposition 3, X∞ must be empty in the new game.

This is illustrated in the following example.

Example 5. Consider the game

l r

t 2∗,−1 −1,1∗

b −1, 1∗ 1∗,−1

where there is no pure-strategy Nash equilibrium. In the first round (b, l) is

eliminated for Player 1, as the best reply to l now yields a higher payoff of 2 than

the highest payoff she can get when she plays b. No other strategy is eliminated

in this round. In the second round, (t, l) is eliminated for Player 2 as there is no

remaining strategy profile (s1, l) with (s1, l) ∈ B2. In the third round, (t, r) is

eliminated for Player 1 because, since (t, l) is eliminated in the previous round,

there is no remaining strategy profile (t, s2) with (t, s2) ∈ B1. In the fourth round,

we eliminate (b, r) for Player 2 because now there is no strategy profile (s1, r) with

(s1, r) ∈ B2. At this point, all of the strategy profiles have been eliminated, and

therefore, X3 = X∞ = ∅.
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The underlying reason for the last elimination is as follows. If Player 2 knows

at a state ω that it is second-order mutual knowledge that players are wishful

thinkers, then σ (I2 (ω)) = {(b, r)}, for X2 = {(b, r)}. In that case, the expected
payoff of Player 2 at ω is −1, while she could obtain the higher payoff of 1 by
playing a best response to b, a contradiction. This example illustrates that there

are games for which one cannot write a logically consistent model in which wishful

thinking is mutually known at high orders. (Similar examples have been found

for some intuitive rationality notions.) More generally, Propositions 2 and 3 im-

mediately yield a characterization of the games for which X∞ is non-empty:

Corollary 3. If NE 6= ∅, then X∞ 6= ∅. Under the assumptions of Proposition
3, the converse is also true, and therefore,

X∞ 6= ∅ ⇐⇒ NE 6= ∅.

Mixed Strategies. This paper considers only pure strategies. If players have ac-
cess to randomization devices on strategies, then one can introduce corresponding

mixed strategies as pure strategies. In the new game the payoffs are computed as

the expected payoffs when some player uses one of these previously mixed strate-

gies. If players have access to devices that lead to equilibrium mixing, then X∞

will be non-empty in the resulting game, as the next example illustrates.

Example 6. In Example 5, there is a Nash equilibrium (m1,m2) in mixed strate-

gies, where m1 assigns equal probabilities to t and b while m2 assigns probabilities

2/5 and 3/5 to l and r, respectively. Now, consider the game in which these

equilibrium strategies introduced as pure strategies:

l r m2

t 2∗,−1 −1, 1∗ 1/5∗,1/5

b −1, 1∗ 1∗,−1 1/5∗,−1/5
m1 1/2,0∗ 0,0∗ 1/5∗, 0∗

In the new game, the previous mixed-strategy equilibrium is a Nash equilibrium in

pure strategies, andNE = {(m1,m2)}. By Proposition 2, (m1,m2) ∈ X∞, so that

X∞ is no longer empty. Indeed, one can easily check thatX∞ = X4 = {(m1,m2)}.
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In the first round, the strategy profiles (b, l), (m1, l), and (m1, r) are eliminated

for Player 1 as in Example 1. In this round, we also eliminate (t,m2) and (b,m2)

for Player 2 because the payoff from (m1,m2)–the only strategy profile with

(s1,m2) ∈ B2–is lower than the payoff of 1 that she would get if she played

a best response to the strategy of Player 1. Given these eliminations, strategy

profiles (t, l), (t, r), and (b, r) are eliminated in the second, third, and fourth

rounds, respectively, as in Example 5. The only remaining strategy profile is

(m1,m2), which is never eliminated.

Analyzing strategic outcomes in the presence of systematic biases like wishful

thinking necessitates a re-examination of modeling mixed strategies. Tradition-

ally, mixed strategies are considered to capture deliberate randomizations by play-

ers. The more current understanding is that mixed strategies are the other players’

common conjecture about the player’s strategy. (Deliberate randomizations can

be introduced as pure strategies.) Consequently, in epistemic literature, it is usual

to restrict attention to pure strategies. But, under the traditional paradigm of

rationality, this is only a philosophical issue. The results are not fundamentally

altered if we allow explicit mixing to be part of a player’s strategy set. For ex-

ample, when we allow mixed strategies, the strategies that are consistent with

common knowledge of rationality are the ones with support on the set of pure

strategies that survive the usual iterated elimination of strictly dominated strate-

gies. On the other hand, the issue of explicit mixing is a real issue with significant

consequences when we consider wishful thinkers (or players with other biases or

general decision rules). As illustrated in the above example, the outcome is now

highly sensitive to whether mixed strategies are allowed as explicit pure strategies.

When a researcher analyzes the general decision rules or biases, such as wishful

thinking, he might need to understand which randomization devices the players

can use. Introduction of mixed strategies has such a great impact because when

we allow explicit mixing, the opponent is restricted to play the mixed strategy

rather than the pure strategies in its support. This restricts the beliefs a wishful

thinker may entertain.
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A more basic issue regarding biases is that, unlike in the case of equilibrium

analysis, we also ought to reconsider the beliefs players would form on these ran-

domization devices, as the beliefs of players with biases need not coincide with

"objective" probabilities that the researcher assigns. In particular, if players are

truly wishful thinkers, then they would also assign probability 1 on the most fa-

vorable outcome of the randomization, and introduction of mixed strategies would

become an unnecessary complication.

Robustness to higher-order knowledge assumptions. It is important to un-
derstand how the characterization in Proposition 3 changes when we relax the

assumption that wishful thinking is common knowledge, as it is difficult to check

whether such assumptions are satisfied. As in the examples so far, the elimina-

tion process often stops quickly after few rounds. In that case, Nash equilibrium

strategies will be played whenever wishful thinking is mutually known at few or-

ders. I will now present a general class of games in which the elimination process

stops just at the third round, and hence second-order mutual knowledge of wishful

thinking will be sufficient to conclude that players will play some Nash equilibrium

strategies.

Definition 1. A two-player game (N,S, u) with linearly-ordered strategy sets is

said to be a monotone game with strategic substitutes iff

• (monotonicity) for all (s1, s2) , (s01, s02) ∈ Bi with si > s0i, ui (s1, s2) >

ui (s
0
1, s

0
2), and

• (strategic substitutes) for each s−i, there exists a unique best replyBRi (s−i),

and BRi (s−i) is non-increasing in s−i.

That is, if a player j increases her strategy, the best response of player i weakly

decreases, and the overall change weakly decreases the payoff of i. Cournot com-

petition and the battle of the sexes are in this large class of games. These games

possess pure Nash equilibria and satisfy the conditions of Proposition 3. Hence,

X∞ is non-empty and involves only equilibrium strategies. Indeed, Nash equi-

librium strategies are played whenever everyone knows that everyone knows that

everyone is a wishful thinker, as the next result establishes.
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Proposition 4. For any monotone game with strategic substitutes, there are only
three rounds of elimination:

(4.3) X∞ = X2 = {(ŝ1, ŝ2)|∃(ŝ1, s2), (s1, ŝ2) ∈ NE : ŝ1 ≥ s1, ŝ2 ≥ s2}.

In particular, X2
i = NEi for each i.

The proof shows that all non-equilibrium strategies are eliminated in the first

three rounds, i.e., X2 ⊆ NE1 × NE2. The elimination in the first round there-

fore ensures that X2 is as in (4.3). Since X2 is identical to the set in (4.2), by

Proposition 3, there is no further elimination. The following example illustrates

this.

Example 7. Consider a Cournot duopoly in which each player i produces qi units
of a good, where the best-response functionsBR1 andBR2 are as plotted in Figure

3, with q1 and q2 are measured on the horizontal and vertical axes, respectively.

There are three Nash equilibria: (q11, q
1
2), (q

2
1, q

2
2), and (q

3
1, q

3
2). In the first round,

strategies q1 with q1 > q̄1 and q2 with q2 > q̄2 are eliminated because they are

never a best reply. Moreover, every strategy profile that is under the graph of

some best-response function is eliminated. To see this, consider (q̂1, q̂2) in Figure

3. If (q̂1, q̂2) is played at a state at which Player 2 is a wishful thinker, then her

expected payoff at that state is u2 (q01, q̂2). If she plays a best reply to q̂1, then her

payoff will be u2 (q̂1, BR2 (q̂1)), which is higher than u2 (q
0
1, q̂2) by monotonicity.

Therefore, (q̂1, q̂2) is eliminated. Now consider any q̃1 with q11 < q̃1 < q21. At

q1 = q̃1, the graph of BR1 lies under the graph of BR2, and hence the profile

(q̃1, q2) with q̃1 = BR1 (q2) is eliminated in the first round. Therefore, strategy q̃1
is eliminated in the second round. Similarly, in the second round, we eliminate

all strategies q1 with q31 < q1 < q̄1 and q2 with q32 < q2 < q22 or q
1
2 < q2 < q̄2. Now,

in the third round, every strategy q1 with q21 < q1 < q31 is eliminated because q1
can be a best reply to only a strategy q2 with q32 < q2 < q22, which was eliminated

in the last round. Similarly each q2 with q12 < q2 < q22 is eliminated in this round.

Notice that the only remaining strategies are the Nash equilibrium strategies, and

X∞ = X2 = {(q11, q12) , (q21, q22) , (q21, q12) , (q31, q32) , (q31, q22) , (q31, q12)}. When (q31, q12) is
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Figure 3. Wishful thinking in a general Cournot duopoly.

played, the total supply is more than what any equilibrium predicts, leading to a

price that is lower than any equilibrium price.

Notice that in the case of linear Cournot duopoly, there will be only two rounds

of elimination. Moreover, by merely knowing that players are wishful thinkers, we

can conclude that the total supply weakly exceeds the equilibrium supply, leading

to a price weakly lower than the equilibrium price.

Proposition 4 shows that, in monotone games with strategic substitutes, knowl-

edge assumptions beyond the second order do not play any role. This stems from

the fact that, in these games, a wishful thinker tends to gain when her own wish-

ful thinking is known, and she tends to assume it whenever she can. Towards

illustrating this, notice that, by monotonicity, given any two states ω and ω0 with

σ (ω) , σ (ω0) ∈ Bi, we have ui (σ (ω)) > ui (σ (ω
0)) whenever σi (ω) > σi (ω

0).

Hence, roughly speaking, say that player i is more optimistic at ω than ω0 iff

σi (ω) > σi (ω
0). Assume also that ui (BRi (s−i) , s−i) < ui

¡
BRi

¡
s0−i
¢
, s0−i

¢
when-

ever s−i > s0−i, an assumption that is implied by monotonicity and strategic

substitutes when BRi (s−i) 6= BRi

¡
s0−i
¢
. Now consider a state ω at which a
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player i is a wishful thinker and σj is one-to-one on Ii (ω), where i 6= j. Be-

ing a wishful thinker, player i then assigns probability 1 to the state ω∗ with

σj (ω
∗) = minσj (Ii (ω)). That is, player i believes that the other player j is of

the most pessimistic type within Ii (ω). Moreover, since BRj is non-increasing,

if player j assigns probability 1 to states ω̂∗ and ω̂0 at states ω∗ and ω0 ∈ Ii (ω),

respectively, then σi (ω̂
∗) > σi (ω̂

0). In that sense, a wishful thinker i believes that

the other player is of the type that finds i most optimistic.

Now imagine that player i happens to know that the other player j is also a

wishful thinker. Firstly, since j plays a best reply to a pure strategy, ω∗ is indeed

the state in Ii (ω) at which player j is of the type that is most pessimistic and finds

i most optimistic. More interestingly, there cannot be any state ω0 ∈ Ii (ω) \ {ω∗}
such that Ij (ω0) ⊆ Ij (ω

∗).9 In other words, player i believes that the other

player j has a minimal amount of strategic uncertainty. The intuition is simple.

Since optimism of j hurts player i, player i wishes that j faces relatively small

uncertainty because a wishful thinker j becomes more optimistic as her uncertainty

increases. In particular, if there is a state ω0 ∈ Ii (ω) at which player j knows the

state (i.e., Ij (ω0) = {ω0}), then player i assigns probability 1 to that state. In
that case, at ω0, there will be common certainty of the state, and an equilibrium

will be played.

On the other hand, in a monotone game with strategic complementarity, opti-

mism of a player is helpful to the other player. In that case, a wishful thinker i

tends to believe that the other player j is optimistic, but that optimism now will

predict that player i also holds optimistic beliefs. Once again, a wishful thinker

tends to believe that she is perceived as very optimistic.

5. An Extension

In some applications, it might be appropriate to assume that only a subset

of players have systematic biases. For example, one might want to consider the

9For in that case, by definition of wishful thinking, we have Ei,ω0 [uj (σ)] ≤ Ei,ω∗ [uj (σ)],

showing by monotonicity that σj (ω0) ≤ σj (ω
∗), and contradicting that σj (ω∗) is the unique

minimum.



34 MUHAMET YILDIZ

case that consumers have optimistic views about firms, while firms’ have unbiased

expectations about consumers. Assuming that each player plays a best reply to

his beliefs, one can easily extend the analysis above to cover such cases.

Let N̂ be the set of wishful thinkers, and assume that the remaining players are

rational. Formally, we consider the states ω ∈WN̂ where

WN̂ ≡
Ã T

i∈N̂
Wi

!
∩
Ã T

i6∈N̂
Ri

!
.

Now, Lemma 1 summarizes the restrictions on strategies of wishful thinkers. The

remaining players play a best reply to some belief that is consistent with their

knowledge. That is, their strategies must not be strictly dominated given the

strategies that may be “available” to the other players. This is the only restriction

on rational players’ strategies.

Elimination Procedure.

(1) Initialization: Set X−1
N̂
= S.

(2) Elimination (m ≥ 0): For all i ∈ N̂ , eliminate all strategy profiles ŝ

with maxsi ui (si, ŝ−i) > max(ŝi,s−i)∈Bi∩Xm−1
N̂

ui (ŝi, s−i). For all i 6∈ N̂ ,

eliminate each strategy ŝi that is strictly dominated given that the set of

available strategies for that other players is
n
s−i| (ŝi, s−i) ∈ Xm−1

N̂

o
. Call

the remaining strategy profile Xm
N̂
.

(3) Iterate step (2).

Notice that the set of “available” strategies for other players depends on the

strategy for which we check rationality of the player. This is because we eliminate

strategy profiles, rather than strategies, when we consider wishful thinking, so

that Xm−1
N̂

is not rectangular. The next result states that Xm
N̂
is indeed the set

of strategy profiles that is consistent with mth-order mutual knowledge of the

situation that the players in N̂ are wishful thinkers and the remaining players

play a best reply.

Proposition 5. For any model (Ω, I, p, σ), any N̂ , and any m ≥ 0,

σ (Km (WN̂)) ⊆ Xm
N̂
and σ (CK (WN̂)) ⊆ X∞

N̂
.
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Moreover, there exist models (Ω, I, p, σ) in which the above inclusions are equali-

ties.

The first statement is implied by Lemma 1 and the definition of Ri. One

can construct models with equalities as in the proof of Proposition 1. The next

example illustrates how the modified elimination procedure is applied.

Example 1 (continued). In the original game

α β γ δ

a 3∗,0 −1,0 0,0 0,2∗

b 0, 0 2∗,1∗ 0,0 0,0
c 0,0 0,0 1∗,2∗ 1∗,0
d 2,3∗ 1,0 0,0 0,0

assume that Player 1 is a wishful thinker and Player 2 is rational; i.e., N̂ = {1}.
Take m = 0. For Player 1, as before, the strategy d and strategy profiles (b, α),

(c, α), and (c, β) are eliminated. No strategy is eliminated for Player 2. The

remaining strategy profiles, X0
{1}, are typed in bold in the above table. Form = 1,

strategy α is eliminated because α is not a best reply to a, the only “remaining

strategy” of Player 1 for α. ({s1| (s1, α) ∈ X0
{1}} = {(a, α)}.) No other strategy of

Player 2 is eliminated because each of them is clearly a best reply to a remaining

(pure) strategy. Form = 2, strategy a is eliminated as it is not a best reply to any

pure strategy, and hence the inequality in the elimination procedure is vacuously

satisfied. For m = 3, strategy δ is eliminated, as it becomes strictly dominated

by a mixture of β and γ when strategies a and d are ignored. The elimination

process stops here. Therefore, X3
{1} = · · · = X∞

{1} = {(b, β) , (b, γ) , (c, γ)} = X∞,

as in the original case.

Remark 4. Notice that the outcome is not affected by whether Player 2 is a
wishful thinker or not. The power of elimination process comes from elimination

of strategy profiles for a player at the first stage. In fact, given a generic, two-

player game in which a strategy of Player 1 can be a best reply to at most one

strategy of Player 2, if Player 1 is a wishful thinker, we can re-label the strategies

so that the strategy profiles under the graph of best reply correspondence for
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Player 1 are eliminated for m = 0. When we know that Player 2 plays a best

reply to a pure strategy, all of the arguments in the proof of Proposition 3 would go

through. Therefore, once again, for generic, two-player games, we can characterize

the Nash equilibrium strategies as the strategies that are consistent with common

knowledge of the case that one of the players is a wishful thinker and the other

plays a best reply to a pure strategy. Since only Player 1 is a wishful thinker, I do

not assume here that a wishful thinker knows that some other player is a wishful

thinker. Hence, the results in this paper do not rely on such assumptions, which

some may find problematic.

6. Conclusion

Self-serving biases are reportedly common. If this is indeed the case, one would

expect these biases to manifest themselves in the beliefs about the other players

strategies. Even in the literature on optimism, however, this sort of systematic

biases about the other players’ strategies are typically assumed away. What is

worse, there is no game theoretical framework that incorporates such systematic

deviations from the common-prior assumption–although the use of heterogenous

priors about strategies is becoming mainstream in game theory. This paper takes

a first step towards a theory of such deviations, focusing on the extreme form

of optimism, namely wishful thinking. In particular, it develops a framework for

analyzing one type of deviation, namely wishful thinking, the extreme form of

optimism. I use the canonical model for strategic uncertainty to identify whether

a player is a wishful thinker and develop a straightforward elimination process

directly on strategy profiles to characterize the set of strategy profiles that are

consistent with wishful thinking, mutual knowledge of wishful thinking, and so on.

I further show that in generic two-person games, pure Nash-equilibrium strategies

are the only strategies that are consistent with common knowledge of wishful

thinking. In such games, wishful thinking can be common knowledge only in cases

in which strategic uncertainty is reduced to uncertainty about the equilibrium that

is played, and if a researcher assumes away asymmetric information about whether

a player is a wishful thinker in order to disentangle the effects of wishful thinking
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from that of informational differences, then he may as well focus on equilibrium

strategies.

My analysis of the example of wishful thinking illustrates how one can use an

epistemic approach to find out the strategic implications of common knowledge

of a general decision rule–while allowing systematic biases about the strategies.

It also illustrates that, in such an analysis, we will need to face new issues, such

as elimination of strategy profiles and sensitivity to modeling of strategies. The

elementary nature of my analysis of this particular bias suggests that it will be

possible to develop a tractable framework for incorporating more general types of

systematic biases about strategies into game theory.

Appendix A. Technical Appendix–Proofs

Proof of Fact 1. For any i and ω as in (2.2), we have (2.1):

Ei,ω [ui (σ)] = max
s∈Si×σ−i(Ii(ω))

ui (s) = max
si∈Si,µ∈∆(Ii(ω))

Eµ [ui (si, σ−i)] = max
si∈Si

Ei,ω [ui (si, σ−i)] ,

where ∆ (Ii (ω)) is the set of all probability distributions on Ii (ω) , and Eµ is the

expectation with respect to µ. [By (2.2), the second maximum is obtained at

(σi (ω) , pi,ω), and hence the maximum does not change if we fix µ = pi,ω in this

maximization, yielding the last equality.] ¤

A.1. Strategic Implications of Wishful Thinking. I will now prove Lemma
1 and Proposition 1. Lemma 1 immediately follows from the following result.

Lemma 2. For any F ⊆ Ω, i ∈ N , and any ŝ ∈ σ (Ki (F ) ∩Wi), there exists

(ŝi, s−i) ∈ Bi ∩ σ (F ) such that ui (ŝi, s−i) ≥ maxsi ui (si, ŝ−i) .

Proof. Let ŝ = σ (ω) for some ω ∈ Ki (F ) ∩ Wi. Since σi (Ii (ω)) = {ŝi} and
the expectation of a random variable cannot be strictly higher than the variable

everywhere, there exists (ŝi, s−i) ∈ σ (Ii (ω)) such that

(A.1) ui (ŝi, s−i) ≥ Ei,ω [ui (σ)] = max
s∈Si×σ−i(Ii(ω))

ui (s) ,

where the equality is due to the fact that ω ∈ Wi. Now, since s−i ∈ σ−i (Ii (ω)),

(A.1) implies that ui (ŝi, s−i) ≥ maxsi ui (si, s−i), showing that ŝi ∈ BRi (s−i),
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and hence (ŝi, s−i) ∈ Bi. Moreover, since ω ∈ Ki (F ), we have Ii (ω) ⊆ F , and

hence (ŝi, s−i) ∈ σ (Ii (ω)) ⊆ σ (F ). Thus, (ŝi, s−i) ∈ Bi ∩ σ (F ). But, since

ŝ−i = σ−i (ω) ∈ σ−i (Ii (ω)), (A.1) implies that

ui (ŝi, s−i) ≥ max
si

ui (si, ŝ−i) .

¤

The next result shows that for generic games, if we require players to put positive

probability at all states and consider ε-wishful thinking for sufficiently small ε,

the conclusion of Lemma 1 remains valid.

Lemma 3. For some i, assume that ui (s) 6= ui (s
0) for all s, s0 ∈ S. Let ε <

mins,s0∈S |ui (s)− ui (s
0)|. Then, for any F ⊆ Ω and any ŝ ∈ σ (ω) where ω ∈

Ki (F ) and player i is an ε-wishful thinker at ω, there exists (ŝi, s−i) ∈ Bi ∩σ (F )
such that ui (ŝi, s−i) ≥ maxsi ui (si, ŝ−i) .

Proof. Let s̃ = maxs∈Si×σ−i(Ii(ω)) ui (s) ∈ Bi. Since i is an ε-wishful thinker at

ω, we have Ei,ω [ui (σ)] ≥ ui (s̃) − ε. Hence, there exists ω0 ∈ Ii (ω) such that

ui (σ (ω
0)) ≥ ui (s̃)−ε. By definition of s̃ and ε, it must be that σ (ω0) = s̃. Hence,

s̃ = (ŝi, s−i) for some s−i (for σi (ω0) = σi (ω) = ŝi) and s̃ ∈ σ (F ) (for ω ∈ Ki (F )

and hence ω0 ∈ F ). Moreover, by definition, ui (s̃) ≥ maxsi ui (si, ŝ−i). ¤

Proof of Proposition 1. For m = 0, the statement, σ (W ) ⊆ X0, is immediately

implied by Lemma 1. For any m, assume that σ (Km−1 (W )) ⊆ Xm−1. Take any

ŝ = σ (ω) for some ω ∈ Km (W ). Firstly, since Km (W ) ⊆ Km−1 (W ), ŝ ∈ Xm−1.

Moreover, for any i, ω ∈ Ki (K
m−1 (W )) ∩Wi, so that, at ω, player i is a wishful

thinker and knows that a strategy profile in σ (Km−1 (W )) ⊆ Xm−1 is played

(i.e., σ (Ii (ω)) ⊆ σ (Km−1 (W )) ⊆ Xm−1). Hence, by Lemma 1, there exists

(ŝi, s−i) ∈ Bi ∩Xm−1 such that

max
si

ui (si, ŝ−i) ≤ max
(ŝi,s0−i)∈Bi∩Xm−1

ui
¡
ŝi, s

0
−i
¢
.

Thus, ŝ ∈ φ (Xm−1) = Xm. Therefore, σ (Km (W )) ⊆ Xm.

For any givenm, I will now construct a model (Ω, I, p, σ) in which σ (Km (W )) =

Xm. Specifically, for each ŝ ∈ Xm, I will construct a model
¡
Ωŝ, I ŝ, p, σ

¢
in which
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ŝ ∈ σ (Km (W )). Then, the model with Ω = ∪ŝ∈XmΩŝ and I = ∪ŝ∈XmI ŝ satisfies

the desired property. Fix any ŝ ∈ Xm. Take some ω0 as the first member of Ωŝ

and set σ (ω0) = ŝ. Set Fm = {ω0}. (I will define a sequence F 0, . . . , Fm such that

F k ⊆ Kk (W ) for each k.) For any player i, if ŝ ∈ Bi, then set I ŝi (ω0) = {ω0}.
Clearly, ω0 ∈ Wi for such a player i. If ŝ 6∈ Bi, since ŝ ∈ Xm, there exists

si,m−1 ≡
¡
ŝi, s

i,m−1
−i

¢
∈ Bi ∩ Xm−1 such that ui (si,m−1) ≥ maxsi ui (si, ŝ−i). For

each such i, consider a new state ωi,m−1 and set σ (ωi,m−1) = si,m−1, I ŝi (ω0) =

{ω0, ωi,m−1}, and pi,ω0 (ωi,m−1) = 1. By construction, ω0 ∈ Wi for each such

i. Write Fm−1 for the set of states that are defined so far. Recall that, for

each ωi,m−1, I ŝi (ωi,m−1) = I ŝi (ω0) and σi (ωi,m−1) = ŝi have been defined already.

Now for each j 6= i, conduct the last operation again: if si,m−1 ∈ Bj, then set

I ŝj (ωi,m−1) = {ωi,m−1}, yielding ωi,m−1 ∈ Wj. If si,m−1 6∈ Bj and m − 1 ≥ 0,

then there exists sj,m−2 =
¡
si,m−1j , sj,m−2−j

¢
∈ Bj ∩ Xm−2 such that uj (sj,m−2) ≥

maxsj uj
¡
sj, s

j,m−2
−j

¢
. For each such j, consider a new member ωj,m−2 and set

σ (ωj,m−2) = sj,m−2, I ŝj (ωi,m−1) = {ωi,m−1, ωj,m−2}, and pj,ωi,m−1 (ωj,m−2) = 1.

Once again ωi,m−1 ∈ Wj. Conduct this for each ωi,m−1, and let Fm−2 be the set

of states that are defined so far. Clearly, one can define such a sequence of sets

Fm, Fm−1, . . . , F 0, F−1 following the above procedure. Set Ωŝ = F−1. For the

states ωi,−1 ∈ F−1\F 0, for which σ (ωi,−1) = si,−1 ∈ X−1 = S, I ŝj remains to be

defined for j 6= i; set I ŝj (ωi,−1) = {ωi,−1}. Clearly, such j need not be a wishful

thinker or rational at ωi,−1. But by construction each player is a wishful thinker at

each state in F 0. Therefore, W ⊇ F 0. Hence, for each i, Ki (W ) ⊇ Ki (F
0) ⊇ F 1,

so that K1 (W ) ⊇ F 1. Similarly, Kk (W ) ⊇ F k for each k ≤ m. In particular,

ω0 ∈ Fm ⊆ Km (W ), showing that ŝ = σ (ω0) ∈ σ (Km (W )). Finally, for the case

of X∞, such a sequence of increasing sets could be defined indefinitely without

ever going out of X∞, and each player will be a wishful thinker at each state,

so that wishful thinking is common knowledge, and at the initial state the fixed

profile ŝ ∈ X∞ is played. ¤

A.2. Wishful Thinking and Nash Equilibrium. Here, I will explore the re-
lationship between Nash equilibrium and common knowledge of wishful thinking
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and prove Propositions 2 and 3. The next lemma states some straightforward but

very useful facts about the elimination process and its relationship to equilibrium.

Lemma 4. The following are true.

(1) φ is monotonic (i.e., X ⊆ Y ⇒ φ (X) ⊆ φ (Y ));

(2) NE is a fixed point of φ (i.e., φ (NE) = NE);

(3) X∞ is a fixed point of φ (i.e., φ (X∞) = X∞).

Lemma 4 immediately implies Proposition 2.

Proof of Proposition 2. By Lemmas 4.2, 4.1, and the definition of X∞,

NE = φ∞ (NE) ⊆ φ∞ (S) = X∞.

¤

Recall that

X∞
i = {si|∃s−i : (si, s−i) ∈ X∞}

is the set of strategies for player i that are consistent with common knowledge of

wishful thinking. Since φ (X∞) = X∞, each such strategy must be a best reply

to a surviving strategy:

Lemma 5. For each i and si ∈ X∞
i , there exists s−i such that (si, s−i) ∈ Bi∩X∞.

The next lemma establishes some useful facts for two-player games with unique

best replies. It states thatX∞ is closed under best reply and that the restriction of

the best-response function to X∞
i is a bijection. Most notably, part 3 states that,

when applied to NE1 ×NE2, the elimination process stops at the first iteration.

Lemma 6. For any two-player game assume that, for each i, BRi is singleton-

valued. Then, the following are true.

(1) |X∞
1 | = |X∞

2 | ;
(2) For each i, there exists a one-to-one and onto mapping ρi : X

∞
j → X∞

i

such that BRi (sj) = {ρi (sj)} for each sj;
(3) φ∞ (NE1 ×NE2) = φ (NE1 ×NE2).
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Proof. By Lemma 5, for each si ∈ X∞
i , there exists a ρ−1i (si) ∈ X∞

j such that

si ∈ BRi

¡
ρ−1i (si)

¢
. Since BRi is singleton-valued, ρ−1i is one-to-one. Hence,

|X∞
i | ≤

¯̄
X∞

j

¯̄
. Since i is arbitrary, this yields (1). But (1) in turn implies that

the one-to-one function ρ−1i is also onto. Thus, ρi : X
∞
j → Xi is well-defined.

Since ρ−1i is a bijection, so is ρi, yielding (2). To show (3), check that, when

BRi is singleton-valued, for each ŝi ∈ NEi, there exists a unique (ŝi, s−i) ∈
Bi ∩ (NE1 ×NE2). In that case, φ (φ (NE1 ×NE2)) = φ (NE1 ×NE2), and

hence φk (NE1 ×NE2) = φ (NE1 ×NE2) for each k. ¤

Proof of Proposition 3. To prove (4.1), first note that if X∞ = ∅, then by Propo-
sition 2, NE = ∅, and thus X∞ = NE. Assume that X∞ 6= ∅. Using Lemma
6 and assumption (ii), one can rename the strategies as X∞

1 =
©
s11, . . . , s

k
1

ª
and

X∞
2 =

©
s12, . . . , s

k
2

ª
for some k ≥ 1 so that B1 ∩X∞ is the diagonal of X∞

1 ×X∞
2 ,

i.e.,

(A.2) B1 ∩X∞ =
©¡
sl1, s

l
2

¢
|1 ≤ l ≤ k

ª
⊆ X∞

1 ×X∞
2 ,

and

(A.3) u1
¡
sl1, s

l
2

¢
is strictly decreasing in l.

Now, for any l > m, (A.2) and (A.3) imply that

max
s1

u1 (s1, s
m
2 ) = u1 (s

m
1 , s

m
2 ) > u1

¡
sl1, s

l
2

¢
= max
(sl1,s2)∈X∞∩B1

u1
¡
sl1, s2

¢
,

which in turn implies that
¡
sl1, s

m
2

¢
6∈ φ (X∞) = X∞. Therefore,

(A.4) X∞ ⊆
©¡
sl1, s

m
2

¢
|1 ≤ l ≤ m ≤ k

ª
.

Now, I will use mathematical induction (on l) to show that NE = B1 ∩ X∞.

Together with (A.2), this implies (4.1). For l = 1, by Lemma 5, there exists s1
such that (s1, s12) ∈ B2∩X∞. But (A.4) states that s11 is the only strategy that can

satisfy this. Hence, (s11, s
1
2) ∈ B2. Together with (A.2), this shows that (s11, s

1
2) ∈

NE. Assume that (s11, s
1
2) , . . . ,

¡
sl−11 , sl−12

¢
∈ NE for some l > 1. Since BR2 is

singleton-valued (by assumption (i)), sl2 6∈ BR2 (s1) for any s1 ∈
©
s11, . . . , s

l−1
1

ª
.

Hence, sl2 ∈ BR2 (s1) for some s1 ∈
©
sl1, . . . , s

k
1

ª
; recall from Lemma 6.2 that ρ2

is onto. But since
©¡
sl+11 , sl2

¢
, . . . ,

¡
sk1, s

l
2

¢ª
∩X∞ = ∅ (by (A.4)), it must be that
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sl2 ∈ BR2
¡
sl1
¢
, showing that

¡
sl1, s

l
2

¢
∈ B1∩B2 = NE. Therefore, B1∩X∞ ⊆ NE.

(And NE ⊆ B1 ∩X∞ by Proposition 2.)

To prove (4.2), write

X∞ = φ (X∞) ⊆ φ (NE1 ×NE2) = φ∞ (NE1 ×NE2) ⊆ φ∞ (S) = X∞,

where the first equality is by Lemma 4.3, the next inclusion is by Lemma 4.1 and

the first part of the proposition (i.e., X∞ ⊆ NE1×NE2), the next equality is by

Lemma 6.3, the next inclusion is again by Lemma 4.1, and the last equality is by

definition. ¤

Proof of Corollary 2. Let Ω = X∞, and let σ be the identity mapping. Set

Ii (ω) = {s ∈ X∞|si = σi (ω)} for each i and ω. By (4.1), for each i and ω, there

exists a (unique) Nash equilibrium ŝ with ŝ ∈ Ii (ω). Set pi,ω (ŝ) = 1. Now, by

(4.2), for any s ∈ Ii (ω), there exists (s̃i, s−i) ∈ NE such that ui (ŝ) ≥ ui (s̃i, s−i).

Since ui (s̃i, s−i) = maxs0i ui (s
0
i, s−i) (by definition of NE) for each s−i, this shows

that ui (ŝ) = maxsi,s−i∈σ−i(Ii(ω)) ui (s), showing that ω ∈Wi. ¤

Proof of Proposition 4. Each strategy profile (s1, s2) with BRi (sj) > si is elim-

inated in the first round for player i because in that case, by monotonicity,

ui (BRi (sj) , sj) > ui
¡
si, s

0
j

¢
for every

¡
si, s

0
j

¢
∈ Bi. Hence,

(A.5) si ≥ BRi (sj)
¡
∀ (s1, s2) ∈ X0, ∀i, j ∈ N

¢
.

I will show that X2 ⊆ NE1 × NE2; i.e., for each (ŝ1, ŝ2) ∈ X1, there exist

(ŝ1, s2) , (s1, ŝ2) ∈ NE. Since (ŝ1, ŝ2) ∈ X0, by (A.5), ŝ1 ≥ BR1 (ŝ2) = s1 and

ŝ2 ≥ BR2 (ŝ1) = s2, yielding the expression for X2 in (4.3). Then, by Proposition

3, φ (X2) = X2, showing that X∞ = X2.

Take any s1 ∈ S1\NE1. I will show that s1 is eliminated in the first three

rounds, so that s1 6∈ X2
1 . Since this will also be true for non-equilibrium strategies

of Player 2, this will show that X2 ⊆ NE1 × NE2. Now, take any (s1, s2) ∈
B1 ∩X0. By (A.5), s2 ≥ BR2 (s1). Since s1 = BR1 (s2) and (s1, s2) is not a Nash

equilibrium, s2 6= BR2 (s1), so that s2 > BR2 (s1). Then, for each (s01, s2) ∈ B2,

we have s01 < s1 = BR1 (s2), as B2 is non-increasing (by strategic substitutes) and

s2 = BR2 (s
0
1). By (A.5), such (s

0
1, s2) is not in X0, showing that there is no s01
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with (s01, s2) ∈ B2 ∩X0. Therefore, strategy s2 must be eliminated in the second

round (for m = 1). In particular, (s1, s2) 6∈ X1. Here, (s1, s2) ∈ B1 ∩ X0 was

arbitrary. Thus, there is no s2 with (s1, s2) ∈ B1 ∩ X1. Therefore, s1 must be

eliminated in the third round (for m = 2), or before. ¤
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