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Abstract

This paper analyzes a model of rational word-of-mouth learning, in which successive gene
of agents make once-and-for-all choices between two alternatives. Before making a decisio
new agent samplesN old ones and asks them which choice they used and how satisfied they
with it. If (a) the sampling rule is “unbiased” in the sense that the samples are representative
overall population, (b) each player samples two or more others, and (c) there is any informa
all in the payoff observations, then in the long run every agent will choose the same thing
addition the payoff observation is sufficiently informative, the long-run outcome is efficient. We
investigate a range of biased sampling rules, such as those that over-represent popular or s
choices, and determine which ones favor global convergence towards efficiency.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This paper introduces and analyzes a simple model of rational word-of-mouth lea
in which agents use information about the experiences of other agents to guide the
decisions. Such communication has long been known to be an important compon
brand choice by consumers; it also seems to be relevant for the adoption of agric
technologies and other production processes, and more generally to the spreading
fashions, and ideas within society.
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Consider an example from everyday life. Someone in your department tells yo
one of your colleagues is about to move to another university. She also tells you th
is sufficiently worried about it that she has started to make contingency plans. You d
that the rumor is probably not true and that contingency plans are unnecessary, bu
you run into another colleague in the corridor, you pass on the story, adding that y
not think its worth worrying about. Because you are rushing off to a meeting, you d
actually tell him how you came about the story. And so the story spreads. . . .

The underlying model here is that there is piece of information that everyone w
benefit from knowing, but the only source of information is word of mouth. No h
evidence is provided, and while people tell you their opinion, they do not give yo
of their reasons, and you do not observe the entire process by which the story came
Moreover, you know that you must not believe everything everyone tells you, both be
you know that other people also do not necessarily have hard evidence, and also b
you know that people overlay their personal hopes and fears on what they report.

What is long-run outcome of such a process of information transmission?
everyone learn the truth? Does everyone come around to the same view, be it r
wrong? Or does the diversity of views persist even in the long run?

This is a question that has been asked by others: Indeed, this is the subject
entire literature on herd behavior/informational cascades.1 The main difference betwee
our model and the type of model studied in this literature comes from the fact th
our model people only learn by “word-of-mouth” communication with a few other ag
instead of observing the entire history leading up to them.2 It is clear that in many rea
world situations, people do not get to find out what the whole world is doing: Often
simply too costly to gather the information or the information is something that is natu
private.3 And even when there is public information, for example about the populari
different cars, this information tends to be about aggregate popularity of different ch
while agents want to know the popularities among those with similar preferences.

There is also an a priori reason to study the impact of introducing the word-of-m
assumption into the models of social learning. As explained in Section 5, our intu
is that word-of-mouth learning makes herding less likely, as it reduces the corre

1 See, for example, Banerjee (1992), Bhikchandani et al. (1992), Lee (1993), Smith and Sorenson (20
Vives (1997). Chamley and Gale (1994) and Caplin and Leahy (1994) apply related ideas to study the sta
the macroeconomy.

2 Ellison and Fudenberg (1993, 1995) study models of boundedly-rational word-of-mouth learning. Ba
(1993) studies rational word-of-mouth learning in a setting that is not directly comparable to either this p
the herding models. Bjonerstedt and Weibull (1995) and Schlag (1998) discuss how word-of-mouth proc
strategy revision in games can generate the “replicator dynamic” of evolutionary biology.

3 Udry and Conley (2001), for example, in their study of pineapple farmers in Ghana, find that most f
only know about what a handful of other farmers are doing, but this group has a strong influence on their de
Duflo and Saez (2000), in their study of the decision to join a Tax Deferred Annuity plan (TDA) among emp
of a large US university, also find that each person’s choice is influenced by a small group of others. Finall
Munshi and Myaux’s (2000) study of contraception in Bangladesh has little explicit information about the
the group that the women talk to, their presumption is clearly that in rural Bangladesh it is unreasonable to
women to know every other villager’s contraception practices.
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between the observations of different agents. It is therefore interesting to see whet
herding results survive this change in assumptions.

In our model, at each point of time a new generation of agents has to make a
and-for all choice between two alternatives,a andb.4 The word-of-mouth element come
in because agents consult a sample ofN others, and those consulted report what t
themselves have chosen. The relative popularity of the choices in the agent’s sam
signal of their relative popularity in the whole of the “relevant” population. In addi
to this information about relative popularity, agents may also receive signals th
correlated with the payoffs from the choices. This may arise, for example, if some
sampled agents report not only their choice but also an indication of how satisfied th
with it. In the informal story above, the actions are “make plans” and “do not make p
and the “relevant population” is people in your own department. The people who yo
into, including both those who told you the story and those who did not, are your sa
And what they told you about the strength of their feelings, were the signals.

In addition to the framing assumptions described above, we make a number o
modeling choices. First, we assume that all agents are ex-ante identical, so that one
or the other is best for all of them, but there are unobserved idiosyncratic shocks t
agent’s realized payoff, so that one person’s report of a high payoff does not guarant
his choice was the optimal one. Second, we assume that current decision makers
observe the information that past decision makers used in making their decisions.
we assume that agents have a common prior on the mean difference in payoffs. Fina
need to make an assumption about what is known about the initial conditions.

In general, we suppose that agents know the distributions, conditional on which c
is better, over the share of the population who chosea when the process started. A spec
case of this ispayoff-determined initial popularity, meaning that the fractions of those w
would initially choosea, both whena is the right choice and whenb is the right choice
are common knowledge. As we will see, this case gives us the strongest results.

To interpret this assumption, we return to our initial example. When your colle
told you the bad news she might also have added that the rumor came from departmY .
If you know the people in departmentY very well, you may have a good idea of ho
the number of people there who would take the rumor seriously varies with wheth
rumor is actually true; this corresponds to payoff-determined initial popularity. If you
less familiar with departmentY , you may instead be uncertain just how many peo
there would start the rumor, so that your beliefs about this correspond to a nondeg
probability distribution.

We focus on our model’s long-run predictions. Our main result is a set of suffi
conditions for the long-run outcome to be “homogeneous” in the sense that all a
choose the same action (though this action may or may not be the correct on
other words there is herding or an informational cascade. This conclusion follows
samples are representative draws from the prevailing distribution in society (which w
“unbiased and proportional” sampling) and everyone samples at least two others.

4 While the decisions in the examples we mention are not completely irreversible, the cost of mak
wrong choice is either very substantial (in the case of contraception or switching to a new data base)
knowable after a long delay (in the case of TDA), which make them more or less like a once-in-a-lifetime c
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Our second main result provides a sufficient condition for the only stationary out
to be the one where all agents make the correct choice, so that the system co
to efficiency. The result requires payoff-determined initial popularities, and also th
distribution of signals assigns positive probability to signals that are informative enou
outweigh the prior.

While the proportional sampling rule used in proving these results is a natura
choice for analysis, it seems that people can and do use other sampling rules. In Se
we show that the long-run outcome can be heterogeneous if the sampling rules
proportional. Section 4.1 considers the effects of “perception biases” in the sam
process, by which we mean that the probability of sampling the user of a rare choice m
either greater or less than the population fraction currently using it. Section 4.2 inves
the effects of reporting biases: If samples are constructed from reports by others, an
with more extreme payoffs are more likely to report, the samples will be biased.5 Under
several of these alternative sampling rules, the first step in our convergence argume
It is no longer true that adopting the action of the first person contacted yields an ex
payoff equal to the average payoff in the current population. More strongly, under so
these alternative sampling rules the efficient outcome is not even locally stable.

2. The model

Throughout the paper, we suppose there are two alternative choices,a andb, which we
think of as representing brands or technologies. At every point in time, there is a cont
of agents of mass 1; a proportionx of these agents use choicea and all of the others us
choiceb. Each period, a representative fractionγ of consumers leaves the population a
is replaced by newcomers, so for example massγ x of agents using choicea are replaced
These new agents have to make a once-and-for all choice of either adoptinga or adoptingb.
If an agent choosesa, her payoff is the sum of a termua that is common to all agents an
an individual specific noise term with zero mean. Similarly, if an agent choosesb, her
payoff is the sum of a termub that is common to all agents and an individual-spec
mean-zero noise term.6 We suppose that the noise terms are i.i.d. over time and a
agents, so that the common termsua,ub correspond to the “quality” of the two choice
Denote the difference in quality levels by∆ = ua − ub. We suppose that agents do n
know the value of∆; for simplicity, we assume further that∆ has only 2 possible value
∆> 0>∆. All agents assign common prior probabilityq � 1/2 to the event that∆=∆.
We suppose thatq∆+ (1− q)∆> 0, so thatex-ante a is better thanb. As a normalization
we further specify that the “quality” of the inferior good is equal to 0, so that eitherua =∆
andub = 0 orua = 0 andub = −∆> 0.

5 McKenna (1991) says that “A customer who has a good experience with a product will tell three
people. A customer who has a bad experience will tell ten other people.”

6 The individual noise terms do not enter explicitly in our analysis; they are needed to interpret the sis
introduced below as reports from past agents about their realized payoffs. Here and subsequently, we w
loosely about a continuum of independent random variables. Since our analysis will only concern pop
aggregates, this looseness will not be important.
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In each period, the change in the population fractions using each choice is dete
by the distribution of responses in the new agents’ samples and the decision rule
new agents; we explain below how this is computed. To complete the description
dynamical system we need to specify initial conditions. To this end, we suppose tha
arej + k states of the world denoted byi ∈ I . The fraction of the population that us
choicea at date 0 in statei is denotedxi(0); x(0) denotes the vector whose compone
are thexi(0). In statesi = 1, . . . , j , the quality difference is∆=∆; we denote this even
by θ . Similarly, the statesi = j + 1, . . . , j + k correspond to the event∆ = ∆, which
we denoteθ . Agents have common prior distributionp over the states of the world
with pi denoting the probability of statei. Thus the prior probability of the eventθ is
q = p(θ)= ∑

i∈θ qi .
The simplest version of our model has only two states, one for each value∆.

We call this the case ofpayoff-determined initial popularity, as in this caseθ and θ
are singletons, and there is a deterministic map from payoffs to initial conditions.
case is of interest because it produces the sharpest results, and also because it o
conditions are frequently used in this literature, but we will be at least as interes
the general case, with many states in the eventsθ andθ , as this allows the relationsh
between payoff differences and initial popularity to be stochastic. One explanation fo
aggregate uncertainty is that the initial condition reflects the choices of a group of
adopters” whose preferences are uncertain even at the aggregate level; for exam
fraction of early adopters with a taste for novelty might be unknown.7 It is important to
note that we treat the distribution relating initial conditions and the payoffs of the ch
as exogenous. Our choice to view this distribution as separate is consistent with
(1991), who argues that the very first adopters of a new technology do so for reaso
are very different from those that matter for most other adopters.

Turning to the mechanics of information gathering, the paper allows for diffe
specifications of the rule by which players draw their samples. To accommodate this
fixed sample sizeN letZ denote the set of all pairs(α,β) with α andβ both nonnegative
andα+ β =N ; ζ ∈Z is then a sample ofN players, of whomα usea andβ useb. Then
µ(ζ | x) is the probability of drawing sampleζ when fractionx of the population use
choicea. (Note that this probability depends on the state of the world only through
state’s influence on the proportion of players using each choice.) Moreover, in the sp
the law of large numbers, we will specify that the fraction of new agents who draw sa
ζ exactly equalsµ(ζ | x).

In addition to observing the actions chosen, i.e., the sampleζ , players also receive
signal, denoteds, that may be correlated with the realized value of∆. At this point we
allow for the possibility thats is independent of∆, in which case it is of no use to th
agents, but we tend to think that the agents will typically have some sources of inform

7 To be more specific, suppose that early adopters receive private signals of the relative attractive
the alternatives according to known probability distributions, and choose the alternative that gives th
highest expected utility. The initial fractions usinga andb will not be determined simply by the objective payo
difference, but will also depend on the unknown fraction of early adopters with a taste for novelty. A
possible story for multiple initial conditions is that an unknown fraction of the initial decision makers chose
they did because they were offered a large “introductory pricing” discount.
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beyond the popularity itself, such as the reported satisfaction levels of the peopl
contact. On the other hand, we suppose that this information is not perfect, that is, t
signalss do not perfectly reveal the state of the world. We will assume that condition
the state of the world, and receiving sampleζ the signal received by each agent is dra
independently from the same distribution. For convenience, we further suppose th
distribution is atomless, with densityf (s | θ, ζ ); this is not important for our results bu
helps simplify a few details.

Definition. The signalconveys some information if for all samplesζ ∈Z there is a positive
probability of signalss such thatf (s | θ, ζ ) �= f (s | θ, ζ ).

Most of our results suppose that this condition is satisfied. (Note that if the signa
simply the realized payoffs of the choices in the agent’s sample, the condition is sa
whenever at least one sampled agent reports his or her payoff in addition to their c
We use the standard “large numbers” convention that in each stateθ the fraction of agents
with samplesζ who see signals exactly equalsf (s | θ, ζ ). Finally we will assume that th
structure of this process, including the rules that generate samples and signals, is c
knowledge.

We assume that observed play corresponds to a pure-strategy Bayesian equilib
the game. (Since each player only moves once, and players are unconcerned ab
actions of those who move either subsequently or simultaneously, it is easy to che
an equilibrium exists, as the equilibrium can be constructed by “rolling forward” from
initial period.) As a result we can assume that in an equilibrium, all the players kno
functions that specify the fraction using choicea at the beginning of periodt in each state
of the world. We will represent these functions by a vectorx(t)= (x1(t), . . . , xI (t)), where
xi(t) is the fraction ofa-users in statei.

Since the agent knows the fraction ofa-users in all states of the world, the share
a-users in a player’s sample is indirect evidence about the state of the world, and
about which choice is better. Of course, the interpretation of this evidence depends
way that the actual population fractionx influences the composition of the samples, a
also on the correlation between the fractionx and the stateθ .8

Once a player receives sampleζ he updates his prior beliefs as follows. First, the rela
popularity of the two choices in the sample itself conveys information, so that the odd
after seeing the relative popularities in the sample is

p(θ | ζ )
p(θ | ζ ) = λζ (x). (2.1)

Second, players also take account of the information conveyed by signals. Combining
this with the “interim” odds ratio in Eq. (2.1) yields the posterior odds ratio

p(θ | ζ, s)
p(θ | ζ, s) =

(
f (s | θ, ζ )
f (s | θ, ζ )

)
λζ (x). (2.2)

8 If, at time t , no two of thext (t) are equal, then observing the actual sharex reveals the state and so revea
the optimal choice. But, as we pointed out in the introduction, agents cannot directly observe the ag
popularities.
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Players will choosea whenp(θ | ζ, s)∆+ p(θ | ζ, s)∆ > 0. This is equivalent to th
posterior odds ratio in (2.2),p(θ | ζ, s)/p(θ | ζ, s), being strictly greater than−∆/∆; we
will denote this critical value byC. Players will chooseb when the posterior odds rat
is strictly less thanC; when the odds ratio is exactlyC, players are indifferent. Note tha
our assumption thata is optimal under the prior beliefs implies that the prior odds ra
q/(1− q) exceedsC.

Many of our results make use of the following assumption.

Definition. The system satisfies theminimal informativeness condition if in stateθ , for all
samplesζ ∈Z there is positive probability of observationss such that

(
f (s | θ, ζ )
f (s | θ, ζ )

)
q

1− q < C.

The assumption that the realized distribution of signals exactly equals the theo
distribution that generates it allows us to compute, for each sampleζ , and each eventθ ,
the fraction of the players that, after receiving the sample, strictly prefera: This is the
probability, under eventsθ andθ , respectively, that the realization ofs is such that the
odds ratio in (2.2) exceedsC.9 In a similar fashion, we can compute the fraction
agents that strictly preferb. Our results will not depend on the way that agents cho
when indifferent; by making an arbitrary selection here we arrive at the total frac
Φζ (x(t − 1)) andΦζ (x(t − 1)) of those who observeζ that adopta at datet in statesθ
andθ , respectively.10

Thus the fraction of the population currently usinga evolves according to

xi(t)= (1− γ )xi(t − 1)+ γ
[∑
ζ

µ
(
ζ

∣∣ xi(t − 1)
)
Φζ

(
x(t − 1)

)]
, i = 1, . . . , j,

xi(t)= (1− γ )xi(t − 1)+ γ
[∑
ζ

µ
(
ζ

∣∣ xi(t − 1)
)
Φζ

(
x(t − 1)

)]
,

i = j + 1, . . . , j + k. (2.3)

The remainder of the paper is devoted to analyzing the behavior of this determ
dynamical system, and how it depends on the nature of the word-of-mouth process t
the induced form of the functionsΦ. Note that this is a function on the(j+k)-dimensional
state vectorx, and that the “corners” of this state space (the points where every comp
of x is either 0 or 1) are the “herding points” where, in each state of the world, every
is using the same action. The efficient outcome is the herding point where all agentsa
in the states 1 throughlyj (that is inθ ) and all agents useb in statesj + 1 throughj + k.

9 These fractions depend onθ because it influences the distribution of realized payoffs in each sample
since they depend only on the distribution of payoffs, they are the same for all states in a given eventθ .

10 In principle, the choice that agents make when indifferent could depend on calendar time as well
sample; this possibility makes no difference to the results so we suppress it to lighten notation.
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3. Proportional sampling

This section specializes the rule by which agents gather their information to “pr
tional” or “unbiased” sampling, which means that each agent sampled is an indep
draw from the probability distribution(x,1− x) overa-users andb-users. Thus the distr
bution of samples is binomial, and the fraction of players who get a sample ofm a-users
andN −m b-users is equal to

(
N
m

)
xm(1 − x)N−m. This is the most commonly specifie

sampling rule, and perhaps the most natural; Section 4 discusses some plausible
tives.

3.1. Some preliminaries

Definition. The population’s average payoff is(∑
i∈θ
pixi(t)

)
∆−

(∑
i∈θ
pi

(
1− xi(t)

))
∆≡U (

x(t)
)
.

This is the expected payoff of a randomly drawn member of the population, whe
expectation is taken with respect to the prior distribution.11

Lemma 1. (a) For any sampling rule, U(x(t)) is strictly increasing over time whenever it
is less than q∆.

(b) With proportional sampling U(x(t)) is nondecreasing over time.
(c) With proportional sampling, U(x(t + 1))= U(x(t)) if and only if no decision rule

can improve on the rule “copy the action of the first person in the sample.”

Proof. For (a), note that one feasible decision rule is to ignore the observations en
and usea, which is the better choice with the prior beliefs; this yields payoffq∆ so each
generation of new players must get at least this much in expectation. For (b), no
under proportional sampling, the feasible decision rule “adopt the same action as th
by the first person in the sample” has expected payoffU(x(t)). Thus whatever strateg
the new adopters use at datet must yield at least this high a payoff. For part (c) obse
that if any strategy yields a higher payoff, thenU(x(t)) must be increasing, while if n
strategy yields a higher payoff, then the new adopters at datet must obtain exactlyU(x(t))
in expected payoff. ✷
Remark. Parts (a) and (b) of this lemma apply either directly or with small modificat
to several related models. For example, the lemma still holds if new agents “inhe
choice of actions from their “parents,” and must pay a cost if they switch to the
choice: If agents do not switch, their expected payoff isU(x(t)); if they do choose to
switch, they must do at least as well. Also, in the “herd behavior” models where one
moves in each period, and agents observe all previous choices, doing what the last

11 Recall that−∆> 0 is the payoff tob in states whereb is better.
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3.2. The basic convergence result

The next two results give alternative sufficient conditions for the system to conve
“herding points” where the fraction usinga is either 1 or 0 in each state of the world.

Theorem 1. Assume that sampling is proportional, that N > 1, and that signals convey
some information. Then

(a) if x(t) is such that at least one of its components, xi(t), is neither 0 nor 1, then
U(x(t + 1)) must be strictly greater than U(x(t)).

Consequently,

(b) the only stationary points of the system are those with “herding,” in the sense that all
agents are choosing the same action, and

(c) the system must converge to such a stationary point.

Proof. (a) To show thatU is strictly increasing over time everywhere but the speci
“corner” points, we note first that in any statei such thatxi is neither 0 nor 1, every samp
of sizeN has positive probability. We use this fact to show that the agents who cho
datet have a decision rule that yields strictly greater payoff thanU(x(t)).

If there is no such rule, then part (c) of Lemma 1 implies that agents can do no
than to use the action of the first agent in their sample. Since each payoff realizatio
sample is drawn from the same distribution, the order of the draw in each sample co
no information.12 Therefore if agents are willing to choosea whena is the choice of the
first person in their sample, they would also be willing to choosea whena is the choice
of any other person in their sample, soa must be an optimal choice for all samples w
at least onea and all possible payoff realizations. Likewise,b must be an optimal choic
in all samples with at least oneb. But then agents must be indifferent betweena andb
for all samples with at least onea and oneb, and so for all such samplesζ there must be
probability 1 that(

f (s | θ, ζ )
f (s | θ, ζ )

)
λζ (x)= C.

In other words, the likelihood ratio in such samples is the same for all values ofs. This
contradicts the assumption that signals convey some information.

This proves (a); (b) is an immediate corollary. To prove (c), note that because the
hand side of Eq. (2.3) is continuous, the increase inU is bounded away from 0 in any regio
bounded away from the herding points. SinceU is bounded above by the full-informatio

12 That is, the draws are exchangeable.
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payoffq∆− (1− q)∆, the state can only remain outside of any given neighborhood o
herding points for a finite number of periods.✷

The next result shows that ifN > 2, U(x(t)) is strictly increasing except perhaps
‘corners,’ even when the signalss convey no information. We provide this result to clar
the structure of the system, and not because we believe that the case is of great inde
interest.

Theorem 1′. The conclusions of Theorem 1 hold if sampling is proportional and N > 2,
even if signals convey no information.

Proof. See Appendix A. ✷
3.3. Efficiency

The next step is to try to sharpen this conclusion: Given that the agents will a
up using the same action, will it be the action that is optimal under full information
more precisely, what are the probabilities of the efficient and inefficient outcomes?
will depend in part on the informativeness of the signalss.

Let r denote the maximum informativeness of the signals, which we assume
notational convenience) is the same in samples of alla’s and samples of allb’s; we
also maintain the symmetry assumption that 1/r is the common minimum of these tw
expressions. That is,

max
s,ζ

(
f (s | θ, ζ )/f (s | θ, ζ )) = r and min

s,ζ

(
f (s | θ, ζ )/f (s | θ, ζ )) = 1/r,

we allow for now thatr = ∞.
A cornerx is a stationary point if agents receiving a sample of alla’s will ignore their

payoff signal and choosea while agents observing allb’s will chooseb; this is the case i
and only if∑

i∈A∗(x)∩θ pi∑
i∈A∗(x)∩θ pi

� rC and

∑
i∈B∗(x)∩θ pi∑
i∈B∗(x)∩θ pi

� C

r
(3.1)

whereA∗(x) andB∗(x) are the sets of coordinates of the pointx for which xi = 1 and
xi = 0, respectively.13 This gives us:

Theorem 2. A corner x is a stationary point if and only if condition (3.1)holds.

Note that this implies that the efficient point is a stationary point since at the effi
pointA(x)∩ θ andB(x)∩ θ are both empty and therefore (3.1) holds. For future refere
note also that when payoffs determine the initial popularities, bothθ andθ are singletons
so that under the minimum informativeness condition (see above), condition (3.1) ca

13 When the denominator in either of the quotients in (3.1) is 0, set its value to be infinity. Note that
conditions are vacuous whenr = ∞.
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be satisfied at the efficient point. However, when at least one ofθ or θ is not a singleton, fo
any fixed upper boundr on payoff informativeness, there exist prior beliefs that satisfy
minimum informativeness condition and that allow inefficient stationary points.14 On the
other hand, for fixed prior beliefs, there are no inefficient stationary points if the maxi
informativenessr exceeds some finite lower bound.

Theorem 2 tells us only about the existence of inefficient stationary points, and n
degree of inefficiency, which (since all these stationary points are corners) is deter
by the probability that all agents are making the wrong choice. An easy calcu
shows that this probability is bounded above byC/(C + r), so that it shrinks to 0 as th
informativenessr grows. This bound holds for any prior beliefsp, no matter how extreme

While inefficient stationary points exist, they are never stable, since the system
move away from the inefficient steady state if it starts at a nearby point which is
efficient. To see this, fix an inefficient steady statex∗, and consider the hyperplane defin
by the equation

∆
∑
i∈θ
pixi −∆

∑
i∈θ
pi(1− xi)=U(x∗).

This hyperplane passes throughx∗ and divides the set of feasible points into two. N
consider any point nearx∗ on the side of this hyperplane which contains the efficient po
At this point the population’s average payoff is higher than that atx∗. Moreover, if the
point is near enough tox∗ it cannot be a corner, so by Theorem 1 a path starting at
point must move in the direction of increased average payoff, and this must move
from x∗.

A related argument establishes that the efficient point is stable. To see this,
population’s average payoff at thebest inefficient steady state beU ∗∗, and consider the
hyperplane defined by

∆
∑
i∈θ
pixi −∆

∑
i∈θ
pi(1− xi)=U∗∗.

Any trajectory starting between this hyperplane and the efficient point must conve
the efficient point, since the population’s average payoff is nondecreasing over tim
(by construction) there no other stationary points on that side of the hyperplane.

Theorem 3. Every inefficient stationary point is neither stable nor unstable. The efficient
steady state is stable.

Finally, recall that if there is payoff-determined initial popularity (i.e., only two sta
of the world) the minimal informativeness condition implies that (3.1) is only satisfie
the efficient point.

14 The inefficient stationary points resemble the herding in Banerjee (1992) and Bhikchandani et al.
with the difference that here the mistaken “herd” does not arise from the early movers having received mis
observations, but rather from uncertainty about the initial position of the system.
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Lemma 2. With only two states, and under any sampling rule, neither (0,1) nor (0,0)
is a stationary point of system (2.3), and (1,1) is not a stationary point if the minimal
informativeness condition is satisfied. Moreover, with two states and proportional sampling
the movement from each of these points results in an increase in U .

Theorem 4. Under proportional sampling, if N > 1, the minimal informativeness
condition is satisfied, signals convey some information, and there is payoff-determined
initial popularity, then from any initial position the system converges to the efficient point
(1,0). Moreover, the average efficiency U is strictly increasing along every trajectory.

Proof. Lemmas 1 and 2 and Theorem 1 show thatU is a strict Lyapunov function for th
system. Since the system evolution equation is continuous, and the system variable
a compact space, the conclusion follows.✷

The keys to this proof are that

(a) there is a simple strategy that new decision makers can use that yields as muc
average in the current population, and

(b) by using more information, the agent can obtain more than this average.

For expositional clarity, the version of the theorem stated is a bit weaker than nece
Theorem 4 would be true under weaker conditions in the case whereN > 2.15 Also note
that the convergence result obtains if the quality of the signals varies across the popu
so long as each agent knows the rule that generates his observations.

3.4. The case N = 1

To conclude this section we analyze the caseN = 1 in some detail, both to show why th
hypothesisN > 1 is needed in Theorem 1, and to illustrate the workings of the mode
simplicity, we stick with the case of only two states, and we suppose that the payoff
is the realized payoff of the person they contact. We further suppose that the payofa
andb in statesθ andθ respectively are distributed according to the densitiesf a,f b, f a ,
andf b, with all the densities having support on the same interval.

Then the posterior odds ratio after sampling ana-user (so thatζ = a) whose payoff iss
is:

p(θ | s, a)
p(θ | s, a) = qx1f a(s)

(1− q)x2f a(s)
= λa f a(s)

f a(s)
≡ λaρa(s)

whereλ is the interim odds ratio defined in (2.1) andρa(s) is the ratio of the likelihoods
of the signals in the two states. Likewise, the posterior odds ratio following a sampleb
is λbρb(s), whereρb(s)= f b(s)/f b(s). We assume that this latter ratio is bounded ab

15 It would suffice that signals in the sampleζ = (N,0) satisfy minimal informativeness, even if the signals
other samples conveyed no information. This is allowed by our model but does not seem plausible.
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and below, so that a single payoff signal will not change the decision of players wh
otherwise very sure that they know the right choice.

With this sort of boundedly informative payoff information, all those who sampleb will
chooseb if (q(1− x1)/((1− q)(1− x2)))ρb(s) < C for all s, or

x2< 1− rq(1− x1)

C(1− q) . (3.2)

Similarly, the condition that those who see ana choose a for all realizations of the payof
signal is

x2<
qx1

rC(1− q) . (3.3)

Now that we have determined the agents’ decision rules, we can plug them in
equation of motion of the system to characterize the phase plane. Note first a key p
of theN = 1 case with proportional sampling: if all agents adopt the action they see
then the share of new agents who choosea exactly equals the current share usinga, and
the system is at a stationary point.

This is exactly what happens in the region satisfying both (3.2) and (3.3). In this re
anyone who sees ana chooses ana and likewise forb. Hence, no new information i
incorporated into thexi ’s, and every point in this region is a stationary point of the syst
In particular, the system need not converge to a corner, and Theorem 1 fails, althoug
inefficient stationary points are consistent with Lemma 1.

Moreover, the dynamics of the system are easily characterized. Whenr < q/(C(1−q)),
the herding point(1,1) satisfies (3.3), because the most favorable signal for choiceb is not
strong enough to overturn the prior belief thata is better. As the information boundr
increases past this level, the boundary of the region where all those who seea choosea
moves below the diagonal. This is the case in Fig. 1.

In the region where (3.3) is satisfied, but (3.2) is not, all those who see ana choosea,
and some of those who seeb choosea as well. Consequently

x1(t + 1)− xi(t)∝
(
xi(t)+ ϑi

(
x(t)

)) − xi(t)

Fig. 1.N = 1. Below AE everyone who sees an A chooses A. To the right of CF everyone who sees a B cho
The shaded area BEF is the set of steady states.
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for some functionsϑi(x(t)) > 0, and so the share ofa is increasing in both states. Similarl
in the region where (3.2) is satisfied but (3.3) is not, the share ofa is decreasing in both
states.

In the region where neither (3.2) nor (3.3) are satisfied, it is strictly optimal for s
agents who observea to chooseb, and for some who observeb to choosea. Therefore the
population does strictly better than it would do if everyone copied the choice they obs
It follows from Lemma 1 thatU(x(t)) must strictly increase in this region. Therefore
only stationary points are in the region satisfying (3.2) and (3.3), and the system
converge to this region.

Theorem 5. With N = 1 and proportional sampling, the system always converges to
some point in the closure of the region satisfying (3.2) and (3.3). Moreover, once the
system enters this region it stops, so that the only initial condition from which the system
asymptotically converges to the efficient point is the efficient point itself.

Proof. The fact that the system stops when it enters this region is an imme
consequence of the definitions of (3.1) and (3.2); Lemma 1 shows that the syste
no steady states outside of this region. Finally, since payoff outside of the region is s
increasing, there cannot be any cycles. Global convergence follows from the fact
any region that is bounded away from the stationary points,U(x(t)) is increasing by an
amount that is bounded away from zero.✷

This observation further illuminates the relationship between our model and the m
of herd behavior/cascades. In those models each agent observes the entire hi
choices made in previous periods, so in any pair of agents, one will observe exac
history observed by the other. As a result, certain histories may result in a situation
after a point, no agent can do better than to imitate the previous one. In other wor
agent receives a sample which forces them to make use of any information other th
social history, which is similar to the behavior of our system at the inefficient steady
whenN = 1. By contrast, ifN is greater than 1 in our framework, some agents rec
a signal of the social history that is noisy enough that they will make use of addi
information if any is available.

4. Alternative sampling rules

So far we have considered the “proportional” sampling rule, under which the od
sampling ana-user exactly equal the share of the population usinga. This section examine
some alternative sampling rules, both because they may be equally plausible in som
and because this lets us identify the role that proportional sampling plays in our resul
first modification of the sampling rule allows for what we call “perception bias,” mea
that the probabilityh(x) of sampling ana-user is independent of the payoff toa but need
not equal the sharex of a-users in the population. The second alternative we cons
allows for “reporting bias,” in which people are more or less likely to talk about t
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experience with a choice if they were satisfied with it. In accordance with our rati
Bayesian methodology, we suppose that agents know the likelihood function gene
their signals, so they are not “misled” by the biases in sampling. However, the bias
still alter the dynamics of social learning, because they change the information ava
to the agents. In particular, it is no longer true that adopting the action of the first p
contacted yields an expected payoff equal to the average payoff in the current popu
so Lemma 1 no longer applies, and we will see that the conclusions of our theorems
hold.

As the first example of a non-proportional rule, suppose that the numbers ofa’s and
b’s are the same in each agent’s sample and at every point in time. In this “fixed-sa
composition” model, the relative popularity of the two choices conveys no informa
Consequently, each generation of new agents faces exactly the same decision p
namely to choose an action using only the information revealed by the signals, whic
not reveal the true state. Hence in every period some fixed fraction of agents can cha
even in states of the world whereb is better, so the long-run outcome can be heterogene
indeed the outcome will be heterogeneous unless the signals reveal the true sta
probability one. This shows that the information provided by the in-sample popularity
play a key role in determining whether the system moves towards homogeneity.

4.1. Perception biases

Now consider a more general class of sampling rules that correspond to “perc
bias.” Specifically, let the probability of sampling ana user when fractionx of the
population usesa beh(x), with h a continuously differentiable function such thath(0)= 0,
h(1)= 1, h′ � 0, andh(x)+ h(1− x)= 1. As motivation, it seems plausible that a sin
person wearing black in a crowd of a thousand others wearing white is more likely
in everyone’s sample than would be warranted by unbiased sampling. Conversely, p
someone wearing light gray in a crowd of people wearing white may not get notic
being different and therefore may be undersampled.16 As before, each member of th
sample is an i.i.d. draw—this precludes a conscious effort to have some of each
in the sample. Then players who see a sampleζ consisting ofm a’s andN −m b’s will
choosea if(

N
m

)[h(x1)]m[1− h(x1)]N−mqf (s | θ, ζ )(
N
m

)[h(x2)]m[1− h(x2)]N−m(1− q)f (s | θ, ζ ) > C. (4.1)

The fixed-sample-composition example discussed above is a particular version
kind of sampling rule withh(x) = 1/2 for all x �= 0,1. This example shows that wit
biased sampling inefficient outcomes can be globally stable. Our more general resu
concern local as opposed to global stability.

Theorem 6. (a) If h(x)N > x for x near 0 (severe oversampling of rare actions),
then the efficient outcome is not even locally stable if payoff information has bounded
informativeness.

16 This assumes that people do not choose how they are going to sample.
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(b) If h(x)N > x for x near 1, then the efficient outcome is locally stable for any N if
payoff information has bounded informativeness.

(c) For any h function, and any ε > 0, every generation of new agents has expected
payoff within ε of the full information outcome if N is sufficiently large.17

Proof. See Appendix A. ✷
4.2. Reporting biases

Finally consider what may be the most plausible source of nonproportional sam
over-reporting by agents with very high or very low payoffs.18 This sort of reporting bias
has two different effects. First, depending on how the sampling is modeled, there m
some agents who observe no other agents at all. An agent with such a sample will co
to hold the prior beliefs, and hence will chosea; this adds an impetus in the direction
“herding.” The second effect arises from potential asymmetries in the probability of he
from very satisfied and very dissatisfied agents. For example, if only very satisfied
send signals, then in the neighborhood of the efficient point, the more popular choic
be oversampled relative to its frequency in the population.

Earlier versions of this paper present a specific example of a case where play
more likely to report if they have high payoffs. We will not present the details here,
that is important for our general result is that the probability of sampling ana-user when
the state isi ∈ θ is h(x) > x for 0< x < 1, while the probability of sampling ana-user is
less than its population share when the state is inθ .

Now in the neighborhood of the efficient outcome, oversampling the efficient cho
the same as oversampling the popular choice. However, it is easy to see that oversa
the efficient choice is not the same as oversampling the more prevalent choice
region where all thexi ’s are greater than 1/2. As a result the two sampling rules ha
different consequences: Oversampling the popular choice can permit a steady stat
the fraction ofa-users is greater than 1/2 in every state of the world, while as we no
demonstrate, oversampling the efficient choice leads the system to globally conve
efficiency.

Theorem 7. Suppose that the rule used for sampling is as follows: in state i ∈ θ , the
probability of getting an a in any single drawing is h(x) > x, x ∈ (0,1). In state i ∈ θ , the
probability of getting an a in any single drawing is h(x) < x, x ∈ (0,1). Then the system
converges to the efficient outcome from any initial position.

Proof. Suppose the probability of sampling ana-user ish(x) > x in θ , andh(x) < x
in θ . If players adopt the action of the first agent in their sample, their expected p
is qh(x1(t))∆− (1 − q)(1 − h(x2(t)))∆, and this exceedsU(x(t)) unlessx1(t) = 1 and
x2(t) = 0. Since expected payoffs are strictly increasing except at the efficient out
the efficient outcome is globally stable.✷

17 We thank David Levine for pointing this out to us.
18 See the quotation from McKenna (1991) in footnote 4.
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Note that this result holds even with multiple states of the world, and without a min
informativeness condition. The reason is that here the simple rule “copy the first pers
meet” guarantees that players do better than the current state unless the current stat
efficient, while in the unbiased case this rule only guarantees a payoff equal to the c
average. In contrast, if players are more likely to be sampled when they have low pa
we expect to findh(x) < x for x ∈ (0,1). Because near the efficient point the efficie
choice is also the more prevalent choice, the dynamics of the system near the e
point is going to be similar to that in the case with perception biases and undersamp
the prevalent choice, and so it is possible that the efficient point will be unstable.

5. Related work

Although the literature on social learning is now too large for us to give an exhau
survey here, we should explain the paper’s relationship to a few of the most closely r
contributions.

We begin by comparing the model to the “herding” papers of Banerjee (1992
Bhikchandani et al. (1992), in which there is a positive probability that agents
perpetually choose the wrong action. This contrasts with our finding that play conver
the full-information optimum when there are only two states of the world. We believe
the key to this difference in the results lies in the fact that in the present model, at any
of time, some people observe what we call uninformative histories, i.e., histories
force the decision-maker to rely on his own signal. To see why we think this is the
difference, consider a variant of the herding model, in which everyone decides in a
sequence, but every 5th decision-maker takes his decision without observing the
of other people’s choices, and so makes a choice using only his own signal. The re
system does not converge, since there is always the possibility of a long sequence o
not observing the history and all making the same choice, thus switching the herd
choice. However, the probability that someone taking a decision at a very late dat
has observed the history will make the right choice should be close to one: Since ev
can tell when an agent failed to follow the herd, people will be able to look at the ch
made by these people and figure out the truth.

This shows that the inefficient herding of the standard herding model does not
if some agents are forced to use their own signals. In the model in the current pap
happens endogenously, for example, when the sample is twoA’s and twoB ’s. To introduce
an analogous feature into the herding model, consider an environment where therem
side-by-side sequences of decision-makers. Each sequence is like the herding m
that each decision-maker gets a signal and then takes a decision, but unlike the
model in that decision-makers in periodt , instead of observing the entire history, obse
a random sample of size 2 drawn from them decisions made in periodt − 1. Each of the
m decision-makers in periodt is assumed to observe an independently drawn sample
conjecture is that asm becomes large, in the long run most people in this world will m
the correct choice. Intuitively, withm large, both choices will be present in the decisio
made by the first round of decision-makers. Therefore, in the second round, a subse
decision-makers will observe a sample with one of each choice, forcing them to us



18 A. Banerjee, D. Fudenberg / Games and Economic Behavior 46 (2004) 1–22

ignals

ents,
rtional
1993)
remain
nce the
date at
shows
erges

ding in
urce of
erest
of the
tically

ke the

nously
lison
nd
he

the
“must-
the
where
ore the
ayoffs
in the

e
n

cannot

s “far”
lation
either

en the
own signals. This will continue over time and as the number of decisions based on s
rather than history increases, better and better decisions will be made on average.

Next we discuss Banerjee (1993)’s model of social learning with a continuum of ag
each of whom samples from the population of past decision-makers using propo
sampling. Unlike the symmetric choices in this paper, the choices in Banerjee (
are asymmetric: One option is to act and the second is to do nothing, and people
unaware of the possibility of acting until they see someone who has already acted. Si
number of people who have already acted is a function of the state of the world, the
which a player learns that the act is possible conveys information. Banerjee (1993)
that the fraction of those who are currently choosing who make the right choice conv
to 1, even though each person observes only one other. This contrasts with the fin
this paper, where inefficiency can persist when the sample size is one; the main so
this difference is that in the present model timing is not informative. Moreover, the int
in the convergence result in Banerjee (1993) is limited by the fact that the measure
group that is making the choice goes to zero over time, so that even though asympto
most active players make the right choice, most people in the population may ma
wrong one.

Our results are also related to several papers that study the implications of exoge
given, boundedly rational learning rules in similar decision environments. In El
and Fudenberg (1995), each agent contactsN others (using proportional sampling) a
observes their choice of action and their realized payoff.19 Agents are assumed to use t
following decision rule: If everyone in their sample usesa, the agent usesa; if everyone
in the sample usesb, the agent usesb, and if there is at least 1 user of each choice,
agent chooses the action with the higher average payoff in the sample. Under this
see-to-adopt” rule, whenN = 1 every distribution over actions is a stationary point;
interest is thus in larger sample sizes that allow players to receive “mixed” samples
both actions are used. In such cases, the decision rule specifies that players ign
relative popularity and act as a Bayesian would if the odds ratio before seeing the p
was exactly 1. We now investigate the consequences of using that decision rule
environment of this paper.

Fix a sample sizeN , and letg > 1/2 be the probability thata has a higher averag
payoff thanb in a sample of sizeN , conditional on eventθ . With the specified decisio
rule, g is also the fraction of agents with intermediate samples that choosea in eventθ .
Similarly, leth < 1/2 be the fraction of those with intermediate samples that choosesa in
eventθ .

If N > 2 andg < (N − 1)/N,h > 1/N , then a computation shows thatxi is decreasing
when it is near 1 and increasing whenever it is near 0. Consequently, the system
converge to efficiency, and moreover in the neighborhood of the efficient outcomeU(x(t))
is decreasing. However, the simple rule above increases efficiency if the system i
from efficiency, and in the boundedly rational model agents do not try to use the corre
between the position of the system and the optimal choice in making their decision,

19 The decision environment differs slightly from that of this paper, as the mean payoff difference betwe
two choices is itself stochastic: each period,ua − ub = 1 with probabilityp, andua − ub = −1 with probability
1− p, with the mean payoff difference in different periods being independent.
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because they do not have the necessary information or they do not know how to pro
Thus the fact that the decision rule would be suboptimal if agents knew the way th
system variables behave is not necessarily an indication that the decision rule is impl
suboptimal.

Schlag (1998) supposes that players observe the action and payoff of their “prede
and one (proportionally-sampled) individual under the same “must-see-to-adopt” r
tion that is made by Ellison and Fudenberg; this corresponds to our model withN = 2. He
characterizes the rules under which expected payoff is weakly increasing over time
environments, and shows that the rule where the switch probability is a particular
function of the payoff difference is “dominant” in a sense he makes precise. This rule
to efficient long-run outcomes in large populations, which is consistent with our resu20

Hofbauer and Schlag (1998) extend this work to larger sample sizes and consider
duced dynamics in a class of two-player two-action games, where the payoffs to th
actions depend on the distribution of actions in the opposing population. They find th
dynamics are very different withN = 2 andN = 3, even though both cases admit ru
that tend to efficiency in the one-player case.21

Bjonerstedt and Weibull (1995) also considerN = 2 and “must-see-to-adopt,” bu
suppose that players receive a noisy signal of the average payoff of the action they s
instead of seeing the payoff realized by the particular player sampled. They sho
average payoffs increase over time if the support of the noise is sufficiently large com
to the range of possible payoffs.

Smith and Sorenson (2000) develop a generalization of the one-agent-at-a-time
of Bhikchandani et al. (1992) in which there are several types of agents, each with di
preferences. They show that learning in this model can converge to a situation in wh
different types of agents make different choices, which they call “confounded learn
This confounded learning is superficially similar to the interior steady states of our m
with N = 1, but the two in fact arise for quite different reasons: in Smith and Soren
confounded learning occurs when the history of past choices becomes uninformativ
agents respond only to their private signals. In contrast, at the interior steady states
model agents ignore their private signals and base their decision only on the social h
as represented by their signal of popularity.

Finally, Bala and Goyal (1998) take the logic of word-of-mouth learning a step fur
They argue, plausibly, that not only do people learn from a small number of peop
also these people tend to be closer to them (in some sense) than the average
in the population—this is what they call “learning from neighbors.” This contrasts
our model, where people learn from a random sample of others. We agree that th
many ways a better assumption, at least in settings where the overall population is
However, Bala and Goyal only look at the case where each person gets to obse
infinite number of independent draws from each of his neighbors: As a result the l

20 Schlag works with a finite population and shows that the long run is approximately efficient in the
population limit.

21 Once again, what they call “single sampling” corresponds toN = 2 in our model, since each player samp
a predecessor and this is not counted in the sample size. In the caseN = 3, they consider a particular sequent
rule that does not allow for explicit popularity weighting.



20 A. Banerjee, D. Fudenberg / Games and Economic Behavior 46 (2004) 1–22

lified.
on of

nment
tion.
f in the
-agent

hough
nough
payoff

ting”

Under
ample
three
nary
iently
ular,
regate

mple,
r the

lass of

gence
ample
biased
world

seems
ared to
global
les are
amples

or more
ffs, so
only

in our
sample
large numbers can be applied and the learning from problem is substantially simp
It would clearly be important to try to see what happens if we bring their assumpti
learning from neighbors into our model—this is left for future research.

6. Concluding remarks

The broad aim of this paper was to identify the aspects of the economic enviro
that influence the long-run properties of learning by word-of-mouth communica
Lemma 1 shows that proportional sampling implies that the average expected payof
population never decreases over time. This weak monotonicity is automatic in single
models with perfect recall, and would be immediate if the agents choosing at timet had all
of the information available at previous dates. Under proportional sampling, even t
agents do not have all of the information used in the previous period, they have e
information to implement a decision rule that guarantees them at least the average
of the preceding period, while other sampling rules permit a form of “social forget
with average payoffs decreasing over time.

The paper also identifies situations where average payoffs are strictly increasing.
proportional sampling, this is true at all positions except “corner states” if there is a s
size of at least two and any information at all in the signals, or if the sample size is
or more. Finally, the efficient outcome is globally stable if there is only one statio
point. This last condition in turn is satisfied if the signals agents receive are suffic
informative relative to the number of states of the world and the prior beliefs. In partic
the global convergence holds under a weak informativeness condition if the only agg
uncertainty concerns which of the two choices is better.

Weaker conditions are sufficient for the efficient point to be locally stable. For exa
local stability obtains under proportional sampling with sample size at least two. Fo
case where there are only two states of the world, it also holds for a much larger c
sampling rules which allow for biases in the sampling process.

At the same time, it is important to emphasize that neither local nor global conver
is automatic. Local convergence fails even with proportional sampling when the s
size is one. It also can fail for sample sizes greater than one under some sorts of
sampling. Global convergence can fail when there are more than two states of the
and the signals have limited informativeness.

Our results suggest a few tentative generalizations. First, proportional sampling
relatively congenial to convergence to a homogeneous outcome, at least comp
relatively extreme forms of biased sampling. In the two-state model, it also leads to
convergence to the efficient point. A second tentative conclusion is that larger samp
more favorable to global convergence than smaller samples, both because larger s
increase the informativeness of the signals and also because a sample size of two
allows “mixed” samples. These lead agents to respond to their observations of payo
that new information can come into the system, while a sample size of one allows
“extreme” samples. This argument also suggests that it is important that agents
model get independent samples. If everyone got the same sample (or a very similar
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as in the herding/cascades models) then there is no guarantee that some people w
sample that makes them use their own information.
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Appendix A

Proof of Theorem 1′. If signals convey some information this is a special case
Theorem 1. Therefore the only interesting case is the one in which there is no p
information at all. We will show that conclusion (a) of Theorem 1 continues to hold;
will imply (b) and (c) by the argument above.

As in the proof of Theorem 1, we will suppose that the agents cannot do bette
imitating the first person in their samples and obtain a contradiction. As argued i
proof, if agents are willing to copy the first person in their sample, everyone who obs
both ana and ab must be indifferent between choosing ana and choosing ab. Since there
is no payoff information, this implies thatλζ (x(t))= C for everyζ that has at least onea
and oneb.

Now consider two alternativeζ ’s one of which hasn a’s and the other which hasn+ 1
a’s where 1� n � N − 2. Call these,ζ and ζ ′, respectively. From aboveλζ (x(t)) =
λζ (x(t)). A simple computation using the binomial formula shows that this imp
(1 − x2(t))/(1 − x1(t)) = x2(t)/x1(t) which impliesx1(t) = x2(t). But if x1(t) = x2(t),
λζ (x(t))= λζ (x(t))= q/(1− q). But we have already assumed thatq/(1− q) > k which
contradicts the assumption thatλζ (x(t))= k for all ζ that has at least onea and oneb. ✷
Proof of Theorem 6. (a) In a neighborhood of the efficient point,xi ≈ 0 for i ∈ θ and
xi ≈ 1 for i ∈ θ . Since theh function is continuous and monotonically increasing,
a sufficiently small neighborhood of the efficient point, a sampleζ of all a’s yields a
likelihood ratioλζ (x) that is close to infinity just as it does with proportional sampling

Thus the assumption that the payoff signal is boundedly informative implies
everyone with a sample of “alla” will choose a regardless of their signals for allx in
a sufficiently small neighborhood of the efficient point.

Therefore in a neighborhood of the efficient point, fori ∈ θ ,

xi(t)� (1− γ )xi(t − 1)+ γ [
h
(
xi(t − 1)

)]N
> xi(t − 1).

(The last of these inequalities step makes use of the conditionh(x)N > x for x near 0.)
This implies that fori ∈ θ , xi is strictly increasing over time in a neighborhood of t

efficient point. Therefore the efficient point is not stable.
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(b) As argued above, when the system lies in a sufficiently small neighborhood
efficient point, anyone who sees alla’s or all b’s will choose what they see irrespective
their payoff observation. Therefore in a neighborhood of the efficient point, fori ∈ θ ,

xi(t)� (1− γ )xi(t − 1)+ γ [
h
(
xi(t − 1)

)]N
> xi(t − 1)

(the last step makes use of the conditionh(x)N > x for x near 1) so that the fraction o
those doinga increases in all the states wherea is the correct choice. Also note that exac
the same argument can be used to prove that the fraction of those doingb increases in al
the states where it is optimal to dob. Putting this together with the previous observat
we have the result.

(c) Since payoff realizations are conditionally independent given the state of the w
whenN is very large each new agent can guarantee himself approximately the ef
payoff by ignoring popularity completely and basing his choice only on the pa
observations. ✷
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