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Abstract

This paper analyzes a model of rational word-of-mouth learning, in which successive generations
of agents make once-and-for-all choices between two alternatives. Before making a decision, each
new agent sample¥ old ones and asks them which choice they used and how satisfied they were
with it. If (a) the sampling rule is “unbiased” in the sense that the samples are representative of the
overall population, (b) each player samples two or more others, and (c) there is any information at
all in the payoff observations, then in the long run every agent will choose the same thing. If in
addition the payoff observation is sufficiently informative, the long-run outcome is efficient. We also
investigate a range of biased sampling rules, such as those that over-represent popular or successful
choices, and determine which ones favor global convergence towards efficiency.
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1. Introduction

This paper introduces and analyzes a simple model of rational word-of-mouth learning,
in which agents use information about the experiences of other agents to guide their own
decisions. Such communication has long been known to be an important component of
brand choice by consumers; it also seems to be relevant for the adoption of agricultural
technologies and other production processes, and more generally to the spreading of fads,
fashions, and ideas within society.
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Consider an example from everyday life. Someone in your department tells you that
one of your colleagues is about to move to another university. She also tells you that she
is sufficiently worried about it that she has started to make contingency plans. You decide
that the rumor is probably not true and that contingency plans are unnecessary, but when
you run into another colleague in the corridor, you pass on the story, adding that you do
not think its worth worrying about. Because you are rushing off to a meeting, you do not
actually tell him how you came about the story. And so the story spreads

The underlying model here is that there is piece of information that everyone would
benefit from knowing, but the only source of information is word of mouth. No hard
evidence is provided, and while people tell you their opinion, they do not give you all
of their reasons, and you do not observe the entire process by which the story came to you.
Moreover, you know that you must not believe everything everyone tells you, both because
you know that other people also do not necessarily have hard evidence, and also because
you know that people overlay their personal hopes and fears on what they report.

What is long-run outcome of such a process of information transmission? Does
everyone learn the truth? Does everyone come around to the same view, be it right or
wrong? Or does the diversity of views persist even in the long run?

This is a question that has been asked by others: Indeed, this is the subject of the
entire literature on herd behavior/informational cascddése main difference between
our model and the type of model studied in this literature comes from the fact that in
our model people only learn by “word-of-mouth” communication with a few other agents,
instead of observing the entire history leading up to tRelinis clear that in many real
world situations, people do not get to find out what the whole world is doing: Often it is
simply too costly to gather the information or the information is something that is naturally
private2 And even when there is public information, for example about the popularity of
different cars, this information tends to be about aggregate popularity of different choices,
while agents want to know the popularities among those with similar preferences.

There is also an a priori reason to study the impact of introducing the word-of-mouth
assumption into the models of social learning. As explained in Section 5, our intuition
is that word-of-mouth learning makes herding less likely, as it reduces the correlation

1 See, for example, Banerjee (1992), Bhikchandani et al. (1992), Lee (1993), Smith and Sorenson (2000), and
Vives (1997). Chamley and Gale (1994) and Caplin and Leahy (1994) apply related ideas to study the stability of
the macroeconomy.

2 Ellison and Fudenberg (1993, 1995) study models of boundedly-rational word-of-mouth learning. Banerjee
(1993) studies rational word-of-mouth learning in a setting that is not directly comparable to either this paper or
the herding models. Bjonerstedt and Weibull (1995) and Schlag (1998) discuss how word-of-mouth processes of
strategy revision in games can generate the “replicator dynamic” of evolutionary biology.

3 Udry and Conley (2001), for example, in their study of pineapple farmers in Ghana, find that most farmers
only know about what a handful of other farmers are doing, but this group has a strong influence on their decisions.
Duflo and Saez (2000), in their study of the decision to join a Tax Deferred Annuity plan (TDA) among employees
of alarge US university, also find that each person’s choice is influenced by a small group of others. Finally, while
Munshi and Myaux’s (2000) study of contraception in Bangladesh has little explicit information about the size of
the group that the women talk to, their presumption is clearly that in rural Bangladesh it is unreasonable to expect
women to know every other villager’s contraception practices.
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between the observations of different agents. It is therefore interesting to see whether the
herding results survive this change in assumptions.

In our model, at each point of time a new generation of agents has to make a once-
and-for all choice between two alternativesandb.* The word-of-mouth element comes
in because agents consult a sampleNobthers, and those consulted report what they
themselves have chosen. The relative popularity of the choices in the agent’'s sample is a
signal of their relative popularity in the whole of the “relevant” population. In addition
to this information about relative popularity, agents may also receive signals that are
correlated with the payoffs from the choices. This may arise, for example, if some of the
sampled agents report not only their choice but also an indication of how satisfied they are
with it. In the informal story above, the actions are “make plans” and “do not make plans,”
and the “relevant population” is people in your own department. The people who you ran
into, including both those who told you the story and those who did not, are your sample.
And what they told you about the strength of their feelings, were the signals.

In addition to the framing assumptions described above, we make a number of other
modeling choices. First, we assume that all agents are ex-ante identical, so that one choice
or the other is best for all of them, but there are unobserved idiosyncratic shocks to each
agent's realized payoff, so that one person’s report of a high payoff does not guarantee that
his choice was the optimal one. Second, we assume that current decision makers do not
observe the information that past decision makers used in making their decisions. Third,
we assume that agents have a common prior on the mean difference in payoffs. Finally, we
need to make an assumption about what is known about the initial conditions.

In general, we suppose that agents know the distributions, conditional on which choice
is better, over the share of the population who choséen the process started. A special
case of this ipayoff-determined initial popularity, meaning that the fractions of those who
would initially chooser, both whena is the right choice and whemiis the right choice,
are common knowledge. As we will see, this case gives us the strongest results.

To interpret this assumption, we return to our initial example. When your colleague
told you the bad news she might also have added that the rumor came from department
If you know the people in departmeiit very well, you may have a good idea of how
the number of people there who would take the rumor seriously varies with whether the
rumor is actually true; this corresponds to payoff-determined initial popularity. If you are
less familiar with department, you may instead be uncertain just how many people
there would start the rumor, so that your beliefs about this correspond to a nondegenerate
probability distribution.

We focus on our model’s long-run predictions. Our main result is a set of sufficient
conditions for the long-run outcome to be “homogeneous” in the sense that all agents
choose the same action (though this action may or may not be the correct one); in
other words there is herding or an informational cascade. This conclusion follows if the
samples are representative draws from the prevailing distribution in society (which we call
“unbiased and proportional” sampling) and everyone samples at least two others.

4 While the decisions in the examples we mention are not completely irreversible, the cost of making the
wrong choice is either very substantial (in the case of contraception or switching to a new data base) or only
knowable after a long delay (in the case of TDA), which make them more or less like a once-in-a-lifetime choice.
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Our second main result provides a sufficient condition for the only stationary outcome
to be the one where all agents make the correct choice, so that the system converges
to efficiency. The result requires payoff-determined initial popularities, and also that the
distribution of signals assigns positive probability to signals that are informative enough to
outweigh the prior.

While the proportional sampling rule used in proving these results is a natural first
choice for analysis, it seems that people can and do use other sampling rules. In Section 4
we show that the long-run outcome can be heterogeneous if the sampling rules are not
proportional. Section 4.1 considers the effects of “perception biases” in the sampling
process, by which we mean that the probability of sampling the user of a rare choice may be
either greater or less than the population fraction currently using it. Section 4.2 investigates
the effects of reporting biases: If samples are constructed from reports by others, and those
with more extreme payoffs are more likely to report, the samples will be bfakeuier
several of these alternative sampling rules, the first step in our convergence argument fails:
Itis no longer true that adopting the action of the first person contacted yields an expected
payoff equal to the average payoff in the current population. More strongly, under some of
these alternative sampling rules the efficient outcome is not even locally stable.

2. Themode

Throughout the paper, we suppose there are two alternative choiaedp, which we
think of as representing brands or technologies. At every pointin time, there is a continuum
of agents of mass 1; a proportienof these agents use choieeand all of the others use
choiceb. Each period, a representative fractiprof consumers leaves the population and
is replaced by newcomers, so for example mas®f agents using choice are replaced.
These new agents have to make a once-and-for all choice of either adoptiagopting.
If an agent chooses, her payoff is the sum of a ternf that is common to all agents and
an individual specific noise term with zero mean. Similarly, if an agent chasker
payoff is the sum of a term? that is common to all agents and an individual-specific,
mean-zero noise terfiWe suppose that the noise terms are i.i.d. over time and across
agents, so that the common ternfs u® correspond to the “quality” of the two choices.
Denote the difference in quality levels by = u® — u”. We suppose that agents do not
know the value ofA; for simplicity, we assume further that has only 2 possible values,
A > 0> A. All agents assign common prior probabilify> 1/2 to the event that = A.
We suppose thatA + (1 —g) A > 0, so thaex-ante a is better tharb. As a normalization,
we further specify that the “quality” of the inferior good is equal to 0, so that eitfier A
andu? =0oru*=0andu® =—-A> 0.

5 McKenna (1991) says that “A customer who has a good experience with a product will tell three other
people. A customer who has a bad experience will tell ten other people.”

6 The individual noise terms do not enter explicitly in our analysis; they are needed to interpret the signals
introduced below as reports from past agents about their realized payoffs. Here and subsequently, we will speak
loosely about a continuum of independent random variables. Since our analysis will only concern population
aggregates, this looseness will not be important.
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In each period, the change in the population fractions using each choice is determined
by the distribution of responses in the new agents’ samples and the decision rule of the
new agents; we explain below how this is computed. To complete the description of the
dynamical system we need to specify initial conditions. To this end, we suppose that there
are j + k states of the world denoted bye 7. The fraction of the population that uses
choicea at date 0 in state is denoted; (0); x(0) denotes the vector whose components
are thex; (0). In states =1, ..., j, the quality difference is\ = A; we denote this event
by 6. Similarly, the states = j + 1,..., j + k correspond to the evemt = A, which
we denoted. Agents have common prior distributiom over the states of the world,
with p; denoting the probability of state Thus the prior probability of the eve#tis
q=pO) =354

The simplest version of our model has only two states, one for each value of
We call this the case ofiayoff-determined initial popularity, as in this cas#® and 6
are singletons, and there is a deterministic map from payoffs to initial conditions. This
case is of interest because it produces the sharpest results, and also because it or similar
conditions are frequently used in this literature, but we will be at least as interested in
the general case, with many states in the evérasd6, as this allows the relationship
between payoff differences and initial popularity to be stochastic. One explanation for this
aggregate uncertainty is that the initial condition reflects the choices of a group of “early
adopters” whose preferences are uncertain even at the aggregate level; for example, the
fraction of early adopters with a taste for novelty might be unknéwris important to
note that we treat the distribution relating initial conditions and the payoffs of the choices
as exogenous. Our choice to view this distribution as separate is consistent with Moore
(1991), who argues that the very first adopters of a new technology do so for reasons that
are very different from those that matter for most other adopters.

Turning to the mechanics of information gathering, the paper allows for different
specifications of the rule by which players draw their samples. To accommodate this, for a
fixed sample siz&V let Z denote the set of all pailg, 8) with « andg both nonnegative;
anda + 8 = N; ¢ € Z is then a sample aV players, of whonx usea andg useb. Then
w(¢ | x) is the probability of drawing sample when fractionx of the population uses
choicea. (Note that this probability depends on the state of the world only through the
state’s influence on the proportion of players using each choice.) Moreover, in the spirit of
the law of large numbers, we will specify that the fraction of new agents who draw sample
¢ exactly equalge(¢ | x).

In addition to observing the actions chosen, i.e., the sampfdayers also receive a
signal, denoted, that may be correlated with the realized valuecofAt this point we
allow for the possibility that is independent ofA, in which case it is of no use to the
agents, but we tend to think that the agents will typically have some sources of information

7 To be more specific, suppose that early adopters receive private signals of the relative attractiveness of
the alternatives according to known probability distributions, and choose the alternative that gives them the
highest expected utility. The initial fractions usingnd will not be determined simply by the objective payoff
difference, but will also depend on the unknown fraction of early adopters with a taste for novelty. Another
possible story for multiple initial conditions is that an unknown fraction of the initial decision makers chose what
they did because they were offered a large “introductory pricing” discount.
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beyond the popularity itself, such as the reported satisfaction levels of the people they
contact. On the other hand, we suppose that this information is not perfect, that is, that the
signalss do not perfectly reveal the state of the world. We will assume that conditional on
the state of the world, and receiving sampléhe signal received by each agent is drawn
independently from the same distribution. For convenience, we further suppose that this
distribution is atomless, with densit§(s | 6, ¢); this is not important for our results but
helps simplify a few details.

Definition. The signakonveys someinformationif for all samples; € Z there is a positive
probability of signals such thatf (s | 6,¢) # f(s |6, ¢).

Most of our results suppose that this condition is satisfied. (Note that if the signals are
simply the realized payoffs of the choices in the agent’s sample, the condition is satisfied
whenever at least one sampled agent reports his or her payoff in addition to their choice.)
We use the standard “large numbers” convention that in eachéstagefraction of agents
with sampleg who see signal exactly equals (s | 8, ¢). Finally we will assume that the
structure of this process, including the rules that generate samples and signals, is common
knowledge.

We assume that observed play corresponds to a pure-strategy Bayesian equilibrium of
the game. (Since each player only moves once, and players are unconcerned about the
actions of those who move either subsequently or simultaneously, it is easy to check that
an equilibrium exists, as the equilibrium can be constructed by “rolling forward” from the
initial period.) As a result we can assume that in an equilibrium, all the players know the
functions that specify the fraction using choicat the beginning of periodin each state
of the world. We will represent these functions by a vegt@y = (x1(¢), ..., x;(¢)), where
x; (t) is the fraction ofz-users in state.

Since the agent knows the fraction @fusers in all states of the world, the share of
a-users in a player’s sample is indirect evidence about the state of the world, and hence
about which choice is better. Of course, the interpretation of this evidence depends on the
way that the actual population fractianinfluences the composition of the samples, and
also on the correlation between the fractioand the staté.®

Once a player receives samplée updates his prior beliefs as follows. First, the relative
popularity of the two choices in the sample itself conveys information, so that the odds ratio
after seeing the relative popularities in the sample is

p@19)
=A . 2.1
p@o) ™ @1

Second, players also take account of the information conveyed by siggambining
this with the “interim” odds ratio in Eq. (2.1) yields the posterior odds ratio

p(§|g,s)_<f(s|§,§)))\ 2.2
p@ s \fira.0 )™ @2

8 If, at time ¢, no two of thex; (¢) are equal, then observing the actual shareveals the state and so reveals
the optimal choice. But, as we pointed out in the introduction, agents cannot directly observe the aggregate
popularities.
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Players will choose: whenp(@ | ¢, s)A + p(@ | ¢,s)A > 0. This is equivalent to the
posterior odds ratio in (2.2n(0 | ¢, s)/p(@ | ¢, s), being strictly greater than A/ A; we
will denote this critical value by. Players will choosé when the posterior odds ratio
is strictly less tharC; when the odds ratio is exactly, players are indifferent. Note that
our assumption that is optimal under the prior beliefs implies that the prior odds ratio
q/(1—q) exceed<.

Many of our results make use of the following assumption.

Definition. The system satisfies tmainimal informativeness condition if in stateg, for all
sampleg € Z there is positive probability of observationsuch that

<f(s|5,¢>) i _c
fG10,0)1—q

The assumption that the realized distribution of signals exactly equals the theoretical
distribution that generates it allows us to compute, for each sammed each evert,
the fraction of the players that, after receiving the sample, strictly peefd@his is the
probability, under event8 andé, respectively, that the realization efis such that the
odds ratio in (2.2) exceed§.? In a similar fashion, we can compute the fraction of
agents that strictly prefas. Our results will not depend on the way that agents choose
when indifferent; by making an arbitrary selection here we arrive at the total fractions
q_>; (X(t — 1)) and q_>é (x(t — 1)) of those who observe that adoptz at dater in statesp
andg, respectively:

Thus the fraction of the population currently usingvolves according to

xxn=ﬂ—ynm—1Hw{2}mﬂma—bﬁ%@0—bﬂ,i=L~qL
¢

xi(0) = (A= y)xi(t — 1) +y[2u(¢ | xi (= 1) (x(2 1))},
¢

i=j+1,...,j+k (2.3)

The remainder of the paper is devoted to analyzing the behavior of this deterministic
dynamical system, and how it depends on the nature of the word-of-mouth process through
the induced form of the functions. Note that this is a function on thg + k)-dimensional

state vectok, and that the “corners” of this state space (the points where every component
of x is either O or 1) are the “herding points” where, in each state of the world, every agent
is using the same action. The efficient outcome is the herding point where all ageats use
in the states 1 throughly (that is in@) and all agents uskin statesj + 1 throughj + k.

9 These fractions depend @nbecause it influences the distribution of realized payoffs in each sample, but
since they depend only on the distribution of payoffs, they are the same for all states in a giveh event

10 1n principle, the choice that agents make when indifferent could depend on calendar time as well as their
sample; this possibility makes no difference to the results so we suppress it to lighten notation.
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3. Proportional sampling

This section specializes the rule by which agents gather their information to “propor-
tional” or “unbiased” sampling, which means that each agent sampled is an independent
draw from the probability distributiofix, 1 — x) overa-users and-users. Thus the distri-
bution of samples is binomial, and the fraction of players who get a sampileasiisers
andN — m b-users is equal t¢) )x" (1 — x)¥~". This is the most commonly specified
sampling rule, and perhaps the most natural; Section 4 discusses some plausible alterna-
tives.

3.1. Somepreliminaries

Definition. The population’s average payoff is

<ZPW(I)>Z - (Zpi (1—xi (t)))é =T (x(0).

iel

This is the expected payoff of a randomly drawn member of the population, where the
expectation is taken with respect to the prior distributién.

Lemma 1. (a) For any sampling rule, U (x(1)) is strictly increasing over time whenever it
islessthan g A.

(b) With proportional sampling U (x(¢)) is nondecreasing over time.

(c) With proportional sampling, U (x(t + 1)) = U (x(¢)) if and only if no decision rule
can improve on the rule “ copy the action of the first person in the sample’”

Proof. For (a), note that one feasible decision rule is to ignore the observations entirely
and usez, which is the better choice with the prior beliefs; this yields payaff so each
generation of new players must get at least this much in expectation. For (b), note that
under proportional sampling, the feasible decision rule “adopt the same action as that used
by the first person in the sample” has expected payaft(r)). Thus whatever strategy

the new adopters use at datenust yield at least this high a payoff. For part (c) observe
that if any strategy yields a higher payoff, ther(x(r)) must be increasing, while if no
strategy yields a higher payoff, then the new adopters atrdatest obtain exactly/ (x(¢))

in expected payoff. O

Remark. Parts (a) and (b) of this lemma apply either directly or with small modifications

to several related models. For example, the lemma still holds if new agents “inherit” a
choice of actions from their “parents,” and must pay a cost if they switch to the other
choice: If agents do not switch, their expected payofti(t)); if they do choose to
switch, they must do at least as well. Also, in the “herd behavior” models where one agent
moves in each period, and agents observe all previous choices, doing what the last person

11 Recall that— A > 0 is the payoff tdb in states wher# is better.
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did guarantees that you are as likely to make the right choice as he was. Therefore the
equivalent ofU (x(¢)) cannot decrease.

3.2. The basic convergence result

The next two results give alternative sufficient conditions for the system to converge to
“herding points” where the fraction usingis either 1 or 0 in each state of the world.

Theorem 1. Assume that sampling is proportional, that N > 1, and that signals convey
some information. Then

@) [x(t) is such that at least one of its components, x; (1), is neither 0 nor 1, then
U (X(t + 1)) must be strictly greater than U (X(z)).

Consequently,

(b) the only stationary points of the system are those with “ herding;” in the sense that all
agents are choosing the same action, and
(c) the system must converge to such a stationary point.

Proof. (a) To show that is strictly increasing over time everywhere but the specified
“corner” points, we note first that in any statsuch thaty; is neither 0 nor 1, every sample

of size N has positive probability. We use this fact to show that the agents who choose at
dater have a decision rule that yields strictly greater payoff thar(z)).

If there is no such rule, then part (c) of Lemma 1 implies that agents can do no better
than to use the action of the first agent in their sample. Since each payoff realization in a
sample is drawn from the same distribution, the order of the draw in each sample contains
no informationt? Therefore if agents are willing to choosevhena is the choice of the
first person in their sample, they would also be willing to choesghena is the choice
of any other person in their sample, ganust be an optimal choice for all samples with
at least one: and all possible payoff realizations. Likewigemust be an optimal choice
in all samples with at least orie But then agents must be indifferent betweeand b
for all samples with at least oneand oneb, and so for all such samplesthere must be
probability 1 that

<f(SI§,€)
f(s10,2)

In other words, the likelihood ratio in such samples is the same for all valuesTdfis
contradicts the assumption that signals convey some information.

This proves (a); (b) is an immediate corollary. To prove (c), note that because the right-
hand side of Eq. (2.3) is continuous, the increadé ia bounded away from 0 in any region
bounded away from the herding points. Siri¢és bounded above by the full-information

))\; (x)=C.

12 That is, the draws are exchangeable.
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payoffgA — (1— ) A, the state can only remain outside of any given neighborhood of the
herding points for a finite number of periodsto

The next result shows that i¥ > 2, U(x(7)) is strictly increasing except perhaps at
‘corners,’ even when the signalsonvey no information. We provide this result to clarify
the structure of the system, and not because we believe that the case is of great independent
interest.

Theorem 1'. The conclusions of Theorem 1 hold if sampling is proportional and N > 2,
even if signals convey no information.

Proof. See Appendix A. O
3.3. Efficiency

The next step is to try to sharpen this conclusion: Given that the agents will all end
up using the same action, will it be the action that is optimal under full information? Or
more precisely, what are the probabilities of the efficient and inefficient outcomes? This
will depend in part on the informativeness of the signals

Let r denote the maximum informativeness of the signals, which we assume (for
notational convenience) is the same in samples of:alland samples of alb’s; we
also maintain the symmetry assumption that is the common minimum of these two
expressions. That s,

T?X(f(s 10,0)/f(s16,¢))=r and Snljf(f(ﬂé,i)/f(s 16,0)) =1/r,

we allow for now that = co.

A cornerx is a stationary point if agents receiving a sample ot:&lwill ignore their
payoff signhal and choosewhile agents observing all's will chooseb; this is the case if
and only if
2ica*oong Pi >,C and Y icBroona Pi < ¢ (3.1)

ZieA*(x)ﬂQ pi ZieB*(x)ﬂQ pi T
where A*(x) and B*(x) are the sets of coordinates of the pointor which x; = 1 and
x; =0, respectively3 This gives us:

Theorem 2. A corner X isa stationary point if and only if condition (3.1) holds.

Note that this implies that the efficient point is a stationary point since at the efficient
point A(x) N6 andB(x) N6 are both empty and therefore (3.1) holds. For future reference,
note also that when payoffs determine the initial popularities, bathde are singletons,
so that under the minimum informativeness condition (see above), condition (3.1) can only

13 When the denominator in either of the quotients in (3.1) is 0, set its value to be infinity. Note that these
conditions are vacuous when= co.
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be satisfied at the efficient point. However, when at least oAeo# is not a singleton, for

any fixed upper bound on payoff informativeness, there exist prior beliefs that satisfy the
minimum informativeness condition and that allow inefficient stationary péfh@n the
other hand, for fixed prior beliefs, there are no inefficient stationary points if the maximum
informativeness exceeds some finite lower bound.

Theorem 2 tells us only about the existence of inefficient stationary points, and not the
degree of inefficiency, which (since all these stationary points are corners) is determined
by the probability that all agents are making the wrong choice. An easy calculation
shows that this probability is bounded above®y(C + r), so that it shrinks to O as the
informativeness grows. This bound holds for any prior beligisno matter how extreme.

While inefficient stationary points exist, they are never stable, since the system must
move away from the inefficient steady state if it starts at a nearby point which is more
efficient. To see this, fix an inefficient steady stateand consider the hyperplane defined
by the equation

ZZPixi - éZPi(l— x;) = U(X").

ief i€t

This hyperplane passes throughand divides the set of feasible points into two. Now
consider any point near* on the side of this hyperplane which contains the efficient point.
At this point the population’s average payoff is higher than that*atMoreover, if the
point is near enough te* it cannot be a corner, so by Theorem 1 a path starting at this
point must move in the direction of increased average payoff, and this must move away
from x*.

A related argument establishes that the efficient point is stable. To see this, let the
population’s average payoff at thest inefficient steady state be U**, and consider the
hyperplane defined by

ZZP:’X:’ —AZPi(l—xz') =U*".

icl ied

Any trajectory starting between this hyperplane and the efficient point must converge to
the efficient point, since the population’s average payoff is nondecreasing over time and
(by construction) there no other stationary points on that side of the hyperplane.

Theorem 3. Every inefficient stationary point is neither stable nor unstable. The efficient
steady stateis stable.

Finally, recall that if there is payoff-determined initial popularity (i.e., only two states
of the world) the minimal informativeness condition implies that (3.1) is only satisfied at
the efficient point.

14 The inefficient stationary points resemble the herding in Banerjee (1992) and Bhikchandani et al. (1992),
with the difference that here the mistaken “herd” does not arise from the early movers having received misleading
observations, but rather from uncertainty about the initial position of the system.
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Lemma 2. With only two states, and under any sampling rule, neither (0, 1) nor (0, 0)
is a stationary point of system (2.3), and (1, 1) is not a stationary point if the minimal
informativeness condition is satisfied. Moreover, with two states and proportional sampling
the movement from each of these points resultsin anincreasein U.

Theorem 4. Under proportional sampling, if N > 1, the minimal informativeness
condition is satisfied, signals convey some information, and there is payoff-determined
initial popularity, then from any initial position the system converges to the efficient point
(1, 0). Moreover, the average efficiency U is strictly increasing along every trajectory.

Proof. Lemmas 1 and 2 and Theorem 1 show thiais a strict Lyapunov function for the
system. Since the system evolution equation is continuous, and the system variable lies in
a compact space, the conclusion followsa

The keys to this proof are that

(a) there is a simple strategy that new decision makers can use that yields as much as the
average in the current population, and
(b) by using more information, the agent can obtain more than this average.

For expositional clarity, the version of the theorem stated is a bit weaker than necessary:
Theorem 4 would be true under weaker conditions in the case whiere2.1° Also note

that the convergence result obtains if the quality of the signals varies across the population,
so long as each agent knows the rule that generates his observations.

3.4. Thecase N =1

To conclude this section we analyze the cAse 1 in some detail, both to show why the
hypothesisV > 1 is needed in Theorem 1, and to illustrate the workings of the model. For
simplicity, we stick with the case of only two states, and we suppose that the payoff signal
is the realized payoff of the person they contact. We further suppose that the payoffs to
andb in stateg) andg respectively are distributed according to the densifigsfs, fa,
and f,, with all the densities having support on the same interval. B

Then the posterior odds ratio after samplingzanser (so that = a) whose payoff is
is:

p@|s,a) _ qx1fa(s) _ fa(s)
p@ls.a)  A=@xzfas) " fals)
wherex is the interim odds ratio defined in (2.1) apgl(s) is the ratio of the likelihoods

of the signals in the two states. Likewise, the posterior odds ratio following a samphe of
is A pp(s), Wherepy(s) = f1(s)/ fp(s). We assume that this latter ratio is bounded above

= Aqa(S)

15 1t would suffice that signals in the sample= (N, 0) satisfy minimal informativeness, even if the signals in
other samples conveyed no information. This is allowed by our model but does not seem plausible.
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and below, so that a single payoff signal will not change the decision of players who are
otherwise very sure that they know the right choice.

With this sort of boundedly informative payoff information, all those who sarbpia|
choosé if (g(1—x1)/((1—q)(1—x2)))pp(s) < C forall s, or

ral—x)

Cl-q)
Similarly, the condition that those who see@nhoose a for all realizations of the payoff
signal is

xp<1-— (3.2)

gxi1
< —
rC(l—gq)

Now that we have determined the agents’ decision rules, we can plug them in to the
equation of motion of the system to characterize the phase plane. Note first a key property
of the N = 1 case with proportional sampling: if all agents adopt the action they see used,
then the share of new agents who choesxactly equals the current share usingand
the system is at a stationary point.

This is exactly what happens in the region satisfying both (3.2) and (3.3). In this region,
anyone who sees an chooses am and likewise forb. Hence, no new information is
incorporated into the;’s, and every pointin this region is a stationary point of the system.

In particular, the system need not converge to a corner, and Theorem 1 fails, although these
inefficient stationary points are consistent with Lemma 1.

Moreover, the dynamics of the system are easily characterized. When' (C(1—q)),
the herding pointl, 1) satisfies (3.3), because the most favorable signal for clddeaot
strong enough to overturn the prior belief thais better. As the information bound
increases past this level, the boundary of the region where all those whoctemsen
moves below the diagonal. This is the case in Fig. 1.

In the region where (3.3) is satisfied, but (3.2) is not, all those who seechnosez,
and some of those who séehoosear as well. Consequently

x1(t 4+ 1) — x; (1) o (xi (1) + 9 (X(1))) — xi (1)

X2 (3.3)

D ]

Fig. 1.N = 1. Below AE everyone who sees an A chooses A. To the right of CF everyone who sees a B chooses B.
The shaded area BEF is the set of steady states.
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for some function#; (x(r)) > 0, and so the share ofis increasing in both states. Similarly,
in the region where (3.2) is satisfied but (3.3) is not, the shareisfdecreasing in both
states.

In the region where neither (3.2) nor (3.3) are satisfied, it is strictly optimal for some
agents who observeto choosé, and for some who obsergeto choose:. Therefore the
population does strictly better than it would do if everyone copied the choice they observed.
It follows from Lemma 1 that/ (x(r)) must strictly increase in this region. Therefore the
only stationary points are in the region satisfying (3.2) and (3.3), and the system must
converge to this region.

Theorem 5. With N = 1 and proportional sampling, the system always converges to
some point in the closure of the region satisfying (3.2) and (3.3). Moreover, once the
system enters this region it stops, so that the only initial condition from which the system
asymptotically convergesto the efficient point is the efficient point itself.

Proof. The fact that the system stops when it enters this region is an immediate
consequence of the definitions of (3.1) and (3.2); Lemma 1 shows that the system has
no steady states outside of this region. Finally, since payoff outside of the region is strictly
increasing, there cannot be any cycles. Global convergence follows from the fact that in
any region that is bounded away from the stationary polri{,(r)) is increasing by an
amount that is bounded away from zerad

This observation further illuminates the relationship between our model and the models
of herd behavior/cascades. In those models each agent observes the entire history of
choices made in previous periods, so in any pair of agents, one will observe exactly the
history observed by the other. As a result, certain histories may result in a situation where
after a point, no agent can do better than to imitate the previous one. In other words, no
agent receives a sample which forces them to make use of any information other than the
social history, which is similar to the behavior of our system at the inefficient steady states
when N = 1. By contrast, ifN is greater than 1 in our framework, some agents receive
a signal of the social history that is noisy enough that they will make use of additional
information if any is available.

4. Alternative sampling rules

So far we have considered the “proportional” sampling rule, under which the odds of
sampling aru-user exactly equal the share of the population usiricthis section examines
some alternative sampling rules, both because they may be equally plausible in some cases,
and because this lets us identify the role that proportional sampling plays in our results. The
first modification of the sampling rule allows for what we call “perception bias,” meaning
that the probability:(x) of sampling aru-user is independent of the payoffddout need
not equal the share of a-users in the population. The second alternative we consider
allows for “reporting bias,” in which people are more or less likely to talk about their
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experience with a choice if they were satisfied with it. In accordance with our rational-
Bayesian methodology, we suppose that agents know the likelihood function generating
their signals, so they are not “misled” by the biases in sampling. However, the biases can
still alter the dynamics of social learning, because they change the information available
to the agents. In particular, it is no longer true that adopting the action of the first person
contacted yields an expected payoff equal to the average payoff in the current population,
so Lemma 1 no longer applies, and we will see that the conclusions of our theorems fail to
hold.

As the first example of a non-proportional rule, suppose that the nhumbers ahd
b's are the same in each agent’s sample and at every point in time. In this “fixed-sample-
composition” model, the relative popularity of the two choices conveys no information.
Consequently, each generation of new agents faces exactly the same decision problem,
namely to choose an action using only the information revealed by the signals, which need
not reveal the true state. Hence in every period some fixed fraction of agents canehoose
even in states of the world whebeés better, so the long-run outcome can be heterogeneous;
indeed the outcome will be heterogeneous unless the signals reveal the true state with
probability one. This shows that the information provided by the in-sample popularity must
play a key role in determining whether the system moves towards homogeneity.

4.1. Perception biases

Now consider a more general class of sampling rules that correspond to “perception
bias.” Specifically, let the probability of sampling anuser when fractionc of the
population uses beh(x), with 2 a continuously differentiable function such th&0) = 0,
h(l)=1,r" >0, andh(x) + k(1 —x) = 1. As motivation, it seems plausible that a single
person wearing black in a crowd of a thousand others wearing white is more likely to be
in everyone’s sample than would be warranted by unbiased sampling. Conversely, perhaps
someone wearing light gray in a crowd of people wearing white may not get noticed as
being different and therefore may be undersampfeds before, each member of the
sample is an i.i.d. draw—this precludes a conscious effort to have some of each choice
in the sample. Then players who see a sangpbensisting ofm a’s andN — m b’s will
choose if

M1 [1 = h(xD) IV g f (518, ¢) _
(WAL= ROV (L= q) f (516, )
The fixed-sample-composition example discussed above is a particular version of this
kind of sampling rule withz(x) = 1/2 for all x # 0, 1. This example shows that with

biased sampling inefficient outcomes can be globally stable. Our more general results here
concern local as opposed to global stability.

(4.1)

Theorem 6. (a) If h(x)N > x for x near O (severe oversampling of rare actions),
then the efficient outcome is not even locally stable if payoff information has bounded
informativeness.

16 This assumes that people do not choose how they are going to sample.



16 A. Banerjee, D. Fudenberg / Games and Economic Behavior 46 (2004) 1-22

(b) If h(x)N > x for x near 1, then the efficient outcome is locally stable for any N if
payoff information has bounded infor mativeness.

(c) For any h function, and any ¢ > 0, every generation of new agents has expected
payoff within ¢ of the full information outcome if N is sufficiently large.!’

Proof. See Appendix A. O
4.2. Reporting biases

Finally consider what may be the most plausible source of honproportional sampling,
over-reporting by agents with very high or very low paydfisThis sort of reporting bias
has two different effects. First, depending on how the sampling is modeled, there may be
some agents who observe no other agents at all. An agent with such a sample will continue
to hold the prior beliefs, and hence will chaggthis adds an impetus in the direction of
“herding.” The second effect arises from potential asymmetries in the probability of hearing
from very satisfied and very dissatisfied agents. For example, if only very satisfied agents
send signals, then in the neighborhood of the efficient point, the more popular choice will
be oversampled relative to its frequency in the population.

Earlier versions of this paper present a specific example of a case where players are
more likely to report if they have high payoffs. We will not present the details here, as all
that is important for our general result is that the probability of sampling-aser when
the state is € 6 is h(x) > x for 0 < x < 1, while the probability of sampling an-user is
less than its population share when the state s in

Now in the neighborhood of the efficient outcome, oversampling the efficient choice is
the same as oversampling the popular choice. However, it is easy to see that oversampling
the efficient choice is not the same as oversampling the more prevalent choice in the
region where all ther;'s are greater than/2. As a result the two sampling rules have
different consequences: Oversampling the popular choice can permit a steady state where
the fraction ofa-users is greater thary2 in every state of the world, while as we now
demonstrate, oversampling the efficient choice leads the system to globally converge to
efficiency.

Theorem 7. Suppose that the rule used for sampling is as follows: in state i € 6, the
probability of getting an a in any singledrawingisi(x) > x, x € (0,1). Instatei € @, the
probability of getting an a in any single drawing is 4(x) < x, x € (0, 1). Then the system
convergesto the efficient outcome from any initial position.

Proof. Suppose the probability of sampling aruser ish(x) > x in 8, andh(x) < x

in 6. If players adopt the action of the first agent in their sample, their expected payoff
is gh(x1(1))A — (1 — q)(1 — h(x2(1))) A, and this exceeds (x(r)) unlessx1(r) = 1 and

x2(¢t) = 0. Since expected payoffs are strictly increasing except at the efficient outcome,
the efficient outcome is globally stable

17 We thank David Levine for pointing this out to us.
18 see the quotation from McKenna (1991) in footnote 4.
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Note that this result holds even with multiple states of the world, and without a minimal
informativeness condition. The reason is that here the simple rule “copy the first person you
meet” guarantees that players do better than the current state unless the current state is fully
efficient, while in the unbiased case this rule only guarantees a payoff equal to the current
average. In contrast, if players are more likely to be sampled when they have low payoffs,
we expect to findi(x) < x for x € (0,1). Because near the efficient point the efficient
choice is also the more prevalent choice, the dynamics of the system near the efficient
point is going to be similar to that in the case with perception biases and undersampling of
the prevalent choice, and so it is possible that the efficient point will be unstable.

5. Related work

Although the literature on social learning is now too large for us to give an exhaustive
survey here, we should explain the paper’s relationship to a few of the most closely related
contributions.

We begin by comparing the model to the “herding” papers of Banerjee (1992) and
Bhikchandani et al. (1992), in which there is a positive probability that agents will
perpetually choose the wrong action. This contrasts with our finding that play converges to
the full-information optimum when there are only two states of the world. We believe that
the key to this difference in the results lies in the fact that in the present model, at any point
of time, some people observe what we call uninformative histories, i.e., histories which
force the decision-maker to rely on his own signal. To see why we think this is the key
difference, consider a variant of the herding model, in which everyone decides in a fixed
sequence, but every 5th decision-maker takes his decision without observing the history
of other people’s choices, and so makes a choice using only his own signal. The resulting
system does not converge, since there is always the possibility of a long sequence of agents
not observing the history and all making the same choice, thus switching the herd to that
choice. However, the probability that someone taking a decision at a very late date who
has observed the history will make the right choice should be close to one: Since everyone
can tell when an agent failed to follow the herd, people will be able to look at the choices
made by these people and figure out the truth.

This shows that the inefficient herding of the standard herding model does not occur
if some agents are forced to use their own signals. In the model in the current paper, this
happens endogenously, for example, when the sample id sand twoB’s. To introduce
an analogous feature into the herding model, consider an environment where thare are
side-by-side sequences of decision-makers. Each sequence is like the herding model in
that each decision-maker gets a signal and then takes a decision, but unlike the herding
model in that decision-makers in peripdnstead of observing the entire history, observe
a random sample of size 2 drawn from thedecisions made in periad— 1. Each of the
m decision-makers in periadis assumed to observe an independently drawn sample. Our
conjecture is that ag becomes large, in the long run most people in this world will make
the correct choice. Intuitively, witin large, both choices will be present in the decisions
made by the first round of decision-makers. Therefore, in the second round, a subset of the
decision-makers will observe a sample with one of each choice, forcing them to use their
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own signals. This will continue over time and as the number of decisions based on signals
rather than history increases, better and better decisions will be made on average.

Next we discuss Banerjee (1993)'s model of social learning with a continuum of agents,
each of whom samples from the population of past decision-makers using proportional
sampling. Unlike the symmetric choices in this paper, the choices in Banerjee (1993)
are asymmetric: One option is to act and the second is to do nothing, and people remain
unaware of the possibility of acting until they see someone who has already acted. Since the
number of people who have already acted is a function of the state of the world, the date at
which a player learns that the act is possible conveys information. Banerjee (1993) shows
that the fraction of those who are currently choosing who make the right choice converges
to 1, even though each person observes only one other. This contrasts with the finding in
this paper, where inefficiency can persist when the sample size is one; the main source of
this difference is that in the present model timing is not informative. Moreover, the interest
in the convergence result in Banerjee (1993) is limited by the fact that the measure of the
group that is making the choice goes to zero over time, so that even though asymptotically
most active players make the right choice, most people in the population may make the
wrong one.

Our results are also related to several papers that study the implications of exogenously
given, boundedly rational learning rules in similar decision environments. In Ellison
and Fudenberg (1995), each agent contattsthers (using proportional sampling) and
observes their choice of action and their realized pajfofgents are assumed to use the
following decision rule: If everyone in their sample ugeshe agent uses; if everyone
in the sample uses, the agent usek, and if there is at least 1 user of each choice, the
agent chooses the action with the higher average payoff in the sample. Under this “must-
see-to-adopt” rule, whe = 1 every distribution over actions is a stationary point; the
interest is thus in larger sample sizes that allow players to receive “mixed” samples where
both actions are used. In such cases, the decision rule specifies that players ignore the
relative popularity and act as a Bayesian would if the odds ratio before seeing the payoffs
was exactly 1. We now investigate the consequences of using that decision rule in the
environment of this paper.

Fix a sample sizeV, and letg > 1/2 be the probability that has a higher average
payoff thanb in a sample of sizeV, conditional on everd. With the specified decision
rule, g is also the fraction of agents with intermediate samples that choas@vents.
Similarly, leth < 1/2 be the fraction of those with intermediate samples that chapses
events.

If N>2andg < (N —1)/N,h > 1/N, then a computation shows thatis decreasing
when it is near 1 and increasing whenever it is near 0. Consequently, the system cannot
converge to efficiency, and moreover in the neighborhood of the efficient outd@rie))
is decreasing. However, the simple rule above increases efficiency if the system is “far”
from efficiency, and in the boundedly rational model agents do not try to use the correlation
between the position of the system and the optimal choice in making their decision, either

19 The decision environment differs slightly from that of this paper, as the mean payoff difference between the
two choices is itself stochastic: each periofl,— u® = 1 with probability p, andu? — u? = —1 with probability
1-— p, with the mean payoff difference in different periods being independent.
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because they do not have the necessary information or they do not know how to processiit.
Thus the fact that the decision rule would be suboptimal if agents knew the way that the
system variables behave is not necessarily an indication that the decision rule is implausibly
suboptimal.

Schlag (1998) supposes that players observe the action and payoff of their “predecessor”
and one (proportionally-sampled) individual under the same “must-see-to-adopt” restric-
tion that is made by Ellison and Fudenberg; this corresponds to our modehMwitl2. He
characterizes the rules under which expected payoff is weakly increasing over time in all
environments, and shows that the rule where the switch probability is a particular linear
function of the payoff difference is “dominant” in a sense he makes precise. This rule leads
to efficient long-run outcomes in large populations, which is consistent with our ré8ults.
Hofbauer and Schlag (1998) extend this work to larger sample sizes and consider the in-
duced dynamics in a class of two-player two-action games, where the payoffs to the two
actions depend on the distribution of actions in the opposing population. They find that the
dynamics are very different withv =2 and N = 3, even though both cases admit rules
that tend to efficiency in the one-player c&3e.

Bjonerstedt and Weibull (1995) also consid€r= 2 and “must-see-to-adopt,” but
suppose that players receive a noisy signal of the average payoff of the action they sample,
instead of seeing the payoff realized by the particular player sampled. They show that
average payoffs increase over time if the support of the noise is sufficiently large compared
to the range of possible payoffs.

Smith and Sorenson (2000) develop a generalization of the one-agent-at-a-time model
of Bhikchandani et al. (1992) in which there are several types of agents, each with different
preferences. They show that learning in this model can converge to a situation in which the
different types of agents make different choices, which they call “confounded learning.”
This confounded learning is superficially similar to the interior steady states of our model
with N =1, but the two in fact arise for quite different reasons: in Smith and Sorenson,
confounded learning occurs when the history of past choices becomes uninformative, and
agents respond only to their private signals. In contrast, at the interior steady states of our
model agents ignore their private signals and base their decision only on the social history,
as represented by their signal of popularity.

Finally, Bala and Goyal (1998) take the logic of word-of-mouth learning a step further:
They argue, plausibly, that not only do people learn from a small number of people but
also these people tend to be closer to them (in some sense) than the average person
in the population—this is what they call “learning from neighbors.” This contrasts with
our model, where people learn from a random sample of others. We agree that this is in
many ways a better assumption, at least in settings where the overall population is large.
However, Bala and Goyal only look at the case where each person gets to observe an
infinite number of independent draws from each of his neighbors: As a result the law of

20 Schlag works with a finite population and shows that the long run is approximately efficient in the large-
population limit.

21 Once again, what they call “single sampling” correspondd te 2 in our model, since each player samples
a predecessor and this is not counted in the sample size. In thevVcas® they consider a particular sequential
rule that does not allow for explicit popularity weighting.
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large numbers can be applied and the learning from problem is substantially simplified.
It would clearly be important to try to see what happens if we bring their assumption of
learning from neighbors into our model—this is left for future research.

6. Concluding remarks

The broad aim of this paper was to identify the aspects of the economic environment
that influence the long-run properties of learning by word-of-mouth communication.
Lemma 1 shows that proportional sampling implies that the average expected payoff in the
population never decreases over time. This weak monotonicity is automatic in single-agent
models with perfect recall, and would be immediate if the agents choosing at tiateall
of the information available at previous dates. Under proportional sampling, even though
agents do not have all of the information used in the previous period, they have enough
information to implement a decision rule that guarantees them at least the average payoff
of the preceding period, while other sampling rules permit a form of “social forgetting”
with average payoffs decreasing over time.

The paper also identifies situations where average payoffs are strictly increasing. Under
proportional sampling, this is true at all positions except “corner states” if there is a sample
size of at least two and any information at all in the signals, or if the sample size is three
or more. Finally, the efficient outcome is globally stable if there is only one stationary
point. This last condition in turn is satisfied if the signals agents receive are sufficiently
informative relative to the number of states of the world and the prior beliefs. In particular,
the global convergence holds under a weak informativeness condition if the only aggregate
uncertainty concerns which of the two choices is better.

Weaker conditions are sufficient for the efficient point to be locally stable. For example,
local stability obtains under proportional sampling with sample size at least two. For the
case where there are only two states of the world, it also holds for a much larger class of
sampling rules which allow for biases in the sampling process.

At the same time, it is important to emphasize that neither local nor global convergence
is automatic. Local convergence fails even with proportional sampling when the sample
size is one. It also can fail for sample sizes greater than one under some sorts of biased
sampling. Global convergence can fail when there are more than two states of the world
and the signals have limited informativeness.

Our results suggest a few tentative generalizations. First, proportional sampling seems
relatively congenial to convergence to a homogeneous outcome, at least compared to
relatively extreme forms of biased sampling. In the two-state model, it also leads to global
convergence to the efficient point. A second tentative conclusion is that larger samples are
more favorable to global convergence than smaller samples, both because larger samples
increase the informativeness of the signals and also because a sample size of two or more
allows “mixed” samples. These lead agents to respond to their observations of payoffs, so
that new information can come into the system, while a sample size of one allows only
“extreme” samples. This argument also suggests that it is important that agents in our
model get independent samples. If everyone got the same sample (or a very similar sample
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as in the herding/cascades models) then there is no guarantee that some people will get a
sample that makes them use their own information.
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Appendix A

Proof of Theorem 1'. If signals convey some information this is a special case of
Theorem 1. Therefore the only interesting case is the one in which there is no payoff
information at all. We will show that conclusion (a) of Theorem 1 continues to hold; this
will imply (b) and (c) by the argument above.

As in the proof of Theorem 1, we will suppose that the agents cannot do better than
imitating the first person in their samples and obtain a contradiction. As argued in that
proof, if agents are willing to copy the first person in their sample, everyone who observes
both ana and ab must be indifferent between choosing@and choosing &. Since there
is no payoff information, this implies thaf (x(r)) = C for every¢ that has at least one
and oneb.

Now consider two alternative’s one of which has a's and the other which has+ 1
a's where 1< n < N — 2. Call theseg and¢’, respectively. From above; (X(¢)) =
e (X(1)). A simple computation using the binomial formula shows that this implies
(1 —x2())/ (1 — x1(t)) = x2(¢)/x1(z) which impliesx1(#) = x2(t). But if x1(¢) = x2(¢),
re (X(1)) = A; (X(1)) = q/(1— g). But we have already assumed thdtl — ¢) > k which
contradicts the assumption thiat(x(¢)) = k for all ¢ that has at least oneand oneb. O

Proof of Theorem 6. (a) In a neighborhood of the efficient point, ~ 0 fori €  and
x; ~ 1 fori € 4. Since thek function is continuous and monotonically increasing, in
a sufficiently small neighborhood of the efficient point, a samplef all «’s yields a
likelihood ratiox; (x) that is close to infinity just as it does with proportional sampling.
Thus the assumption that the payoff signal is boundedly informative implies that
everyone with a sample of “alt” will choose a regardless of their signals for aflin
a sufficiently small neighborhood of the efficient point.
Therefore in a neighborhood of the efficient point, far 6,

xi(0) = Q= p)xit = +y[h(xic — )] > x@ -1,

(The last of these inequalities step makes use of the conditiorY > x for x near 0.)
This implies that fori € 0, x; is strictly increasing over time in a neighborhood of the
efficient point. Therefore the efficient point is not stable.
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(b) As argued above, when the system lies in a sufficiently small neighborhood of the
efficient point, anyone who sees alk or all b's will choose what they see irrespective of
their payoff observation. Therefore in a neighborhood of the efficient point,dar,

xi(0) = Q= p)xit =D +y[h(xc—1)]" > x@ -1

(the last step makes use of the conditio)” > x for x near 1) so that the fraction of
those doing: increases in all the states wheres the correct choice. Also note that exactly
the same argument can be used to prove that the fraction of thoseidiiageases in all
the states where it is optimal to do Putting this together with the previous observation
we have the result.

(c) Since payoff realizations are conditionally independent given the state of the world,
when N is very large each new agent can guarantee himself approximately the efficient
payoff by ignoring popularity completely and basing his choice only on the payoff
observations. O
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