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Abstract

We study the joint determination of wages, effort, and training in “appren-

ticeships” where novices must work in order to learn. We introduce the idea of

learning-by-doing as an inequality constraint, which allows masters to strate-

gically slow training down. Every Pareto-efficient contract has an initial phase

where the novice learns as fast as technologically feasible, followed by a phase

where their master constrains how fast they learn. This latter phase mitigates

the novice’s commitment problem, and thus lets the novice consume more than

they produce early on in the relationship. Our model has novel implications

for optimal regulation.
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1 Introduction

Careers in a wide range of industries, such as medicine, academia, professional ser-

vices, culinary arts, investment banking, and the traditional trades, frequently begin

with a lengthy “apprenticeship” stage where novices gain knowledge from their mas-

ters while working hard and receiving relatively low wages. We propose that these

apprenticeships are shaped by cognitive constraints that bound the speed at which

novices can learn, combined with the novices’ desire to smooth their consumption,

their initial lack of money, and their inability to commit not to leave once they are

trained.

In our model, a principal offers an agent an apprenticeship consisting of time paths

of knowledge transfer, wages, and effort, subject to the constraint that the agent can

walk away at any time, and subject to a learning constraint that bounds how quickly

they can learn. Previous work on learning-by-doing has followed Arrow (1962) in

modeling the learning constraint as an equality: workers or firms learn as quickly

as their effort or production level allows. In contrast, we model it as an inequality

constraint, to allow the masters to hold back knowledge even when their novices are

working hard.1

To gain better insight into the forces that shape the apprenticeship, our analysis

solves for the whole family of incentive-compatible, Pareto-optimal contracts given

the agent’s initial knowledge. This also facilitates comparative statics based on the

agent’s bargaining power, as measured by their outside option at the time the principal

offers to hire them.

Every Pareto-optimal contract has two phases. In the first one, the agent learns as

fast as their learning-by-doing constraint allows given their effort level, while earning

rents in the sense that they are more than compensated for the economic cost of

working for the principal. Then in the second phase, the principal only allows the

agent to learn as quickly as is consistent with the agent being willing to remain in

the apprenticeship; here the principal keeps all rents.

We show that the nature and length of these phases vary significantly with the

agent’s outside option. When this outside option is low, phase 1 is relatively short

and prescribes low wages, while phase 2, which is relatively long, offers an increasing

1Masters may have an incentive to hold back knowledge to prolong the apprenticeship while
extracting rents from their novices (e.g. Smith, 1776, Chapter 10). Moreover, it seems plausible
that without active participation by the master, a novice’s ability to learn will be limited.
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wage path that converges to the agent’s steady state (post graduation) earnings. As

the agent’s outside option improves, phase 1 grows and prescribes a larger knowl-

edge transfer, while phase 2 becomes shorter. Perhaps surprisingly, Phase 2 never

disappears completely, even in the agent-optimal contract. This is because when

the agent’s outside option is high, phase 1 pays them more than they produce, thus

placing them in “debt.” Phase 2 then allows the principal to gradually collect on

this debt, despite the agent’s lack of commitment power, through the promise of just

enough additional training to prevent the agent from walking away. The agent prefers

this apprenticeship over a shorter one with only phase 1 because it allows for better

consumption smoothing.2

Throughout the apprenticeship, effort is distorted above the static first best (i.e.,

the first-best effort when there is no learning). One reason is that higher effort allows

the agent to learn faster; this force is only relevant in the first phase. A second reason

is that increased effort transfers rents to the principal; this force is present in both

phases, but gradually vanishes as the apprenticeship nears its end.

Empirical motivation. Real-life training relationships, including formal apprentice-

ships, tend to be rather complex. While these relationships are, in essence, a work-

for-knowledge exchange, they frequently consist of a bundle of interrelated practices.

These include:

1. Distinct phases. Apprenticeships are often criticized for taking excessively long,

with masters strategically slowing down training while profiting from their novices

(e.g. Smith, 1776). Yet, a novice’s training need not be uniformly slow. Ph.D.

programs, for instance, frequently begin with an intense pre-candidacy instruction

phase where students spend nearly all their time learning (and receive abundant

input from faculty). Then students enter a post-candidacy phase with more work.

Here they might be assigned tasks that benefit their university but can easily distract

them from learning, such as grading or performing menial laboratory work.3 Formal

apprenticeships (e.g. in skilled trades) also frequently include both classroom phases

with focused, practical learning—for instance, in a boot camp or at an affiliated

2If the agent had no reason to smooth consumption, they would prefer a shorter apprenticeship
in which they are always trained at the maximum rate.

3Ph.D. programs have a shared history with other forms of apprenticeship. As noted by Adam
Smith, “to have studied seven years under a master properly qualified was necessary...to become a
master, teacher, or doctor (words anciently synonymous) in the liberal arts, and to have scholars or
apprentices (words likewise originally synonymous) to study under him” (Smith, 1776, Ch. 10).
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college—and phases where novices work as they learn (e.g. Stockman, 2019). These

work phases allow novices to master new skills, but may also entail a degree of grunt

work that slows down their training.

2. Financial support. From the standpoint of novices, one of the most attrac-

tive features of being an apprentice is the ability to receive income or other forms

of financial support while they learn. Ph.D. students, for instance, may receive a

stipend sufficient for living even before they do any work. Similarly, “German ap-

prenticeships generally offer a living wage for two or three years while students learn

and work alongside experienced employees” (Hackman, 2018, WSJ); and in the U.S.,

according to the Department of Labor, “From their first day of work, apprentices

receive a paycheck” averaging $15/hour to begin.4 Early in the apprenticeship, when

the novice’s productivity is likely to be low, such stipends and guaranteed wages are

a potential source of losses for the master, especially if the novice is primarily devoted

to learning.5

3. Growing wages. As novices gain skills their earnings typical grow. In some

cases, these gains are pronounced. For instance, many craft apprentices in Ireland

can expect their earnings to more than double throughout their approximately 4-year

apprenticeships.6 The earnings of Ph.D. students might also grow over time, though

less dramatically, as they take on more R.A. or T.A. assignments. While novices no

doubt prefer that wages increase holding the starting wage fixed, many of them would

likely prefer flatter wages with the same present value.

4. High effort. Many novices, whether in traditional apprenticeships or in the

early stages of high-skilled careers, encounter heavy workloads with long hours (e.g.

Landers et al., 1996, Landrigan et al., 2004, Barlevy and Neal, 2019). While hard

work may accelerate learning, and serve as a screening device, it is also a way to

extract rents from the novice.

The optimal design of apprenticeships has been the subject of much debate and,

in many cases, heavy regulation. In countries like Germany and Switzerland, where

4See www.dol.gov/apprenticeship/toolkit/toolkitfaq.htm (accessed 7/7/20).
5Employers may also face a variety of additional costs. Overall costs for German company’s

“range from $25,000 per apprentice to more than $80,000,” and might be even higher in the U.S.
“where firms will have to build programs from scratch, pay school tuition...and in many cases funnel
money into local high schools and community colleges to transform them into effective training
partners....the Siemens USA plant in Charlotte...reportedly spends some $170,000 per apprentice”
(Jacoby, 2014).

6See www.apprenticeship.ie/en/apprentice/craft/Pages/ApprenticeInfo.aspx (accessed 7/8/20).
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apprenticeships have a long and successful history, training programs are jointly de-

signed by companies, trade associations, and state and federal authorities (Wyman,

2017). In the U.S., in contrast, where apprenticeships have recently attracted con-

siderable interest, the government is seeking to expand participation by taking a

less active role and instead letting trade associations, nonprofits, schools, and labor

unions set standards themselves (Morath, 2019). Yet, critics fear that this approach

will leave novices unprotected.

This debate highlights the need for a deeper theoretical understanding of the

problem. Our model, while stylized, helps explain why the above practices may arise,

and clarify their impact on the well-being of novices.

Related work. Our work builds on Garicano and Rayo (2017) and Fudenberg and

Rayo (2019) (henceforth GR and FR), where players exchange work for knowledge.

Our main innovation relative to that work is to incorporate the agent’s learning-by-

doing constraint. Making the model more realistic in this way introduces technical

challenges that did not arise in GR and FR, because the optimal contract has two

very different regimes, one where the learning constraint binds and one where it

does not, and the learning constraint depends on the endogenous effort level. Thus

to characterize the optimal contract we need to pin down the endogenous interface

between these regimes, taking into account how it depends on the agent’s effort and

accumulated knowledge at the transition point. For this reason we cannot use a first-

order approach to determine the speed of knowledge transfer as in FR; instead, we

conjecture and verify a solution that involves the pasting of the two regimes. We also

generalize the form of the agent’s outside option: Instead of it being to use the same

technology as with the principal, we allow for it to depend in a fairly general way on

the agent’s stock of knowledge when they leave.

From an applied perspective, the most important difference relative to GR and

FR is that they predict a single apprenticeship phase with wages lower than output,

and suggest that the apprenticeship will become vanishingly short as competition

between masters increases. In contrast, our model explains why the apprentice can go

through a phase where wages exceed output, and predicts that the apprenticeship will

have non-zero length—and include a phase with artificially slow knowledge transfer—

regardless of the extent of competition. In addition, the more general outside option

in our model allows us to capture scenarios, such as the agent switching to a new

technology, which are not possible under the more restrictive outside option in GR
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and FR. The portion of our contract where the participation constraint binds (phase

2) is similar to the contracts that arise in GR and FR once the agent has received

an initial knowledge gift. The main difference is that our phase 2 prescribes non-zero

effort and wage paths, whereas GR and FR each focus on only one. Moreover, in our

model the static first-best effort is decreasing (due to an income effect absent in FR),

while in FR it is either constant or increasing.7

The many papers on human capital accumulation (e.g. Ben-Porath, 1967, Rosen,

1972, Weiss, 1972) summarized and synthesized in Killingsworth (1982) all assume

that the agent chooses the time paths of effort, wages, and learning to maximize their

utility given some technological constraints. These models cannot explain inefficiently

long training periods, and imply that regulation of wage or effort paths can only lower

welfare.8

Thomas and Worrall (1994) and Albuquerque and Hopenhayn (2004), like us,

study a contracting problem where the agent’s outside option and productivity in-

crease gradually over time. Both the assumptions and conclusions of these papers

are quite different: In these earlier papers payment can only be enforced when the

principal is able to directly punish the agent, there is no excess effort, and there is

no reason for consumption smoothing, so the agent gets no “wages” until the steady

state is reached.9 Moreover, there is no analog to our learning constraint, and hence

the solution involves a single type of regime.

Kolb and Madsen (2020) consider the design of careers in environments where the

agent might be a saboteur. As in our model, the agent goes through various stages

while the stakes of the relationship gradually increase. Unlike in our model, though,

these stages serve as a dynamic screening device meant to weed out disloyal agents.

Finally, there is a large literature where transfers of general human capital are only

possible because of market frictions (e.g. Katz and Ziderman, 1990, Acemoglu, 1997,

Acemoglu and Pischke, 1998, and Malcomson, Maw, and McCormick, 2003); these

7While in most ways this paper is more general than GR and FR, it only has one kind of effort,
so it cannot be used to explain the transition from menial to skilled work.

8In Ben Porath (1967) and Killingsworth (1982) the agent has unlimited ability to borrow and
save, and their earnings equal their productivity. In our model, earnings can be both above and
below that level, depending on the stage of the apprenticeship and the agent’s bargaining power.
Moreover, except in our first-best benchmark model, the agent can save but not borrow.

9In our setting, one way to punish the agent would be if the principal could forbid the agent from
using the production technology. If this were possible, the principal would never slow the agent’s
training.
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papers all assume that training is instantaneous. There is also a large literature on

effort distortions that arise when the agent’s productivity is unknown (e.g. Akerlof,

1976, Landers, Rebitzer, and Taylor, 1996, Holmström, 1999, Dewatripont, Jewitt,

and Tirole, 1999, Board and Meyer-ter-Vehn, 2013, Barlevy and Neal, 2019, Bonatti

and Hörner, 2017, and Cisternas, 2018); in our model such distortions arise instead

because the agent is liquidity constrained.

2 Model

Technology and physical constraints. A principal wishes to employ and train an

agent (each of whom will be referred to as “they”). Both players are infinitely-lived

and discount the future at rate r > 0. Time is continuous. The agent is endowed with

knowledge X ≥ 0 and the principal is endowed with knowledge X > X. The agent

cannot learn on their own, so unless they walk away from the relationship and find

an alternative master, the only way their knowledge level can grow is by means of

knowledge transfers from the principal. The agent’s knowledge can never decrease.

At time t the agent possesses knowledge Xt ≥ X and can use this knowledge

whether or not they work for the principal. If they work for the principal, they exert

flow effort at ∈ [0, a] at cost d(at) and produce flow output f (Xt)+at. If they instead

leave the principal, they can obtain an outside option worth h(Xt) in flow terms.

The agent also has access to a bank account that pays interest r, but is liquidity

constrained: They have a zero balance at time 0 and can never hold a negative

balance. The agent’s flow consumption level is ct, which we assume cannot fall bellow

a minimum subsistence level c ≥ 0, and the agent’s flow utility is u(ct) − d(at).

Variables in bold (such as a and c) will denote time paths.

Assumption 1. f , u, and d are twice continuously differentiable with bounded first

and second derivatives, and satisfy:

1. f ′ (X) > 0 and f ′′ (X) < 0 for all X ≥ X.

2. u′ (c) > 0 and u′′ (c) < 0 for all c ≥ c.

3. d′ (0) = 0 and d′′ (a) > 0 for all a ≥ 0.
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For any given knowledge level X, let a∗(X) denote the (unique) solution to

maxa∈[0,a] [u(f(X) + a) − d(a)], which represents the agent’s myopically optimal ef-

fort level when consuming all output. Because u′′ < 0, a∗(X) is decreasing in X. We

normalize u′
(
f
(
X
)

+ a∗(X)
)

= 1 and assume a∗(X) < a.

Assumption 2. The agent’s outside option h satisfies:

1. h(X) = u(f(X) + a∗(X))− d(a∗(X)).

2. h is strictly increasing and has bounded first and second derivatives.

Part 1 of this assumption says that, once fully trained, the agent is equally pro-

ductive with or without the principal.10 Before the agent is fully trained, other than

being strictly increasing and having well-behaved derivatives, the outside option can

take any value. This allows the outside option to capture a variety of different sce-

narios, such as the agent using the same technology elsewhere but gaining no further

knowledge, switching to another master, or using what they have already learned in

a related industry where knowledge has some value.

The speed zt := Ẋt at which the principal can train the agent at time t is bounded

by the learning constraint

zt ≤ L (Xt, at) , (1)

as well as the constraints 0 ≤ zt and Xt ≤ X.11 Other than these constraints, the

principal can select any training rate they desire. Note that here we frame learning

by doing as an inequality constraint as opposed to the equality used in Arrow (1962)

and subsequent work. This is because we assume that even when the agent works

they will not learn without guidance from the principal, who may have a strategic

reason to slow the agent’s learning.12

Assumption 3. L(X, a) is additively separable, strictly positive, weakly increasing

and weakly concave in each argument, and twice differentiable with bounded first and

second derivatives.

10In Section 5 (footnote 30) we remark on the case where the fully-trained agent is more productive
elsewhere.

11The learning constraint could reflect a bound on the agent’s learning ability, the principal’s
teaching ability, or both.

12As far as we are aware in all past work on learning by doing there is no reason for learning to
take place inefficiently slowly, so it is assumed that learning takes place as quickly as possible given
other variables.
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This assumption implies that the agent can be fully trained in finite time. We

use additive separability to give a simple sufficient condition for the uniqueness of the

optimal contract.13

Assumption 4. For all X ∈ [X,X] and all a ∈ [0, a],

L (X, a)h′ (X) /r︸ ︷︷ ︸
value of maximum knowledge gain

> h (X)− [u (c)− d(a)]︸ ︷︷ ︸
economic cost

.

The left-hand side of the inequality is the agent’s instantaneous gain from being

trained at the maximum rate, and the right-hand side is the opportunity cost of

working for the principal when earning the minimum subsistence wage. Assumption

4 therefore says that if over a small period of time the principal teaches the agent as

much as they can possibly absorb, while paying them only the minimum subsistence

wage, then the agent earns rents. This assumption greatly simplifies the structure of

the optimal contract.

Apprenticeship contracts. The principal employs (and trains) the agent between

time 0 and a terminal time T ≤ T , where T is an exogenous upper bound of say 200

years.14 At the start of the relationship, the principal commits to a contract C :=〈
T, (zt, wt, at)

T
t=0

〉
, which consists of a terminal time T and time paths of knowledge

transfers zt, wages wt, and effort at.

We assume that throughout the duration of the contract the principal controls the

agent’s savings, so consumption ct equals wages wt. We adopt the convention that T

is the earliest time t such that Xt = XT ; that is, the agent “graduates” as soon as

the knowledge transfer has ended. From time T onward the agent enjoys flow payoff

h(XT ). If the agent happens to be fully trained by the time of graduation (XT = X)

they continue using the same technology as with the principal, but now they keep all

of their output.

The principal’s and agent’s continuation payoffs from any time t onward, provided

13Alternate sufficient conditions involve restrictions on the third partials of L.
14Provided T is sufficiently large the constraint T ≤ T will hold with strict inequality.
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the agent remains with the principal until time T , are given by:

Πt =

∫ T

t

e−r(τ−t)[f(Xτ ) + aτ − wτ ]dτ,

Vt =

∫ T

t

e−r(τ−t)[u(wτ )− d(aτ )]dτ + e−r(T−t)h(XT )/r.

Let vt := rVt denote the agent’s continuation value measured in flow terms.

The agent can walk away from the principal at any time before T and receive

h(Xt)/r, and can also reject the principal’s contract altogether and obtain utility v/r

from an alternative occupation (one can interpret v/r as a measure of the agent’s bar-

gaining power). Consequently, the principal is bound by the participation constraints

vt ≥h (Xt) for all t ≤ T, (2)

v0 ≥ v. (3)

We call the first constraint the ongoing participation constraint and the second one

the initial participation constraint. Notice that absent the learning constraint, the

principal would wish to set knowledge at each time to the level where the ongoing

participation constraint binds, as this would maximize the agent’s productivity.

3 Benchmark: The agent first-best

Here we consider a simple benchmark scenario where two of the central frictions are

removed. First, we allow the agent to learn on their own, without any assistance from

the principal, subject only to the learning constraint (1). Second, we allow the agent

to commit to any output and wage paths they desire, which means the agent can use

the bank to borrow and save. We call this benchmark the (agent) first-best.15

15The resulting first-best contract is also profit maximizing if the agent has commitment power
and their initial outside option is so large that the best the principal could do is earn zero profits.
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Formally, we solve

max
z,w,a

∞∫
0

e−rt [u (wt)− d (at)] dt (I)

s.t. (1)

zt ≥ 0, X0 = X, Xt ≤ X

at ∈ [0, a]
∞∫
0

e−rtwtdt ≤
∞∫
0

e−rt [f (Xt) + at] dt. (4)

The objective here is the agent’s payoff, and both the ongoing and initial participation

constraints (2) and (3) are omitted. Constraint (4) indicates that the present value of

wages cannot exceed the present value of output, as required by the agent’s bank.16

Theorem 1. The first-best contract is unique. In this contract, at every t ∈ [0, T ),

the learning constraint binds, the agent earns a constant wage w∗∗, and there is a

non-negative function D̃t such that their effort path satisfies

d′ (at) = min
{
d′ (a) , u′ (w∗∗)

(
1 + D̃t

)}
. (5)

At time T the agent graduates with knowledge X, and from that time onward

consumes w∗∗ and exerts the constant effort a∗∗ given by

d′ (a∗∗) = min {d′ (a) , u′ (w∗∗)} . (6)

Proof. See the Online Appendix.

The first thing to note is that the agent uses their commitment power to fully

smooth their consumption across time. Moreover, because faster learning leads to

higher output and greater consumption (by relaxing the financial constraint (4)), the

agent raises their knowledge as quickly as the learning constraint allows, until fully

trained.

16We have also omitted the constraint wt ≥ c as we shall assume that the agent is sufficiently
productive as to secure at least this level of consumption.
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What remains is to characterize the optimal effort path. If effort did not impact

learning, the agent’s ideal effort would equate the marginal cost of effort with the

marginal utility of consumption. When the agent is still learning, they distort effort

upward in proportion to the term D̃t in equation (5). This term is given by

D̃t = La (Xt, at)

∫ T

t

e−r(s−t)f ′ (Xs) e
∫ s
t LX(Xτ ,aτ )dτds. (7)

In this equation, La captures the fact that greater effort leads to faster learning. The

integral captures the fact that faster learning today raises output tomorrow, which

happens both directly (per the term f ′(Xs)) and also via the compounding impact of

knowledge on future learning (per the second exponential inside the integral).17

As we shall see next, once we reintroduce the original frictions, the optimal con-

tract will preserve some but not all of these features.

4 Main result

Here we return to the optimal contracting problem where all constraints are present.

As we show in Theorem 2, the agent’s lack of commitment will cause a variety or

distortions relative to the first best. These distortions, moreover, will be magnified

by the principal’s desire to extract rents.

The principal’s problem is:

max
C

T∫
0

e−rt [f (Xt) + at − wt] dt (II)

s.t. (1), (2), (3)

zt ≥ 0, X0 = X, Xt ≤ X

at ∈ [0, a], wt ≥ c, T ≤ T .

Note that varying the agent’s outside payoff v traces the Pareto-efficient imple-

mentable payoffs via the initial participation constraint (3) (i.e. v0 ≥ v).18

17After time T the agent is done learning and faces a static problem, so the effort equation
simplifies to (6).

18A key challenge from a technical standpoint is that this problem is linear in zt, so the optimal
trajectory of zt cannot be determined using a first-order approach. Instead, we must conjecture a
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We solve this model under two further assumptions. The first is that when the

agent learns as fast as the learning constraint allows given their effort, the present

value of output they produce is less than the present value of the output they would

have produced in the same period of time had they been working with knowledge X

and exerting effort a∗(X).

Assumption 5. For every time path of effort a,∫ T

0

e−rt[f(X̂t(a)) + at]dt <

∫ T

0

e−rt[f
(
X
)

+ a∗(X)]dt,

where X̂t(a) is the knowledge path when the agent learns at rate L (Xt, at) and exerts

effort a until fully trained.

This assumption is met if knowledge is sufficiently valuable relative to effort, in

the sense that high effort cannot make up for low knowledge.19

Our next assumption imposes some parametric restrictions.

Assumption 6. The parameters of the model are such that:

1. v > h (X).

2. There is a feasible contract with positive training (i.e., XT > X) where the

principal makes a non-negative profit.

3. When the principal is indifferent they choose to train the agent.

Part 1 of this assumption says that the agent’s initial knowledge is sufficiently low

that without training they would be more productive in their alternative occupation.20

Part 2 holds whenever v and c are sufficiently small.

We now introduce some notation. Given a fixed time path of knowledge, let

mt :=
f ′(Xt)

h′ (Xt) /r
and St := −1 +

∫ T

t

msds.

The ratio mt measures the marginal impact of knowledge on output relative to its

impact on the agent’s outside option. The term St represents the slope of the Pareto

solution and verify that it is optimal.
19This assumption implies, in particular, that any arrangement where the agent earns steady-state

wages f(X) + a∗(X) from the beginning would cause the principal losses.
20This assumption guarantees that the learning constraint binds for some interval of time.
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frontier in a world with no learning constraints, where the agent’s ongoing participa-

tion constraint always binds and the agent is fully trained by time T . We call this

the unconstrained Pareto frontier.

To understand why the unconstrained Pareto frontier has slope St, suppose that

at time t the principal commits to giving the agent er(T−t) utils at time T when the

agent’s training is complete (which is worth 1 util from the standpoint of t). Because

at T the agent’s marginal utility is 1, this costs the principal er(T−t) (or 1 from the

standpoint of t), but also increases the agent’s continuation payoff by er(s−t) utils at

all times s < T . These higher continuation payoffs allow the principal to transfer

additional knowledge, and in particular raise the agent’s productivity by er(s−t)ms at

each s < T , so from the standpoint of t the principal recoups
∫ T
t
msds.

21 Notice that

as we move backward in time, St falls in absolute terms (the frontier becomes flatter).

This is because the greater the remaining time in the apprenticeship, the larger the

output loss from the agent’s low knowledge level and lack of liquidity.22

Theorem 2 shows that the optimal contract consists of two phases, regardless of

the agent’s initial outside option v. The first phase resembles the first-best contract

in that the agent is trained as fast as the learning constraint allows, exerts high effort,

and earns flat but less than first-best wages. This phase ends before the agent is fully

trained. In the second phase, the agent is only trained quickly enough to meet their

ongoing participation constraint, effort remains distorted above the static first best,

wages grow, and the principal keeps all rents for themself. The agent graduates at

the completion of this phase.

Theorem 2. The unique profit-maximizing contract consists of two learning phases,

separated by a time θ ∈ (0, T ):

1. Phase 1 (“technologically-restricted learning”). In this phase the learning con-

straint binds. Moreover, the agent receives the constant wage w1 given by

u′
(
w1
)

= min {u′ (c) , 1/|Sθ|} ,
21The interest rate does not impact St because agent and principal discount payoffs at the same

rate.
22In the absence of learning constraints, the profit-maximizing contract begins where St = 0. In

the special case where the agent’s outside option consists of working with the same output technology
but gaining no further knowledge and utility is linear, we have mt = 1/r and St = −1 + r(T − t), so
the profit-maximizing contract absent learning constraints lasts 1/r years, as noted in FR.
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and is assigned the effort path

d′ (at) = min {d′ (a) , (1 +Dt) /|Sθ|} ,

where Dθ = 0 and Dt ≥ 0 for all t < θ.23

2. Phase 2 (“principal-restricted learning”). In this phase the learning constraint

is slack. Moreover, the agent earns zero rents, is offered the non-decreasing

wage path

u′ (wt) = min {u′ (c) , 1/|St|} ,

and is assigned the non-increasing effort path

d′ (at) = min {d′ (a) , 1/|St|} .

At time T the agent graduates with knowledge X, and from that time onward

exerts first-best effort a∗
(
X
)

and consumes the corresponding output.

As the agent’s initial outside option grows, phase 1 becomes weakly longer and phase

2 weakly shorter, each of them strictly whenever the agent’s initial participation con-

straint binds. Phase 2, however, never disappears.

Proof. See Appendix A.

Figure 1 helps explain this result. It depicts two different Pareto frontiers. The

higher one is the unconstrained frontier defined above, where the agent’s ongoing

participation constraint binds. The lower frontier, which we call the constrained

Pareto frontier, is relevant when the learning constraint is present. It lies below the

unconstrained frontier because at time 0 knowledge cannot be instantly raised to the

point where the agent’s ongoing participation constraint binds.24

The contract begins at a point along the constrained frontier—either at the peak of

the frontier if v/r is to the left of this peak, or at the point where the agent receives

exactly v/r otherwise. (In the figure, points a, b, and c indicate three possible

23Specifically, Dt = La (Xt, at)
∫ θ
t
f ′ (Xs) e

∫ s
t
[LX(Xτ ,aτ )−r]dτds. This expression differs from (7)

only in that the first integral is taken from t to θ instead of from t to T , since the learning constraint
(1) becomes slack after θ.

24Recall that v > h(X) and the initial participation constraint requires that v0 ≥ v. The fact that
knowledge cannot be instantly raised therefore implies that X0 = X and v0 > h(X0).
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Figure 1: Pareto frontiers and evolution of payoffs

starting points.) Because the unconstrained frontier lies above the constrained one,

the principal wishes to reach this higher frontier with as little delay as possible, and

hence trains the agent as fast as they can learn. Along the way the principal allows the

agent to earn rents because the principal’s priority is to boost the agent’s productivity.

Once the higher frontier is reached, which occurs at time θ, the contract enters the

next phase where the principal extracts all additional rents. As this phase moves

forward, the players’ continuation payoffs gradually move along the unconstrained

frontier until the agent’s training is complete. Further properties of the contract are

as follows:

Wages. Wages are constant during phase 1 because the slack participation con-

straint allows for full consumption smoothing. For reasons that will soon be clear, this

wage is higher the steeper the slope of the relaxed frontier at the moment of transi-

tion between the two phases. During phase 2, the principal offers an increasing wage

path (i.e. backloads wages) in order to relax the binding participation constraint.

In this second phase, |St| represents the time-t shadow cost of paying the agent with

knowledge (i.e. the loss in profits from raising the agent’s outside option); modulo the
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exogenous lower bound on wages, the optimal contract equates the marginal utility

of wages to the inverse of this shadow cost, so that paying the agent with wages is

equally costly in the margin as paying them with knowledge.

Effort. At all times before T , the contract prescribes effort strictly above the

myopic optimum a∗(Xt), which decreases over time. In phase 1 the effort distortion

serves both to relax the learning constraint (with a greater Dt leading to a larger

distortion) and to extract rents from the agent (with a smaller |Sθ| leading to a greater

distortion). During this phase, effort need not be monotone.25 During phase 2, in

contrast, rent extraction is the single motive for the distortion. Because the principal

pays for effort with knowledge, and the shadow cost of knowledge |St| grows as regime

2 evolves, the distortion becomes smaller over time, until finally disappearing at time

T ; effort therefore decreases over time, strictly so whenever the effort upper bound is

slack.

Transition between regimes. The path traced by the players’ continuation

payoffs must connect the two frontiers at points of equal slope. This condition, which

determines the time θ that separates the two phases, is a form of smooth pasting that

guarantees that wages and effort do not jump when the apprenticeship switches from

one regime to the other. To see why the two slopes must be equal, notice that the

participation constraint is slack during the first phase, so the principal can give the

agent an extra dV utils in continuation value at the start of the next phase (e.g. by

means of a slightly faster knowledge transfer shortly after θ) without altering any of

phase 1’s characteristics. As a result, the trade-off between profits and agent utility

is the same at the start of phase 1 (or indeed at any time during that phase) as it

is at the start of phase 2.26 Throughout phase 1, wages and effort are distorted in

inverse proportion to that tradeoff, and hence these distortions fall as |Sθ| grows.

Impact of agent’s outside option. As the agent’s initial outside option in-

creases (perhaps because ex-ante competition between different masters becomes more

intense) the contract begins farther and farther to the right along the constrained fron-

tier. This means that more training occurs in phase 1 and less in phase 2. It also

25Effort is guaranteed to be weakly decreasing during this phase if r ≤ LX(X, a) for all X and
a, as this guarantees that the exponential in Dt (defined in footnote 23) falls over time, i.e., the
compounding impact of knowledge on future learning via LX (which maters less as time goes by
and there is less of phase 1 left) is significant enough to overcome the principal’s impatience. See
footnote 40 in the Appendix.

26Specifically, gifting the agent dV at time θ slightly shortens phase 2, raises the agent’s overall
payoff V0 by e−rθdV and changes the principal’s overall payoff Π0 by e−rθSθdV , so dΠ0/dV0 = Sθ.

16



means higher wages and lower effort distortions (since |Sθ| grows), and thus a longer

phase 1 and more rents for the agent. Notably, phase 2 has positive length even in

the most preferred contract for the agent (i.e., the zero-profit contract starting at

point c). This is because the principal can use phase 2, where they extract the most

rent, to collect on “debt” incurred by the agent during phase 1. As a result, early

in the apprenticeship, when the agent’s productivity is still low, they can consume

more than they produce and better smooth their consumption, without needing to

pay it all back in phase 1. The principal collects on the remaining debt once the agent

is more productive by holding on to them for an artificially long time, paying them

less than they produce, and promising a training rate just high enough to keep them

from leaving. In this way, phase 2 allows the players to work around the agent’s com-

mitment problem. Because a two-phase arrangement allows for better consumption

smoothing, the agent prefers it over a shorter apprenticeship with faster training and

only a phase 1.27

Training rate. Throughout phase 1 the agent is trained at rate L(Xt, at) to

reach the unconstrained frontier as quickly as possible given the desired effort path.

In phase 2, the agent is instead trained at a rate that keeps them indifferent between

staying with the principal and walking away, given the prescribed wages and effort.28

We call this the zero-rent training rate; it generalizes the zero-rent training rates in

GR and FR to allow for the effect of both effort and the agent’s desire for income

smoothing. It is given by

zt =
h(Xt)− [u(wt)− d(at)]

h′(Xt)/r
. (8)

The numerator is the (instantaneous) utility loss incurred by the agent when working

for the principal rather than on their own and consuming all output; the denominator

is the agent’s utility gain per unit of knowledge they acquire from the principal. The

zero-rent rate therefore guarantees that the principal extracts all gains from further

training. As the apprenticeship ends, |St| converges to 1, effort converges to its

steady-state level a∗(X), wages converge to steady-state output f(X) + a∗(X), and

27Phase 2 would also arise if the agent had linear utility provided the minimum consumption c
was sufficiently large.

28The training rate zt is not guaranteed to be monotone in either phase. In phase 1, this is because
zt is positively impacted by both effort and knowledge, and the former may decrease over time. In
phase 2, it is because knowledge and the agent’s flow payoff (both of which increase over time) have
opposing effects on zt, as shown below (and h′ affects the training rate was well).
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Figure 2: Illustration of optimal contract for two different initial outside options for
the agent.

the training rate converges to zero. As a result, neither effort, wages, nor training

have jumps at time T .

Figure 2 illustrates the trajectories of key variables for two optimal contracts,

corresponding to two different levels of v; each column in the figure depicts one such

contract.29 Under the lower outside option, the principal earns positive flow profits

throughout the apprenticeship; under the higher one, the principal first implicitly

29The contract on the left is in the interior of the constrained Pareto frontier, corresponding to a
point like b in Figure 1; the contract on the right is the most preferred by the agent, corresponding
to point c. The contract most preferred by the principal (point a) has an even shorter phase 1,
throughout which effort is at its upper bound. To construct this figure we assume X = 0, X = 0.8,
f(X) = X0.99, L(X, a) = 0.3(0.1 +X + a), u(w) = 2

√
w, d(a) = 2.5a2, h(X) = u(f(X) + a∗(X))−

d(a∗(X)), a = 1, c = 0.1, and r = 0.2.
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lends money to the agent. The higher outside option leads to higher wages, less dis-

torted effort, and a longer amount of time before the agent’s outside option h(Xt)

reaches their continuation value vt. In both contracts, the training rate drops discon-

tinuously at the moment of transition.

In practice, apprentices might experience a discrete jump in wages (and perhaps

also effort) at the time of graduation. This possibility can be accounted for via a

simple extension of our model where the principal receives a prize as soon as the agent

graduates (for example, because they can start training a new agent). In this case,

since the principal is in more of a rush to complete the apprenticeship, the training

rate (8) no longer converges to zero toward the end of the apprenticeship. Accordingly,

wages remain strictly below (and effort strictly above) their post-graduation levels.30

The apprenticeships our model predicts have features that are roughly in line

with the real-life practices discussed in the introduction. Phase 1 in our model, for

instance, represents a period of intense learning (e.g. during Ph.D. courses or boot

camps for new employees), where productivity is relatively low, and phase 2 represents

a stage where novices learn below their potential (e.g. because they devote time to

work they can already do well) while at the same time producing valuable output

for their masters.31 The weakly increasing wage path, with wages potentially higher

than output at first, also seems to mirror the examples noted there.

While some of these practices may seem abusive to the agent, our analysis shows

that they might actually be beneficial. With this in mind, we turn to the problem of

optimal regulation.

30The training rate would also remain strictly positive at time T if, contrary to Assumption 2,
the agent was more productive elsewhere once fully trained, as this puts pressure on the principal
to complete their training. In this case, wages and effort would also be distorted at time T , but we
can no longer say whether or not they will jump upon graduation, and in which direction, as at that
time the agent will potentially switch to a different technology.

31In some real-life apprenticeships, stages of work and study alternate with each other. Our
analysis suggests that all phases where learning is carried out at the maximum rate, whether on-the-
job or in a laboratory/classroom setting, should be front-loaded. Ph.D. programs seem to follow this
idea. The same is true, for example, of the Vermont HITEC two-stage apprenticeship model, where
at first “apprentices are immersed in the field of study for nine hours per day, five days a week [with
classrooms] typically set up at the employer’s facility,” and then “move into the job setting full-time
to apply these technical competencies on a daily basis” (see Vermont HITEC Program Case Study,
www.dol.gov/apprenticeship/toolkit.htm, accessed 7/14/20).
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5 Regulation

Apprenticeships are a frequent target of regulation. The G20, for instance, has ex-

pressed interest in making apprenticeship programs “attractive to both employers

and employees” and protecting apprentices from being underpaid and undertrained.

In some cases, regulators intervene in nearly all aspects of the apprenticeship (e.g.

wages, duration, curriculum, and even location), as occurs for instance in the Ger-

man and Swiss dual-education models.32 In other instances regulators seem especially

concerned with specific aspects of the relationship, such as the ACGME restricting

the hours of medical residents in the U.S.33

Caps on effort (i.e. hours worked) and floors on wages should be much easier to

enforce than restrictions on the rate of knowledge transfer, as the agent’s knowledge

can be difficult to monitor by an external regulator. Proposition 1 shows that a

planner who is able to set upper bounds on effort and lower bounds on wages is able

to implement any contract on the constrained Pareto frontier (i.e. any among the

family of contracts characterized in Theorem 2) subject to the players ex-ante outside

options being met, without needing to control the knowledge path.

Proposition 1. Select any contract C∗ that is Pareto efficient (i.e. lies on the con-

strained Pareto frontier) and that satisfies the agent’s initial participation constraint

and gives the principal non-negative profits; let (w∗,a∗,X∗) denote the agent’s life-

time wages, effort, and knowledge paths when trained under this contract. If the

planner restricts the effort path to be pointwise weakly below a∗ and the wage path to

be pointwise weakly above w∗ for the duration of the apprenticeship, then C∗ is the

unique profit-maximizing contract.

Proof. See the Online Appendix.

To understand this result, notice that a contract that specifies any other effort and

wage paths, while also satisfying the planner’s bounds, would lead to a strictly higher

payoff for the agent and hence lower profits for the principal. Moreover, because

32See, e.g., “OECD Note on ‘Quality Apprenticeships’ for the G20 Task Force on Employment”
(www.oecd.org/els/emp/OECD%20Apprenticeship%20Note%2026%20Sept.pdf, accessed 7/19/21),
the German Vocational Training Act (www.gesetze-im-internet.de/bbig 2005/, accessed 7/12/20),
and Wyman (2017).

33These restrictions include maximum weakly hours (80 on average) and limits on
hours worked straight (24 in some cases). See www.acgme.org/Portals/0/PDFs/dh-
ComparisonTable2003v2011.pdf (accessed 7/12/20).
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the knowledge path X∗ maximizes the agent’s output given a∗ and w∗, while also

meeting the learning and ongoing participation constraints, the principal will opt for

that path.

Observe that the planner need not worry about capping the overall length of the

contract, even though the principal might in principle be temped to hold on to the

agent for too long. This is because, once the principal is forced to pay the right

wages and limit effort, it is in their interest to quickly train the agent in order to raise

productivity and make up for these wages.34

There is empirical precedent for time-varying wage floors. For example, in formal

U.S. apprenticeships, the paychecks of novices are “guaranteed to increase as their

training progresses,” and employers in Germany “must grant apprentices reasonable

remuneration [and] remuneration increases with progressive vocational training, at

least annually.”35 Time-varying caps on hours should also not be difficult to imple-

ment.

A regulator who has the power to solve the agent’s commitment problem and

to impose time-varying effort caps and wage floors is also able to implement the

agent-optimal (first-best) contract in Theorem 1, which generates constant wages

throughout the agent’s lifetime and trains the agent as quickly as feasible until fully

trained.

Proposition 2. Let C∗∗ denote the agent-optimal (first-best) contract in Theorem 1,

and let (w∗∗,a∗∗,X∗∗) denote the agent’s lifetime wages, effort, and knowledge paths

when trained under this contract. If the planner grants the principal the power to

retain the agent for as long as the principal wishes, so the players no longer face an

ongoing participation constraint, and restricts the effort path to be pointwise weakly

below a∗∗ and the wage path to be pointwise weakly above w∗∗ for the duration of the

apprenticeship, then C∗∗is the unique profit-maximizing contract.36

Proof. See the Online Appendix.

34In contrast, the regulations proposed by FR, which do not involve wages, require caps on length.
GR considers wage regulations, but restricts to a constant minimum wage and does not consider
effort distortions. While these interventions help, they can be improved.

35See www.dol.gov/apprenticeship/toolkit/toolkitfaq.htm (accessed 7/7/20) and www.gesetze-im-
internet.de/bbig 2005/ (accessed 7/12/20).

36Unlike the contracts in Proposition 1, this contract lasts forever, so the agent can pay the debt
they accumulate during training. However, the principal can exit the relationship as soon as training
is over by selling the agent’s debt to a third party for a lump-sum payment of

∫∞
T
e−r(t−T )[f(X) +

a∗∗t − w∗∗t ]dt.
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In this intervention, certification requirements and non-compete clauses, which

are frequently observed, should be accompanied by restrictions on both the wage

and effort paths. However, if these restrictions are optimally set, there is no need to

regulate the knowledge path or contract length. The intuition is similar to that of

Proposition 1, save that the principal no longer needs to worry about the ongoing

participation constraint.

The regulator can use the same type of intervention to implement any desired

Pareto efficient contract (in the world with full commitment by both parties) so

long as players earn no less than their ex-ante outside options. Such contracts are

very similar to that characterized in Theorem 1, with a binding learning constraint

throughout the training period and flat wages throughout the agent’s lifetime.37

6 Conclusion

We have studied the problem of training a novice who must work as an apprentice in

order to learn. To do so, we introduced the idea of learning-by-doing as an inequality

constraint instead of as an equality, as this allows the master to strategically slow

training down even when the agent works hard. Perhaps paradoxically, slow training

expands the players’ payoff frontier, as it allows the principal to capture rents despite

the agent’s inability to commit to make payments.

In the novice’s most preferred contract, the learning constraint causes the novice

to initially produce less than they are paid, so they accumulate “debt.” A slow-

training phase then allows the master to gradually collect on this debt. Because

this arrangement allows for better consumption smoothing, the novice prefers it to a

shorter apprenticeship without the slow-training phase.

Our model helps rationalize why real-life training relationships, including formal

apprenticeships, consist of a bundle of interrelated practices, including distinct phases

and imperfect consumption smoothing. It also suggests optimal regulation based on

the idea that by simultaneously restricting the effort and wage paths, the social

planner can induce the master to train the novice at the ideal rate.

We have abstracted from the possibility that the master learns about the novice’s

37Any such Pareto efficient contract satisfies all properties in Theorem 1 upon substituting a new
(lower) wage level in the place of w∗∗ (see Online Appendix, footnote 46), and can be implemented
by the planner in the same manner as the agent first-best contract (see Online Appendix, footnote
47).
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intrinsic ability during the apprenticeship, which would likely generate yet richer

predictions. We leave this for future work.
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A Proof of Theorem 2

The proof is organized in four steps. First, we consider a relaxation of (II) that omits

the constraint zt ≥ 0, and introduces a Lagrange multiplier for the constraint v0 ≥ v.

Lemma 1 shows that there exists an optimal solution to this relaxed problem in which

zt, wt, and at are as given in Theorem 2. It determines the agent’s initial payoff v0

and the thresholds θ, and characterizes the trajectories of Xt and vt. Second, Lemma

2 shows that this solution is in fact unique. Third, we turn to solving the original

problem, (II). We show in Lemma 3 that the solution of the relaxed problem satisfies

the omitted constraint zt ≥ 0. Finally, we complete the proof by showing that there

exists a Lagrange multiplier for the constraint v0 ≥ v such that the corresponding

solution of the relaxed problem uniquely solves (II).

For a fixed ω ≥ 0, consider the following optimal control problem:

S(ω) = max r

∫ T

0

e−rt [f(Xt) + at − wt] dt+ ωv0 (9)

s.t. Ẋt = zt (10)

v̇t = r [vt − u(wt) + d(at)] (11)

v0 free and vT = h(XT )

zt ≤ L(Xt, at) (12)

vt ≥ h(Xt) (13)

X0 = X, Xt ≤ X (14)

at ∈ [0, a] , wt ≥ c.

This problem is a relaxation of (II) as we have omitted the constraint zt ≥ 0 and

replaced the constraint v0 ≥ v with the assumption that the principal maximizes the

weighted sum of their own and the agent’s payoff with weights one and ω, respectively.

Note that we multiplied the integral in the objective by r. We also fixed the horizon

to be equal to T . This will turn out to be without loss of generality, because after the

agent’s knowledge reaches X, they earn their output and the principal’s continuation

payoff is zero.

We say that a five-tuple (Xt, vt, zt, wt, at) is admissible if the functions Xt and vt

are piecewise continuously differentiable, and wt, zt, and at are piecewise continuous
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functions that satisfy the constraints in (9). Define the functions

m(X) :=
f ′(X)

h′(X)/r
and φ(X,w, a) :=

h(X)− u(w) + d(a)

h′(X)/r
.

The following lemma characterizes one optimal solution for this problem.

Lemma 1. There are θ ≥ 0, T > θ, and functions (Xt, vt, zt, wt, at) that solve the

optimal control problem given in (9) such that:

(i) zt, wt, and at satisfy the expressions given in Theorem 2, where the function

Dt := La(Xt, at)µt and µt is defined in (iv) below.

(ii) On t ∈ [θ, T ], the function St = −1 +
∫ T
t
m(Xs)ds and the agent’s continuation

payoff vt satisfy the system of ordinary differential equations[
Ṡt

v̇t

]
=

[
−m(h−1((vt))

r [vt − u(wt) + d(at)]

]

subject to the boundary conditions ST = −1 and vT = h(X).

(iii) θ = min {t ≥ 0 : St = −ω or h−1(vt) = X}, and Xt = Xθ +
∫ T
θ
φ(Xs, ws, as)ds

with XT = X.

(iv) If θ > 0, then for t ∈ [0, θ], vt, Xt, and the function µt uniquely solve the system

of ordinary differential equations Ẋt

v̇t

µ̇t

 =

 L(Xt, at)

r (vt − u(w0) + d(at))

−f ′(Xt) + µt (r − LX(Xt, at))


such that X0 = X, the initial values Xθ and vθ are determined from (iii), and µθ = 0.

Proof of Lemma 1. Define the Hamiltonian

H := re−rt [f(Xt) + at − wt] + pXt zt + pvt r [vt − u(wt) + d(at)] ,

where pXt and pvt are the co-state variables associated with the state variable Xt and
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vt, respectively, and the Lagrangian

L := re−rt [f(Xt) + at − wt] + pXt zt + pvt r [vt − u(wt) + d(at)]

+ qLt r [L(Xt, at)− zt] + qht r [vt − h(Xt)] + qXt (X −Xt),

where qLt , qht , and qXt are multipliers associated with the agent’s learning constraint,

their ongoing participation constraint, and the constraint that their knowledge level

Xt does not exceed X, respectively.38

This problem is a special case of the one considered in Section 6.7 of Seierstad

and Sydsaeter (1986), and Theorem 6.13 provides sufficient conditions for a solution

to be optimal. To be specific, an admissible five-tuple (Xt, vt, zt, wt, at) solves (9) if

there exists piecewise continuously differentiable functions pXt and pvt , and piecewise

continuous functions qLt , qht , and qXt such that the following conditions are satisfied:

(C.1) The control variables (zt, wt, at) maximize the Lagrangian L.

(C.2) The trajectory of the co-state variable pXt and pvt is governed by the adjoint

equation

ṗXt = − ∂L
∂Xt

=− re−rtf ′(Xt)− qLt rLX(Xt, at) + qht rh
′(Xt) + qXt , and (15)

ṗvt = −∂L
∂vt

=− pvt r − qht r, (16)

respectively.

(C.3) The functions qLt , qht , and qXt satisfy the complementary slackness conditions

qLt ≥ 0 (= if zt < L(Xt, at)),

qht ≥ 0 (= if vt > h(Xt)), and

qXt ≥ 0 (= if Xt < X).

(C.4) The transversality condition

pv0 ≤ −ω (= if v0 > h(X)) (17)

38For convenience, we have multiplied both sides of the first two inequality constraints by r. Doing
so is without loss of generality.

27



is satisfied

(C.5) The Hamiltonian is concave in the state and the control variables for each

t, and the right-hand-side of the equality constraints is quasi-concave in the state and

the control variables.

To complete the proof, it suffices to show there are constants θ and T , and con-

tinuously differentiable functions pXt and pvt , and piecewise continuous functions qLt ,

qht , and qXt such that the trajectories of (Xt, vt, zt, wt, at) satisfy conditions (i)-(iv)

of Lemma 1, and these functions together with (pXt , p
v
t , q

L
t , q

h
t , q

X
t ) satisfy conditions

(C.1-5).

Let us begin with (C.5). Since f(X) is strictly concave, h(X) is strictly increas-

ing, and L(X, a) is additively separable and concave in each of its arguments, this

condition is satisfied as long as pvt ≤ 0 for all t.

Next, consider (C.1). Differentiating the Lagrangian yields:

∂L
∂z

=pXt − rqLt ,

∂L
∂w

=r
[
−e−rt − pvtu′(w)

]
,

∂L
∂a

=r
[
e−rt + pvt d

′(at) + qLt La(Xt, at)
]
.

We want to show that either zt = φ(Xt, wt, at), or zt = L(Xt, at). Since both φ and

L are finite-valued, it must be the case that pXt = rqLt for all t. Because wt ≥ c

and at ≤ a, it follows from the above expressions that the optimal wage satisfies

u′(wt) = min {u′(c), −e−rt/pvt }, and the optimal effort is implicitly defined by the

equation d′(at) = min
{
d′(a), −

[
qLt La(Xt, at) + e−rt

]
/pvt
}

. Because d′(0) = 0, d′′ > 0,

and Laa ≤ 0, as long as pvt < 0, there exists a unique at that satisfies this equation.

We now fix an arbitrary T ≤ T and a θ ∈ (0, T ), and characterize the variables

(pXt , p
v
t , q

L
t , q

h
t , q

X
t ) such that (C.1-4) are satisfied. In our solution, (12) is slack for

t > θ, (13) is slack for t < θ, and (14) is slack for t < T . Thus, the complementary

slackness conditions in (C.3) can be rewritten as

qLt

≥ 0 if t ≤ θ

= 0 if t > θ
, qht

= 0 if t < θ

≥ 0 if t ≥ θ
and qXt

= 0 if t < T

≥ 0 if t ≥ T.
(18)
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Next, we characterize the trajectories of the co-state variables by solving the

corresponding adjoint equations. Solving (16) yields

pvt = −e−rt
(
−pv

T
erT − r

∫ T

t

ersqhs ds

)

for some pv
T

that remains to be determined.

For t ∈ [0, T ), since pXt = rqLt and qXt = 0, (15) can be rewritten as

ṗXt = −re−rtf ′(Xt)− pXt LX(Xt, at) + qht rh
′(Xt),

and this ODE admits the following solution:

pXt = e−
∫ t
0 LX(Xs,as)ds

[
pX0 − r

∫ t

0

(
e−rsf ′(Xs)− qhsh′(Xs)

)
e
∫ s
0 LX(Xs,as)dτds

]
,

where pX0 is an initial value which we determine next. Recall that for t > θ, the

learning constraint is slack, so by (18) we have qLt = 0. This implies that pXt = 0 for

all t > θ. The continuity of pXt implies that pXθ = 0, and therefore

pX0 = r

∫ θ

0

e−rsf ′(Xs)e
∫ s
0 LX(Xτ ,aτ )dτds,

where we have used from (18) that qht = 0 for all t < θ. Because pXt = 0 for all

t ∈ (θ, T ), e−rsf ′(Xs)− qhsh′(Xs) = 0, or equivalently,

qht = e−rtm(Xt)/r for all t ∈ (θ, T ),

and recall that by definition, m(X) = rf ′(X)/h′(X).

For t ∈ [T, T ], we must have pXt = 0 (since qLt = 0). Since pXT = 0, it suffices that

ṗXt = 0 for all t > T , or equivalently using (15),

qXt = re−rtf ′(X)− rqht h′(X).

Let us guess that for all t > T , qht = 0 and pvt = −1e−rt.39 Then we have the following

39Since these conditions are sufficient for an optimum, it suffices to show that a solution given
this guess exists.
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expressions for (pXt , p
v
t , q

L
t , q

h
t , q

X
t ):

pXt = rqLt =

re−
∫ t
0 LX(Xs,as)ds

∫ θ
t
e−rsf ′(Xs)e

∫ s
0 LX(Xτ ,aτ )dτds if t ≤ θ

0 if t > θ,

pvt =


−e−rt

[
1−

∫ T
θ
m(Xs)ds

]
if t ≤ θ

−e−rt
[
1−

∫ T
t
m(Xs)ds

]
if θ < t ≤ T

−e−rt if t > T,

(19)

qht =


0 if t < θ

e−rtm(Xt)/r if θ < t < T

0 if t > T

, and qXt =

0 if t < T

re−rtf ′(X) if t > T.
(20)

Using the above expressions and d′(a(X)) = u′(f(X) + a(X)) = 1, the optimal

wage and effort satisfy

u′(wt) =


min

{
u′(c), 1

1−
∫ T
θ m(Xs)ds

}
if t < θ

min
{
u′(c), 1

1−
∫ T
t m(Xs)ds

}
if θ < t < T

1 if t > T , and

(21)

d′(at) =


min

{
d′(a),

ertLa(Xt,at)qLt +1

1−
∫ T
θ m(Xs)ds

}
if t < θ

min
{
d′(a), 1

1−
∫ T
t m(Xs)ds

}
if θ < t < T

min {d′(a), 1} if θ > T.

(22)

Because qLt ≥ 0, and d′(0) = 0, d′′ > 0 and Laa ≤ 0, for t < θ there is a unique

at ∈ [0, a] that satisfies the above implicit equation. Finally, because the learning

constraint binds for t < θ, while the ongoing participation constraint binds for t ≥ θ,

the training rate

zt =


L(Xt, at) for t ∈ (0, θ)

φ(Xt, wt, at) for t ∈ [θ, T )

0 for t ∈ [T, T ).

So far, we have fixed an arbitrary T and θ < T , and characterized the functions
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(zt, wt, at, p
X
t , p

v
t , q

L
t , q

h
t , q

X
t ) such that conditions (C.1-4) are satisfied, and we argued

that (C.5) is satisfied by assumption. Moreover, the agent’s continuation value vt

must satisfy vt > h(Xt) for all t < θ and vθ = h(Xθ). (By the construction of

φ(X,w, a), vt = h(Xt) for all t > θ.) A priori, there is no guarantee that there exists

a T and a θ such that the conditions pertaining to Xt and vt are satisfied. We now

show that this is indeed the case.

First, we will determine the trajectory of vt and hence that of Xt (since vt = h(Xt))

during Phase 2, that is, during the interval [θ, T ]. In doing so, we will pin down the

duration of this interval (i.e., T − θ). Then we will turn to Phase 1.

Let us fix some arbitrary T . Since vt = h(Xt) on this interval and h(X) is strictly

increasing, it will be convenient to define the function ξ(y) := m (h−1 (y)) and recall

that m(X) = rf ′(X)/h′(X). Recall that St = −1 +
∫ T
t
m(Xs)ds, which can be

rewritten in differential form as Ṡt = −ξ(vt) with ST = −1.

Notice from (21) and (22) that for each t ∈ [θ, T ], the agent’s wage, wt, and effort,

at, depends solely on St. In particular, it satisfies u′(wt) = min {u′(c), −1/St} and

d′(at) = min {d′(a), −1/St}, respectively. During Phase 2, the trajectories of St and

vt satisfy the following system of ODE:[
Ṡt

v̇t

]
= G(St, vt) :=

[
−ξ(vt)

r [vt − u(w(St)) + d(a(St))]

]
(23)

subject to the initial conditions ST = −1 and vT = h(X). Because u, d, f , and

h have bounded first and second derivatives by assumption, G has bounded partial

derivatives and hence it is Lipschitz continuous. Therefore, by the Picard–Lindelof

theorem, this system has a unique solution. It immediately follows that Xt = h−1(vt)

during the interval [θ, T ].

We now explain how to determine the threshold θ, and hence the duration of Phase

2 using the above solution (and a given T ). To do so, we will use the transversality

condition (C.4), which from (19) can equivalently be rewritten as Sθ ≤ −ω (′ =′ if

v0 > h(X)). This condition implies that either (I) Sθ ≤ −ω and v0 = h(X), or (II)

Sθ = −ω and v0 > h(X). In Case (I), Phase 1 is non-existent, vθ = h(X), and hence θ

is the first time that vt hits h(X). In Case (II), Phase 1 has strictly positive duration,

vθ > h(X), and hence θ is the first time that St hits −ω. Thus, given a solution to

the system of ODE (23), we define θ := min {t : St = −ω or h−1(vt) = X} . That is,
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starting at T and moving backward in time, θ is the first time that St hits −ω or

h−1(vt) = Xt hits X, whichever occurs first. Because Ṡt = −ξ(vt) < 0 for all t, such θ

exists and it is unique (for given T ). Let us consider the two cases mentioned above

separately:

Case I: If Xt hits X first, Phase 1 has zero length. Because the above system

of ODE is autonomous, that is, it doesn’t explicitly depend on time, without loss of

generality, we can shift time by replacing t with t̃ = T − θ so that X0 = X. Then

Phase 2 starts at θ = 0, and the agent’s level of knowledge reaches X at t̃ = T − θ.
In this case, the characterization of a solution for (9) is complete.

Case II: If St hits −ω first, this procedure determines (i) the duration of Phase 2,

which equals T − θ, (ii) the agent’s continuation payoff at the beginning of Phase 2,

denoted v∗θ , and (iii) the knowledge level Xθ = h−1(vθ). We characterize the duration

of Phase 1 and the trajectory of the state and control variables next.

We now characterize the duration of Phase 1 for the case in which St hits −ω first

in the procedure described above. It will be convenient to define µt := ertqLt . Using

(15), and that pXt = rqLt and qht = qXt = 0 during Phase 1, we obtain the following

expression for the trajectory of µt:

µ̇t = −f ′(Xt) + µt (r − LX(Xt, at)) .

The trajectory of Xt, vt, and µt satisfies the following system of ODE: Ẋt

v̇t

µ̇t

 = H(Xt, vt, µt) :=

 L(Xt, at)

r (vt − u(w0) + d(at))

−f ′(Xt) + µt (r − LX(Xt, at))

 , (24)

subject to the initial conditions Xθ = h−1(v∗θ), vθ = v∗θ , and µθ = 0, where v∗θ was

determined in the analysis of Phase 2 above, and µθ = 0 follows from the fact that

qLθ = 0. The wage w0 = max {c, u′−1(1/ω)}, and effort at is implicitly defined by the

equation d′(at) = min {d′(a), [La(Xt, at)µt + 1] /ω}.40 Because by assumption, f ′′,

LX , LXX , and Laa are bounded, LXa = 0, d′′ is strictly positive, and Laa ≤ 0, H has

40Differentiating this expression with respect to t shows that when effort is interior, ȧt =
La(Xt, at)µ̇t/[ωd

′′(at) − Laa(Xt, at)µt]. Because La, µt ≥ 0, d′′ > 0 and Laa ≤ 0, for any ω > 0
effort is decreasing if and only if µ̇t ≤ 0, which is the case whenever r ≤ LX(X, a) for all X and a.
(If ω = 0, then at = a for all t.)
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bounded partial derivatives and hence it is Lipschitz continuous. Therefore, by the

Picard–Lindelof theorem, this system of ODE has a unique solution.

Define t0 to be the first time such that Xt0 = X. Such t0 exists and it is unique

since L(X, a) > 0 for all X and a. Then θ − t0 is the duration of Phase 1, and the

agent’s initial payoff is v0 = vt0 . Finally, because the system of ODE is autonomous,

we can replace t with t̃ = t − t0. Then the above solution continues to satisfy (24)

with X0 = X, Xθ−t0 = h−1(v∗θ), vθ−t0 = v∗θ , and µθ−t0 = 0, where v∗θ denotes the

agent’s continuation value at the beginning of Phase 2, which was characterized in

the last step. Therefore, in the new time-space, Phase 1 ends at t̃ = θ− t0, and Phase

2 ends at t̃ = θ∗ + (T − θ). By assumption, T is sufficiently large such that t̃ < T .

To summarize, we have shown that there exists an admissible five-tuple (Xt, vt, zt, wt, at)

and thresholds T and θ such that the sufficient conditions (C.1-5) are satisfied. More-

over, this five-tuple and the variables St and µt satisfy conditions (i)-(iv) of Lemma

1. Specifically, during Phase 1, which lasts from t = 0 until θ, the agent’s wage

is constant and satisfies u′(w) = min {u′(c), 1/ω}. Moreover, their effort satisfies

d′(at) = min {d′(a), (1 +Dt)/ω}, where Dt := La(Xt, at)µt, and their training rate is

zt = L(Xt, at).
41 During Phase 2, which lasts from t = θ until T , the wage, effort

and training rates are u′(wt) = min {u′(c), 1/|St|}, d′(at) = min {d′(a), 1/|St|}, and

zt = φ(Xt, wt, at). that St < 0. After T , the agent’s knowledge stays constant at X,

their effort satisfies d′(at) = min {d′(a), 1}, and they earn wt = f(X) + at, while the

principal earns zero (since f(Xt) + at − wt = 0 for all t ≥ T ).

We have characterized one optimal solution for the relaxed problem given in (9).

The following lemma shows that this solution is in fact unique.

Lemma 2. Consider the optimal control problem given in (9) for a fixed ω ≥ 0. This

problem has a unique solution.

Proof of Lemma 2. This proof is organized in two steps. First, using Corollary 8.2

of Hartl et al. (1995), we establish uniqueness of the optimal trajectories of the

state variables Xt and vt. Then we show that this implies uniqueness of the optimal

trajectories of the control variables.

41Note that whenever θ > 0, ω = −Sθ, and so the expressions for the optimal wage and effort are
the same as in Theorem 2.
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Hartl et al. (1995) analyze a problem that is similar to (9), except that (i) there is

a terminal value function in the objective, whereas we have the initial value function

−ωv0, and (ii) they assume that the initial values of the state variables are fixed,

whereas v0 is free in (9).

We now explain how to modify our relaxed problem, (9) so that it is a special

case of the one considered in Hartl et al. (1995), allowing us to apply their Corollary

8.2. First, we reverse time in (9) so that time “starts” at T and “ends” at 0, and

hence the term −ωv0 becomes a terminal value function. Second, in every optimal

solution to (9), as well as the transformed problem, XT = X.42 Therefore, we fix

the “initial” values of the state variables XT = X and vT = h(X), and impose the

condition that X0 = X meanwhile v0 is free (which is permitted in the formulation of

Hartl et al. (1995)). The sufficiency conditions given in Theorem 8.2 of Hartl et al.

(1995) are identical to Conditions (C.1-5), and hence an optimal solution takes the

same form, except that the requirement that f(X) is concave (from C.5) is replaced

by the condition that the function

H0(X, v, pX , pv, t) := max
L(Xt,at)≥zt

re−rt [f(Xt) + at − wt]+pXt zt+pvt r [vt − u(wt) + d(at)]

is concave in X and v for any given pX , pv and t. If in addition, H0(X, v, pX , pv, t)

is strictly concave in X and v for any given pX , pv and t, then by Corollary 8.2, the

optimal trajectory of the state variables, Xt and vt is unique. We will first show that

this is indeed the case, and then argue that the trajectories of the control variables

zt, wt, and at are also unique.

Let us fix t, Xt, vt, p
X ≥ 0, and pv ≤ 0, and evaluate H0(X, v, pX , pv, t). For this

42To see why, towards a contradiction, suppose that there exists another optimal contract C ′ with
X ′
T
< X. Consider a modified version of the relaxed problem given in (9) where X is replaced with

X ′
T

; i.e. the principal is endowed with knowledge X ′
T

instead of X. Because C ′ is feasible for this
modified problem, any solution C ′′ to this problem must achieve a payoff no less than that of C ′.
By Lemma 1, one such solution is a contract such that for some T < T , XT = X ′

T
and the principal

earns zero payoff for all t ≥ T . Now consider extending this contract such that during (T, T + ∆]
for some ∆ > 0 sufficiently small, the agent is paid the minimum wage c, exerts the maximum effort
a, and is trained at the zero-rent rate φ(Xt, c, a). This modified contract is feasible for (9) and
because f(Xt) +a > c for all t ∈ (T, T + ∆], it strictly increases the principal’s objective. Therefore,
the principal’s objective is strictly higher under this modified contract than under C ′, which is a
contradiction.
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purpose, we write the Lagrangian for the static problem:

L̃(κ) = max
z,w,a

re−rt [f(X) + a− w] + pXz + pvr [v − u(w) + d(a)] + κr [L(X, a)− z]

s.t. w ≥ c and a ≤ a

where κ ≥ 0 is a dual multiplier. This problem is convex, and for any κ, the optimal

controls satisfy43

z =


−∞ if pX < κr

∈ R if pX = κr

∞ if pX > κr

,
u′(w) = min {u′(c), −e−rt/pv} , and

d′(a) = min {d′(a), − [e−rt + κLa(X, a)] /pv} .

Moreover, strong duality is satisfied, so H0(X, v, pX , pv, t) = minκ≥0 L̃(κ). We argue

that the Lagrangian-minimizing κ = pX/r. That is because for any κ < pX/r (κ >

pX/r), L(κ) can be made ∞ by setting z =∞ (z = −∞).

Noting that L(X, a) is additively separable in X and a by assumption, and the

optimal control variables, z, w, a are all independent of X and v. The Hessian of

H0(X, v, pX , pv, t),[
∂2H0/∂X2 ∂2H0/∂X∂v

∂2H0/∂v∂X ∂2H0/∂v2

]
=

[
re−rtf ′′(X) + λrLXX(X, a) 0

0 0

]

is negative semidefinite since f ′′(X) < 0 and LXX(X, a) ≤ 0 for all X and a by

assumption. Therefore, H0(X, v, pX , pv, t) is strictly concave in X and v, so the

trajectory of Xt and vt is unique.

Since Ẋt = zt, this immediately implies that the trajectory of zt is also unique.

We now show that the trajectories of wt and at are unique as well. Towards this goal,

define kt := u(wt) − d(at), and note that it is also unique as v̇t = r(vt − kt) and vt

are unique. Define θ such that zt = L(Xt, at) for all t < θ, and zt < L(Xt, at) for all

t > θ. Such θ is uniquely determined since Xt and zt are unique.

First, consider t < θ. Because L(X, a) is strictly increasing in a, the trajec-

tory of at and hence that of wt = u−1 (kt + d(at)) is also unique on [0, θ). Next,

consider t > θ. Any optimal solution must satisfy the first-order conditions u′(wt) =

43The expressions for w and a assume that pv < 0. If pv = 0, then w = c and a = a is optimal.
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min {u′(c), −e−rt/pvt } and d′(at) = min{d′(a), −[qLt La(Xt, at)+e−rt]/pvt } are satisfied,

and qLt = 0 for all t > θ (see, for example, Theorem 6.15 in Seierstad and Sydsaeter

(1986)). Observe that either kt = u(c) − d(a), or kt is a strictly increasing function

of pvt . Since kt is unique, then so is pvt on the domain such that kt > u(c) − d(a).

Therefore, wt and at are also unique for such t.

Recall that in relaxing the original problem, we omitted the constraint zt ≥ 0.

The next lemma shows that this constraint is in fact satisfied in the solution given in

Lemma 1.

Lemma 3. Consider the optimal control problem given in (9) for a fixed ω ≥ 0. In

the unique solution characterized in Lemma 1, the training rate zt ≥ 0 for all t.

Proof of Lemma 3. Clearly, zt = L(Xt, at) ≥ 0 for all t < θ since L(X, a) > 0 for all X

and a by assumption. For t ≥ θ, we have zt = φ(Xt, wt, at) = v̇t/h
′(Xt), where we have

used the fact that for such t, the ongoing participation constraint binds so vt = h(Xt),

and that v̇t = r [vt − u(wt) + d(at)]. Since h′(X) > 0 for all X, it suffices to show that

v̇t ≥ 0 for all t ≥ θ. Towards a contradiction, suppose that there exists some t′ ≥ θ

such that v̇t′ < 0. This implies that for dt > 0 sufficiently small, vt′+dt < vt′ . Recall

that u′(wt) = min {u′(c), −1/St}, d′(at) = min {d′(a), −1/St}, and Ṡt = −ξ(vt) < 0,

implying that −u(wt) + d(at) is weakly decreasing in t. Therefore,

v̇t′+dt = r [vt′+dt − u(wt′+dt) + d(at′+dt)] < r [vt′ − u(wt′) + d(at′)] = v̇t′ < 0.

By induction, it follows that v̇t < 0 and hence Ẋt < 0 for all t > t′. This however,

contradicts the fact that XT = X and Xt ≤ X for all t. Therefore, we conclude that

such t′ cannot exist, and hence zt ∝ v̇t ≥ 0 for all t.

To complete the proof of Theorem 2, we will show that for an appropriately chosen

ω ≥ 0, the solution of the relaxed problem (9) solves the original problem (II). Let

us denote the contract which solves (9) for given ω by C(ω) = {Xt, vt, zt, wt, at}
with corresponding ex-ante payoffs π∗0(ω) and v∗0(ω) for the principal and the agent,

respectively. Thus, S(ω) = π∗0(ω) + ωv∗0(ω). We will show that the contract C(ω) for

the smallest ω such that v∗0(ω) ≥ v uniquely solves the original problem (II).
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First, we claim that v∗0(ω) is strictly increasing in ω, while π∗0(ω) is strictly de-

creasing in ω. To see why the first claim is true, because C(ω) uniquely solves (9),

for any pair ω, ω′ we have

π∗0(ω′) + ω′v∗0 (ω′) > π∗0(ω) + ω′v∗0 (ω) , and

π∗0(ω) + ωv∗0 (ω) > π∗0(ω′) + ωv∗0 (ω′) .

Therefore,

ω′ [v∗0 (ω′)− v∗0 (ω)] > π∗0(ω)− π∗0(ω′) > ω [v∗0 (ω′)− v∗0 (ω)] , (25)

implying that v∗0 (ω′)− v∗0 (ω) > 0 if and only if ω′ > ω. It follows from (25) that for

any ω and ω′ > ω, π∗0(ω)− π∗0(ω′) > 0, which implies the second claim.

Next, we show that v∗0(∞) := limω→∞ v
∗
0 (ω) > v. Note first that as ω → ∞, the

wages prescribed by C(ω) go to infinity. This implies π∗0(∞) = −∞, and hence

π∗0(ω) < 0 for all large ω. Now suppose towards a contradiction that v∗0(∞) :=

limω→∞ v
∗
0 (ω) ≤ v. This implies that there exists a large ω′ such that π∗0(ω′) < 0

and v∗0(ω′) ≤ v, which in turn implies that there is no feasible contract C(ω′) for

the relaxed problem such that π∗0(ω′) ≥ 0 and v∗0(ω′) ≥ v. This leads to a contra-

diction because, by assumption, v is sufficiently small such that the principal can

fully train the agent while meeting the initial participation constraint and obtaining

non-negative profits.

Moreover, because the trajectories of wt and at, which together determine the

agent’s payoff, vary continuously with ω, θ, T, and the latter two variables vary con-

tinuously with ω, π∗0(ω) and v∗0(ω) are continuous in ω.

Let ω∗ = inf {ω ≥ 0 : v∗0(ω) ≥ v} . We will now show that the solution of (9)

corresponding to ω = ω∗ uniquely solves (II). There are two cases to consider:

Case 1: v∗0(0) ≥ v. In this case C(ω∗) = C(0) uniquely solves the original problem

because it uniquely maximizes profits in the relaxed version of the original problem

where the agent’s initial participation constraint is ignored, and yet it is satisfied by

C(0). Uniqueness follows directly from Lemma 2.

Case 2: v∗0(0) < v. Suppose contrary to the claim, that C(ω∗) does not solve the

original problem. Then, because C(ω∗) is feasible for the original problem, there must

exist another feasible contract C ′ leading to payoffs π′0 ≥ π∗0(ω∗) and v′0 ≥ v∗0(ω∗) = v,
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so π′0+ω
∗v′0 ≥ π∗0(ω∗)+ω∗v∗0(ω∗). But since C ′ is also feasible for the auxiliary problem,

this contradicts the fact that C(ω∗) uniquely solves the auxiliary problem.

Note also that ω∗ < 1, and hence Phase 2 has strictly positive length. Otherwise,

the agent would earn no less than steady state wages throughout the apprenticeship,

which per Assumption 5, would create losses for the principal. By Assumption 6.2,

however, there is a contract that allows the principal to make a non-negative profit.

Finally, we show that as the agent’s initial outside option v increases, the length

of Phase 1 increases and the length of Phase 2 decreases, each strictly so if the initial

participation constraint binds. Note that if this constraint is slack, the length of each

phase is independent of v, and so we shall restrict attention to the case in which it

binds.

From (23) and the fact that Sθ = −ω that the length of Phase 2, T − θ, strictly

decreases in ω. Since v∗0(ω) strictly increases in ω and v∗0(ω∗) = v, it follows that ω∗

strictly increases in v, and hence T − θ strictly decreases in v.

To establish that phase 1 becomes strictly longer, fix two initial outside options

v, v′ such that v > v′, and denote the associated contracts by C and C ′, respectively.

Assume the initial participation binds under both contracts. From (23) and because

ω∗ > ω∗′, we have Xθ > X ′θ′ and |Sθ| > |S ′θ′ |. Now suppose towards a contradiction

that θ ≤ θ′; i.e., the length of Phase 1 when the initial outside option is v′ is at least

as large as when it is v.

We claim that there is a time t̃ < θ such that at̃ > a′
t̃

and Xt ≥ X ′t for all t ≥ t̃.

To see why this must be the case, define s to be the largest time before θ such that

Xs = X ′s. Note s < θ and by construction Xt > X ′t for all s < t ≤ θ. If the claim

is not true, then it must be that at ≤ a′t for all s ≤ t ≤ θ. But then the learning

constraint implies that Xθ ≤ X ′θ, a contradiction.

Next, since f ′ is decreasing in X, La is weakly decreasing in a, and LX is weakly

decreasing in X, the expression for Dt (given in footnote 23) implies that Dt̃ < D′
t̃
.

Because |Sθ| > |S ′θ′|, it follows from the expression for at that at̃ ≤ a′
t̃
, contradicting

the claim established above. This completes the proof.
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Working to Learn: Online Appendix

Proof of Theorem 1. The proof is organized in three steps. First, we consider a finite-

horizon version of (I) in which we introduce a Lagrange multiplier for the credit-

balance constraint, (4). Lemma 4 shows that for a sufficiently long horizon length,

this problem admits a unique solution in which the wage, effort and training rate

satisfy expressions similar to those given in Theorem 1. This lemma also characterizes

the trajectory of Xt, and the duration of the learning phase, T . Second, we argue

that this characterization is preserved as we take the length of the horizon to infinity.

Finally, we complete the proof by showing that there exists a Lagrange multiplier

for the constraint (4) such that the corresponding solution of the relaxed problem

uniquely solves (I).

For fixed β ≥ 0, consider the following optimal control problem:

S(β) = max

∫ τ

0

e−rt [u(wt)− d(at)] dt+ β

∫ τ

0

e−rt [f(Xt) + at − wt] dt (26)

s.t. Ẋt = zt

zt ≤ L(Xt, at)

X0 = X, Xt ≤ X, Xτ free

at ∈ [0, a]. (27)

for some finite but large τ .44 We say that a four-tuple (Xt, zt, wt, at) is admissible if the

function Xt is piecewise continuously differentiable, and wt, zt, and at are piecewise

continuous functions that satisfy the constraints in (26).

The following lemma characterizes the optimal solution for this problem.

Lemma 4. Fix a β ≥ 0. There exists a unique T > 0 and functions (Xt, zt, wt, at)

that solve the optimal control problem given in (I) such that:

(i) u′(wt) = β, at satisfies d′ (at) = min{d′(a), β[1 + µtLa(Xt, at)]}, and

zt =

L(Xt, at) if t < T

0 if t ≥ T.

44It suffices to set τ > T̂ , where T̂ is the first time that the function Xt hits X given that X0 = X,
Ẋt = L(Xt, â) and â satisfies d′(â) = min {d′(a), β}.
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(ii) For t ∈ [0, T ], the functions Xt and µt satisfy the system of ODE[
Ẋt

µ̇t

]
=

[
L(Xt, at)

−f ′(Xt) + [r − LX(Xt, at)]µt

]

subject to the conditions X0 = X, XT = X, and µT = 0.

(iii) For t > T , Xt = X and µt = 0.

Proof of Lemma 4. Define the Hamiltonian

H :=e−rt [u(wt)− d(at)] + βe−rt [f(Xt) + at − wt] + pXt zt,

where pXt is the co-state variable associated with the state variable Xt, and the La-

grangian

L :=H + qLt [L(Xt, at)− zt] + qXt (X −Xt),

where qLt and qXt are the multipliers associated with the agent’s learning constraint

and the constraint that their knowledge level Xt does not exceed X, respectively.

This problem is a special case of the one considered in Section 6.7 of Seierstad and

Sydsaeter (1986), and Theorem 6.13 provides sufficient conditions for a solution to

be optimal. To be specific, an admissible four-tuple (Xt, wt, at, zt) solves (26) if there

exists a piecewise continuously differentiable function pXt , and piecewise continuous

functions qLt and qXt such that the following conditions are satisfied:

(C.1) The control variables (wt, at, zt) maximize the Lagrangian L.

(C.2) The trajectory of the co-state variable pXt is governed by the adjoint equation

ṗXt = − dL
dX

= −βe−rtf ′(Xt)− qLt LX(Xt, at) + qXt . (28)

(C.3) The functions qLt and qXt satisfy the complementary slackness conditions

qLt ≥ 0 (= if zt < L(Xt, at)), and

qXt ≥ 0 (= if Xt < X).

(C.4) The Hamiltonian is concave in the state and the control variables for each
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t, and the right-hand-side of the equality constraints is quasi-concave in the state and

the control variables.

To complete the proof, it suffices to show there is a continuously differentiable

function pXt and piecewise continuous functions qLt and qXt such that the trajectories

of (Xt, wt, at, zt) satisfy conditions (i)-(iii) of Lemma 4, and these functions together

with (pXt , q
L
t , q

X
t ) satisfy conditions (C.1-4).

Let us begin with (C.4). Since f(X) is strictly concave and L(X, a) is additively

separable and concave in each of its arguments, this condition is satisfied.

Next, consider (C.1). Differentiating the Lagrangian with respect to each control

variable, we obtain the following expressions:

dL
dz

= pXt − qLt ,

dL
dw

= e−rt [u′(wt)− β] , and

dL
da

= −e−rtd′(at) + βe−rt + qLt La(Xt, at).

We want to show that given the trajectories of Xt and at, zt = {0, L(Xt, at)} for all

t. Since L is finitely-valued, it must be the case that pXt = qLt for all t. After taking

into consideration that at ≤ a, it follows from the above expressions that the optimal

wage satisfies u′(wt) = β and the optimal effort is implicitly defined by the equation

d′(at) = min
{
d′(a), qLt e

rtLa(Xt, at) + β
}

. Because d′(0) = 0, d′′ > 0, qLt ≥ 0, and

Laa ≤ 0, there exists a unique at that satisfies this equation.

Fix an arbitrary T ≤ τ . We will characterize the variables (pXt , q
L
t , q

X
t ) such

that (C.1-3) are satisfied. We wish to characterize a solution in which the learning

constraint binds if and only if t < T , and the constraint that Xt ≤ X binds if and

only if t ≥ T . Therefore, by the complementary slackness conditions in (C.3), the

following must be true:

qLt

≥ 0 if t < T

= 0 if t > T
and qXt

= 0 if t < T

≥ 0 if t > T.
(29)

We now characterize the trajectory of the co-state variable pXt . For t ∈ [0, T ),
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using that pXt = qLt and qXt = 0, (28) can be rewritten as

ṗXt = −βe−rtf ′(Xt)− pXt LX(Xt, at).

This ODE admits the solution

pXt = e−
∫ t
0 LX(Xs,as)ds

[
pX0 − β

∫ t

0

e−rsf ′(Xs)e
∫ s
0 LX(Xτ ,aτ )dτ ds

]
,

where pX0 is an initial value which we determine next. Recall that for t ≥ T , the

learning constraint is slack, and so by (29) we have qLt = 0. This implies that pXt = 0

for all t ≥ T . The continuity of pXt implies that pXT = 0, and therefore,

pX0 = β

∫ T

0

e−rsf ′(Xs)e
∫ s
0 LX(Xτ ,aτ )dτ ds.

Because pXt = 0 for all t > T , it follows from (28) that

qXt = βe−rtf ′(Xt) for t > T.

Therefore, we have the following expressions for (pXt , q
L
t , q

X
t ):

pXt = qLt =

β
∫ T
t
e−rsf ′(Xs)e

∫ s
t LX(Xτ ,aτ )dτ ds if t ≤ T

0 if t > T , and

qXt =

0 if t ≤ T

βe−rtf ′(Xt) if t > T.

It will be convenient to define

µt :=
qLt e

rt

β
=

∫ T

t

e−r(s−t)f ′(Xs)e
∫ s
t LX(Xτ ,aτ )dτ ds ,

which can be written in differential form as

µ̇t = −f ′(Xt) + [r − LX(Xt, at)]µt

for t < T , whereas µt = 0 for all t ≥ T . Using the definition of µt, the first-order
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conditions with respect to w and a can be rewritten as

u′(wt) = β, and (30)

d′(at) = min {d′(a), β [1 + µtLa(Xt, at)]} . (31)

Finally, because the learning constraint binds for t < T , while the constraint that

Xt ≤ X binds for t ≥ T , we have

zt =

L(Xt, at) if t < T

0 if t ≥ T.

So far, we have fixed an arbitrary T and characterized the functions (zt, wt, at,

pXt , q
L
t , q

X
t ) such that conditions (C.1-3) are satisfied, and we argued that (C.4) is

satisfied by assumption. Notice that these are functions of Xt, which evolves accord-

ing to Ẋt = zt, and must satisfy X0 = X and XT = X. A priori, there is no guarantee

that there exists a T such that the conditions pertaining to Xt are satisfied. We now

show that this is indeed the case. To be specific, we will characterize the trajectories

of Xt, µt, and at, and in doing so, we will pin down the duration of the training phase.

During the learning phase, the trajectories of Xt and µt satisfy the following system

of ODE: [
Ẋt

µ̇t

]
= F (Xt, µt) :=

[
L(Xt, at)

−f ′(Xt) + [r − LX(Xt, at)]µt

]
, (32)

where at is the unique solution of (31), and notice that it depends solely on Xt and

µt.

Fix an arbitrary T , and consider this system of ODE subject to the initial value

conditions XT = X and µT = 0. Because u, d, f , and L have bounded first and

second derivatives by assumption, F has bounded partial derivatives and hence it is

Lipschitz continuous. Therefore, by the Picard–Lindelof theorem, this system has a

unique solution. Define t0 to be the first time such that Xt0 = X. Such t0 exists

and it is unique since L(X, a) > 0 for all X and a. Because the above system of

ODE is autonomous, without loss of generality, we can shift time by replacing t with

t̃ = t − t0 so that for t̃ = 0, Xt̃ = X. Thus, the training phase begins at t̃ = 0 and

ends that t̃ = T − t0.45 During this interval, the agent’s learning constraint binds,

45The assumption that τ is sufficiently large ensures that τ > T − t0.
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and the trajectories of Xt and µt satisfy (32). The agent’s wage and effort satisfies

(30) and (31), respectively. This completes the proofs for parts (i)-(iii) of the lemma.

We now show that this solution is in fact unique. The problem given in (26) is a

special case of the one studied by Hartl et al. (1995). We will apply their Corollary

8.2, which gives conditions such that trajectory of the state variable is unique. We

will then argue that this implies the trajectories of (wt, at, zt) are also unique. The

sufficient conditions given in Theorem 8.2 of Hartl et al. (1995) are identical to

Conditions (C.1-4), except that the requirement that f(X) is concave (from C.4) is

replaced by the requirement that the function

H0(X, pX , t) := max e−rt [u(wt)− d(at)] + βe−rt [f(X) + at − wt] + pXzt

s.t. wt ≥ c , at ∈ [0, a] , zt ≤ L(X, at).

is concave in X for any given pX and t. If in addition, H0(X, pX , t) is strictly concave

in X for any given pX and t, then by Corollary 8.2, the optimal trajectory of the

state variable Xt is unique. Notice that this is a static, convex program. By writing

the Lagrangian and observing that strong duality is satisfied, it is easy to verify that

H0(X, pX , t) is strictly concave in X using the facts that (a) f(X) is strictly concave,

(b) L(X, a) is additively separable in X and a, and (c) L(X, a) is concave in X.

Therefore, the trajectory of Xt is unique. Since zt = Ẋt, the trajectory of zt is also

unique. The first-order conditions, (30) and (31), which determine wt and at are

necessary; i.e., they must be satisfied in any optimal contract. Since the optimal

trajectory of wt depends solely on β, its uniqueness follows. Turning to the effort

path, because LX(X, a) does not depend on a, the trajectory of µt depends solely on

Xt, and it is hence unique. From (31) observe that at is uniquely determined by Xt

and µt, and hence its trajectory is also unique.

Observe that after T , the agent receives no training, a constant wage, and since

µt = 0, exerts constant effort which is implicitly defined by the equation d′(at) =

min {d′(a), β}. Moreover, the trajectories of (Xt, wt, at, zt) and the threshold T do not

depend on the horizon τ , provided that it is sufficiently long; i.e., τ > T . Therefore,

for any τ > T and any β > 0, the solution of (26) is identical. Therefore, this solution

also uniquely solves (26) when τ =∞.
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To complete the proof of Theorem 1, we now show that for an appropriately

chosen β ≥ 0, the solution of (26) solves the original problem, (I). For each β (and

τ = ∞), denote the solution of (26) for given β by (Xβ
t , w

β
t , a

β
t , z

β
t ), and define the

agent’s discounted payoff V (β) :=
∫∞
0
e−rt[u(wβt ) − d(aβt )] and their credit balance

Y (β) :=
∫∞
0
e−rt[f(Xβ

t ) + aβt − w
β
t ]dt. Notice that S(β) = V (β) + βY (β). We will

show that there exists a unique β∗ such that Y (β∗) = 0 which solves (I).

First, we claim that Y (β) is strictly increasing in β, while V (β) is strictly decreas-

ing in β. For any pair β and β′ we have

V (β′) + β′Y (β′) > V (β) + β′Y (β), and

V (β) + βY (β) > V (β′) + βY (β′).

Therefore,

β′ [Y (β′)− Y (β)] > V (β)− V (β′) > β [Y (β′)− Y (β)] ,

implying that Y (β′) > Y (β) if and only if β′ > β, that is, Y (β) is strictly increasing in

β. The above inequality chain also implies that for any β and β′ > β, V (β) > V (β′);

i.e., V (β) is strictly decreasing in β.

We will now argue that Y (β) single-crosses zero from below. First, consider the

case when β → 0. Because u is strictly increasing by assumption, limβ→0w
β
t = ∞,

while the corresponding effort remains bounded (since aβt ≤ a). Therefore, the agent’s

credit balance limβ→0 Y (β) = −∞. On other other hand, for β sufficiently large,

wβt ' 0 and aβt = a for all t. In this case, Y (β) '
∫∞
0
e−rt [f(Xt) + a] dt > 0

where Ẋt = L(Xt, a)I{Xt<X}. Moreover, because T and the trajectories of Xt, wt,

and at, which determine the credit balance Y (β), vary continuously with β, Y (β) is

continuous in β. Therefore, there exists a unique β∗ such that Y (β∗) = 0.

Finally, we argue that the solution to the relaxed problem (26) with β = β∗

solves the original problem, (I). Towards a contradiction, suppose there exists another

solution with four-tuple (X̃t, ãt, w̃t, z̃t) such that the agent’s payoff Ṽ ≥ V (β∗) and

(4) is satisfied. But then this implies that

Ṽ + β∗
∫ ∞
0

e−rt
[
f(X̃t) + ãt − w̃t

]
dt ≥ S(β∗),

which contradicts the fact that (Xβ∗

t , aβ
∗

t , w
β∗

t , z
β∗

t ) uniquely solves (26) when β =
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β∗.46

Proof of Proposition 1. We will show that C∗ is the unique solution to the problem

that is identical to (II) with the addition of the planner’s constraints, that is,

max
C

T∫
0

e−rt [f (Xt) + at − wt] dt (III)

s.t. (1), (2), (3)

zt ≥ 0, X0 = X, Xt ≤ X

at ∈ [0, a], wt ≥ c, T ≤ Tmax

at ≤ a∗t and wt ≥ w∗t for all t.

Let v∗0 denote the agent’s initial payoff under the contract C∗. By Theorem 2, C∗

uniquely solves problem (II) with v = v∗0, and by definition, the corresponding wage

and effort path satisfies the planner’s constraints. Let Π̂(v) denote the principal’s

expected payoff at t = 0 evaluated under the contract which uniquely solves problem

(II) given the agent’s initial outside option v.

Towards a contradiction, suppose there exists a contract C ′ that solves (III), yet

it does not coincide with C∗ almost everywhere. If C ′ prescribes a wage or effort path

that differs from w∗ or a∗, respectively, this contract must give the agent a strictly

higher initial payoff, that is, v′0 > v∗0. Since (II) is a relaxation of (III), the principal’s

payoff must be weakly smaller than Π̂(v′0). It follows from the last step of the proof

of Theorem 2 that Π̂(v) is strictly decreasing in v, and so Π̂(v′0) < Π̂(v∗0). Therefore,

the principal’s payoff under C ′ must be strictly smaller than Π̂(v∗0), contradicting the

premise that C ′ solves (III).

It remains to show that the principal will select a knowledge path that, for the

duration of the apprenticeship, coincides with X∗. To see why, observe that given

the effort and wage paths, any profit-maximizing knowledge path must maximize

the agent’s output subject to the learning and ongoing participation constraints. Per

46Because Y (β) is strictly increasing and V (β) is strictly decreasing in the multiplier β, by varying
this multiplier from β∗ to some β, it is possible to trace the entire Pareto frontier (in the absence of
commitment problems) subject to the agent’s initial participation constraint being satisfied and the
principal not making losses. It follows from Lemma 4 that for any such β, the optimal contract has
the same structure as that in Theorem 1, except for the (constant) wage wt that is different. (Note

that D̃t = µtLa(Xt, at) and the constant wage satisfies u′(wt) = β.)
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Theorem 2, X∗ grows at rate L(X∗t , a
∗
t ) whenever the ongoing participation constraint

is slack and at the zero-rent rate given in (8) whenever the ongoing participation

constraint binds; hence, it uniquely satisfies this criterion.

Proof of Proposition 2. We will show that the contract C∗∗ uniquely solves

max
C

∞∫
0

e−rt [f (Xt) + at − wt] dt (IV)

s.t. zt ≤ L(Xt, at)

v0 =

∞∫
0

e−rt [u(wt)− d(at)] dt ≥ v (33)

zt ≥ 0, X0 = X, Xt ≤ X

at ∈ [0, a], wt ≥ c

at ≤ a∗∗t and wt ≥ w∗∗t for all t. (34)

By construction, C∗∗ is feasible for (IV). Let v∗∗0 and Y ∗∗0 denote the agent’s initial

payoff and the principal’s profits under this contract. Because the planner’s con-

straints (34) bind under C∗∗ for all t, any effort and wage path that satisfies (34)

must give the agent a payoff at least as large as v∗∗0 . Given this observation, we will

consider a relaxation of (IV) where we replace (34) and the agent’s initial participa-

tion constraint v0 ≥ v with the constraint v0 ≥ v∗∗0 . Because C∗∗ is feasible for (IV),

if it uniquely solves this relaxed problem, then it also solves (IV) uniquely.

Towards solving this (relaxed) problem, consider, for a fixed multiplier γ ≥ 0, the

following (doubly-relaxed) optimal control problem:

S ′(γ) = max

∞∫
0

e−rt [f (Xt) + at − wt] dt+ γ

∞∫
0

e−rt [u(wt)− d(at)] dt (35)

s.t. Ẋt = zt

zt ≤ L(Xt, at)

X0 = X, Xt ≤ X

wt ≥ c, at ∈ [0, a].
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This problem is identical to (26) in the Online Appendix after substituting γ =

1/β, and Lemma 4 there shows that it has a unique solution. For every γ ≥
0, let Xγ, aγ and wγ denote the knowledge, effort, and wage path that solves

this problem, respectively, and define the corresponding principal’s payoff Y (γ) :=∫∞
0
e−rt [f (Xγ

t ) + aγt − w
γ
t ] dt and agent’s payoff V (γ) :=

∫∞
0
e−rt [u(wγt )− d(aγt )] dt.

By the last step of the proof of Theorem 1, Y (γ) is strictly decreasing in γ, while V (γ)

is strictly increasing in γ. Moreover, there exists a unique γ∗ such that Y (γ∗) = Y ∗∗0 .

By construction, V (γ∗) = v∗∗0 , and the solution corresponding to γ∗ is the contract

C∗∗.
Finally, we argue that C∗∗ solves the relaxed problem where we replaced (34)

and the agent’s initial participation constraint v0 ≥ v with the constraint v0 ≥ v∗∗0 .

Suppose instead there is another solution with four-tuple (X̃t, ãt, w̃t, z̃t) such that the

principal’s payoff Ỹ ≥ Y (γ∗) and the constraint ṽ0 ≥ v∗∗0 is satisfied. But this implies

that

Ỹ + γ∗
∞∫
0

e−rt [u(w̃t)− d(ãt)] dt ≥ S ′(γ∗),

contradicting the fact that C∗∗ uniquely solves (35) when γ = γ∗.47

47In the same way, the regulator can implement any Pareto efficient contract that gives the agent
initial utility v̂0 for any v̂0 ∈ [v, v∗∗0 ]. This follows from footnote 46 and the fact that Y (γ) is strictly
decreasing in γ, whereas V (γ) is strictly increasing in γ.
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