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Abstract. We propose strategies to estimate and make inference on key features of heterogeneous effects in ran-
domized experiments. These key features include best linear predictors of the effects on machine learning proxies, average
effects sorted by impact groups, and average characteristics of most and least impacted units. The approach is valid in high
dimensional settings, where the effects are proxied by machine learning methods. We post-process these proxies into
the estimates of the key features. Our approach is generic, it can be used in conjunction with penalized methods, deep
and shallow neural networks, canonical and new random forests, boosted trees, and ensemble methods. Estimation and
inference are based on repeated data splitting to avoid overfitting and achieve validity. For inference, we take medians
of p-values and medians of confidence intervals, resulting from many different data splits, and then adjust their nom-
inal level to guarantee uniform validity. This variational inference method, which quantifies the uncertainty coming
from both parameter estimation and data splitting, is shown to be uniformly valid for a large class of data generating
processes. We illustrate the use of the approach with a randomized field experiment that evaluated a combination of
nudges to stimulate demand for immunization in India.
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1. Introduction

Randomized Controlled Trials (RCT) and Machine Learning (ML) are arguably two of the most
important developments in data analysis methods for applied researchers. RCT play an important
role in the evaluation of social and economic programs, medical treatments and marketing (e.g.,
Imbens and Rubin, 2015; Duflo et al., 2007). ML is a name attached to a variety of new, constantly
evolving statistical learning methods including Random Forest, Boosted Trees, Neural Networks,
Penalized Regression, Ensembles, and Hybrids; see, e.g., Wasserman (2016) for a recent review, and
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Friedman et al. (2001) for a prominent textbook treatment. ML has become a key tool for prediction
and pattern recognition problems, surpassing classical methods in high dimensional settings.

At first blush, those two sets of methods may seem to have very different applications: in the
most basic randomized controlled experiment, there is a sample with a single treatment and a
single outcome. Covariates are not necessary and even linear regression is not the best way to
analyze the data (Imbens and Rubin, 2015). In practice however, applied researchers are often
confronted with more complex experiments. For example, there might be accidental imbalances
in the sample, which require select control variables in a principled way. ML tools, such as the lasso
method proposed in Belloni et al. (2014, 2017) or the double machine learning method proposed
in Chernozhukov et al. (2017), have proven useful for this purpose. Moreover, some complex RCT
designs have so many treatments combinations that ML methods may be useful to select the few
treatments that actually work and pool the rest with the control groups (Banerjee et al., 2019).
Finally, researchers and policy makers are often interested in features of the impact of the treatment
that go beyond the simple average treatment effects. In particular, very often, they want to know
whether the treatment effect depends on covariates, such as gender, age, etc. This heterogeneity
is essential to assess if the impact of the program would generalize to a population with different
characteristics, and, for economists, to better understand the driving mechanism behind the effects
of a particular program. In a review of 189 RCT published in top economic journals since 2006, we
found that 76 (40%) report at least one subgroup analysis, wherein they report treatment effects in
subgroups formed by baseline covariates.1

One issue with reporting treatment effects split by subgroups, however, is that there might be a
large number of potential ways to form subgroups. Often researchers collect rich baseline surveys,
which give them access to a large number of covariates: choosing subgroups ex-post opens the pos-
sibility of overfitting. To solve this problem, medical journals and the FDA require pre-registering
the sub-sample of interest in medical trials in advance. In economics, this approach has gained
some traction, with the adoption of pre-analysis plans, which can be filed in the AEA registry
for randomized experiments. Restricting the heterogeneity analysis to pre-registered subgroups,
however, amounts to throwing away a large amount of potentially valuable information, especially
now that many researchers collect large baseline data sets. It should be possible to use the data to
discover ex post whether there is any relevant heterogeneity in treatment effect by covariates.

To do this in a disciplined fashion and avoid the risk of overfitting, scholars have recently pro-
posed using ML tools (see e.g. Athey and Imbens (2017) and below for a review). Indeed, ML
tools seem to be ideal to explore heterogeneity of treatment effects, when researchers have access
to a potentially large array of baseline variables to form subgroups, and little guiding principles

1The papers were published in Quarterly Journal of of Economics, American Economic Review, Review of Economics Studies,
Econometrica and Journal of Political Economy. We than Karthik Mularidharan, Mauricio Romero and Kaspar Wüthrich
for sharing the list of papers they computed for another project.
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on which of those are likely to be relevant. Several recent papers, which we review below, develop
methods for detecting heterogeneity in treatment effects. Empirical researchers have taken notice.2

This paper develops a generic approach to use any of the available ML tools to predict and
make inference on heterogeneous treatment or policy effects. A core difficulty of applying ML
tools to the estimation of heterogenous causal effects is that, while they are successful in prediction
empirically, it is much more difficult to obtain uniformly valid inference, i.e. inference that remains
valid under a large class of data generating processes. In fact, in high dimensional settings, absent
strong assumptions, generic ML tools may not even produce consistent estimators of the conditional
average treatment effect (CATE), the difference in the expected potential outcomes between treated
and control states conditional on covariates.

Previous attempts to solve this problem focused either on specific tools (for example the method
proposed by Athey and Imbens (2016), which has become popular with applied researchers, and
uses trees), or on situations where those assumptions might be satisfied. Our approach to resolve
the fundamental impossibilities in non-parametric inference is different. Motivated by Genovese
and Wasserman (2008), instead of attempting to get consistent estimation and uniformly valid in-
ference on the CATE itself, we focus on providing valid estimation and inference on features of
CATE. We start by building a ML proxy predictor of CATE, and then target features of the CATE
based on this proxy predictor. In particular, we consider three objects, which are likely to be of in-
terest to applied researchers and policy makers: (1) Best Linear Predictor (BLP) of the CATE on the
ML proxy predictor; (2) Sorted Group Average Treatment Effects (GATES) or average treatment
effect by heterogeneity groups induced by the ML proxy predictor; and (3) Classification Analysis
(CLAN) or the average characteristics of the most and least affected units defined in terms of the
ML proxy predictor. Thus, we can find out if there is detectable heterogeneity in the treatment
effect based on observables, and if there is any, what is the treatment effect for different bins. And
finally we can describe which of the covariates are associated with this heterogeneity.

There is a trade-off between more restrictive assumptions or tools and a more ambitious estima-
tion. We chose a different approach to address this trade-off than previous papers: focus on coarser
objects of the function rather than the function itself, but make as little assumptions as possible.
This seems to be a worthwhile sacrifice: the objects for which we have developed inference appear
to us at this point to be the most relevant, but in the future, one could easily use the same approach
to develop methods to estimate other objects of interest. For example, Crepon et al. (2019) used the
same technique to construct and estimate a specific form of heterogeneity at the post-processing

2In the recent past, several new empirical papers in economics used ML methods to estimate heterogenous effects.
E.g. Rigol et al. (2016) showed that villagers outperform the machine learning tools when they predict heterogeneity
in returns to capital. Davis and Heller (2017) predicted who benefits the most from a summer internship projects.
Deryugina et al. (Forthcoming) used the methods developed in the present paper to evaluate the heterogeneity in the
effect of air pollution on mortality. Crepon et al. (2019) also built on the present paper to develop a methodology to
determine if the impact of two different programs can be accounted for by different selection. The methodological
papers reviewed later also contain a number of empirical applications.
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stage. Even then, as we will see, getting robust and conservative standard error for heterogeneity
requires a larger sample size than just estimating average treatment effects. This reflects a different
trade-off: if we don’t assume that we can predict ex ante where the heterogeneity might be (in which
case we can write it down in a pre-analysis plan), power will be lower, and detecting heterogeneity
will require a larger sample. This is a consideration that applied researchers will need to keep in
mind when designing and powering their experiments.

We apply our method to a large-scale RCT of nudges to encourage immunization in the state of
Haryana, Northern India, designed and discussed in Banerjee et al. (2019), an important practical
application in its own right. Immunization is generally recognized as one of the most effective and
cost effective ways to prevent illness, disability, and diseases. Yet, worldwide, close to 20 million
children every year do not receive critical immunizations (Unicef, 2019). While early policy efforts
have focused mainly on improving the infrastructure for immunization services, a more recent
literature suggests that “nudges” (such as small incentives, leveraging the social network, SMS re-
minders, social signalling, etc.) may have large effect on the use of those services.3 This project was
a collaboration with the government of Haryana, which was willing to experiment with a combi-
nation of nudges, with the goal of choosing the most effective policy and implement it at scale. It
built a custom vaccination platform, and ran a large scale experiment covering seven districts, 140
Primary health centers, 2,360 villages involved in the experiment (including 915 at risk for all the
treatments), and 295,038 children in the resulting data base. Immunization was very low at base-
line: in every single village of the district, the fraction of children whose parents had reported they
received the measles vaccine (the last in the sequence) was 39%, and only 19.4% had received the
vaccine before the age of 15 months, whereas the full sequence is supposed to be completed in one
year. The experiment was a cross randomized design of three main nudges: providing incentives,
sending SMS reminders, and seeding ambassadors. It included several variants for each policy:
the level and schedule of the incentives, the number of people receiving reminders, and mode of
selection of the ambassadors, leading to a large number (75) of finely differentiated bundles.

Banerjee et al. (2019) developed a methodology to identify the most effective and cost effec-
tive bundle of policies, based on an application of LASSO to a “smart pooling” specification that
imposes some structure on the bundles, and in particular, the idea that policy variants (level of in-
centives, or level of coverage of SMS reminders) may be indistinguishable in practice. They found
that the most cost-effective policy is to combine “information hubs” (people identified by others

3See, for example, Banerjee, Duflo, Glennerster, and Kothari (2010); Bassani, Arora, Wazny, Gaffey, Lenters, and
Bhutta (2013); Wakadha, Chandir, Were, Rubin, Obor, Levine, Gibson, Odhiambo, Laserson, and Feikin (2013); Johri,
Pérez, Arsenault, Sharma, Pai, Pahwa, and Sylvestre (2015); Oyo-Ita, Wiysonge, Oringanje, Nwachukwu, Oduwole, and
Meremikwu (2016); Gibson, Ochieng, Kagucia, Were, Hayford, Moulton, Levine, Odhiambo, O’Brien, and Feikin (2017);
Karing (2018); Domek, Contreras-Roldan, OâĂŹLeary, Bull, Furniss, Kempe, and Asturias (2016); Uddin, Shamsuzza-
man, Horng, Labrique, Vasudevan, Zeller, Chowdhury, Larson, Bishai, and Alam (2016); Regan, Bloomfield, Peters, and
Effler (2017); Alatas, Chandrasekhar, Mobius, Olken, and Paladines (2019); Banerjee, Chandrasekhar, Duflo, Dalpath,
Floretta, Jackson, Francine, Kannan, and Schrimpf (2020).
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as good at diffusing information) and SMS reminders. This is cheap and can be done everywhere.
In fact, they showed that this policy is the only one among those tested that would actually save
money to the government for each measles shot, while increasing immunization. But the most ef-
fective policy, i.e. the policy that increases immunization the most, is the combination of incentives,
immunization ambassadors, and SMS reminders, which is much more expensive. Yet, while this
policy increase the cost per immunization, the effects are important: in our sample, the number of
monthly measles shot (the last vaccine in the schedule, and thus a marker for full immunization)
delivered increases by 2.77, a 38% of the a control group that got neither SMS nor increasing in-
centives nor information hubs. The government was therefore interested in finding out where the
program would be most effective, to implement it only in those places even at the higher cost per
immunization.

The pre-analysis plan specified to look for heterogeneity by gender and by “Village-level base-
line/national census variables: including assets, beliefs, knowledge, and attitudes towards immu-
nization” but did not identify one or two specific baseline variables to look at: this reflected genuine
uncertainty (as is often the case). Many factors can influence policy impact, from attitudes to im-
plementation capabilities, to baseline levels, and we did not have a specific theory of where to look
for. It is precisely the type of context that requires a principled approach to avoid overfitting, and
provide a policy-relevant recommendation.4

The rest of the paper is organized as follows. Section 2 formalizes the framework, describes our
approach and compares it with the existing literature. Section 3 presents identification and esti-
mation strategies for the key features of the CATE of interest. Section 4 introduces our variational
inference method that accounts for uncertainty coming from parameter estimation and sample
splitting. Section 5 discusses practical considerations such as the choice of ML method, strati-
fied sample splitting and dealing with ML proxies with little variation, together with extensions
to other prediction and causal inference problems. Section 6 reports the results of the empirical
application and provides detailed implementation algorithms. Section 7 concludes with some re-
marks. The Appendix gathers the proofs of the main theoretical results, power calculations based
on numerical simulations, and additional technical results.

2. Our Agnostic Approach

2.1. The Model and Key Causal Functions. Let Y (1) and Y (0) be the potential outcomes in the
treatment state 1 and the non-treatment state 0 (see Neyman, 1923; Rubin, 1974). LetZ be a possibly
high-dimensional vector of covariates that characterize the observational units. The main causal
functions are the baseline conditional average (BCA):

b0(Z) := E[Y (0) | Z], (2.1)
4This approach of finding the best treatment, and then looking at where it works the best, gets closer to the idea of

“personalized medicine”. Using the same data, Agarwal et al. (2020) go one step further and use a “synthetic interven-
tion” approach to look for the policy that works the best for each kind of village.
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and the conditional average treatment effect (CATE):

s0(Z) := E[Y (1) | Z]− E[Y (0) | Z]. (2.2)

Suppose the binary treatment variableD is randomly assigned conditional on Z, with probabil-
ity of assignment depending only on a subvector of stratifying variables Z1 ⊆ Z, namely

D ⊥⊥ (Y (1), Y (0)) | Z, (2.3)

and the propensity score is known and is given by

p(Z) := P[D = 1 | Z] = P[D = 1 | Z1], (2.4)

which we assume is bounded away from zero or one:

p(Z) ∈ [p0, p1] ⊂ (0, 1). (2.5)

The observed outcome is Y = DY (1) + (1 −D)Y (0). Under the stated assumption, the causal
functions are identified by the components of the regression function of Y given D,Z:

Y = b0(Z) +Ds0(Z) + U, E[U | Z,D] = 0,

that is,
b0(Z) = E[Y | D = 0, Z], (2.6)

and
s0(Z) = E[Y | D = 1, Z]− E[Y | D = 0, Z]. (2.7)

We observe Data = (Yi, Zi, Di)
N
i=1, consisting of i.i.d. copies of the random vector (Y,Z,D)

having probability law P . The expectation with respect to P is denoted by E = EP . The probability
law of the entire data is denoted by P = PP and the corresponding expectation is denoted by
E = EP .

2.2. Properties of Machine Learning Estimators of s0(Z) Motivating the Agnostic Approach.
In modern high-dimensional settings, estimation and inference is challenging because the target
function z 7→ s0(z) lives in a very complex class. ML methods effectively explore various forms of
sparsity to yield “good” approximations to s0(z). In its simplest form, sparsity reduces the com-
plexity of z 7→ s0(z) by assuming that s0(z) can be well-approximated by a function that only
depends on a low-dimensional subset of z, making estimation and inference possible. As a re-
sult these methods often work much better than classical methods in high dimensional settings,
and have found widespread uses in industrial and academic applications. Sparsity, however, is
an untestable assumption that must be used with caution as often cannot be rooted in economic
arguments.

Without some form of sparsity, it is hard, if not impossible, to obtain uniformly valid inference on
z 7→ s0(z) using generic ML methods, under credible assumptions and practical tuning parameter
choices. There are several fundamental reasons as well as huge gaps between theory and practice
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that are responsible for this. One fundamental reason is that ML methods might not even produce
consistent estimators of z 7→ s0(z) in high dimensional settings. For example, if z has dimension d
and the target function z 7→ s0(z) is assumed to have p continuous and bounded derivatives, then
the worst case (minimax) lower bound on the rate of learning this function from a random sample
of sizeN cannot be better thanN−p/(2p+d) asN →∞, as shown by Stone (1982). Hence if p is fixed
and d is also small, but slowly increasing withN , such as d > logN , then there exists no consistent
estimator of z 7→ s0(z) generally.

Hence, generic ML estimators cannot be regarded as consistent, unless further assumptions are
made. Examples of such assumptions include structured forms of linear and non-linear sparsity
and super-smoothness.5 While these (sometime believable and yet untestable) assumptions make
consistent adaptive estimation possible (e.g., Bickel et al., 2009), inference remains a more difficult
problem, as adaptive confidence sets do not exist even for low-dimensional nonparametric prob-
lems (Low et al., 1997; Genovese and Wasserman, 2008).6 Indeed, adaptive estimators (including
modern ML methods) have biases of comparable or dominating order as compared to sampling
error. Further assumptions such as ”self-similarity” are needed to bound the biases and expand
the confidence bands by the size of bias to produce partly adaptive confidence bands. For more
traditional statistical methods there are constructions in this vein that make use of either under-
smoothing or bias-bounding arguments (Giné and Nickl, 2010; Chernozhukov et al., 2014). These
methods, however, are not yet available for ML methods in high dimensions; see, however, Hansen
et al. (2017) for a promising approach called ”targeted undersmoothing” in sparse linear models.

In this paper we take an agnostic view. We neither rely on any sparsity or super-smoothness
assumption nor impose conditions that make the ML estimators consistent. We simply treat ML
as providing proxy predictors for the objects of interest.

2.3. Our Approach. We propose strategies for estimation and inference on

key features of s0(Z) rather than s0(Z) itself.

Because of this difference in focus we can avoid making strong assumptions about the properties
of the ML estimators.

Let (M,A) denote a random partition of the set of indices {1, . . . , N}. The strategies that we
consider rely on random splitting of Data = (Yi, Di, Zi)

N
i=1 into a main sample, denoted by DataM

= (Yi, Di, Zi)i∈M , and an auxiliary sample, denoted by DataA = (Yi, Di, Zi)i∈A. We will sometimes

5The function z 7→ s0(z) is super-smooth if it has continuous and bounded derivatives of all orders.
6Let z 7→ s0(z) be a target function that lives in an infinite-dimensional class with unknown regularity s (e.g., smooth-

ness or degree of sparsity). Adaptive consistent estimation (resp. inference) for z 7→ s0(z) with respect to s is possible,
if there exists a consistent estimator (resp. valid confidence set) with a rate of covergence (resp. diameter) that changes
with s in a rate-optimal way.
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refer to these samples as M and A. We assume that the main and auxiliary samples are approxi-
mately equal in size, though this is not required theoretically. After splitting the sample, we carry
out two stages:

Stage 1: from the auxiliary sample A, we obtain ML estimators of the baseline and treatment
effects, which we call the proxy predictors,

z 7→ B(z) = B(z; DataA) and z 7→ S(z) = S(z; DataA).

These are possibly biased and noisy predictors of b0(z) and s0(z), and in principle, we do not even
require that they are consistent estimators of b0(z) and s0(z).

Stage 2: We post-process the proxies from Stage 1 to estimate and make inference on features of
the CATE z 7→ s0(z) in the main sample M . We condition on the auxiliary sample DataA, so we
consider these maps as frozen, when working with the main sample.

The key features of s0(Z) that we target include:

(1) Best Linear Predictor (BLP) of the CATE s0(Z) on the ML proxy predictor S(Z);

(2) Sorted Group Average Treatment Effects (GATES): average of s0(Z) (ATE) by heterogene-
ity groups induced by the ML proxy predictor S(Z);

(3) Classification Analysis (CLAN): average characteristics of the most and least affected units
defined in terms of the ML proxy predictor S(Z).

Our approach is generic with respect to the ML method being used, and is agnostic about its formal
properties.

We will make use of many splits of the data into main and auxiliary samples to produce robust
estimators. Our estimation and inference will systematically account for two sources of uncer-
tainty:

(I) Estimation uncertainty conditional on the auxiliary sample.

(II) Splitting uncertainty induced by random partitioning of the data into the main and auxil-
iary samples.

Because we account for the second source, we call the resulting collection of methods as variational
estimation and inference methods (VEINs). For point estimation, we report the median of the
estimated key features over different random splits of the data. For interval estimation, we take
the medians of many random conditional confidence sets and we adjust their nominal confidence
level to reflect the splitting uncertainty. We construct p-values by taking medians of many random
conditional p-values and adjust them to reflect the splitting uncertainty. Note that considering
many different splits and accounting for variability caused by splitting is very important. Indeed,
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with a single splitting practice, empiricists may unintentionally look for a ”good” data split, which
supports their prior beliefs about the likely results, thereby invalidating inference.7

2.4. Relationship to the Literature. We focus the review strictly on the literatures about estimation
and inference on heterogeneous effects and inference using sample splitting.

This work is related to the literature that uses linear and semiparametric regression methods for
estimation and inference on heterogeneous effects. Crump et al. (2008) developed tests of treat-
ment effect homogeneity for low-dimensional settings based on traditional series estimators of
the CATE. A semiparametric inference method for characterizing heterogeneity, called the sorted
effects method, was given in Chernozhukov et al. (2015). This approach does provide a full set
of inference tools, including simultaneous bands for percentiles of the CATE, but is strictly lim-
ited to the traditional semiparametric estimators of the regression and causal functions. Hansen
et al. (2017) proposed a sparsity based method called ”targeted undersmoothing” to perform infer-
ence on heterogeneous effects. This approach does allow for high-dimensional settings, but makes
strong assumptions on sparsity as well as additional assumptions that enable the targeted under-
smoothing. A related approach, which allows for simultaneous inference on many coefficients (for
example, inference on the coefficients corresponding to the interaction of the treatment with other
variables) was first given in Belloni et al. (2013) using a Z-estimation framework, where the number
of interactions can be very large; see also Dezeure et al. (2016) for a more recent effort in this direc-
tion, focusing on de-biased lasso in mean regression problems. This approach, however, still relies
on a strong form of sparsity assumptions. Zhao et al. (2017) proposed a post-selection inference
framework within the high-dimensional linear sparse models for the heterogeneous effects. The
approach is attractive because it allows for some misspecification of the model.

Another approach is to use tree-based and other methods. Imai and Ratkovic (2013) discussed
the use of a heuristic support-vector-machine method with lasso penalization for classification of
heterogeneous treatments into positive and negative ones. They used the Horvitz-Thompson trans-
formation of the outcome (e.g., as in Hirano et al., 2003; Abadie, 2005) such that the new outcome
becomes an unbiased, noisy version of CATE. Athey and Imbens (2016) made use of the Horvitz-
Thompson transformation of the outcome to inform the process of building causal trees, with the
main goal of predicting CATE. They also provided a valid inference result on average treatment
effects for groups defined by the tree leaves, conditional on the data split in two subsamples: one
used to build the tree leaves and the one to estimate the predicted values given the leaves. Like our
methods, this approach is essentially assumption-free. The difference with our generic approach
is that it is limited to trees and does not account for splitting uncertainty, which is important in
practical settings. Wager and Athey (2017) proposed a subsampling-based construction of a causal
random forest, providing valid pointwise inference for CATE (see also the review in Wager and

7This problem is “solved” by fixing the Monte-Carlo seed and the entire data analysis algorithm before the empirical
study. Even if such a huge commitment is really made and followed, there is a considerable risk that the resulting
data-split may be non-typical. Our approach also avoids taking this risk.
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Athey (2017) on prior uses of random forests in causal settings) for the case when covariates are
very low-dimensional (and essentially uniformly distributed).8 Unfortunately, this condition rules
out the typical high-dimensional settings that arise in many empirical problems, especially in cur-
rent RCT where the number of baseline covariates is potentially very large.

Our approach is different from these existing approaches, in that we are changing the target,
and instead of hunting for CATE z 7→ s0(z), we focus on key features of z 7→ s0(z). We simply
treat the ML methods as providing a proxy predictor z 7→ S(z), which we post-process to esti-
mate and make inference on the key features of the CATE z 7→ s0(z). Some of our strategies rely
on Horvitz-Thompson transformations of the outcome and some do not. The inspiration for our
approach draws upon an observation in Genovese and Wasserman (2008), namely that some fun-
damental impossibilities in non-parametric inference could be avoided if we focus inference on
coarser features of the non-parametric functions rather than the functions themselves.

The idea of using a “hold out” sample to validate the result of a ML procedure to discover het-
erogeneity was suggested in Davis and Heller (2017), who used the method proposed in Wager and
Athey (2017) and compared their results to the heterogeneity in a hold out sample. Our inference
approach is different because it calls for multiple splits. This procedure itself is also of independent
interest, and could be applied to many problems, where sample splitting is used to produce ML
predictions (e.g., Abadie et al., 2017). Related references include Wasserman and Roeder (2009)
and Meinshausen et al. (2009), where the ideas are related but the details are quite different, as we
shall explain below. The premise is the same, however, as in Meinshausen et al. (2009) and Rinaldo
et al. (2016) – we should not rely on a single random split of the data and should adjust inference
in some way. Our approach takes the medians of many conditional confidence intervals as the
confidence interval and the median of many conditional p-values as the p-value, and adjusts their
nominal levels to account for the splitting uncertainty. Our construction of p-values builds upon
ideas in Benjamini and Hochberg (1995) and Meinshausen et al. (2009), though what we propose is
radically simpler, and our confidence intervals appear to be brand new. Of course sample splitting
ideas are classical, going back to Hartigan (1969); Kish and Frankel (1974); Barnard (1974); Cox
(1975); Mosteller and Tukey (1977), though having been mostly underdeveloped and overlooked
for inference, as characterized by Rinaldo et al. (2016).

8The dimension d is fixed in Wager and Athey (2017); the analysis relies on the Stone’s model with smoothness index
β = 1, in which no consistent estimator exists once d > logn. It’d be interesting to establish consistency properties and
find valid inferential procedures for the random forest in high-dimensional (d ∝ n or d� n) approximately sparse cases,
with continuous and categorical covariates, but we are not aware of any studies that cover such settings, which are of
central importance to us.
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3. Main Identification Results and Estimation Strategies

3.1. BLP of CATE. We consider two strategies for identifying and estimating the best linear pre-
dictor of s0(Z) using S(Z):

BLP[s0(Z) | S(Z)] := arg min
f(Z)∈Span(1,S(Z))

E[s0(Z)− f(Z)]2,

which, if exists, is defined by projecting s0(Z) on the linear span of 1 and S(Z) in the space L2(P ).

First Strategy. Here we shall identify the coefficients of the BLP from the weighted linear projec-
tion:

Y = α′X1 + β1(D − p(Z)) + β2(D − p(Z))(S − ES) + ε, E[w(Z)εX] = 0, (3.1)

where S := S(Z), w(Z) = {p(Z)(1 − p(Z))}−1, X := (X1, X2), X1 := X1(Z), e.g., X1 = [1, B(Z)],

and X2 := [D − p(Z), (D − p(Z))(S − ES)]. Note that the above equation uniquely pins down β1
and β2 under weak assumptions.

The interaction (D− p(Z))(S −ES) is orthogonal toD− p(Z) under the weight w(Z) and to all
other regressors that are functions of Z under any Z-dependent weight.9

A consequence is our first main identification result, namely that

β1 + β2(S(Z)− ES) = BLP[s0(Z) | S(Z)],

in particular β1 = Es0(Z) and β2 = Cov(s0(Z), S(Z))/Var(S(Z)).

Theorem 3.1 (BLP 1). Consider z 7→ S(z) and z 7→ B(z) as fixed maps. Assume that Y andX have finite
second moments, EXX ′ is full rank, and Var(S(Z)) > 0. Then, (β1, β2) defined in (3.1) also solves the
best linear predictor/approximation problem for the target s0(Z):

(β1, β2)
′ = arg min

b1,b2
E[s0(Z)− b1 − b2(S(Z)− ES(Z))]2,

in particular β1 = Es0(Z) and β2 = Cov(s0(Z), S(Z))/Var(S(Z)).

The identification result is constructive. We can base the corresponding estimation strategy on
the empirical analog:

Yi = α̂′X1i + β̂1(Di − p(Zi)) + β̂2(Di − p(Zi))(Si − EN,MSi) + ε̂i, i ∈M,

EN,M [w(Zi)ε̂iXi] = 0,

9The orthogonalization ideas embedded in this strategy do have classical roots in econometrics (going back to at
least Frisch and Waugh in the 30s), and similar strategies underlie the orthogonal or double machine learning approach
(DML) in Chernozhukov et al. (2017). Our paper has different goals than DML, attacking the problem of inference on
heterogeneous effects without rate and even consistency assumptions. The strategy here is more nuanced in that we
are making it work under misspecification or inconsistent learning, which is likely to be true in very high-dimensional
problems.
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where EN,M denotes the empirical expectation with respect to the main sample, i.e.

EN,Mg(Yi, Di, Zi) := |M |−1
∑
i∈M

g(Yi, Di, Zi).

The properties of this estimator, conditional on the auxilliary data, are well known and follow as
a special case of Lemma B.1 in the Appendix.

Comment 3.1 (Main Implications of the result). If S(Z) is a perfect proxy for s0(Z), then β2 = 1.

In general, β2 6= 1, correcting for noise in S(Z). If S(Z) is complete noise, uncorrelated to s0(Z),
then β2 = 0. Furthermore, if there is no heterogeneity, that is s0(Z) = s, then β2 = 0. Rejecting the
hypothesis β2 = 0 therefore means that there is both heterogeneity in s0(Z) and S(Z) is a relevant
predictor. �

Figure 1 provides two examples. The left panel shows a case without heterogeneity in the CATE
where s0(Z) = 0, whereas there right panel shows a case with strong heterogeneity in the CATE
where s0(Z) = Z. In both cases we evenly split 1,000 observations between the auxiliary and main
samples, Z is uniformly distributed in (−1, 1), b0(Z) = 3Z, U is normally distributed with variance
0.5 independently ofZ, and the proxy predictor S(Z) is estimated by random forest in the auxiliary
sample following the standard implementation, see e.g. Friedman et al. (2001). When there is
no heterogeneity, post-processing the ML estimates helps reducing sampling noise bringing the
estimated BLP close to the true BLP; whereas under strong heterogeneity the signal in the ML
estimates dominates the sampling noise and the post-processing has little effect.

Comment 3.2 (Digression: Naive Strategy that is not Quite Right). It is tempting and “more natu-
ral” to estimate

Y = α̃1 + α̃2B + β̃1D + β̃2D(S − ES) + ε, E[εX̃] = 0,

where X̃ = (1, B,D,D(S−ES)). This is a good strategy for predicting the conditional expectation
of Y given Z and D. But, β̃2 6= β2, and β̃1 + β̃2(S − ES) is not the best linear predictor of s0(Z). �

Second Strategy. The second strategy to identify the BLP of CATE makes use of the Horvitz-
Thompson transformation:

H = H(D,Z) =
D − p(Z)

p(Z)(1− p(Z))
.

It is well known that the transformed response Y H provides an unbiased signal about CATE:

E[Y H | Z] = s0(Z)

and it follows that
BLP[s0(Z) | S(Z)] = BLP[Y H | S(Z)].

This simple strategy is completely fine for identification purposes, but can severely underperform
in estimation and inference due to lack of precision. We can repair the deficiencies by considering,
instead, the linear projection:

Y H = µ′X1H + β1 + β2(S − ES) + ε̃, Eε̃X̃ = 0, (3.2)
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Figure 1. Example. In the left panel we have a homogeneous CATE s0(Z) = 0; in
the right panel we have heterogeneous CATE s0(Z) = Z. The proxy predictor S(Z)

is produced by the Random Forest, shown by green line, the true BLP of CATE is
shown by black line, and the estimated BLP of CATE is shown by blue line. The
true and estimated BLP of CATE are more attenuated towards zero than the proxy
predictor.

where B := B(Z), S := S(Z), X̃ := (X ′1H, X̃
′
2)
′, X̃2 = (1, (S − ES)′)′, and X1 = X1(Z), e.g.

X1 = B(Z) or X1 = (B(Z), S(Z), p(Z))′. The terms X1 are present in order to reduce noise.

We show that, as a complementary main identification result,

β1 + β2(S − ES) = BLP[s0(Z) | S(Z)].

Theorem 3.2 (BLP 2). Consider z 7→ S(z) and z 7→ B(z) as fixed maps. Assume that Y has finite second
moments, X̃ = (X1H, 1, (S − ES)) is such that EX̃X̃ ′ is finite and full rank, and Var(S(Z)) > 0. Then,
(β1, β2) defined in (3.2) solves the best linear predictor/approximation problem for the target s0(Z):

(β1, β2)
′ = arg min

b1,b2
E[s0(Z)− b1 − b2(S(Z)− ES(Z))]2,

in particular β1 = Es0(Z) and β2 = Cov(s0(Z), S(Z))/Var(S(Z)).

The corresponding estimator is defined through the empirical analog:

YiHi = µ̂′X1iHi + β̂1 + β̂2(Si − EN,MSi) + ε̂i, EN,M ε̂iX̃i = 0,
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and the properties of this estimator, conditional on the auxiliary data, are well known and given
in Lemma B.1.

Comment 3.3 (Comparison of Estimation Strategies). A natural question that may arise is whether
the two estimation strategies proposed can be ranked in terms of asymptotic efficiency. The answer
is negative. We show in Appendix C that they produce estimators that have the same distribution
in large samples.

3.2. GATES. The target parameters are

E[s0(Z) | G],

where G is an indicator of group membership.

Comment 3.4. There are many possibilities for creating groups based upon ML tools applied to
the auxiliary data. For example, one can group or cluster based upon predicted baseline response
as in the “endogenous stratification” analysis (Abadie et al., 2017), or based upon actual predicted
treatment effect S. We focus on the latter approach for defining groups, although our identification
and inference ideas immediately apply to other ways of defining groups, and could be helpful in
these contexts.

We build the groups to explain as much variation in s0(Z) as possible

Gk := {S ∈ Ik}, k = 1, ...,K,

where Ik = [`k−1, `k) are non-overlaping intervals that divide the support ofS into regions [`k−1, `k)

with equal or unequal masses:

−∞ = `0 < `1 < . . . < `K = +∞.

The parameters of interest are the Sorted Group Average Treatment Effects (GATES):

E[s0(Z) | Gk], k = 1, . . . ,K.

Given the definition of groups, it is natural for us to impose the monotonicity restriction

E[s0(Z) | G1] 6 ... 6 E[s0(Z) | GK ],

which holds asymptotically if S(Z) is consistent for s0(Z) and the latter has an absolutely continu-
ous distribution. Under the monotonicity condition, the estimates could be rearranged to obey the
weak monotonicity condition, improving the precision of the estimator. The joint confidence inter-
vals could also be improved by intersecting them with the set of monotone functions. Furthermore,
as before, we can test for homogeneous effects, s0(Z) = s, by testing whether,

E[s0(Z) | G1] = ... = E[s0(Z) | GK ].
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First Strategy. Here we shall recover the GATES parameters from the weighted linear projection
equation:

Y = α′X1 +

K∑
k=1

γk · (D − p(Z)) · 1(Gk) + ν, E[w(Z)νW ] = 0, (3.3)

for B := B(Z), S := S(Z), W = (X ′1,W
′
2)
′, and W2 = ({(D − p(Z))1(Gk)}Kk=1)

′.

The presence ofD−p(Z) in the interaction (D−p(Z))1(Gk) orthogonalizes this regressor relative
to all other regressors that are functions of Z. The controls X1, e.g. B, can be included to improve
precision.

The second main identification result is that the projection coefficients γk are the GATES
parameters:

γ = (γk)
K
k=1 = (E[s0(Z) | Gk])Kk=1.

Given the identification strategy, we can base the corresponding estimation strategy on the fol-
lowing empirical analog:

Yi = α̂′X1i + γ̂′W2i + ν̂i, i ∈M, EN,M [w(Zi)ν̂iWi] = 0. (3.4)

The properties of this estimator, conditional on the auxilliary data, are well known and stated as
a special case of Lemma B.1. A formal statement appears below, together with a complementary
result.

Figure 2 provides two examples using the same designs as in fig. 1. Post-processing the ML
estimates again has stronger effect when there is no heterogeneity, but in both cases help bring the
estimated GATES close to the true GATES.

Second Strategy. Here we employ linear projections on Horvitz-Thompson transformed variables
to identify the GATES:

Y H = µ′X1H +
K∑
k=1

γk · 1(Gk) + ν, E[νW̃ ] = 0, (3.5)

for B := B(Z), S := S(Z), W̃ = (X ′1H, W̃
′
2), W̃ ′2 = ({1(Gk)}Kk=1).

Again, we show that the projection parameters are GATES:

γ = (γk)
K
k=1 = (E[s0(Z) | Gk])Kk=1.

Given the identification strategy, we can base the corresponding estimation strategy on the fol-
lowing empirical analog:

YiHi = µ̂′X1iHi + γ̂′W̃2i + ν̂i, i ∈M, EN,M [ν̂iW̃i] = 0. (3.6)
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Figure 2. In the left panel we have the homogeneous CATE s0(Z) = 0; in the right
panel we have heterogeneous CATE s0(Z) = Z. The proxy predictor S(Z) for CATE
is produced by the random forest, whose sorted averages by groups are shown as
red dots, exhibiting large biases. These are the naive estimates. The true sorted
group average treatment effects (GATES) E[s0(Z) | Gk] are shown by black dots, and
estimated GATES are shown by blue dots. The true and estimated GATES correct
for the biases relative to the naive strategy shown in red. The estimated GATES
shown by blue dots are always closer to the true GATEs shown by black dots than
the naive estimates shown in red.

The properties of this estimator, conditional on the auxiliary data, are well known and given in
Lemma B.1. The resulting estimator has similar performance to the previous estimator, and under
some conditions their first-order properties coincide.

The following is the formal statement of the identification result.

Theorem 3.3 (GATES). Consider z 7→ S(z) and z 7→ B(z) as fixed maps. Assume that Y has finite
second moments and theW ’s and W̃ defined above are such that EWW ′ and EW̃W̃ ′ are finite and have full
rank. Consider γ = (γk)

K
k=1 defined by the weighted regression equation (3.3) or by the regression equation

(3.5). These parameters defined in two different ways are equivalent and are equal to the expectation of s0(Z)

conditional on the proxy group Gk = {S ∈ Ik}:

γk = E[s0(Z) | Gk].
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3.3. Classification Analysis (CLAN). When the BLP and GATES analyses reveal substantial het-
erogeneity, it is interesting to know the properties of the subpopulations that are most and least
affected. Here we focus on the “least affected group” G1 and “most affected group” GK . Under
the monotonicity assumption, it is reasonable that the first and the last groups are the most and
least affected, where the labels “most” and “least” can be swapped depending on the context.

Let g(Y,Z) be a vector of characteristics of an observational unit. The parameters of interest are
the average characteristics of the most and least affected groups:

δ1 = E[g(Y,Z) | G1] and δK = E[g(Y, Z) | GK ].

The parameters δK and δ1 are identified because they are averages of variables that are directly
observed. We can compare δK and δ1 to quantify differences between the most and least affected
groups and single out the covariates that are associated with the heterogeneity in the CATE. We
call this type of comparisons as classification analysis or CLAN.

4. ”Variational” Estimation and Inference Methods

4.1. Estimation and Inference: The Generic Targets. Let θ denote a generic target parameter or
functional, for example,

• θ = β2 is the heterogeneity predictor loading parameter;

• θ = β1 + β2(S(z)− ES) is the “personalized” prediction of s0(z);

• θ = γk is the expectation of s0(Z) for the group Gk;

• θ = γK−γ1 is the difference in the expectation of s0(Z) between the most and least affected
groups;

• θ = δK − δ1 is the difference in the expectation of the characteristics of the most and least
impacted groups.

4.2. Quantification of Uncertainty: Two Sources. There are two principal sources of sampling
uncertainty:

(I) Estimation uncertainty regarding the parameter θ, conditional on the data split;

(II) Uncertainty or ”variation” induced by the data splitting.

Conditional on the data split, quantification of estimation uncertainty is standard. To account
for uncertainty with respect to the data splitting, it makes sense to examine the robustness and
variability of the estimates/confidence intervals with respect to different random splits. One of our
goals is to develop methods, which we call ”variational estimation and inference” (VEIN) methods,
for quantifying this uncertainty. These methods can be of independent interest in many settings
where the sample splitting is used.
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Quantifying Source (I): Conditional Inference. We first recognize that the parameters implicitly
depend on

DataA := {(Yi, Di, Xi)}i∈A,

the auxiliary sample, used to create the ML proxies B = BA and S = SA. Here we make the
dependence explicit: θ = θA.

All of the examples admit an estimator θ̂A such that under mild assumptions,

θ̂A | DataA ∼a N(θA, σ̂
2
A),

in the sense that, as |M | → ∞,

P(σ̂−1A (θ̂A − θA) 6 z | DataA)→P Φ(z).

Implicitly this requires DataA to be ”sufficiently regular”, and this should happen with high prob-
ability.

As a consequence, the confidence interval (CI)

[LA, UA] := [θ̂A ± Φ−1(1− α/2)σ̂A]

covers θA with approximate probability 1− α:

P[θA ∈ [LA, UA] | DataA] = 1− α− oP (1).

This leads to straighforward conditional inference, which does not account for the sample splitting
uncertainty.

Quantifying Source (II): “Variational” Inference. Different partitions (A,M) of {1, ..., N} yield
different targets θA. Conditional on the data, we treat θA as a random variable, since (A,M) are
random sets that form random partitions of {1, . . . , N} into samples of size |M | and |A| = N −
|M |. Different partitions also yield different estimators θ̂A and approximate distributions for these
estimators. Hence we need a systematic way of treating the randomness in these estimators and
their distributions.

Comment 4.1. In cases where the data sets are not large, it may be desirable to restrict attention to
balanced partitions (A,M), where the proportion of treated units is equal to the designed propen-
sity score.

We want to quantify the uncertainty induced by the random partitioning. Conditional on Data,
the estimated θ̂A is still a random variable, and the confidence band [LA, UA] is a random set. For
reporting purposes, we instead would like to report an estimator and confidence set, which are
non-random conditional on the data.
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Adjusted Point and Interval Estimators. Our proposal is as follows. As a point estimator,
we shall report the median of θ̂A as (A,M) vary (as random partitions):

θ̂ := Med[θ̂A | Data].

This estimator is more robust than the estimator based on a single split. To account for parti-
tion uncertainty, we propose to report the following confidence interval (CI) with the nominal
confidence level 1− 2α:

[l, u] := [Med[LA | Data],Med[UA | Data]].

Note that the price of splitting uncertainty is reflected in the discounting of the confidence level
from 1 − α to 1 − 2α. Alternatively, we can report the confidence interval based on inversion
of a test based upon p-values, constructed below.

The above estimator and confidence set are non-random conditional on the data. The confi-
dence set reflects the uncertainty created by the random partitioning of the data into the main and
auxilliary data.

Comment 4.2. For a random variable X with law PX we define:

Med(X) := inf{x ∈ R : PX(X 6 x) > 1/2}, Med(X) := sup{x ∈ R : PX(X > x) > 1/2},

Med(X) := (Med(X) + Med(X))/2.

Note that the lower median Med(X) is the usual definition of the median. The upper median
Med(X) is the next distinct quantile of the random variable (or it is the usual median after reversing
the order onR). For example, whenX is uniform on {1, 2, 3, 4}, then Med(X) = 2 and Med(X) = 3;
and if X is uniform on {1, 2, 3}, then Med(X) = Med(X) = 2. For continuous random variables
the upper and lower medians coincide. For discrete random variables they can differ, but the
differences will be small for variables that are close to being continuous. �

Suppose we are testing H0 : θA = θ0 against H1 : θA < θ0, conditional on the auxiliary data,
then the p-value is given by

pA = Φ(σ̂−1A (θ̂A − θ0)).

The p-value for testing H0 : θA = θ0 against H1 : θA > θ0, is given by pA = 1− Φ(σ̂−1A (θ̂A − θ0)).

Under the null hypothesis pA is approximately distributed as the uniform variable, pA ∼ U(0, 1),
conditional on DataA. Note that, conditional on Data, pA still has randomness induced by random
partitioning of the data, which we need to address.
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Adjusted P-values. We say that testing the null hypothesis, based on the p-values pA, that
are random conditional on data, has significance level α if

P(pA 6 α/2 | Data) > 1/2 or p.5 = Med(pA | Data) 6 α/2.

That is, for at least 50% of the random data splits, the realized p-value pA falls below the level
α/2. Hence we can call p = 2p.5 the sample splitting-adjusted p-value, and consider its small
values as providing evidence against the null hypothesis.

Comment 4.3. Our construction of p-values builds upon the false-discovery-rate type adjustment
ideas in Benjamini and Hochberg (1995) and Meinshausen et al. (2009), though what we propose
is much simpler, and is minimalistic for our problem, whereas the idea of our confidence intervals
below appears to be new. �

The main idea behind this construction is simple: the p-values are distributed as marginal uni-
form variables {Uj}j∈J , and hence obey the following property.

Lemma 4.1 (A Property of Uniform Variables). Consider M , the (usual, lower) median of a sequence
{Uj}j∈J of uniformly distributed variables, Uj ∼ U(0, 1) for each j ∈ J , where variables are not necessarily
independent. Then,

P(M 6 α/2) 6 α.

Proof. Let M denote the median of {Uj}j∈J . Then M 6 α/2 is equivalent to |J |−1
∑

j∈J [1(Uj 6

α/2)]− 1/2 > 0. So
P[M 6 α/2] = E1{|J |−1

∑
j∈J

[1(Uj 6 α/2)] > 1/2}.

By Markov inequality this is bounded by

2E|J |−1
∑
j∈J

[1(Uj 6 α/2)] 6 2E[1(Uj 6 α/2)] 6 2α/2 = α.

where the last inequality holds by the marginal uniformity.10
�

Main Inference Result: Variational P-values and Confidence Intervals. We present a formal re-
sult on adjusted p-values using this condition:

PV. Suppose that A is a set of regular auxiliary data configurations such that for all x ∈ [0, 1],
under the null hypothesis:

sup
P∈P
|PP [pA 6 x | DataA ∈ A]− x| 6 δ = o(1),

10The inequality is tight in the sense that it can hold with equality. For example, if J = {1, 2} and U2 = 1−U1, then
M = U1 ∧ (1− U1) and P[M 6 α/2] = α.
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and infP∈P PP [DataA ∈ A] =: 1 − γ = 1 − o(1). In particular, suppose that this holds for
the p-values

pA = Φ(σ̂−1A (θ̂A − θA)) and pA = 1− Φ(σ̂−1A (θ̂A − θA)).

Lemma B.1 shows that this condition is plausible for the least squares estimators defined in the
previous section under mild conditions.

Theorem 4.1 (Uniform Validity of Variational P-Value). Under condition PV and the null hypothesis
holding,

PP (p.5 6 α/2) 6 α+ 2(δ + γ) = α+ o(1),

uniformly in P ∈ P .

In order to establish the properties of the confidence interval [l, u], we first consider the proper-
ties of the related confidence interval, which is based on the inversion of the p-value based tests:

CI := {θ ∈ R : pu(θ) > α/2, pl(θ) > α/2}, (4.1)

for α < .25 , where, for σ̂A > 0,

pl(θ) := Med(1− Φ[σ̂−1A (θ̂A − θ)] | Data), (4.2)

pu(θ) := Med(Φ[σ̂−1A (θ̂A − θ)] | Data). (4.3)

The confidence interval CI has the following representation in terms of the medians of t-statistics
implied by the proof Theorem 4.2 stated below:

CI =

θ ∈ R :
Med

[
θ−θ̂A
σ̂A
− Φ−1(1− α/2) | Data

]
< 0

Med
[
θ−θ̂A
σ̂A

+ Φ−1(1− α/2) | Data
]
> 0

 . (4.4)

This CI can be (slightly) tighter than [l, u], while the latter is much simpler to construct.

The following theorem establishes that both confidence sets maintain the approximate confi-
dence level 1− 2α.

Theorem 4.2 (Uniform Validity of Variational Confidence Intervals). CI can be represented as (4.4)
and CI ⊆ [l, u], and under condition PV,

PP (θA ∈ CI) > 1− 2α− 2(δ + γ) = 1− 2α− o(1),

uniformly in P ∈ P .

5. Other Considerations and Extensions

5.1. Choosing the Best ML Method Targeting CATE in Stage 1. . There are several options. The
best ML method can be chosen using the auxiliary sample, based on either (a) the ability to predict
Y H using BH and S or (b) the ability to predict Y using B and (D − p(Z))(S − E(S)) under the
weight w(Z) (as in the first type of strategies we developed earlier). To be specific, we can solve
either of the following problems:
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(a) Minimize the errors in the prediction of Y H on BH and S:

(B,S) = arg min
B∈B,S∈S

∑
i∈A

[YiHi −B(Zi)Hi − S(Zi)]
2,

where B and S are parameter spaces for z 7→ B(z) and z 7→ S(z).
(b) Minimize the errors in the weighted prediction of Y on B and (D − p(Z))(S − E(S)):

(B,S) = arg min
B∈B,S∈S

∑
i∈A

w(Zi)[Yi −B(Zi)− (Di − p(Zi)){S(Zi)− S̄(Zi)}]2,

where S̄(Zi) = |A|−1
∑

i∈A S(Zi) and B and S are parameter spaces for z 7→ B(z) and
z 7→ S(z).

This idea improves over simple but inefficient strategy of predicting Y H just using S, which have
been suggested before for causal inference. It also improves over the simple strategy that predicts
Y using B andDS (which chooses the best predictor for E[Y | D,Z] in a given class but not neces-
sarily the best predictor for CATE s0(Z)). Note that this idea is new and is of major independent
interest. This approach works well when there is clearly a ML method that dominates the others –
so that we choose the best method with probability approaching 1.11

5.2. Choosing the Best ML Method BLP Targeting CATE in Stage 2. The best ML method can
also be chosen in the main sample by maximizing

Λ := |β2|2Var(S(Z)) = Corr2(s0(Z), S(Z))Var(s0(Z)). (5.1)

Maximizing Λ is equivalent to maximizing the correlation between the ML proxy predictor S(Z)

and the true score s0(Z), or equivalent to maximizing the R2 in the regression of s0(Z) on S(Z).

5.3. Choosing the Best ML Method GATES Targeting CATE in Stage 2. Analogously, for GATES
the best ML method can also be chosen in the main sample by maximizing

Λ̄ = E

(
K∑
k=1

γk1(S ∈ Ik)

)2

=
K∑
k=1

γ2kP(S ∈ Ik). (5.2)

This is the part of variation of s0(z), Es20(Z), explained by S̄(Z) =
∑K

k=1 γk1(S(Z) ∈ Ik). Hence
choosing the ML proxy S(Z) to maximize Λ̄ is equivalent to maximizing the R2 in the regression
of s0(Z) on S̄(Z) (without a constant). If the groups Gk = {S ∈ Ik} have equal size, namely
P(S(Z) ∈ Ik) = 1/K for each k = 1, ...,K, then

Λ̄ =
1

K

K∑
k=1

γ2k .

11 When this is not the case, we could still formal inference using the conservative Bonferroni approach.
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5.4. Stratified Splitting. The idea is to balance the proportions of treated and untreated in both
A and M samples, so that the proportion of treated is equal to the experiment’s propensity scores
across strata. This formally requires us to replace the i.i.d. assumption by an i.n.i.d. assumption
(independent but not identically distributed observations) when accounting for estimation uncer-
tainty, conditional on the auxiliary sample. This makes the notation more complicated, but the
results in Lemma B.1 still go through with notational modifications.

5.5. When Proxies have Little Variation. The analysis may generate proxy predictors S that have
little variation, so we can think of them as “weak”, which makes the parameterβ2 weakly identified.
We can either add small noise to the proxies (jittering), so that inference results go through, or we
may switch to testing rather than estimation. For practical reasons, we prefer the jittering approach.

5.6. Potential Applications to Prediction and Causal Inference Problems. Our inference approach
generalizes to any problem of the following sort.

Generalization. Suppose we can construct an unbiased signal Ỹ such that

E[Ỹ | Z] = s0(Z),

where s0(Z) is now a generic target function. Let S(Z) denote an ML proxy for s0(Z). Then,
using previous arguments, we immediately can generate the following conclusions:

(1) The projection of Ỹ on the ML proxy S(Z) identifies the BLP of s0(Z) on S(Z).
(2) The grouped average of the target (GAT) E[s0(Z) | Gk] is identified by E[Ỹ | Gk].
(3) Using ML tools we can train proxy predictors S(Z) to predict Ỹ in auxiliary samples.
(4) We can post-process S(Z) in the main sample, by estimating the BLP and GATs.
(5) We can perform variational inference on functionals of the BLP and GATs.

The noise reduction strategies, like the ones we used in the context of H-transformed outcomes,
can be useful in these cases, but their constructions depend on the context.

Example 1. Forecasting or Predicting Regression Functions using ML proxies. This is the most
common type of the problem arising in forecasting. Here the target is the best predictor of Y using
Z, namely s0(Z) = E[Y | Z], and Ỹ = Y trivially serves as the unbiased signal. The interesting part
here is the use of the variational inference tools developed in this paper for constructing confidence
intervals for the predicted values produced by the estimated BLP of s0(Z) using S(Z).

Example 2. Predicting Structural Derivatives using ML proxies. Suppose we are interested in
predicting the conditional average partial derivative s0(z) = E[g′(X,Z) | Z = z], where g′(x, z) =

∂g(x, z)/∂x and g(x, z) = E[Y | X = x, Z = z]. In the context of demand analysis, Y is the log
of individual demand, X is the log-price of a product, and Z includes prices of other products
and individual characteristics. Then, the unbiased signal is given by Ỹ = −Y [∂ log p(X | Z)/∂x],
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where p(· | ·) is the conditional density function of X given Z, which we assume is known. That
is, E[Ỹ | Z] = s0(Z) under mild conditions on the density using the integration by parts formula.

6. Application: Where are nudges for immunization the most effective?

We apply our methods to a RCT in India that was conducted to improve immunization, and
provide a detailed implementation algorithm.

Immunization is widely believed to be one of the most cost-effective ways to save children lifes.
Much progress has been made in increasing immunization coverage since the 1990s. For example,
according to the World Health Organization (WHO), global measles deaths have decreased by 73%
from 536,000 estimated deaths in 2000 to 142,000 in 2018. In the last few years, however, global
vaccination coverage has remained stuck, around 85% (until the COVID-19 epidemics, when they
plummeted). In 2018, 19.7 million children under the age of one year did not receive basic vaccines.
Around 60% of these children lived in ten countries: Angola, Brazil, Democratic Republic of the
Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, the Philippines and Vietnam. The WHO
estimates that immunization saves 2-3 million deaths every year, and that an additional 1.5 million
deaths could be averted every year if global vaccination coverage improves (this is comparable to
689,000 deaths from COVID-19 between January and August 2020).12

While most of the early efforts have been devoted to building an immunization infrastructure
and making sure that immunization is available close to people’s homes, there is a growing recog-
nition that it is important to also address the demand for immunization. Part of the low demand
reflects deep seated mistrust, but in many cases, parents seem to be perfectly willing to immunize
their children. For example, in our data for Haryana, India, among the sample’s older siblings who
should all have completed their immunization course, 99% had received polio drops and about 90%
had an immunization card. 90% of the parents claimed to believe immunization is beneficial and
3% claimed to believe that it is harmful. However, only 37% of the older children had completed
the course and received the measles vaccine, according to their parents (which is likely to be an
overestimate), and only 19.4% had done so before the fifteen month of life, when it is supposed to
be done between the 10th and the 12th month. It seems that parents lose steam over the course
of the immunization sequence, and nudges could be helpful to boost demand. Indeed, a recent
literature cited in the introduction suggests that “nudges,” such as small incentives, leveraging the
social network, SMS, etc., may have large effect on the use of those services.

In 2017, Esther Duflo, one of the authors of this paper, led a team that conducted a large scale ex-
periment with the government of Haryana, in North India, to test various strategies to increase the
take up of immunization services. The government health system rolled out an e-health platform
designed by a research team and programmed by a MIT group (SANA health), in which nurses

12See WHO “10 facts on immunization”, https://www.who.int/features/factfiles/immunization/facts/en/
index1.html

https://www.who.int/features/factfiles/immunization/facts/en/index1.html
https://www.who.int/features/factfiles/immunization/facts/en/index1.html
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collected data on which child was given which shot at each immunization camp. The platform
was implemented in over 2,000 villages in seven districts, and provides excellent quality admin-
istrative data on immunization coverage.13 From the individual data, we constructed the monthly
sum of the number of children eligible for the program (i.e. age 12 months or younger at their
first vaccines) who received each particular immunization at a program location. These children
were aged between 0 and 15 months. In this paper, we focus on the number of children who re-
ceived the measles shot, as it is the last vaccine in the sequence, and thus a reliable marker for full
immunization.

Prior to the launch of the interventions, survey data were collected in 912 of those villages using a
sample of 15 households with children aged 1-3 per village. The baseline data covers demographic
and socio-economic variables as well as immunization history of these children, who were too old
to be included in the intervention. In these 912 villages, three different interventions (and their
variants) were cross-randomized at the village level:

(1) Small incentives for immunization: parents/caregivers receive mobile phone credit upon
bringing children for vaccinations.

(2) Immunization ambassador intervention: information about immunization camps was dif-
fused through key members of a social network.

(3) Reminders: a fraction of parents/caregivers who had come at least one time received SMS
reminders for pending vaccinations of the children.

For each of these interventions, there were several possible variants: incentives were either low
or high, and either flat or increasing with each shot; the immunization ambassadors were either
randomly selected, or chosen to be information hubs, using the “gossip” methodology developed
by Banerjee et al. (2020), a trusted person, or both; and reminders were sent to either 33% or 66% of
the people concerned. Moreover, each of the interventions were cross-cut, generating 75 possible
treatment combinations.

Banerjee et al. (2020) developed and implemented a two-step methodology to identify the most
cost effective and the most effective policy to increase the number of children completing the full
course of immunization at the village level, and estimate its effects (correcting for bias due to the
fact that the policy is found to be the best). First, they used a specific version of LASSO to deter-
mine which policies are irrelevant, and which policy variants can be pooled together. Second, they
obtained consistent estimates of these restricted set of pooled policies using post-LASSO (Cher-
nozhukov et al., 2015). They found that the most cost effective policy (and the only one to reduce
the cost of each immunization compared to the status quo) is to combine information hub ambas-
sadors and SMS reminders. But the policy that increases immunization the most is the combination
of information-hub ambassador, the presence of reminders, and increasing incentives (regardless

13Banerjee et al. (2019) discusses validation data from random checks conducted by independent surveyors.
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of levels). This is also the most expensive package, so the government was interested in prioritiz-
ing villages: where should they scale up the full package? This is an excellent application of this
methodology, because there was no strong prior.

We compare 25 villages where this particular policy bundle was implemented (treatment group)
with 78 villages that received neither sloped incentives, nor any social network intervention, nor
reminder (control group). Our data constitute an approximately balanced monthly panel of the 103
treated and control villages for 12 months (the duration of the intervention). The outcome variable,
Y , is the number of children 15 months of younger in a given month in a given village that receive
the measles shot. The treatment variable, D, is an indicator of the household being in a village
that receives the policy. The covariates, Z, include 36 baseline village-level characteristics such as
religion, caste, financial status, marriage and family status, education, and baseline immunization.
The propensity score is constant.

Table 1 shows sample averages in the control and treated groups for some of the variables used
in the analysis weighted by village population, as the rest of the analysis. Treatment and control
villages have similar baseline characteristics (in particular, the immunization status of the older
cohort was similar). The combined treatment was very effective on average. During the course
of the intervention, on average 7.30 children per month aged 15 months or less got the measles
shot that completes the immunization sequence in control villages, and 10.08 did so in treatment
villages. This is a raw difference of 2.77, or 38%of the control mean. Note that while these effects
are not insignificant, we are far from reaching full immunization: The baseline survey suggest that
about 38% of children aged 1-3 had received the measles shot at baseline, and 19.4% had received
it before they turned 15 months. These estimate imply that the fraction getting their measles shot
before 15 months would only go up to 26.7%.(19.4 + 0.38 ∗ 19.4)

The implementation details for the heterogeneity analysis follows the algorithm described be-
low, with three characteristics due to the design: we weight village-level estimations by village
population, include district–time fixed effects, and cluster standard errors at the village level. Ta-
ble 2 compares the four ML methods for producing proxy predictors S(Zi) using the criteria in
(5.1) and (5.2). We find that Elastic Net and Neural Network outperform the other methods, with
Elastic Net beating Neural Network for the GATES by a small margin and viceversa for the BLP.
Accordingly, we shall focus on these two methods for the rest of the analysis.

Table 3 presents the results of the BLP of CATE on the ML proxies. We report estimates of the
coefficients β1 and β2, which correspond to the ATE and heterogeneity loading (HET) parameters
in the BLP, respectively. The ATE estimates in column 1 and 3 indicate that the package treatment
increases the number of immunized children by 2.81 based on elastic net and by 2.53 based on neu-
ral network. Reassuringly these estimates are on either side of the raw difference in means (2.77).
Focusing on the HET estimates, we find strong heterogeneity in treatment effects, as indicated by
the statistically significant estimates. Moreover, the estimates are close to 1, suggesting that the ML
proxies are good predictors of the CATE.
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Next, we estimate the GATES by quintiles of the ML proxies. Figure 3 present the estimated
GATES coefficients γ1 − γ5 along with joint confidence bands and the ATE estimates. In Table 4
we present the result from the hypothesis test that the difference of the ATE for the most and least
affected groups is statistically significant. We find that this difference is 16.34 and 16.80 based on
elastic net and neural network methods, respectively, and statistically significant. Given that the
ATE estimates in the whole population are about 2.5, these results suggest a large and potentially
policy-relevant heterogeneity.

The analysis so far reveals very large heterogeneity, with two striking results. First, the results
are very large for the most affected villages. In these villages, on average 10.36 extra of the children
who were eligible for incentives at baseline get the measles vaccines every month (starting from a
mean of 2.19 in the elastic net estimation). Second, the impact is negative and significant in the least
affected villages (an average decline of 6.13 immunization per month, starting from 12.24 in the
elastic net estimation). It looks like in some contexts, the combined package of small incentives,
reminder, and persuasion by members of the social network actually put people off immunization.

Given these large differences, it is important to find out whether this heterogeneity seems to be
associated with pre-existing characteristics. To answer this question, we explore what variables
are associated with the heterogeneity detected in BLP and GATES via CLAN. Table 5 reports the
CLAN estimates for a selected set of covariates and Tables 9–10 in the appendix for the rest of
covariates. Regardless of the method used, the estimated differences in means between most and
least affected groups for the number of vaccines to pregnant mother, number of vaccines to child
since birth, number of polio drops to child, fraction of children receiving immunization card, and
fraction of children receiving measles vaccines, are negative and statistically significant. Those are
various measures of pre-treatment immunization levels, all survey based, that have nothing to do
with our measure of impact. These results suggest that the villages with low levels of pretreatment
immunization are the most affected by the incentives. These are in fact the only variables that
consistently pop up from the CLAN. Thus, in this instance, the policy that is preferred ex-ante by
the government (since it is equality enhancing) also happens to be the most effective.

While the heterogeneity associated with the baseline immunization rates cannot be causally in-
terpreted (it could always be proxying for other things), it still sheds light on the negative effect
we find for the least affected group. Note that this effect is not mechanical. Even in the least af-
fected villages, there was a good number of children who did not receive the measles shot, and
they were not close to reaching full immunization, where they could not have experience an in-
crease. It may be that it would have been difficult to vaccinate 10.36 extra children every month,
but there was plenty of scope to experience an increase in immunization. We had no prior on that
the effect would be larger in the villages with the lowest rate of immunization. On the contrary,
immunization rates could have been low precisely because parents were more doubtful about im-
munization. Immunization are particularly low in muslim-majority villages, for example, and this
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is believed to reflect their lack of trust in the health system. There were therefore reasons to be
genuinely uncertain about where immunization would have had the largest effect.

One possible interpretation of the negative impact in some villages is that villagers were intrin-
sically motivated to get immunized. The nudging with small incentives and mild social pressure
may have backfired, crowding out intrinsic motivation without providing a strong enough extrinsic
motivation to act as in Gneezy and Rustichini (2000). A point estimate of 10.36 extra immunization
per months in the most affected group might seem high: this represent a multiplication by 4.7 of
the baseline level (based on the elastic net specification). This increase in immunizations is not
out of line with the literature, however: in a set of villages with very low immunization rate in
Rajasthan, Banerjee et al. (2010) find that small incentives increase immunization from 18% to 39%

(relative to a treatment that just improves infrastructures, and 6% relative to the control group) in a
low immunization region (in the entire sample, not in the places where it is most effective), which
was also a very large increase. Given the restrictions imposed to the data set (only children 1 year
or less at their first immunization were included), the data cover children who were 15 months or
younger when getting the measles shot. Among the older cohort in the most affected group, only
12.7% of children were vaccinated before 15 months. Taking this as a benchmark for the control
group, the estimate would still imply that only 60% of the treatment group was immunized before
15 month: a big improvement, but no implausible.

Our last exercise is to compute the cost effectiveness of the program in various groups. To do
so, we compute in each village the average number of immunizations delivered per dollar spent
in a month, in each group. The dollar spent are the fixed cost to run an immunization program
per month (nurse salaries, administrative overheads , etc) plus the marginal cost of each vaccine
multiplied by the number of vaccines administered (incentives distributed to local health workers,
vaccines doses, syringes, etc...) in both treatment and control villages, plus the extra cost of running
each particular treatment (the cost of the tablets used for recording in all the treatment villages,
the cost of contacting and enrolling the ambassadors, and the cost of the incentives). We then
estimate the cost effectiveness in each GATES group as E[X(1) −X(0) | G = Gk], where X is the
immunizations per dollar. E[X(1) −X(0) | Gk] = E[X | D = 1, G = Gk] − E[X | D = 0, G = Gk]

by the randomization assumption, and we can estimate each of E[X | D = 1, G = Gk] and E[X |
D = 1, G = Gk] analogously to CLAN, that is by taking sample averages within treatment groups
for each sample split and aggregating over sample splits.

The results are presented in Table 6. They highlight the crucial importance of treatment effect
heterogeneity for policy decision in this context. Overall, as shown in Banerjee et al. (2020) the
treatment is not cost effective compared to the control (the immunization per dollar spent goes
down). This analysis reveals that this is driven (not surprisingly) by negative impacts on cost ef-
fectiveness in the groups where it is least effective. However, in the fourth and fifth quintile of
cost-effectiveness, we cannot reject that the immunization per dollar spent is the same in the con-
trol group and in the treatment group, despite the added marginal cost of the incentives and the



GENERIC ML FOR FEATURES OF HETEROGENOUS TREATMENT EFFECTS 29

vaccines: this is because the fixed cost of running the program is now spread over a larger number
of immunizations.14

6.1. Implementation Algorithm. We describe an algorithm based on the first identification strat-
egy and provide some specific implementation details for the empirical example.

Algorithm 1 (Inference Algorithm). The inputs are given by the data on units i ∈ [N ] = {1, ..., N}.

Step 0. Fix the number of splits S and the significance level α, e.g. S = 100 and α = 0.05.

Step 1. Compute the propensity scores p(Zi) for i ∈ [N ].

Step 2. Consider S splits in half of the indices i ∈ {1, ..., N} into the main sample, M , and the
auxiliary sample, A. Over each split s = 1, .., S, apply the following steps:

a. Tune and train each ML method separately to learn B(·) and S(·) using A. For each i ∈M ,
compute the predicted baseline effect B(Zi) and predicted treatment effect S(Zi). If there
is zero variation in B(Zi) and S(Zi) add Gaussian noise with small variance to the proxies,
e.g., a 1/20-th fraction of the sample variance of Y .

b. Estimate the BLP parameters by weighted OLS in M , i.e.,

Yi = α̂′X1i + β̂1(Di − p(Zi)) + β̂2(Di − p(Zi))(Si − EN,MSi) + ε̂i, i ∈M

such that EN,M [w(Zi)ε̂iXi] = 0 forXi = [X ′1i, Di−p(Zi), (Di−p(Zi))(Si−EN,MSi)]′, where
w(Zi) = {p(Zi)(1− p(Zi))}−1 and X1i includes a constant, B(Zi) and S(Zi).

c. Estimate the GATES parameters by weighted OLS in M , i.e.,

Yi = α̂′X1i +

K∑
k=1

γ̂k · (Di − p(Zi)) · 1(Si ∈ Ik) + ν̂i, i ∈M,

such that EN,M [w(Zi)ν̂iWi] = 0 forWi = [X ′i1, {(Di−p(Zi))1(Si ∈ Ik)}Kk=1]
′, wherew(Zi) =

{p(Zi)(1− p(Zi))}−1,X1i includes a constant, B(Zi) and S(Zi), Ik = [`k−1, `k), and `k is the
(k/K)-quantile of {Si}i∈M .

d. Estimate the CLAN parameters in M by

δ̂1 = EN,M [g(Yi, Zi) | Si ∈ I1] and δ̂K = EN,M [g(Yi, Zi) | Si ∈ IK ],

where Ik = [`k−1, `k) and `k is the (k/K)-quantile of {Si}i∈M .

14Since the main result in Banerjee et al. (2020) is that the most cost effective option on average is the combination of
SMS plus Information hubs, an alternative policy question may therefore be whether there are places where it may be
more cost effective to add the incentives to this cheaper treatment. We replicated the heterogeneity analysis comparing
these two treatment (full package, versus SMS and ambassadors, but no gossips) and look at the cost effectiveness by
GATES in these two options. There is also considerable heterogeneity in this comparison (see Figure 4). The results for
cost effectiveness are shown in Table 11 in the appendix. There again, we find that in the two quintiles where adding
incentives is most effective, it would need be cost effective, even compared to an alternative status quo of just having
SMS and information hubs.
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e. Compute the two performance measures for the ML methods

Λ̂ = |β̂2|2V̂ar(S(Z)) ̂̄Λ =
1

K

K∑
k=1

γ̂2k .

Step 3: Choose the best ML methods based on the medians of Λ̂ and ̂̄Λ over the splits.

Step 4: Compute the estimates, (1 − α)-level conditional confidence intervals and conditional
p-values for all the parameters of interest. Monotonize the confidence intervals if needed. For
example, construct a (1− α) joint confidence interval for the GATES as

{γ̂k ± ĉ(1− α)σ̂k, k = 1, . . . ,K}, (6.1)

where ĉ(1 − α) is a consistent estimator of the (1 − α)-quantile of maxk∈1,...,K |γ̂k − γk|/σ̂k and σ̂k
is the standard error of γ̂k conditional on the data split. Monotonize the band (6.1) with respect to
k using the rearrangement method of Chernozhukov et al. (2009).

Step 5: Compute the adjusted (1 − 2α)-confidence intervals and adjusted p-values using the
VEIN methods described in Section 4.

Comment 6.1 (ML Methods). We consider four ML methods to estimate the proxy predictors: elas-
tic net, boosted trees, neural network with feature extraction, and random forest. The ML methods
are implemented in R using the package caret (Kuhn, 2008). The names of the elastic net, boosted
tree, neural network with feature extraction, and random forest methods in caret are glmnet, gbm,
pcaNNet and rf, respectively. For each split of the data, we choose the tuning parameters sepa-
rately forB(z) and S(z) based on mean squared error estimates of repeated 2-fold cross-validation,
except for random forest, for which we use the default tuning parameters to reduce the computa-
tional time.15 In tuning and training the ML methods we use only the auxiliary sample. In all the
methods we rescale the outcomes and covariates to be between 0 and 1 before training.

7. Conclusion

We propose to focus inference on key features of heterogeneous effects in randomized experi-
ments, and develop the corresponding methods. These key features include best linear predictors
of the effects and average effects sorted by groups, as well as average characteristics of most and
least affected units. Our new approach is valid in high dimensional settings, where the effects are
estimated by machine learning methods. The main advantage of our approach is its credibility: the
approach is agnostic about the properties of the machine learning estimators, and does not rely on
incredible or hard-to-verify assumptions. Estimation and inference relies on data splitting, where

15We have the following tuning parameters for each method: Elastic Net: alpha (Mixing Percentage), lambda (Reg-
ularization Parameter), Boosted trees: n.trees (Number of Boosting Iterations), interaction.depth (Max Tree Depth),
shrinkage (Shrinkage), n.minobsinnode (Min. Terminal Node Size), size (Number of Hidden Units) , decay (Weight
Decay), mtry (Number of Randomly Selected Predictors).
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the latter allows us to avoid overfitting and all kinds of non-regularities. Our inference quanti-
fies uncertainty coming from both parameter estimation and the data splitting, and could be of
independent interest. An empirical application illustrates the practical use of the approach.

Our hope is that applied researchers use the method to discover whether there is heterogeneity
in their data in a disciplined way. A researcher might be concerned about the application of our
method due to the possible power loss induced by sample splitting. This power loss is the price
to pay when the researcher is not certain or willing to fully specify the form of the heterogeneity
prior to conducting the experiment. Thus, if the researcher has a well-defined pre-analysis plan
that spells out a small number of heterogeneity groups in advance, then there is no need of split-
ting the sample.16 However, this situation is not common. In general, the researcher might not be
able to fully specify the form of the heterogeneity due to lack of information, economic theory, or
willingness to take a stand at the early stages of the analysis. She might also face data limitations
that preclude the availability of the desired covariates. Here we recommend the use of our method
to avoid overfitting and p-hacking, and impose discipline to the heterogeneity analysis at the cost
of some power loss due to sample splitting. This loss is difficult to quantify as we are not aware
of any alternative method that works at the same level of agnosticism as ours, but it is not as high
as researchers might fear. In Appendix D we provide a numerical example using a simple para-
metric model where standard methods are available. We find that the extent of the power loss for
not using the parametric form of the heterogeneity roughly corresponds to reducing the sample
size by half in a test for the presence of heterogeneity, although the exact comparison depends on
features of the data generating process. Thus, if discovering and exploiting heterogeneity in treat-
ment effect is a key goal of the research, the researcher should indeed plan for larger sample sizes
(relative to just testing whether the treatment has an effect), but the required sample size remain
within the realm of what is feasible in the field. In many applications we are aware of, there was
apparent heterogeneity according to some covariates of interest, but the disciplined ML hetero-
geneity exercise found no systematic difference. This could be because this heterogeneity was a
fluke, or because the method does not have the power to detect it in a smaller sample. In any case,
what this experience suggests is that one should not rely on ex-post heterogenous effects in such
cases.

The application to immunization in India is of substantive interest. As the world rushes towards
a new vaccine against the coronavirus, there are doubts on whether the vaccine take up will be
sufficient. We will need to rely on research on other type of vaccines to design effective strategies.
Our findings suggest that a combination of small incentives, relay by information hub, and SMS
reminders can have very large effect on vaccine take up in some villages where immunization was

16More generally, the plan needs to specify a parametric form for the heterogeneity as a low dimensional function
of pre-specified covariates (e.g., Chernozhukov et al., 2015). In this case, ML tools can still be used to efficiently esti-
mate the CATEs in the presence of control variables but are not required to detect heterogeneity (Belloni et al., 2017;
Chernozhukov et al., 2017).
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low at baseline, and even be more cost-effective than the status quo, but can also backfire in other
places. This suggests that these type of strategy need to be piloted in the relevant context before
being rolled out, and that heterogeneity needs to be taken into account.
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Larry Wasserman and Kathryn Roeder. High dimensional variable selection. Annals of statistics,
37(5A):2178, 2009.

Qingyuan Zhao, Dylan S Small, and Ashkan Ertefaie. Selective inference for effect modification
via the lasso. arXiv preprint arXiv:1705.08020, 2017.

Figures and tables

●

●

●

●

●

−10

0

10

1 2 3 4 5
Group by Het Score

Tr
e

a
tm

e
n

t 
E

ff
e

c
t

●

ATE 90% CB(ATE)

GATES 90% CB(GATES)

Nnet

●

●

●

●

●

−10

0

10

1 2 3 4 5
Group by Het Score

Tr
e

a
tm

e
n

t 
E

ff
e

c
t

●

ATE 90% CB(ATE)

GATES 90% CB(GATES)

Elastic Net

Figure 3. GATES of Immunization Incentives. Point estimates and 90% adjusted
confidence intervals uniform across groups based on 100 random splits in half
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Table 1. Selected Descriptive Statistics of Villages
All Treated Control

Outcome Variables (Village-Month Level)
Number of children who completed the immunization schedule 8.234 10.071 7.304

Baseline Covariates–Demographic Variables (Village Level)
Household financial status (on 1-10 scale) 3.479 3.17 3.627
Fraction Scheduled Caste-Scheduled Tribe (SC/ST) 0.191 0.199 0.188
Fraction Other Backward Caste (OBC) 0.222 0.207 0.23
Fraction Hindu 0.911 0.851 0.939
Fraction Muslim 0.059 0.109 0.035
Fraction Christian 0.001 0.003 0
Fraction Literate 0.797 0.786 0.802
Fraction Single 0.053 0.052 0.053
Fraction Married (living with spouse) 0.517 0.499 0.526
Fraction Married (not living with spouse) 0.003 0.003 0.003
Fraction Divorced or Separated 0.002 0.005 0
Fraction Widow or Widower 0.04 0.037 0.041
Fraction who received Nursery level education or less 0.152 0.154 0.151
Fraction who received Class 4 level education 0.081 0.08 0.082
Fraction who received Class 9 education 0.157 0.162 0.154
Fraction who received Class 12 education 0.246 0.223 0.257
Fraction who received Graduate or Other Diploma level education 0.085 0.078 0.088
Baseline Covariates–Immunization History of Older Cohort (Village Level)
Number of vaccines administered to pregnant mother 2.276 2.211 2.307
Number of vaccines administered to child since birth 4.485 4.398 4.527
Fraction of children who received polio drops 0.999 1 0.999
Number of polio drops administered to child 2.982 2.985 2.98
Fraction of children who received an immunization card 0.913 0.871 0.933
Fraction of kids who received Measles vaccine by 15 months of age 0.194 0.175 0.203
Fraction of kids who received Measles vaccine at credible locations 0.386 0.368 0.395
Number of Observations
Villages 103 25 78
Village-Months 844 204 640
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Table 2. Comparison of ML Methods: Immunization Incentives

Elastic Net Boosting Neural Network Random Forest

Best BLP (Λ) 45.240 27.560 47.940 20.180
Best GATES (Λ̄) 5.889 4.567 5.443 3.661

Notes: Medians over 100 splits in half.

Table 3. BLP of Immunization Incentives

Elastic Net Neural Network

ATE (β1) HET (β2) ATE (β1) HET (β2)

2.812 0.876 2.530 1.059
(0.867,4.774) (0.656,1.105) (0.984,4.079) (0.724,1.401)

[0.008] [0.000] [0.003] [0.000]

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
P-values for the hypothesis that the parameter is equal to zero in brackets.

Table 4. GATES of 20% Most and Least Affected Groups

Elastic Net Nnet

20% Most 20% Least Difference 20% Most 20% Least Difference
(G5) (G1) (G5) (G1)

GATE γk := Ê[s0(Z) | Gk] 10.36 -6.12 16.34 10.39 -6.20 16.80
(7.42,13.52) (-9.83,-2.23) (11.21,21.62) (6.22,14.60) (-11.43,-0.73) (9.50,23.85)

[0.00] [0.00] [0.00] [0.00] [0.05] [0.00]

Control Mean := Ê[b0(Z) | Gk] 2.19 12.24 -9.87 1.18 10.32 -9.17
(1.36,2.98) (11.45,13.10) (-11.16,-8.73) (0.44,1.87) (9.65,11.02) (-10.17,-8.14)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
P-values for the hypothesis that the parameter is equal to zero in brackets.
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Table 5. CLAN of Immunization Incentives

Elastic Net Nnet
20% Most 20% Least Difference 20% Most 20% Least Difference

(δ5) (δ1) (δ5 − δ1) (δ5) (δ1) (δ5 − δ1)

Number of vaccines 2.161 2.288 -0.128 2.164 2.328 -0.160
to pregnant mother (2.110,2.212) (2.237,2.337) (-0.200,-0.055) (2.107,2.221) (2.273,2.385) (-0.245,-0.082)

- - [0.001] - - [0.000]
Number of vaccines 4.230 4.714 -0.513 3.995 4.670 -0.690
to child since birth (4.100,4.369) (4.573,4.860) (-0.710,-0.311) (3.816,4.165) (4.507,4.835) (-0.937,-0.454)

- - [0.000] - - [0.000]
Fraction of children 1.000 1.000 0.000 0.998 1.000 -0.002
received polio drops (1.000,1.000) (1.000,1.000) (0.000,0.000) (0.996,1.000) (0.998,1.002) (-0.005,0.001)

- - [0.000] - - [0.485]
Number of polio 2.964 2.998 -0.033 2.956 2.994 -0.038
drops to child (2.954,2.975) (2.987,3.007) (-0.047,-0.019) (2.940,2.971) (2.980,3.008) (-0.059,-0.016)

- - [0.000] - - [0.001]
Fraction of children 0.899 0.932 -0.036 0.804 0.930 -0.125
received immunization card (0.878,0.922) (0.908,0.956) (-0.065,-0.004) (0.765,0.842) (0.895,0.966) (-0.178,-0.070)

- - [0.000] - - [0.006]
Fraction of children received 0.127 0.255 -0.131 0.125 0.254 -0.134
Measles vaccine by 15 months of age (0.100,0.155) (0.230,0.282) (-0.167,-0.094) (0.098,0.152) (0.229,0.279) (-0.169,-0.098)

- - [0.052] - - [0.000]
Fraction of children received 0.290 0.435 -0.152 0.275 0.426 -0.151
Measles at credible locations (0.252,0.327) (0.400,0.470) (-0.198,-0.097) (0.236,0.315) (0.391,0.461) (-0.203,-0.100)

- - [0.000] - - [0.000]
Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
Notes: P-values for the hypothesis that the parameter is equal to zero in brackets.
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Table 6. Cost Effectiveness in GATE quintiles
Elastic Net Nnet

Mean in Treatment Mean in Control Difference Mean in Treatment Mean in Control Difference
(Ê[X | D = 1, Gk]) (Ê[X | D = 0, Gk]) (Ê[X | D = 1, Gk]) (Ê[X | D = 0, Gk])

Imm. per dollar (G1) 0.034 0.047 -0.013 0.033 0.047 -0.014
(0.030,0.037) (0.045,0.048) (-0.017,-0.009) (0.029,0.036) (0.045,0.049) (-0.019,-0.010)
- - [0.000] - - [0.000]

Imm. per dollar (G2) 0.031 0.044 -0.013 0.035 0.044 -0.009
(0.027,0.036) (0.042,0.046) (-0.018,-0.008) (0.031,0.039) (0.042,0.046) (-0.013,-0.004)
- - [0.000] - - [0.000]

Imm. per dollar (G3) 0.037 0.043 -0.007 0.037 0.043 -0.005
(0.033,0.041) (0.041,0.046) (-0.011,-0.002) (0.034,0.041) (0.041,0.045) (-0.010,-0.001)
- - [0.015] - - [0.027]

Imm. per dollar (G4) 0.039 0.039 -0.001 0.037 0.041 -0.004
(0.036,0.042) (0.036,0.042) (-0.005,0.004) (0.034,0.041) (0.038,0.044) (-0.008,0.001)
- - [1.000] - - [0.186]

Imm. per dollar (G5) 0.036 0.035 0.001 0.035 0.034 0.001
(0.032,0.041) (0.030,0.040) (-0.006,0.008) (0.031,0.040) (0.029,0.040) (-0.006,0.008)
- - [1.000] - - [1.000]

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
Notes: P-values for the hypothesis that the parameter is equal to zero in brackets.
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Appendix A. Proofs

Proof of Theorem 3.1. The subset of the normal equations, which correspond to β := (β1, β2)
′, are

given by E[w(Z)(Y − α′X1 − β′X2)X2] = 0. Substituting Y = b0(Z) + s0(Z)D + U , and using the
definition X2 = X2(Z,D) = [D − p(Z), (D − p(Z)(S − ES)]′, X1 = X1(Z), and the law of iterated
expectations, we notice that:

E[w(Z)b0(Z)X2] = E[w(Z)b0(Z) E[X2 | Z]

=0

] = 0,

E[w(Z)UX2] = E[w(Z) E[U | Z,D]

0

X2(Z,D)] = 0,

E[w(Z)X1X2] = E[w(Z)X1(Z) E[X2(Z,D) | Z]

=0

] = 0.

Hence the normal equations simplify to: E[w(Z)(s0(Z)D − β′X2)X2] = 0. Since

E[{D − p(Z)}{D − p(Z)} | Z] = p(Z)(1− p(Z)) = w−1(Z),

and S = S(Z), the components of X2 are orthogonal by the law of iterated expectations:

Ew(Z)(D − p(Z))(D − p(Z))(S − ES) = E(S − ES) = 0.

Hence the normal equations above further simplify to

E[w(Z){s0(Z)D − β1(D − p(Z))}(D − p(Z))] = 0,

E[w(Z){s0(Z)D − β2(D − p(Z))(S − ES)}(D − p(Z))(S − ES)] = 0.

Solving these equations and using the law of iterated expectations, we obtain

β1 =
Ew(Z){s0(Z)D(D − p(Z))}

Ew(Z)(D − p(Z))2
=

Ew(Z)s0(Z)w−1(Z)

Ew(Z)w−1(Z)
= Es0(Z),

β2 =
Ew(Z){s0(Z)D(D − p(Z))(S − ES)}

Ew(Z)(D − p(Z))2(S − ES)2

=
Ew(Z)s0(Z)w−1(Z)(S − ES)

Ew(Z)w−1(Z)(S − ES)2
= Cov(s0(Z), S)/Var(S).

The conclusion follows by noting that these coefficients also solve the normal equations

E{[s0(Z)− β1 − β2(S − ES)][1, (S − ES)]′} = 0,

which characterize the optimum in the problem of best linear approximation/prediction of s0(Z)

using S. �



42 VICTOR CHERNOZHUKOV, MERT DEMIRER, ESTHER DUFLO, AND IVÁN FERNÁNDEZ-VAL

Proof of Theorem 3.2. The normal equations defining β = (β1, β2)
′ are given by E[(Y H−µ′X1H−

β′X̃2)X̃2] = 0. Substituting Y = b0(Z) + s0(Z)D + U , and using the definition X̃2 = X̃2(Z) =

[1, (S(Z)− ES(Z))]′, X1 = X1(Z), and the law of iterated expectations, we notice that:

E[b0(Z)HX̃2(Z)] = E[b0(Z) E[H | Z]

=0

X̃2(Z)] = 0,

E[UHX̃2(Z)] = E[E[U | Z,D]

0

H(D,Z)X̃2(Z)] = 0,

E[X1(Z)HX̃2(Z)] = E[X1(Z) E[H | Z]

=0

X̃2(Z)] = 0.

Hence the normal equations simplify to:

E[(s0(Z)DH − β′X̃2)X̃2] = 0.

Since 1 and S − ES are orthogonal, the normal equations above further simplify to

E{s0(Z)DH − β1} = 0,

E[{s0(Z)DH − β2(S − ES)}(S − ES)] = 0.

Using that
E[DH | Z] = [p(Z)(1− p(Z))]/[p(Z)(1− p(Z))] = 1,

S = S(Z), and the law of iterated expectations, the equations simplify to

E{s0(Z)− β1} = 0,

E{s0(Z)− β2(S − ES)}(S − ES) = 0.

These are normal equations that characterize the optimum in the problem of best linear approxi-
mation/prediction of s0(Z) using S. Solving these equations gives the expressions for β1 and β2

stated in the theorem. �

Proof of Theorem 3.3. The proof is similar to the proof of Theorem 3.1- 3.2. Moreover, since the
proofs for the two strategies are similar, we will only demonstrate the proof for the second strategy.

The subset of the normal equations, which correspond to γ := (γk)
K
k=1, are given by E[(Y H −

µ′W̃1 − γ′W̃2)W̃2] = 0. Substituting Y = b0(Z) + s0(Z)D + U , and using the definition W̃2 =

W̃2(Z) = [1(S ∈ Ik)Kk=1]
′, W̃1 = X1(Z)H , and the law of iterated expectations, we notice that:

E[b0(Z)HW̃2(Z)] = E[b0(Z) E[H | Z]

=0

W̃2(Z)] = 0,

E[UHW̃2(Z)] = E[E[U | Z,D]

0

H(D,Z)W̃2(Z)] = 0,

E[W̃1W̃2(Z)] = E[X1(Z) E[H | Z]

=0

W̃2(Z)] = 0.

Hence the normal equations simplify to:

E[{s0(Z)DH − γ′W̃2}W̃2] = 0.
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Since components of W̃2 = W̃2(Z) = [1(Gk)
K
k=1]

′ are orthogonal, the normal equations above fur-
ther simplify to

E[{s0(Z)DH − γk1(Gk)}1(Gk)] = 0.

Using that
E[DH | Z] = [p(Z){1− p(Z)}]/[p(Z){1− p(Z)}] = 1,

S = S(Z), and the law of iterated expectations, the equations simplify to

E[{s0(Z)− γk1(Gk)}1(Gk)] = 0⇐⇒ γk = Es0(Z)1(Gk)/E[1(Gk)] = E[s0(Z) | Gk].

�

Proof of Theorem 4.1. We have that p.5 6 α/2 is equivalent to EP [1(pA 6 α/2) | Data] > 1/2. So

PP [p.5 6 α/2] = EP 1{EP [1(pA 6 α/2) | Data] > 1/2}.

By Markov inequality,

EP 1{EP [1(pA 6 α/2) | Data] > 1/2} 6 2PP [pA 6 α/2].

Moreover,
PP (pA 6 α/2) 6 EP [PP [pA 6 α/2 | DataA ∈ A] + γ] 6 α/2 + δ + γ.

�

Proof of Theorem 4.2. To show the second claim, we note that

PP (θA 6∈ CI) = PP (pl(θA) 6 α/2) + PP (pu(θA) 6 α/2)

6 α+ δ + γ + α+ δ + γ,

where the inequality holds by Theorem 4.1 on the p-values. The last bound is upper bounded by
2α+ o(1) by the regularity condition PV for the p-values, uniformly in P ∈ P .

To show the first claim, we need to show the following inequalities:

sup{θ ∈ R : pu(θ) > α/2} 6 u, inf{θ ∈ R : pl(θ) > α/2} > l.

We demonstrate the first inequality, and the second follows similarly.

We have that

{θ ∈ R : pu(θ) > α/2} = {θ ∈ R : Med[Φ{σ̂−1A (θ̂A − θ)} | Data] > α/2}

= {θ ∈ R : Φ{Med[σ̂−1A (θ̂A − θ) | Data]} > α/2}

= {θ ∈ R : Med[σ̂−1A (θ̂A − θ) | Data] > Φ−1(α/2)}

= {θ ∈ R : Med[σ̂−1A (θ − θ̂A) | Data] < Φ−1(1− α/2)}

=

{
θ ∈ R : Med

[
θ − θ̂A
σ̂A

− Φ−1(1− α/2) | Data

]
< 0

}
,
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where we have used the equivariance of Med and Med to monotone transformations, implied from
their definition. We claim that by the definition of

u := Med[θ̂A + σ̂AΦ−1(1− α/2) | Data],

we have

Med

[
u− θ̂A
σ̂A

− Φ−1(1− α/2) | Data

]
> 0.

Indeed, by the definition of u,

E
(

1(u− θ̂A − σ̂AΦ−1(1− α/2) > 0) | Data
)
> 1/2.

Since σ̂A > 0 by assumption,

1(u− θ̂A − σ̂AΦ−1(1− α/2) > 0) = 1

(
u− θ̂A
σ̂A

− Φ−1(1− α/2) > 0

)
,

and it follows that

P
(u− θ̂A

σ̂A
− Φ−1(1− α/2) > 0 | Data

)
> 1/2.

The claimed inequality sup{θ ∈ R : pu(θ) > α/2} 6 u follows. �

Appendix B. A Lemma on Uniform in P Conditional Inference

Lemma B.1. Fix two positive constants c and C, and a small constant δ > 0. Let Ỹ andX denote a generic
outcome and a generic d-vector of regressors, whose use and definition may differ in different places of the
paper. Assume that for each P ∈ P , EP |Ỹ |4+δ < C and let 0 < w 6 w(Z) 6 w < ∞ denote a generic
weight, and that {(Ỹi, Zi, Di)}Ni=1 are i.i.d. copies of (Ỹ , Z,D). Let {DataA ∈ AN} be the event such
that the ML algorithm, operating only on DataA, produces a vector XA = X(Z,D;DataA) that obeys, for
εA = Ỹ −X ′βA defined by: EP [εAw(Z)XA | DataA] = 0, the following inequalities, uniformly in P ∈ P

EP [‖XA‖4+δ | DataA] 6 C, mineig EP [XAX
′
A | DataA] > c, mineig EP [ε2AXAX

′
A | DataA] > c.

Suppose that PP {DataA ∈ AN} > 1− γ → 1 uniformly in P ∈ P , as N →∞. Let β̂A be defined by:

EN,M [w(Z)XAε̂A] = 0, ε̂A = YA −X ′β̂A.

Let V̂N,A := (EN,MXAX
′
A)−1EN,M ε̂2AXAX

′
A(EN,MXAX

′
A)−1 be an estimator of

VN,A = (EP [XAX
′
A | DataA])−1EP [ε2AXAX

′
A | DataA](EP [XAX

′
A | DataA])−1.

Let Id denote the identify matrix of order d. Then for any convex set R in Rd, we have that uniformly in
P ∈ P :

PP [V̂
−1/2
N,A (β̂A − βA) ∈ R | DataA]→P P(N(0, Id) ∈ R),

PP [V̂
−1/2
N,A (β̂A − βA) ∈ R | {DataA ∈ AN}]→ P(N(0, Id) ∈ R),

and the same results hold with V̂N,A replaced by VN,A.
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Proof. It suffices to demonstrate the argument for an arbitrary sequence {Pn} in P . Let z 7→
X̃A,N (z) be a deterministic map such that the following inequalities hold, for ẽA defined by

EPn [ẽAw(Z)X̃A,N (Z)] = 0

and X̃A,N = X̃A,N (Z):

EPn [‖X̃A,N‖4] < C, mineig EPn [X̃A,NX̃
′
A,N ] > c, mineig EPn [ẽ2AX̃A,NX̃

′
A,N ] > c.

Then we have that (abusing notation):

BN := sup
X̃A,N

sup
h∈BL1(Rd)

|EPnh(Ṽ
−1/2
N,A (β̂A − βA) | X̃A,N )− Eh(N(0, Id))| → 0,

by the standard argument for asymptotic normality of the least squares estimator, which utilizes
the Lindeberg-Feller Central Limit Theorem. Here

ṼN,A := (EX̃AX̃
′
A)−1Eε̃2AX̃AX̃

′
A(EX̃AX̃

′
A)−1,

and BL1(Rd) denotes the set of Lipschitz maps h : Rd → [0, 1] with the Lipschitz coefficient
bounded by 1.

Then, for the stochastic sequence XA,N = XA,N (DataA),

sup
h∈BL1(Rd)

|EPn [h(V
−1/2
N,A (β̂A − βA)) | XA,N ]−E[h(N(0, Id))]| 6 BN + 2(1− 1{DataA ∈ AN})→Pn 0.

Since under the stated bounds on moments, V̂ 1/2
N,AV

−1/2
N,A →Pn Id by the standard argument for

consistency of the Eicker-Huber-White sandwich, we further notice that

sup
h∈BL1(Rd)

|EPn [h(V̂
−1/2
N,A (β̂A − βA)) | XA,N ]− EPn [h(V

−1/2
N,A (β̂A − βA)) | XA,N ]|

6 EPn [‖V̂ −1/2N,A V
1/2
N,A − Id‖ ∧ 1 · ‖V −1/2N,A (β̂A − βA)‖ ∧ 1 | XA,N ]→Pn E[0 ∧ 1 · ‖N(0, Id)‖ ∧ 1] = 0,

in order to conclude that

sup
h∈BL1(Rd)

EPn [h(V̂
−1/2
N,A (β̂A − βA)) | XA,N ]− E[h(N(0, Id))]→P 0.

Moreover, since EPn [h(V̂
−1/2
N,A (β̂A − βA)) | XA,N ] = EPn [h(V̂

−1/2
N,A (β̂A − βA)) | DataA], the first

conclusion follows: PPn [V̂
−1/2
N,A (β̂A − βA) ∈ R | DataA] →Pn P(N(0, Id) ∈ R), by the conventional

smoothing argument (where we approximate the indicator of a convex region by a smooth map
with finite Lipschitz coefficient). The second conclusion

PPn [V̂
−1/2
N,A (β̂A − βA) ∈ R | DataA ∈ AN ]→ P(N(0, Id) ∈ R)

follows from the first by

PPn [V̂
−1/2
N,A (β̂A − βA) ∈ R | DataA ∈ AN ] =

= EPn [PPn [V̂
−1/2
N,A (β̂A − βA) ∈ R | DataA]1({DataA ∈ AN})/PPn{DataA ∈ AN}]
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→ E[P(N(0, Id) ∈ R) · 1],

using the definition of the weak convergence, implied by the convergence to the constants in prob-
ability. �

Appendix C. Comparison of Two Estimation Strategies

We focus on the estimation of the BLP. The analysis can be extended to the GATES using analo-
gous arguments.

Let X2i = (1, Si − EN,MSi)′ and β̂ = (β̂1, β̂2)
′. In the first strategy, we run the weighted linear

regression
Yi = X ′1iα̂+ (Di − p(Zi))X ′2iβ̂ + ε̂i, i ∈M,

EN,M [w(Zi)ε̂iXi] = 0, w(Z) = {p(Z)(1− p(Z))}−1, Xi = [X ′1i, (Di − p(Zi))X ′2i]′.

Let θ̂ := (α̂′, β̂′)′. Then, this estimator is

θ̂ =
(
EN,M [w(Zi)XiX

′
i]
)−1 EN,M [w(Zi)XiYi].

Let X = [X ′1, (D − p(Z))X ′2]
′ with X2 = (1, S − ES)′. By standard properties of the least squares

estimator and the central limit theorem

θ̂ =
(
E[w(Z)XX ′]

)−1 EN,M [w(Zi)XiYi] + oP (M−1/2),

where

E[w(Z)XX ′] =

(
Ew(Z)X1X

′
1 0

0 EX2X
′
2

)
.

In the previous expression we use that Ew(Z)(D−p(Z))X1X
′
2 = 0 and Ew(Z)(D−p(Z))2X2X

′
2 =

EX2X
′
2 by iterated expectations. Then,

β̂ =
(
EX2X

′
2

)−1 EN,M [w(Zi)(Di − p(Zi))X2iYi] + oP (M−1/2),

using that E[w(Z)XX ′] is block-diagonal between α̂ and β̂.

In the second strategy, we run the linear regression

HiYi = HiX
′
1iα̃+X ′2iβ̃ + ε̃i, EN,M ε̃iX̃i = 0, Hi = (Di − p(Zi))w(Zi), X̃i = [HiX

′
1i, X2i]

′,

which yields the estimator, for θ̃ = (α̃′, β̃′)′,

β̃ =
(
EN,M [X̃iX̃

′
i]
)−1

EN,M [HiX̃iYi].

Let X̃ = [HX ′1, X
′
2]
′ with X2 = (1, S − ES)′. By standard properties of the least squares estimator

and the central limit theorem

θ̃ =
(

E[X̃X̃ ′]
)−1

EN,M [HiX̃iYi] + oP (M−1/2),

where

E[X̃X̃ ′] =

(
Ew(Z)X1X

′
1 0

0 EX2X
′
2

)
= E[w(Z)XX ′].
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In the previous expression we use that EHX1X
′
2 = 0 and EH2X1X

′
1 = Ew(Z)X1X

′
1 by iterated

expectations. Hence,

β̃ =
(
E[X2X

′
2]
)−1 EN,M [w(Zi)(Di − p(Zi))X2iYi] + oP (M−1/2),

where we use that E[X̃X̃ ′] is block-diagonal between α̂ and β̂, andEN,M [HiX2iYi] = EN,M [w(Zi)(Di−
p(Zi))X2iYi].

We conclude that β̂ and β̃ have the same asymptotic distribution because they have the same
first order representation.

Appendix D. Power Calculations

We conduct a numerical simulation to compare the power of the proposed method with the
available standard methods to detect heterogeneity. The comparison is complicated because the
existing methods do not apply to the general class of models that we consider. We therefore focus
on a parametric low dimensional setting for which there are standard methods available. The
design is a linear interactive model:

Y = α0 + α1Z + α2D + βZD + σε, (D.1)

whereZ is standard normal,D is Bernouilli with probability 0.5, ε is standard normal, α0 = α1 = 0,
and σ = 1. The parameter β determines whether there is heterogeneity in the CATE, s0(Z) =

α2 +βZ. We vary its value across the simulations from no heterogeneity β = 0 to increasing levels
of heterogeneity β ∈ {.1, .2, .3, .4, .6, .8}. The benchmark of comparison is a t-test of β = 0 based on
the least squares estimator with heteroskedasticity-robust standard errors in (D.1) using the entire
sample.17 We implement our test that the BLP is equal to zero using sample splitting. In the first
stage we estimate the proxies of the CATE by least squares in the linear interactive model (D.1)
using half of the sample. In the second stage we run the adjusted linear regression of strategy 1
using the other half of the sample. We repeat the procedure for 100 splits and use the median
p-value multiplied by 2 to carry out the test. The nominal level of the test for both the standard
and proposed method is 5%. We consider several sample sizes, n ∈ {100, 200, 300, 400, 600, 800},
to study how the power scales with n. All the results are based on 5, 000 replications.

Tables 7 and 8 report the empirical size and power for the standard and proposed test, respec-
tively. One might conjecture that the standard test is as powerful as the proposed test with double
the sample size due to sample splitting. The results roughly agree with this conjecture, but the
power comparison depends nonlinearly on the heterogeneity coefficient β. Thus, the standard test
is more powerful than the proposed test with double the sample size for low values of β, but the
proposed test is more powerful than the standard test with half of the sample size for high values
of β. We also note that the proposed test is conservative in this design.

17Note that this method is only applicable when researcher is willing to specify a parametric model for the expectation
of Y conditional on D and Z.
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Table 7. Empirical Size and Power of Standard Test by Sample Size

β=0 β=.1 β=.2 β=.3 β=.4 β=.6 β=.8
n =100 0.07 0.10 0.19 0.35 0.53 0.84 0.97
n =200 0.06 0.12 0.30 0.58 0.81 0.98 1.00
n =300 0.05 0.15 0.42 0.74 0.93 1.00 1.00
n =400 0.05 0.18 0.52 0.86 0.98 1.00 1.00
n =600 0.06 0.24 0.69 0.95 1.00 1.00 1.00
n =800 0.05 0.29 0.81 0.99 1.00 1.00 1.00

Notes: Nominal level is 5%. 5, 000 simulations.

Table 8. Empirical Size and Power of Proposed Test by Sample Size

β=0 β=.1 β=.2 β=.3 β=.4 β=.6 β=.8
n =100 0.00 0.01 0.03 0.08 0.17 0.48 0.80
n =200 0.00 0.01 0.05 0.17 0.40 0.85 0.99
n =300 0.00 0.02 0.09 0.30 0.63 0.97 1.00
n =400 0.00 0.02 0.14 0.45 0.79 1.00 1.00
n =600 0.00 0.03 0.24 0.70 0.96 1.00 1.00
n =800 0.00 0.04 0.38 0.86 0.99 1.00 1.00

Notes: Nominal level is 5%. 100 sample splits in half. 5, 000

simulations.
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Appendix E. Additional Empirical Results

Table 9. CLAN of Immunization Incentives: Other Covariates-1
Elastic Net Nnet

20% Most 20% Least Difference 20% Most 20% Least Difference
(δ5) (δ1) (δ5 − δ1) (δ5) (δ1) (δ5 − δ1)

Fraction Participating in Employment Generating Schemes 0.066 0.033 0.033 0.098 0.033 0.065
(0.046,0.085) (0.015,0.052) (0.007,0.059) (0.076,0.119) (0.013,0.053) (0.037,0.093)

- - [0.026] - - [0.000]
Fraction Below Poverty Line (BPL) 0.192 0.176 0.004 0.166 0.189 -0.025

(0.150,0.233) (0.139,0.214) (-0.053,0.064) (0.127,0.205) (0.151,0.225) (-0.080,0.033)
- - [1.000] - - [0.765]

Average Financial Status (1-10 scale) 3.357 3.722 -0.346 3.267 3.561 -0.298
(3.147,3.545) (3.538,3.918) (-0.632,-0.041) (3.052,3.460) (3.360,3.769) (-0.595,-0.028)

- - [0.049] - - [0.059]
Fraction Scheduled Caste-Scheduled Tribes (SC/ST) 0.190 0.150 0.040 0.159 0.132 0.025

(0.154,0.224) (0.117,0.184) (-0.008,0.087) (0.124,0.194) (0.099,0.166) (-0.021,0.072)
- - [0.226] - - [0.587]

Fraction Other Backward Caste (OBC) 0.331 0.172 0.158 0.320 0.163 0.156
(0.293,0.368) (0.136,0.209) (0.106,0.211) (0.280,0.360) (0.125,0.201) (0.101,0.210)

- - [0.000] - - [0.000]
Fraction Minority caste 0.003 0.006 -0.003 0.006 0.008 -0.003

(-0.001,0.009) (0.002,0.011) (-0.008,0.004) (-0.002,0.012) (0.001,0.016) (-0.013,0.006)
- - [0.952] - - [0.995]

Fraction General Caste 0.233 0.491 -0.249 0.189 0.505 -0.315
(0.179,0.285) (0.441,0.539) (-0.321,-0.176) (0.136,0.244) (0.452,0.557) (-0.387,-0.244)

- - [0.000] - - [0.000]
Fraction No Caste 0.000 0.000 0.000 0.000 0.000 0.000

(0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)
- - [1.000] - - [1.000]

Fraction Other Caste 0.001 0.000 0.001 0.001 0.000 0.001
(0.000,0.002) (-0.001,0.001) (-0.001,0.003) (0.000,0.002) (-0.001,0.001) (-0.001,0.002)

- - [0.552] - - [0.739]
Fraction Dont Know Caste 0.235 0.177 0.062 0.325 0.179 0.136

(0.192,0.284) (0.134,0.219) (-0.002,0.123) (0.273,0.376) (0.130,0.225) (0.070,0.209)
- - [0.116] - - [0.000]

Fraction Hindu 0.959 0.945 -0.004 0.789 0.943 -0.147
(0.930,0.984) (0.905,0.984) (-0.033,0.027) (0.723,0.853) (0.884,1.002) (-0.238,-0.060)

- - [1.000] - - [0.002]
Fraction Muslim 0.024 0.019 0.011 0.185 0.022 0.159

(0.008,0.046) (-0.006,0.052) (-0.008,0.029) (0.126,0.247) (-0.031,0.078) (0.076,0.242)
- - [0.592] - - [0.000]

Fraction Christian 0.000 0.004 -0.004 0.000 0.004 -0.004
(-0.006,0.006) (-0.002,0.009) (-0.012,0.005) (-0.006,0.006) (-0.002,0.010) (-0.013,0.005)

- - [0.870] - - [0.811]
Fraction Buddhist 0.000 0.000 0.000 0.000 0.000 0.000

(0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)
- - [1.000] - - [1.000]

Fraction Sikh 0.000 0.000 0.000 0.000 0.000 0.000
(0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)

- - [1.000] - - [1.000]
Fraction Jain 0.000 0.000 0.000 0.000 0.000 0.000

(0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)
- - [1.000] - - [1.000]

Fraction Other Religion 0.000 0.000 0.000 0.000 0.000 0.000
(0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)

- - [1.000] - - [1.000]
Notes: Classification Analysis of Imminuzation Incentives for all Covariates .
Notes: Medians over 100 splits. 90% confidence interval in parenthesis.P-values for the hypothesis that the parameter is equal to zero in brackets.
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Table 10. CLAN of Immunization Incentives: Other Covariates-2
Elastic Net Nnet

20% Most 20% Least Difference 20% Most 20% Least Difference
(δ5) (δ1) (δ5 − δ1) (δ5) (δ1) (δ5 − δ1)

Fraction Dont Know religion 0.015 0.029 -0.015 0.023 0.027 -0.006
(0.001,0.028) (0.016,0.041) (-0.033,0.004) (0.008,0.038) (0.014,0.041) (-0.024,0.013)

- - [0.257] - - [1.000]
Fraction Literate 0.816 0.787 0.026 0.781 0.787 -0.005

(0.804,0.830) (0.773,0.801) (0.009,0.045) (0.762,0.799) (0.771,0.804) (-0.032,0.020)
- - [0.007] - - [1.000]

Fraction Single 0.050 0.044 0.006 0.051 0.049 0.002
(0.045,0.055) (0.039,0.049) (-0.001,0.014) (0.046,0.057) (0.044,0.054) (-0.005,0.010)

- - [0.161] - - [1.000]
Fraction of adults Married (living with spouse) 0.514 0.520 -0.009 0.489 0.518 -0.029

(0.504,0.522) (0.509,0.530) (-0.022,0.005) (0.477,0.501) (0.507,0.530) (-0.045,-0.012)
- - [0.411] - - [0.002]

Fraction of adutls Married (not living with spouse) 0.003 0.003 0.001 0.003 0.003 0.000
(0.002,0.005) (0.001,0.004) (-0.001,0.003) (0.001,0.005) (0.001,0.005) (-0.002,0.003)

- - [0.978] - - [1.000]
Fraction of adults Divorced or Separated 0.005 0.001 0.004 0.006 0.001 0.005

(0.003,0.006) (-0.001,0.002) (0.002,0.006) (0.004,0.008) (-0.001,0.002) (0.003,0.008)
- - [0.001] - - [0.000]

Fraction of adults Widow or Widower 0.036 0.039 -0.003 0.033 0.037 -0.004
(0.031,0.041) (0.035,0.043) (-0.009,0.003) (0.029,0.037) (0.033,0.041) (-0.010,0.002)

- - [0.791] - - [0.443]
Fraction Marriage Status Unknown 0.000 0.000 0.000 0.000 0.000 0.000

(0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)
- - [1.000] - - [1.000]

Fraction Marriage status ”NA” 0.389 0.392 -0.001 0.416 0.392 0.024
(0.379,0.401) (0.381,0.404) (-0.016,0.014) (0.401,0.432) (0.377,0.406) (0.003,0.045)

- - [1.000] - - [0.054]
Fraction who received Nursery level education or less 0.136 0.165 -0.028 0.154 0.165 -0.012

(0.127,0.145) (0.156,0.174) (-0.040,-0.015) (0.142,0.166) (0.154,0.176) (-0.028,0.006)
- - [0.000] - - [0.348]

Fraction who received Class 4 level education 0.079 0.090 -0.010 0.074 0.092 -0.017
(0.072,0.087) (0.084,0.097) (-0.020,-0.001) (0.068,0.080) (0.086,0.097) (-0.026,-0.009)

- - [0.064] - - [0.000]
Fraction who received Class 8 level education 0.160 0.154 0.004 0.174 0.161 0.012

(0.151,0.169) (0.146,0.163) (-0.008,0.017) (0.164,0.183) (0.153,0.170) (-0.001,0.025)
- - [0.945] - - [0.132]

Fraction who received Class 12 level education 0.248 0.226 0.017 0.204 0.231 -0.026
(0.236,0.261) (0.214,0.240) (-0.001,0.036) (0.188,0.220) (0.216,0.247) (-0.049,-0.005)

- - [0.144] - - [0.034]
Fraction who received Graduate or Other Diploma level education 0.082 0.095 -0.013 0.078 0.085 -0.007

(0.071,0.093) (0.084,0.104) (-0.028,0.003) (0.067,0.090) (0.074,0.096) (-0.023,0.009)
- - [0.209] - - [0.755]

Fraction with education level Other or Dont know 0.293 0.262 0.031 0.311 0.261 0.050
(0.284,0.303) (0.254,0.271) (0.019,0.044) (0.301,0.320) (0.252,0.271) (0.037,0.063)

- - [0.000] - - [0.000]
Notes: Classification Analysis of Imminuzation Incentives for all Covariates .
Notes: Medians over 100 splits. 90% confidence interval in parenthesis.P-values for the hypothesis that the parameter is equal to zero in brackets.
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Figure 4. GATES of Immunization Full package compared to Ambassadors and
SMS only. Point estimates and 90% adjusted confidence intervals uniform across
groups based on 100 random splits in half
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Table 11. Cost effectiveness for GATE Quintiles, Comparing Full treatment to most
cost effective treatment

Elastic Net Nnet
Mean in Treatment Mean in Control Difference Mean in Treatment Mean in Control Difference
(Ê[X | D = 1, Gk]) (Ê[X | D = 0, Gk]) (Ê[X | D = 1, Gk]) (Ê[X | D = 0, Gk])

Imm. per dollar (All) 0.036 0.043 -0.006 0.036 0.042 -0.006
(0.034,0.038) (0.041,0.044) (-0.008,-0.004) (0.034,0.038) (0.041,0.044) (-0.009,-0.004)
- - [0.000] - - [0.000]

Imm. per dollar (G1) 0.034 0.047 -0.013 0.033 0.047 -0.014
(0.030,0.037) (0.045,0.048) (-0.017,-0.009) (0.029,0.036) (0.045,0.049) (-0.019,-0.010)
- - [0.000] - - [0.000]

Imm.per dollar (G2) 0.031 0.044 -0.013 0.035 0.044 -0.009
(0.027,0.036) (0.042,0.046) (-0.018,-0.008) (0.031,0.039) (0.042,0.046) (-0.013,-0.004)
- - [0.000] - - [0.000]

Imm.per dollar (G3) 0.037 0.043 -0.007 0.037 0.043 -0.005
(0.033,0.041) (0.041,0.046) (-0.011,-0.002) (0.034,0.041) (0.041,0.045) (-0.010,-0.001)
- - [0.015] - - [0.027]

Imm. per dollar (G4) 0.039 0.039 -0.001 0.037 0.041 -0.004
(0.036,0.042) (0.036,0.042) (-0.005,0.004) (0.034,0.041) (0.038,0.044) (-0.008,0.001)
- - [1.000] - - [0.186]

Imm. per dollar (G5) 0.036 0.034 0.002 0.036 0.035 0.002
(0.032,0.040) (0.030,0.039) (-0.004,0.007) (0.033,0.040) (0.031,0.038) (-0.003,0.008)
- - [1.000] - - [0.882]

Note: This table compares the cost effectiveness by GATES group when we compare the full package to the most effective package (SMS and information hubs ambassadors
Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
Notes: P-values for the hypothesis that the parameter is equal to zero in brackets.
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