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Abstract

This paper is an empirical investigation of the effects of climate on the use of electricity by consumers and
producers in urban and rural areas within China. It takes advantage of an unusual combination of temporal and
regional data sets in order to estimate temperature, as well as price and income elasticities of electricity
demand. The estimated positive temperature/electric power feedback implies a continually increasing use of
energy to produce electric power which, in China, is primarily based on coal. In the absence of countervailing
measures, this will contribute to increased emissions, increased atmospheric concentrations of greenhouse
gases, and increases in greenhouse warming.
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1. Introduction

This paper investigates the effects of climate on the use of electricity by consumers and
producers, using an unusual data set assembled for urban and rural areas across China. The
primary question is the direction in which the net adjustments to climate change will proceed:
greater or lesser use of electricity and, therefore, greater or lesser use of greenhouse gas emitting
fuels? If the feedbacks are negative, their neglect leads to overestimates of future emissions.
However, if the feedbacks are positive, their neglect leads to underestimates of emissions and
future global warming.

The analysis of the potential effects of climate change has received considerable attention,
although not as much as the consequences of mitigating greenhouse gas emissions levels (Metz
et al., 2001). This is unfortunate for two reasons. First, we have already experienced globally
averaged warming and there will be continued changes in the future (Forest et al., 2000). Secondly,
there may be effects of climate change that increase or decrease the difficulties of future climate
mitigation through positive or negative feedbacks (Prinn et al., 1999).

We estimate the demand for electricity-using climate indicators, as well as structural and
the conventional price and income variables. We do this for Chinese provinces over a six year
period so that we can capture both spatial and temporal climatic differences on urban and rural
consumers and industry. For residential consumers, we employ two-stage regressions. The first
stage estimates the localized effect of climate and other variables on the purchase of
electricity-using residential appliances; the second stage then estimates the localized effect of
climate and other variables on the intensity of both appliance and non-appliance uses of
electricity. Non-residential electricity demands for electricity are estimated separately as a one-
stage regression.

The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
identifies energy sectors as being the most vulnerable to climate change (McCarthy et al., 2001).
Despite this, there are relatively few empirical studies dealing with the feedbacks of climate on
energy demand. To date, numerous economic assessments of climate feedbacks on energy
demand have been mainly qualitative case studies, surveys, overviews, or subjective evaluations.
(Crocker and Ferrar, 1976; Linder et al., 1989; Smith and Tirpak, 1989; Nordhaus, 1991; Cline,
1992; McKibbin and Wilcoxen, 2002).

There is, however, a modest set of econometric investigations on related issues. These
include models utilizing a single stage sector-disaggregated energy demand framework
originating with Fisher and Kaysen (1962) and expanded upon more recently by Considine
(2000). Dubin and McFadden (1984) developed a two-stage discrete-continuous methodology,
used also by Vaage (2000). In most of these instances, weather data is utilized, represented by
the number of heating- and cooling-degree days. One exception is Mansur et al. (2005) in
which they employ National Climate Data Center data on average monthly temperature and
precipitation. Like Dubin and McFadden (1984), the first stage of the Mansur et al. (2005)
regressions explains fuel choice, as if energy sources other than electricity are possible in the
important consumer applications.

This study is unique in that, besides its “stand-alone” value, the econometric specification is
designed such that climate change researchers may be able to subsequently utilize the empirical
estimates within an integrated global systems framework (e.g., Sokolov et al., 2005).

The remainder of the paper is organized as follows. Section 2 details the empirical models and
data. Next, Section 3 reports and analyzes empirical results. Section 4 provides discussion of
estimated elasticities. Lastly, Section 5 provides a summary and conclusions.
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2. Empirical models and data

In formulating our econometric model of electricity demand with the inclusion of climate
variables, the availability of data at relatively low levels of disaggregation is essentially the
“horse that pulls the carriage”. We have detailed provincial economic and climate data over
several years for urban and rural areas in China, covering a wide range of climate zones,
forming a substantial panel data set (Fridley and Sinton, 2004; Ngo-Duc et al., 2005; State
Statistical Bureau of the People's Republic of China, 1995, 1996, 1997, 1998, 1999, 2000,
2001).

The data distinguish urban and rural residential use of electricity. In addition, our data
permit us to control for individual ownership of air conditioners, refrigerators, and television
sets. We use proxy variables as well to capture electricity demand for lighting/illumination1.
In estimating residential electricity demands separately for urban and rural residents, we
follow the spirit of the two-stage approach initially developed by Dubin and McFadden
(1984), except that we estimate a first set of individual demands for air conditioners (ACs),
refrigerators and television sets (TVs), rather than a choice of fuel types. The second stage
equation is residential electricity demand conditional on these first stage choices. More
formally,

WU
it ¼ XU

it d
U þ mUi ð1Þ

YU
it ¼ ZU

it b
U þ eUit ð2Þ

WR
it ¼ X R

it d
R þ mRi ð3Þ

YR
it ¼ ZR

it b
R þ eRit ð4Þ

Where:

WU
it Vector of dependent variables consisting of natural logarithm of the urban stocks of ACs,

refrigerators, and TVs estimated individually and respectively.
WR

it Vector of dependent variables consisting of natural logarithm of the rural stocks of ACs,
refrigerators, and TVs estimated individually and respectively.

Yit
U Natural logarithm of urban residential electricity demand.

Yit
R Natural logarithm of rural residential electricity demand.

Xit
U Natural logarithm of: urban residential electricity price, urban income per capita, and

mean temperature variable(s); a binary variable for differences associated with coastal
provinces; for the AC equation, the natural logarithm AC price and fan price are added;
for the refrigerator equation, the natural logarithm of refrigerator price is added; for the
TV equation, the natural logarithm of the TV price is added.

Xit
R Natural logarithm of: rural residential electricity price, rural income per capita, and

mean temperature variable(s); a binary variable for differences associated with coastal
provinces; for the AC equation, the natural logarithm AC price and fan price are added;
1 Brockett et al. (2002) indicate that the top four electricity-consuming appliances for China are (in descending order):
refrigerators, air conditioners, and lighting/illumination, and televisions.
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for the refrigerator equation, the natural logarithm of refrigerator price is added; for the
TV equation, the natural logarithm of the TV price is added.

Zit
U All the same variables included in XU

it, excluding all durable good prices; additional
variables are the predicted new urban stocks of ACs, refrigerators, and TVs from the
estimated Eq. (1); also included are the natural logarithm of total urban residential living
space, and the natural logarithm of monthly night time (i.e. non-daylight) hours stratified
by four seasons.

Zit
R All the same variables included in Xit

R, excluding all durable good prices; additional
variables are the predicted new rural stocks of ACs, refrigerators, and TVs from the
estimated Eq. (3); also included are the natural logarithm of total rural residential
living space, and the natural logarithm of monthly night time hours stratified by
four seasons.

βU,βR,δU,δR Parameter vectors to be estimated.
εit
U,εit

R,νit
U,νit

R Stochastic error terms with the usual properties.

The mean near-surface air temperature varies substantially across both time and space in
China. For example, the lowest mean monthly temperatures are found in the north-most provinces
(e.g. Inner Mongolia) whereas, in contrast, the highest mean monthly temperatures are found in
the south-central provinces (e.g. Guangdong). In order to investigate the possible effects of
seasonal differences in climate and examine the sensitivity of the estimation to various
formulations, we estimate separately all equations in this study using monthly, seasonal, and
annual mean temperature variables as regressors. More specifically, we individually estimate
three regressions each for Eqs. (1)–(4); Case A utilizes monthly mean temperatures; Case B uses
second seasonal mean temperatures: summer, fall, winter, and spring; and Case C uses annual
mean temperatures2. The specific grouping of months into the four seasonal categories may be
somewhat arbitrary, which is an additional reason why we also estimate the equations using
individual monthly mean temperature variables.

Unlike the information on the use of electricity for appliances, detailed data on amount of
electricity consumed for lighting/illumination is not directly available. Therefore, we have
constructed proxy variables to represent this use. These are the mean monthly night time
hours, stratified by the same four seasons, and the total amount of residential living space.
While the mean number of monthly night time hours are the only variables used that do not
change from year-to-year, there is, of course, variation across provinces with latitude3.
Significant collinearity prohibited the interaction of the mean monthly night time hours
variables with residential living space. Lastly, since in China, there exist differences in taxes
and other economic policies in coastal versus non-coastal provinces, these differences are
controlled for via a binary variable distinguishing coastal and non-coastal provinces (Zhang
and Martinez-Vazquez, 2003).

In contrast to the residential models, detailed data on the electricity-using equipment of non-
residential consumers (e.g. industry sectors) are not readily available. In addition, non-residential
2 Initially, we intended to include relative humidity as an additional climate measure, which also possesses a relatively
large degree of variability across time and space in China. However, high collinearity between temperature and relative
humidity variables necessitated dropping one of the measures. Temperature is most important for linkages within Global
System Models (Sokolov et al., 2005).
3 See Ngo-Duc et al. (2005) for more details.
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data does not distinguish between urban and rural areas. Thus, non-residential electricity demand
is formally expressed as,

YN
it ¼ ZN

it cþ A it ð5Þ
Where:

Yit
N Natural logarithm of non-residential electricity demand.

Zit
N Natural logarithm of: non-residential electricity price; gross domestic product separately

for the primary, net-secondary, and tertiary industries; total non-residential floor space;
mean temperature(s); and monthly night time hours stratified by four seasons; in
addition, a binary variable for differences associated with coastal provinces.

γ Parameter vector to be estimated.
μit Stochastic error terms with the usual properties.

With regard to mean temperature, three versions of Eq. (5) are estimated for Cases A through
C, as stipulated for the residential regressions. Another problem arises because secondary
industry gross output includes the gross output of electricity; therefore, we remove gross
electricity output from total secondary industry output.

The necessary spatially explicit climate data are taken from a re-processed version of the
National Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis product, designed specifically for land-climate analysis and
applications. The NCEP/NCAR data set is a 1°×1° spatial climate data set which “…is
based on the National Centers for Environmental Prediction/National Center for Atmospheric
Research reanalysis project and a number of in situ observations…These observations are
obtained from surface station observations, radiosonde, aircraft and, in recent decades, satellite
retrievals” (Ngo-Duc et al., 2005, p. 1–2). This quality-controlled spatially explicit data was
recently developed for use mostly with global land surface models within an integrated global
systems framework as well as various applications, including climate change (Ngo-Duc et al.,
2005). In its initial form, the data lacked China country or provincial codes. Thus, provinces
were coded utilizing a provincial boundary Geographical Information System (GIS) spatial
data layer available through the Center for International Earth Science Information Network
(CIESIN) at Columbia University (CIESIN, 2004). Following the same approach of
Deschenes and Greenstone (2006), multiple grid cells within provinces were averaged to
generate monthly mean temperatures for each province in a given year for the time period
1995 to 2000.

The time period of years 1995 to 2000, as well as the provinces chosen, were based on data
availability for all economic and climate variables. The province of Chongqing was promoted
from a municipality in year 1997, separate from its former position as part of the Sichuan
province. For this study, Chongqing data from 1997 to 2000 was aggregated with Sichuan for
consistency purposes only. Moreover, the province of Tibet was eliminated due to lack of data.
Lastly, after examining scatter plots as well as systematic testing for outliers (at the 5% level)
using the method developed by Hadi (1992) and further refined in Hadi (1994), we decided to
exclude the provinces of Hainan, Xinjiang, and Qinghai. Using the same method for the rural
residential regressions, the provinces of Beijing, Shanghai, and Tianjin were additionally
excluded as extreme outliers. Although there are rural areas within these provinces, they are
overwhelmingly dominated by the large cities.
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Table 1
First stage urban residential regression results

Dependent variables: LN(UAC_
STOCK)

LN(UAC_
STOCK)

LN(UAC_
STOCK)

LN(UREFRIG_
STOCK)

LN(UREFRIG_
STOCK)

LN(UREFRIG_
STOCK)

LN(UTV_
STOCK)

LN(UTV_
STOCK)

LN(UTV_
STOCK)

# Observation: 153 153 153 153 153 153 153 153 153

Estimator: PCSE PCSE PCSE PCSE PCSE PCSE PCSE PCSE PCSE

Equation #: 1A 1B 1C 1A 1B 1C 1A 1B 1C

INTERCEPT 25.669 −20.261 2.607 5.450 5.330 5.999 9.142 10.195 9.574
(1.99)⁎ (2.02)⁎ (0.14) (3.14)⁎ (2.96)⁎ (3.50)⁎ (13.02)⁎ (11.45)⁎ (10.17)⁎

LN(URES_ELECPRICE) −0.311 −0.309 0.638 0.036 0.051 0.065 −0.036 −0.035 −0.040
(0.86) (1.00) (1.49) (1.07) (1.90) (2.10)⁎ (1.90) (1.67) (1.53)

LN(UINCPC) 0.546 0.872 0.795 0.434 0.428 0.416 0.363 0.350 0.356
(5.79)⁎ (8.04)⁎ (5.33)⁎ (6.34)⁎ (6.27)⁎ (6.54)⁎ (18.05)⁎ (12.95)⁎ (12.18)⁎

LN(AC_PRICE) −9.816 −8.167 −3.201 – – – – – –
(3.07)⁎ (3.07)⁎ (2.70)⁎

LN(FAN_PRICE) 7.562 6.473 1.079 – – – – – –
(2.24)⁎ (1.98)⁎ (1.24)

LN(REFRIG_PRICE) – – – −0.279 −0.350 −0.395 – – –
(1.38) (1.74) (2.10)⁎

LN(TV_PRICE) – – – – – – −0.720 −0.785 −0.770
(6.86)⁎ (6.02)⁎ (5.23)⁎

COAST −0.047 −0.150 0.209 0.030 0.025 0.026 0.013 0.012 0.004
(1.52) (0.65) (0.59) (2.46)⁎ (2.15)⁎ (2.33)⁎ (2.06)⁎ (1.18) (0.04)

LN(JAN_TEMP) −0.019 – – −0.003 – – 0.000 – –
(0.59) (1.01) (0.04)

LN(FEB_TEMP) 0.088 – – 0.008 – – 0.004 – –
(1.56) (1.76) (1.29)

LN(MAR_TEMP) 0.068 – – 0.005 – – 0.004 – –
(2.57)⁎ (1.49) (2.13)⁎

LN(APR_TEMP) −0.085 – – −0.007 – – 0.000 – –
(1.79) (0.16) (0.27)

LN(MAY_TEMP) −0.090 – – −0.006 – – −0.009 – –
(1.37) (1.04) (2.47)

LN(JUN_TEMP) 0.089 – – −0.005 – – 0.006 – –
(1.90) (0.74) (1.84)

LN(JUL_TEMP) 0.096 – – 0.003 – – 0.005 – –
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(1.90) (0.57) (1.24)
LN(AUG_TEMP) 0.100 – – 0.013 – – −0.001 – –

(1.55) (2.04)⁎ (0.27)
LN(SEP_TEMP) 0.036 – – 0.004 – – –0.006 – –

(1.00) (1.06) (2.58)⁎

LN(OCT_TEMP) −0.053 – – −0.010 – – −0.001 – –
(1.02) (1.76) (0.33)

LN(NOV_TEMP) −0.102 – – −0.006 – – −0.008 – –
(2.16)⁎ (1.10) (2.90)⁎

LN(DEC_TEMP) 0.047 – – 0.004 – – 0.003 – –
(1.52) (0.76) (1.60)

LN(WINTER_TEMP) – 1.324 – – 0.087 – – 0.036 –
(2.91)⁎ (2.29)⁎ (2.22)⁎ –

LN(SPRING_TEMP) – −2.557 – – 0.109 – – 0.126
(1.01) (0.67) (1.30) –

LN(SUMMER_TEMP) – 16.555 – – 0.398 – – −0.076
(4.23)⁎ (1.79) (0.67) –

LN(FALL_TEMP) – −3.767 – – −0.335 – – −0.291
(2.23)⁎ (1.81) (2.50)⁎ –

LN(ANNUAL_TEMP) – – 3.937 – – 0 03 – – −0.091
(5.16)⁎ (2 4)⁎ (1.52)

R2 0.615 0.616 0.341 0.986 0.989 0 92 0.991 0.996 0.996

Notes:
⁎ = Significance at the 5% level.
Absolute t-statistics in parentheses.
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Table 2
Second stage urban residential regression results

Dependent variables: LN(URES_ELECD) LN(URES_ELECD) LN(URES_ELECD)

# Observation: 150 150 150

Estimator: PCSE PCSE PCSE

Equation #: 2A 2B 2C

INTERCEPT −10.676 26.695 −1.394
(0.81) (1.43) (0.15)

LN(URES_ELECPRICE) −0.204 −0.132 −0.190
(2.43)⁎ (2.79)⁎ (2.44)⁎

LN(UINCPC) 0.716 0.564 0.797
(2.20)⁎ (2.90)⁎ (3.60)⁎

LN(WINTER_NIGHT) −1.649 −2.004 −2.424
(2.05)⁎ (2.87)⁎ (3.88)⁎

LN(SPRING_NIGHT) −3.446 −4.099 −1.654
(0.90) (0.83) (0.66)

LN(SUMMER_NIGHT) −2.665 −4.410 0.248
(1.18) (1.76) (0.17)

LN(FALL_NIGHT) 3.549 6.522 4.533
(1.76) (2.91)⁎ (2.12)⁎

LN(ULIVINGSPACE) 0.717 0.557 0.485
(6.73)⁎ (12.04)⁎ (4.70)⁎

LN(UAC_ST̂OCK) 0.039 0.078 0.096
(2.34)⁎ (3.02)⁎ (4.98)⁎

LN(UREFRIG_ST̂OCK) −0.835 −0.561 −0.712
(2.71)⁎ (2.03)⁎ (2.75)⁎

LN(UTV_ST̂OCK) −1.305 −1.112 −1.242
(2.44)⁎ (3.29)⁎ (2.77)⁎

COAST 0.316 0.408 0.556
(2.01)⁎ (1.98)⁎ (9.60)⁎

LN(JAN_TEMP) 0.207 – –
(3.35)⁎

LN(FEB_TEMP) −0.632 – –
(2.03)⁎

LN(MAR_TEMP) 0.420 – –
(0.81)

LN(APR_TEMP) −1.385 – –
(1.90)

LN(MAY_TEMP) −0.419 – –
(0.48)

LN(JUN_TEMP) 1.873 – –
(1.98)⁎

LN(JUL_TEMP) −0.743 – –
(0.65)

LN(AUG_TEMP) 0.918 – –
(0.69)

LN(SEP_TEMP) −1.617 – –
(1.86)

LN(OCT_TEMP) 0.647 – –
(0.60)

LN(NOV_TEMP) −0.064 – –
(0.11)

LN(DEC_TEMP) 0.447 – –
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Table 2 (continued)

Dependent variables: LN(URES_ELECD) LN(URES_ELECD) LN(URES_ELECD)

# Observation: 150 150 150

Estimator: PCSE PCSE PCSE

Equation #: 2A 2B 2C

(1.67)
LN(WINTER_TEMP) – 0.215 –

(1.87)
LN(SPRING_TEMP) – −0.323 –

(0.67)
LN(SUMMER_TEMP) – 2.054 –

(2.43)⁎

LN(FALL_TEMP) – −1.928 –
(3.55)⁎

LN(ANNUAL_TEMP) – 0.590
(2.03)⁎

R2 0.802 0.810 0.899

Notes:
⁎ = Significance at the 5% level.
Absolute t-statistics in parentheses.
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9M.O. Asadoorian et al. / Energy Economics xx (2007) xxx–xxx

ARTICLE IN PRESS
Table 1A in the Appendix provides a comprehensive description of all variables for Eqs. (1)–(5)
with the variable names used in estimation, their definition, unit of measure, construction, and
data source(s); Table 2A of the Appendix provides sample statistics.

3. Empirical results and analysis

A likelihood ratio test as prescribed by Wooldridge (2002) indicated heteroskedasticity
across panels for all equations, likely due to the geographic-scale differences across
provinces. In addition, following Wooldridge (2002), a test of first-order (panel-specific and
common) autocorrelation lead us to reject the null hypothesis of no autocorrelation for each
of Eqs. (1)–(5), finding the existence of common, not panel-specific, first-order
autocorrelation. Consequently, for Eqs. (1)–(5), the classical fixed- or random-effects panel
estimators cannot be employed. Instead, we estimated them using the Prais–Winsten panel-
corrected standard error (PCSE) estimator4. In these cases, feasible generalized least squares
(FGLS) is an alternative estimation procedure. However, FGLS produces estimates
conditional on the estimates of the disturbance covariance matrix and are conditional upon
any autocorrelation parameters that are estimated (Greene, 2003). In addition, Beck and Katz
(1995) have demonstrated that FGLS variance–covariance estimates are typically positively
biased.

Urban residential regression results are provided in Tables 1 and 2; rural residential
regression results are reported in Tables 3 and 4; lastly, the non-residential results are in
Table 5.
4 In using the conventional panel estimators, random effects results are inconsistent and fixed-effect results utilizing
annual mean temperature did not significantly differ from those reported here.
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Table 3
First stage rural residential regression results

Dependent variables: LN(RAC_
STOCK)

LN(RAC_
STOCK)

LN(RAC_
STOCK)

LN(RREFRIG_
STOCK)

LN(RREFRIG_
STOCK)

LN(RREFRIG_
STOCK)

LN(RTV_
STOCK)

LN(RTV_
STOCK)

LN(RTV_
STOCK)

# Observation: 59 60 61 125 129 132 125 129 132

Estimator: PCSE PCSE PCSE PCSE PCSE PCSE PCSE PCSE PCSE

Equation #: 3A 3B 3C 3A 3B 3C 3A 3B 3C

INTERCEPT 17.560 32.814 81.805 −17.030 6.851 17.177 36.565 44.802 45.478
(0.28) (0.69) (1.69) (1.26) (0.45) (1.10) (4.94)⁎ (5.25)⁎ (5.20)⁎

LN(RRES_ELECPRICE) 0.489 0.635 0.615 0.252 0.431 0.578 0.023 0.122 0.139
(0.77) (1.35) (1.22) (1.47) (0.98) (1.24) (0.33) (1.71) (1.43)

LN(RINCPC) 0.615 0.752 0.556 0.952 0.794 0.593 0.790 0.556 0.516
(1.87) (1.26) (1.07) (7.00)⁎ (4.72)⁎ (4.90)⁎ (4.78)⁎ (2.87)⁎ (2.96)⁎

LN(AC_PRICE) −0.963 −3.439 −10.599 – – – – – –
(0.15) (0.61) (2.04)⁎

LN(REFRIG_PRICE) – – – 0.631 −2.406 −2.949 – – –
(0.42) (1.32) (1.64)

LN(TV_PRICE) – – – – – – −4.592 −5.819 −5.954
– (4.47)⁎ (4.61)⁎ (4.97)⁎

COAST 1.856 1.904 2.317 0.627 0.868 0.992 0.436 0.583 0.591
(7.33)⁎ (4.19)⁎ (3.90)⁎ (4.19)⁎ (5.28)⁎ (5.96)⁎ (4.11)⁎ (5.08)⁎ (4.72)⁎

LN(JAN_TEMP) 0.403 – – 0.068 – – 0.025 – –
(0.35) (0.41) (0.31)

LN(FEB_TEMP) 1.053 – – 0.420 – – −0.368 – –
(0.38) (0.84) (1.39)

LN(MAR_TEMP) 4.577 – – 0.449 – – 0.336 – –
(1.67) (0.57) (0.84)

LN(APR_TEMP) −2.634 – – −0.322 – – −0.048 – –
(0.49) (0.23) (0.06)

LN(MAY_TEMP) −2.808 – – −5.814 – – −2.191 – –
(0.43) (3.22)⁎ (1.92)

LN(JUN_TEMP) 0.096 – – 3.172 – – 1.570 – –
(0.01) (1.49) (1.45)

LN(JUL_TEMP) 9.567 – – 4.188 – – 2.306 – –
(1.69) (1.70) (1.95)

10
M
.O
.
A
sadoorian

et
al.

/
E
nergy

E
conom

ics
xx

(2007)
xxx–xxx

A
R
T
IC
LE

IN
P
R
E
S
S

P
lease

cite
this

article
as:

A
sadoorian,

M
.O
.
et

al.
M
odeling

clim
ate

feedbacks
to

electricity
dem

and:
T
he

case
of

C
hina.

E
nergy

E
conom

ics
(2007),

doi:10.1016/j.eneco.2007.02.003

http://dx.doi.org/10.1016/j.eneco.2007.02.003


LN(AUG_TEMP) −8.744 – – −0.074 – – −2.768 – –
(1.68) (0.03) (2.02)⁎

LN(SEP_TEMP) −0.964 – – −0.470 – – −0.961 – –
(0.18) (0.34) (1.14)

LN(OCT_TEMP) −5.415 – – −0.728 – – 0.505 – –
(0.87) (0.45) (0.73)

LN(NOV_TEMP) −1.288 – – −2.608 – – −0.929 – –
(0.31) (3.61)⁎ (1.95)

LN(DEC_TEMP) 0.868 – – 1.333 – – 0.501 – –
(0.49) (2.96)⁎ (2.29)⁎

LN(WINTER_TEMP) – 0.455 – – 0.390 – – 0.023 –
(0.83) (2.42)⁎ (0.33)

LN(SPRING_TEMP) – 5.905 – – −1.212 – – 0.309 –
(1.59) (1.26) (0.52)

LN(SUMMER_TEMP) – −4.874 – – 3.073 – – −0.153 –
(1.01) (2.68)⁎ (0.24)

LN(FALL_TEMP) – −4.986 – – −1.708 – – −1.135 –
(1.55) (1.54) (1.54)

LN(ANNUAL_TEMP) – – 0.444 – – 0.539 – – −1.457
(0.55) (2.95)⁎ – (5.60)⁎

R2 0.694 0.650 0.644 0.769 0.667 0.606 0.697 0.736 0.698

Notes:
⁎ = Significance at the 5% level.
Absolute t-statistics in parentheses.
LN(FAN_PRICE) automatically dropped due to collinearity.
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Table 4
Second stage rural residential regression results

Dependent variables: LN(RRES_ELECD) LN(RRES_ELECD) LN(RRES_ELECD)

# Observation: 59 60 61

Estimator: PCSE PCSE PCSE

Equation #: 4A 4B 4C

INTERCEPT 86.775 307.777 261.465
(1.04) (3.11)⁎ (2.42)⁎

LN(RRES_ELECPRICE) −0.203 −0.645 −0.275
(0.36) (2.21)⁎ (2.48)⁎

LN(RINCPC) 0.141 0.255 0.038
(0.29) (2.80)⁎ (0.14)

LN(WINTER_NIGHT) −2.463 −4.537 −3.060
(2.11)⁎ (2.84)⁎ (2.07)⁎

LN(SPRING_NIGHT) 3.271 −9.136 −8.310
(0.94) (1.53) (1.16)

LN(SUMMER_NIGHT) 1.618 −2.042 −0.278
(0.32) (0.41) (0.10)

LN(FALL_NIGHT) −16.042 −34.564 −33.718
(1.98)⁎ (4.94)⁎ (3.23)⁎

LN(RLIVINGSPACE) 0.533 0.235 0.271
(4.55)⁎ (1.51) (2.25)⁎

LN(RAC_ST̂OCK) 0.085 0.234 0.119
(3.01)∗ (6.49)⁎ (2.54)⁎

LN(RREFRIG_STOCK) 0.000 0.204 0.100
(0.01) (1.67) (1.09)

LN(RTV_ST̂OCK) −0.014 −0.433 −0.129
(0.09) (2.46)⁎ (0.85)

COAST 0.574 0.803 0.789
(5.94)⁎ (8.80)⁎ (9.14)⁎

LN(JAN_TEMP) 0.766 –
(2.33)⁎

LN(FEB_TEMP) −2.058 – –
(2.23)⁎

LN(MAR_TEMP) −0.074 – –
(0.08)

LN(APR_TEMP) −2.081 – –
(1.43)

LN(MAY_TEMP) 1.011 – –
(1.05)

LN(JUN_TEMP) 3.024 – –
(1.58)

LN(JUL_TEMP) −2.344 – –
(1.23)

LN(AUG_TEMP) −3.416 – –
(1.18)

LN(SEP_TEMP) −2.016 – –
(1.19)

LN(OCT_TEMP) 1.269 – –
(0.93)

LN(NOV_TEMP) 3.237 – –
(2.43)⁎

LN(DEC_TEMP) −0.143 – –
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Table 4 (continued)

Dependent variables: LN(RRES_ELECD) LN(RRES_ELECD) LN(RRES_ELECD)

# Observation: 59 60 61

Estimator: PCSE PCSE PCSE

Equation #: 4A 4B 4C

(0.21)
LN(WINTER_TEMP) – −0.082 –

(0.45)
LN(SPRING_TEMP) – −1.688 –

(1.08)
LN(SUMMER_TEMP) – 1.030 –

(0.40)
LN(FALL_TEMP) – 0.904 –

(0.68)
LN(ANNUAL_TEMP) – – 0.758

(0.97)
R2 0.800 0.761 0.777

Notes:
⁎ = Significance at the 5% level.
Absolute t-statistics in parentheses.
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3.1. Urban residential regressions

For the durable demands in Table 1, we consider first the demand for air conditioners. For
Cases A through C, the magnitude and direction of the air conditioner price and income
coefficients are all significant and consistent with a priori expectations. In contrast, although
urban residential electricity prices yield the expected sign for Cases A and B, they do not appear to
be a significant driver of urban air conditioner demand. Moreover, differences for coastal
provinces are not significant. The price of fans is included to test the possible substitutability
between fans and air conditioners as cooling devices. The estimated and largely significant
positive coefficient supports this theory.

Another issue is the relatively large degree of collinearity among the monthly mean
temperature variables (Case A). Thus, it is no surprise that most are individually statistically
insignificant. From the estimation here, it appears that the month of March is predicted to generate
the largest predicted increase in the stock of air conditioners along with the largest predicted
decrease during the month of November. The seasonal Case B generates estimates that are more
consistent with expectations, namely, that the largest predicted increase in air conditioner stock is
during the summer accompanied by the largest predicted decrease during the fall. It is possible
that the predicted significant increase during winter may be indicative of forward-looking
behavior such that some households are making purchases of air conditioners at lower relative
prices during winter in anticipation of summer. Lastly, Case C yields a positive and highly
significant coefficient for annual mean temperature, though it fails to convey the temporal
variability as in Case B.

For refrigerator and television demand, it appears that income is the largest driver of demand,
as expected. In addition, most of the estimated coefficients of the durable good prices have the
correct signs and are significant. However, the estimated sign, direction, and significance of urban
residential electricity prices coefficients are counter-intuitive for refrigerators. Within the context
Please cite this article as: Asadoorian, M.O. et al. Modeling climate feedbacks to electricity demand: The case of
China. Energy Economics (2007), doi:10.1016/j.eneco.2007.02.003

http://dx.doi.org/10.1016/j.eneco.2007.02.003


Table 5
Single stage non-residential regression results

Dependent variables: LN(NONRES_ELECD) LN(NONRES_ELECD) LN(NONRES_ELECD)

# Observation: 82 83 83

Estimator: PCSE PCSE PCSE

Equation #: 5A 5B 5C

INTERCEPT 45.486 41.421 40.692
(5.42)⁎ (5.04)⁎ (5.19)⁎

LN(NONRES_ELECPRICE) −0.224 −0.199 −0.202
(3.98)⁎ (4.69)⁎ (3.90)⁎

LN(GDP_PRIMARY) 0.136 0.148 0.145
(4.89)⁎ (4.54)⁎ (3.82)⁎

LN(GDP_NETSECONDARY) 0.502 0.445 0.376
(7.81)⁎ (8.38)⁎ (6.01)⁎

LN(GDP_TERTIARY) 0.312 0.317 0.275
(2.55)⁎ (3.86)⁎ (3.65)⁎

LN(WINTER_NIGHT) −0.270 −0.499 −0.185
(0.67) (1.55) (0.61)

LN(SPRING_NIGHT) −11.316 −10.187 −8.715
(5.46)⁎ (10.57)⁎ (5.38)⁎

LN(SUMMER_NIGHT) 5.249 5.195 4.751
(3.55)⁎ (6.35)⁎ (5.28)⁎

LN(FALL_NIGHT) −0.807 −1.957 −2.817
(0.63) (1.78) (2.30)⁎

LN(FLOORSPACE) 0.161 0.145 0.163
(2.82)⁎ (1.64) (1.74)

COAST 0.213 0.248 0.249
(3.20)⁎ (3.27)⁎ (2.81)⁎

LN(JAN_TEMP) −0.054 – –
(0.45)

LN(FEB_TEMP) 0.696 – –
(1.72)

LN(MAR_TEMP) 0.238 – –
(0.31)

LN(APR_TEMP) −0.331 – –
(0.48)

LN(MAY_TEMP) −1.999 – –
(1.42)

LN(JUN_TEMP) 2.478 – –
(1.48)

LN(JUL_TEMP) 2.862 – –
(1.86)

LN(AUG_TEMP) −3.061 – –
(2.17)⁎

LN(SEP_TEMP) −0.953 – –
(0.86)

LN(OCT_TEMP) −0.349 – –
(0.66)

LN(NOV_TEMP) −0.757 – –
(1.16)

LN(DEC_TEMP) 0.345 – –
(1.22)

LN(WINTER_TEMP) – 0.243 –
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Table 5 (continued)

Dependent variables: LN(NONRES_ELECD) LN(NONRES_ELECD) LN(NONRES_ELECD)

# Observation: 82 83 83

Estimator: PCSE PCSE PCSE

Equation #: 5A 5B 5C

(3.40)⁎

LN(SPRING_TEMP) – −0.212 –
(0.67)

LN(SUMMER_TEMP) – −0.040 –
(0.07)

LN(FALL_TEMP) – −0.441 –
(0.64)

LN(ANNUAL_TEMP) – – 0.090
(0.48)

R2 0.935 0.955 0.959

Notes:
⁎ = Significance at the 5% level.
Absolute t-statistics in parentheses.
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of the first stage estimation, we would expect that, in general, mean temperature has more of an
impact on demand for air conditioning than refrigerators or televisions since it is a device to
directly respond to increases in temperature. Thus, although some of the mean temperature
coefficient estimates are significant, they certainly lack any plausible explanation.

The second stage urban residential electricity demand results in Table 2 are the most
interesting. Both estimated income and electricity price coefficients (i.e. constant elasticities) are
significant and consistent with a priori expectations for Cases A through C. Moreover, the
predicted stock of air conditioners yields a positive and highly significant coefficient, as expected.
The estimated negative coefficients on predicted refrigerator and television stocks seem to imply
economies of scale such that, increases to the existing stock are characterized by “newer, larger,
and energy efficient” units which consume less electricity per unit. Another possible explanation
is that some saturation threshold for refrigerators and televisions has been reached.

Recall, the seasonal night time hours variables are intended to be proxies that capture
electricity demand for lighting/illumination. The estimated negative coefficient on winter night
time hours is counter-intuitive and may be capturing provincial differences. Rather, it is the
positive and significant coefficient on the other proxy, namely residential living space, which
supports and appears to capture more accurately, electricity demand for lighting/illumination.
This is likely due to the fact that the night time hours are highly negatively correlated with mean
temperatures for all Cases, most notably for Case A.

Although the log-linear formulation of our equations provides constant elasticities with respect
to temperature (as well as prices and income), the stratification of mean temperature by season
allow us to see how these temperature elasticities vary over time. As expected, from Case B, we
see clearly that the most significant positive temperature elasticity occurs during summer,
followed by a significant negative drop-off in the subsequent fall season.

With the relatively large degree of variation of temperature across both time and space, the
usefulness of the constant elasticity for annual mean temperature (Case C) is not necessarily
adequate. However, given the frequent use of annual mean temperature analysis in the context of
Please cite this article as: Asadoorian, M.O. et al. Modeling climate feedbacks to electricity demand: The case of
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climate research (Houghton et al., 2001), a constant elasticity for annual mean temperature is
clearly the most applicable. For example, most climate change analyses include an annual mean
temperature change prediction (Sokolov et al., 2005). We compare and contrast our predicted
elasticities with the previous literature in Section 4.

3.2. Rural residential regressions

Relatively speaking, the estimation results for rural residents are less satisfying than the urban
ones. This may be due to the differences in economic policies with regard to economic
development of the urban versus rural areas (Jiang andO'Neill, 2004). As Pan (2002) indicates, the
incomplete and/or inadequate data available for most of China's rural areas is largely due to the fact
that “the focus of economic development in China has been on the urban part and industrial sectors
with respect to investment and government policies, such as education, infrastructures, healthcare,
and restrictions onmobility. This biased approach is well reflected in energy use in China” (p. 1). In
Table 3, we consider first the demand for air conditioners. For Cases A through C, the magnitude
and direction of the air conditioner price and income coefficients are all consistent with a priori
expectations, though most are individually insignificant. However, unlike rural refrigerators and
televisions, the first year data is available for rural air conditioner stocks is 2000, within our sample
data time series of 1995 through 2000. This is likely due to the relatively small ownership of air
conditioners among rural residents prior to year 2000. More recent editions of theChina Statistical
Yearbook (i.e. years 2002 through 2004) report rural air conditioner ownership for years 2001
through 2003 (State Statistical Bureau of the People's Republic of China, 2002, 2003, 2004). Our
initial intention was to estimate rural air conditioner demand for years 2000 through 2003.
However, the Ngo-Duc et al. (2005) climate data is not available beyond year 2000. Thus, we used
rural air conditioner stocks for years 2000 through 2003 to compute an average annual growth rate.
This fixed average rate was applied to generate a rural air conditioner stock series for years 1995
through 1999. The lack of data (as seen by the relatively small number of observations used in
estimation) is likely to be the one reason why income is not a significant driver of rural air
conditioner demand and why most estimated coefficients are individually insignificant. In
addition, before year 2001, the rural supply of electricity was relatively limited5.

Relatively speaking, this lack of data does not plague the refrigerator and television demand
estimation, as indicated by the results. For these, in general, we find that income and durable
prices are mostly significant with the expected signs. Moreover, we also find that winter and
summer seasons imply the largest predicted increases for refrigerator demand, as expected.
Annual mean temperatures are predicted to significantly decrease demand for televisions.

Once again, the second stage estimates of electricity demand as presented in Table 4 for rural
residents are most interesting. In contrast to the urban regressions, rural electricity prices are
significant with much greater magnitudes for the Cases B and C, thereby implying that they,
“matter more”, to rural residents than urban ones. Related to this are the estimated income
elasticities for the rural residents as compared to their urban counterparts. From Table 1, we see
that the relative magnitudes of the urban electricity price and income elasticities across Cases A
through C are generally consistent. In contrast, the magnitude of the rural electricity price
elasticity relative to the income elasticity varies across Cases A through C. In Case A, we estimate
relatively small and insignificant income and price elasticities. However, the reverse is true for
Case B, characterized by a significant increase in the absolute magnitude of these elasticities; the
5 This additional explanation was provided by an anonymous Reviewer of the paper.
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estimated income elasticity in Case C is also insignificant as in Case A, though the price elasticity
is significant for the former. The only difference between the Cases, of course, is the level of
aggregation with respect to the mean temperature variables.

For the rural regressions, we find that in Case A, those monthly mean temperature variables
that are also significant for their urban counterpart, are larger in relative magnitude. Specifically,
the magnitudes of the estimated coefficients are larger for the months of January and February.
There does appear to be some inconsistency for months such as November, whereby the estimated
coefficient is positive and significant for the rural regression and negative, though insignificant,
for the urban one. Most notably, the estimated coefficients on the mean monthly night time hours
variables for all rural regressions are generally consistent with the urban ones, except for the
significant negative fall season elasticities in rural Cases B and C, as compared to the positive and
significant urban counterparts. Related to this perhaps, is that in rural Cases B and C, none of the
mean temperature coefficients are significant.

Given the aforementioned relatively high negative collinearity between the mean temperatures
and mean monthly night time hours variables, it appears that during our sample period, rural
electricity demand responded more to seasonal night hours variation than mean temperatures with
the largest significant predicted decreases occurring during the fall. This may be attributed,
possibly, to rural residents partaking in more outdoor-based activities as opposed to more indoor
ones, thereby, decreasing the predicted electricity demand for lighting/illumination. The most of
important is the traditional annual cultural event known as the Mid-Autumn Festival in China.
This event is not only for celebrating the harvest, but also a period in the fall season for family
reunions and fellowship. It may also be that rural incomes were not high enough to generate
significant appliance demand.

Focusing more on rural Cases B and C, in short, it appears that rural electricity demand is
driven mostly by variation in electricity prices and seasonal night time hours, as opposed to
income and seasonal mean temperature for the urban counterparts.

3.3. Non-residential regressions

Table 5 provides regression results for the non-residential electricity demand regressions.
Again, the estimated coefficients (i.e. constant elasticities) for non-residential electricity prices
are consistent with a priori expectations. The major difference between the residential and
non-residential models is the manner in which income is measured. Unfortunately, it was not
possible to decompose the gross value of non-residential output into individual sectors. We
were able to disaggregate the total gross value of non-residential output is disaggregated into
primary, net-secondary, and tertiary industries, the latter including various commercial and
non-manufacturing sectors. The magnitudes of the estimated coefficients on the primary, net-
secondary, and tertiary gross domestic product variables are consistent with, and corresponds
to, the relative electricity-intensity of these sectors with the following (descending) rank order:
secondary, tertiary, primary industry (State Statistical Bureau of the People's Republic of
China, 2004).

In general, the mean temperature does not have a significant impact on non-residential
electricity demand, as expected. For Case A, we predict only a significant decrease during the
month of August. When compared to Case B, we find only a significant increase during the
winter. Based on the aforementioned collinearity between the monthly mean temperature and
mean night time hours variables, the monthly Case A should be taken with a “grain of salt”. For
Case B, it is likely that the predicted increase in non-residential electricity demand is attributed to
Please cite this article as: Asadoorian, M.O. et al. Modeling climate feedbacks to electricity demand: The case of
China. Energy Economics (2007), doi:10.1016/j.eneco.2007.02.003

http://dx.doi.org/10.1016/j.eneco.2007.02.003


18 M.O. Asadoorian et al. / Energy Economics xx (2007) xxx–xxx

ARTICLE IN PRESS
increased demand for lighting/illumination given that winter realizes the lowest mean
temperatures accompanied by the highest number of night time hours.

4. Elasticity analysis

Previous literature regarding the estimation of electricity demand has many price and income
elasticity estimates. Since this study is focused exclusively on China, it is most appropriate to
compare and contrast the elasticity estimates produced here to publications with a similar scope.
This study is unique because it stratifies electricity demand into urban and rural residential as well
as non-residential sectors.

Annual aggregate income elasticities of electricity demand/consumption are readily available
via the year 2004 China Statistical Yearbook. Notwithstanding the aggregation differences, a
simple averaging of these elasticities coinciding with the time period of our study for years 1995 to
2000, yields an income elasticity of +0.75. von Hirschhausen and Andres (2000) adopt an
aggregate income elasticity of +0.70, attributing this trend “…to the decreasing energy-output ratio
of the Chinese economy in the post-Mao reform period since 1979, when the energy use per unit of
GDP fell by over 50%” (p. 234). Moreover, von Hirschhausen and Andres (2000) as well as
Pesaran and Smith (1995) identify an acceptable range of short-run aggregate energy price
elasticites for China (as well as other transitional economies) as ranging between −0.10 and−0.30.

Table 6 summarizes the income, price, and annual mean temperature elasticities from our study
as well as those included in the previous literature. Empirical specifications in the previous
literature do not include temperature variables as we have here. Thus, as an exercise in sensitivity
Table 6
Elasticity analysis

Model εp εp
a εI εI

b εT

Urban residential electricity with
climate variables (equation 2C)

−0.190 −0.100 to −0.200 +0.797 +0.700 to +0.750 +0.590

Urban residential electricity without
climate variables c

−0.189 −0.100 to −0.200 +0.786 +0.700 to +0.750 –

Rural residential electricity with
climate variables (equation 4C)

−0.275 −0.100 to−0.200 +0.038 +0.700 to +0.750 +0.758

Rural residential electricity without
climate variables c

−0.210 −0.100 to−0.200 +0.014 +0.700 to +0.750 –

Non-residential electricity with climate
variable (equation 5C) d

−0.202 −0.100 to−0.200 – +0.700 to +0.750 +0.090

Non-residential electricity without
climate variables c, d

−0.127 −0.100 to−0.200 – +0.700 to +0.750 –

Where:
εp=Price elasticity of electricity demand.
εI = Income elasticity of electricity demand.
εT=Temperature elasticity of electricity demand.
a Based on short-run aggregate estimates (which correspond more closely to our time series of 1995–2000) from

Pesaran and Smith (1995) as well as von Hirschhausen and Andres (2000).
b Based on average of 1995–2000 aggregate elasticities in 2004 China Statistical Yearbook Table 7–8 as well as those

adopted by von Hirschhausen and Andres (2000).
c Models re-estimated without climate variables, specifically excluding mean temperatures as well as coastal binary

variables to prevent them from capturing climate differences.
d Recall, non-residential regressions do not utilize same income measure as residential and, hence, is not a legitimate

basis for comparison.
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analysis, we also re-estimate residential and non-residential electricity demands, excluding mean
temperatures.

In general, both price and income elasticities estimated for urban residents in this study are
consistent with those in the cited literature, irrespective of the inclusion of mean temperature
variables. For rural residents, although income elasticities differ substantially from previous
estimates, they are statistically insignificant; the price elasticities are more consistent. In addition,
non-residential price elasticities are consistent with the previous literature. However, since the
income measures utilized here for the non-residential regressions differs substantially from the
previous literature, no direct comparison is appropriate.

Most interestingly, however, is examining how the price and income elasticities react to the
inclusion or exclusion of mean temperature variables for all models. From Table 6, it is apparent
that both the price and income elasticities are consistently higher in absolute magnitude with the
inclusion of mean temperature variables in the regressions. It is our conclusion that conventional
estimates of these price and income elastiticies confound the effect of climate and other variables
with price and income. We believe that the conventional econometric estimates of electricity
demand that exclude climate variables underestimate the absolute magnitudes of income and
price elasticities. Differences in the estimated price and income elasticities, including versus
excluding, mean temperature variables are not individually significant. However, we employ
Engle (1982) Lagrange multiplier (LM) and F-test approaches to test the significance of including
temperature variables for each of the urban and rural residential as well as non-residential
regressions. We treat the cases of excluding mean temperature variables as restricted models and
reject each of these at the 5% level, thereby concluding that mean temperature variables do
“matter” for the regressions as a whole.

5. Summary and conclusions

This paper investigates the effects of climate on the use of electricity by consumers and producers
in urban and rural areas within China, taking advantage of an unusual combination of data sets in
order to estimate price, income and, most importantly, temperature elasticities of electricity demand.

In fully integrated system models of global climate change, a general equilibrium economic
model (e.g., Paltsev et al., 2005) is necessary in order to generate projections of anthropogenic
emissions and utilize these emissions projections in a climate framework to subsequently produce
climate projections, most notably, mean temperature change (e.g., Sokolov et al., 2005).
However, relatively little attention has been given to modeling feedbacks from a climate model to
an economic model in this context (McCarthy et al., 2001; Metz et al., 2001). Besides its “stand-
alone” value, our results are an attempt to fill this void by producing econometric estimates for
temperature elasticities of electricity demand that can be incorporated into such integrated system
models6. This makes it possible to move from climate projections to electricity demand
projections and, from there, to projections of fuel uses for electricity production, and then to
greenhouse gas emissions, which are inputs into climate models.

The positive temperature/electric power feedback implies a continually increasing use of
energy to produce electric power as global warming occurs. As long as energy is, to some
degree, based on fossil fuels, it implies continually increasing greenhouse gas emissions. In the
absence of countervailing measures, that entails increasing atmospheric concentrations of
6 Constant elasticity estimates are particularly useful for computable general equilibrium models, which include them
throughout their structure (Paltsev et al., 2005).
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greenhouse gases and greater greenhouse warming leading to higher temperatures, more
electricity use, and so forth. Despite the fact that results of this study are relatively limited in
terms of geographic scope, the positive temperature/electric power elasticities is another
indication of the need to find means of reducing the buildup of greenhouse gases in the
atmosphere.
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Appendix A

Table 1A
Description of variables
Variable name
Please cite this article as
China. Energy Economic
Definition
: Asadoorian, M.O. et
s (2007), doi:10.1016/j
Unit of measure
al. Modeling clima
.eneco.2007.02.003
Data source(s)
Economic variables:

?RES_ELECPRICE
 Residential electricity

price

Yuan/KWh
 China Energy Databook v.6 for 1997 residential

electricity price data; China Statistical Yearbook
years 1996–2001 for consumer price index for
electricity and other fuels used with 1997 data in
order to generate Province-specific electricity
prices for all remaining years between 1995 and
2000. ?=U for “Urban” and R for “Rural”.
NONRES_ELECPRICE
 Non-residential
electricity price
Yuan/KWh
 China Energy Databook v.6 for 1997 small and large
industry electricity price data; China Statistical
Yearbook years 1996–2001 for consumer price index
for electricity and other fuels used with 1997 data in
order to generate Province-specific electricity prices
for all remaining years between 1995 and 2000.
?RES_ELECD
 Residential urban
electricity demand
TWh
 China Energy Databook v.6. ?=U for
“Urban” and R for “Rural”.
NONRES_ELECD
 Non-residential urban
electricity demand
TWh
 China Energy Databook v.6. Constructed
by taking=Final Urban
?INCPC
 Income per capita for
urban areas
Yuan
 China Statistical Yearbook years 1996–2001.
?=U for “Urban” and R for “Rural”.
GDP_PRIMARY
 Gross value of output
for primary industry
Ten thousand
Yuan
China Statistical Yearbook years 1996–2001.
GDP_NETSECONDARY
 Gross value of net
output for secondary
industry
Ten thousand
Yuan
China Statistical Yearbook years 1996–
2001. Total generated electricity volume
for secondary industry obtained from:
www.chinadataonline.com was converted
to value terms using NONRES_ELECPRICE;
the resulting total gross value of electricity output
was subtracted from the total gross value of
secondary industry output.
GDP_TERTIARY
 Gross value of output
for tertiary industry
Ten thousand
Yuan
China Statistical Yearbook years 1996–2001.
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AC_PRICE
Please cite this article as
China. Energy Economic
Average price
of air conditioner
: Asadoorian, M.O. et
s (2007), doi:10.1016/j.
Yuan
al. Modeling clim
eneco.2007.02.00
From Nadel et al. (1995) available at:
www.aceee.org. We used a single average
1995 price of 3600 Yuan for 2000—Watt
window unit in conjunction with
Consumer Price Index for Durable
Goods to determine the Province-specific
prices for all remaining years between 1995
and 2000.
?AC_STOCK
 Stock of air
conditioners (ACs)
Number of units
owned
(year-end) per
100 urban
households.
China Statistical Yearbook years 1996–2004.
?=U for “Urban” and R for “Rural”. For rural
residents, data only available for years 2000–2003.
Given the time series utilized is 1995–2000,
the average annual growth rate in stock from
2000–2003 was computed and used to generate the
rural stock series for years 1995–1999.
FAN_PRICE
 Average price of
cooling fan
Yuan
 From “Market Report of Selected Electrical Home
Appliances” available at: www.chinavista.com.
Used a single average value of 150 Yuan for year
1996 in conjunction with in conjunction with
Consumer Price Index for Durable Goods to
determine the Province-specific prices for all
remaining years between 1995 and 2000.
REFRIG_PRICE
 Average price
of refrigerator
Yuan
 From “Market Report of Selected
Electrical Home Appliances” available at:
www.chinavista.com. Used a single
average 1996 price of 2770 Yuan (across major
brands) in conjunction with Consumer Price
Index for Durable Goods to determine the
Province-specific prices for all remaining years
between 1995 and 2000.
?REFRIG_STOCK
 Stock of refrigerators
 Number of
units owned
(year-end)
per 100 urban
households.
China Statistical Yearbook years 1996–2001.
?=U for “Urban” and R for “Rural”.
TV_PRICE
 Average price
of television
Yuan
 From “Business in China: Home Appliance
Makers Face Hard Year” available at:
www.china.com. Used a single average
2003 price of 800 Yuan for a 21 in. color
television unit in conjunction with
Consumer Price Index for Durable Goods
to determine the Province-specific prices
for all remaining years between 1995 and 2000.
?TV_STOCK
 Stock of color
televisions (TVs)
Number of
units owned
(year-end)
per 100 urban
households.
China Statistical Yearbook years 1996–
2001. ?=U for “Urban” and R for “Rural”.
?LIVINGSPACE
 Total living space of
residential buildings
(year-end)
Ten thousand
square meters
China Statistical Yearbook years
1996–2001. ?=U for “Urban” and R
for “Rural”.
FLOORSPACE
 Total floor space
of non-residential
buildings (year-end)
Ten thousand
square meters
China Statistical Yearbook years
1996–2001.
ate feedbacks to electricity demand: The case of
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COAST
Please cite this article as
China. Energy Economic
=1 for coastal
Provinces,
0 non-coastal
Provinces
: Asadoorian, M.O. et
s (2007), doi:10.1016/j
Binary
al. Modeling clima
.eneco.2007.02.003
None.
WINTER_NIGHT
 Mean number
of monthly night time
(i.e. non-daylight)
hours in winter
Numeric
 NCC spatial data set. Initial data was for
monthly daylight hours, which were
converted to night time hours. Winter
season consists of the months of:
December, January, and February.
SPRING_NIGHT
 Mean number
of monthly night time
(i.e. non-daylight)
hours in spring
Numeric
 NCC spatial data set. Initial data was for
monthly daylight hours, which were converted to
night time hours. Spring season consists of the
months of: March, April, and May.
SUMMER_NIGHT
 Mean number
of monthly night time
(i.e. non-daylight)
hours in summer
Numeric
 NCC spatial data set. Initial data was for
monthly daylight hours, which were converted to
night time hours. Summer season consists of the
months of: June, July, and August.
FALL_NIGHT
 Mean number
of monthly night time
(i.e. non-daylight)
hours in fall
Numeric
 NCC spatial data set. Initial data was for
monthly daylight hours, which were
converted to night time hours. Fall season
consists of the months of: September,
October, and November.
Climate variables:

ANNUAL_TEMP
 Mean annual

temperature

Fahrenheit
 NCC spatial data set. Monthly variables for

each province and for each year were
averaged; Initial data in unit Kelvin was
converted to Fahrenheit.
JAN_TEMP
 Mean January
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for
each province and for each year were
averaged; Initial data in unit Kelvin was
converted to Fahrenheit.
FEB_TEMP
 Mean February
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for
each province and for each year were averaged;
Initial data in unit Kelvin was converted to
Fahrenheit.
MAR_TEMP
 Mean March
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for
each province and for each year were averaged;
Initial data in unit Kelvin was converted to
Fahrenheit.
APR_TEMP
 Mean April
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
MAY_TEMP
 Mean May
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
JUN_TEMP
 Mean June
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
JUL_TEMP
 Mean July
temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
AUG_TEMP
 Mean August
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
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SEP_TEMP
Please cite this article as
China. Energy Economic
Mean September
Temperature
: Asadoorian, M.O. et
s (2007), doi:10.1016/j.
Fahrenheit
al. Modeling clim
eneco.2007.02.00
NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
OCT_TEMP
 Mean October
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
NOV_TEMP
 Mean November
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
DEC_TEMP
 Mean December
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
WINTER_TEMP
 Mean Winter
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
Winter season consists of the months of:
December, January, and February.
SPRING_TEMP
 Mean Spring
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
Spring season consists of the months of: March,
April, and May.
SUMMER_TEMP
 Mean Summer
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
Summer season consists of the months of: June,
July, and August.
FALL_TEMP
 Mean Fall
Temperature
Fahrenheit
 NCC spatial data set. Monthly variables for each
province and for each year were averaged; initial
data in unit Kelvin was converted to Fahrenheit.
Fall season consists of the months of: September,
October, and November.
Table A2
Sample Statistics
Variable
 Mean
ate feedbacks to electricity dem
3

Standard deviation
URES_ELECD
 2.036
 2.250

RRES_ELECD
 1.203
 3.004

NONRES_ELECD
 28.847
 1.786

URES_ELECPRICE
 0.308
 1.230

RRES_ELECPRICE
 0.246
 1.330

NONRES_ELECPRICE
 0.279
 1.394

UINCPC
 5110.232
 1.323

RINCPC
 1889.372
 1.557

UAC_STOCK
 6.360
 6.626

RAC_STOCK
 0.444
 5.512

UTV_STOCK
 102.822
 1.140

RTV_STOCK
 29.195
 2.026

UREFRIG_STOCK
 73.700
 1.220

RREFRIG_STOCK
 5.430
 3.714

AC_PRICE
 3331.621
 172.073

TV_PRICE
 862.378
 46.279

REFRIG_PRICE
 2663.616
 135.849
and: The case of

http://dx.doi.org/10.1016/j.eneco.2007.02.003


24 M.O. Asadoorian et al. / Energy Economics xx (2007) xxx–xxx

ARTICLE IN PRESS
RLIVINGSPACE
Please cite this article as: Asadoorian, M.O. et al. Mod
China. Energy Economics (2007), doi:10.1016/j.eneco.2
7203.005
eling climate feedbacks to electricity dem
007.02.003
4.900

ULIVINGSPACE
 3681.222
 2.635

FLOORSPACE
 3415.230
 2.512

WINTER_NIGHT
 395.403
 39.464

SPRING_NIGHT
 349.916
 6.227

SUMMER_NIGHT
 299.561
 17.737

FALL_NIGHT
 367.999
 8.389

GDP_PRIMARY
 332.953
 2.657

GDP_NETSECONDARY
 739.519
 2.869

GDP_TERTIARY
 672.499
 2.482

JAN_TEMP
 28.783
 16.214

FEB_TEMP
 34.011
 13.782

MAR_TEMP
 42.766
 11.702

APR_TEMP
 54.132
 9.404

MAY_TEMP
 63.749
 7.913

JUN_TEMP
 70.609
 7.389

JUL_TEMP
 75.117
 7.431

AUG_TEMP
 73.772
 7.855

SEP_TEMP
 66.635
 8.888

OCT_TEMP
 56.740
 11.196

NOV_TEMP
 43.304
 13.878

DEC_TEMP
 33.248
 15.693

WINTER_TEMP
 32.014
 15.135

SPRING_TEMP
 53.549
 9.472

SUMMER_TEMP
 73.166
 7.465

FALL_TEMP
 55.560
 11.109

ANNUAL_TEMP
 52.457
 1.235
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