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The drift diffusion model (DDM) is a model of sequential sampling
with diffusion signals, where the decision maker accumulates evi-
dence until the process hits either an upper or lower stopping bound-
ary, and then stops and chooses the alternative that corresponds to
that boundary. In perceptual tasks the drift of the process is related
to which choice is objectively correct, whereas in consumption tasks
the drift is related to the relative appeal of the alternatives. The sim-
plest version of the DDM assumes that the stopping boundaries are
constant over time. More recently a number of papers have used
non-constant boundaries to better fit the data. This paper provides
a statistical test for DDMs with general, nonconstant boundaries. As
a byproduct, we show that the drift and the boundary are uniquely
identified. We use our condition to nonparametrically estimate the
drift and the boundary and construct a test statistic based on finite
samples.
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The drift diffusion model (DDM) is a model of sequential1

sampling with diffusion (Brownian) signals, where the2

decision maker accumulates evidence until the process hits a3

stopping boundary, and then stops and chooses the alternative4

that corresponds to that boundary. This model has been5

widely used in psychology, neuroeconomics, and neuroscience6

to explain the observed patterns of choice and response times7

in a range of binary choice decision problems. One class of8

papers study “perception tasks” with an objectively correct9

answer e.g. “are more of the dots on the screen moving left or10

moving right?”; here the drift of the process is related to which11

choice is objectively correct (1, 2). The other class of papers12

study “consumption tasks” (otherwise known as value-based13

tasks, or preferential tasks) such as “which of these snacks14

would you rather eat?”; here the drift is related to the relative15

appeal of the alternatives (3–11).16

The simplest version of the DDM assumes that the stopping17

boundaries are constant over time (12–15). More recently a18

number of papers use non-constant boundaries to better fit19

the data, and in particular the observed correlation between20

response times and choice accuracy, i.e., that correct responses21

are faster than incorrect responses (16–19).22

Constant stopping boundaries are optimal for perception23

tasks where the volatility of the signals and the flow cost of24

sampling are both constant, and the prior belief is that the25

drift of the diffusion has only two possible values, depending26

on which decision is correct. Even with constant volatility and27

costs, non-constant boundaries are optimal for other priors,28

for example when the difficulty of the task varies from trial to29

trial and some decision problems are harder than others. (17)30

show how to computationally derive the optimal boundaries31

in this case. (18) characterize the optimal boundaries for the32

consumption task: the decision maker is uncertain about the33

utility of each choice, with independent normal priors on the34

value of each option.35

This paper provides a statistical test for DDMs with general 36

boundaries, without regard to their optimality. We first prove 37

a characterization theorem: we find a condition on choice 38

probabilities that is satisfied if and only if the choice proba- 39

bilities are generated by some DDM. Moreover, we show that 40

the drift and the boundary are uniquely identified. We then 41

use our condition to nonparametrically estimate the drift and 42

the boundary and construct a test statistic based on finite 43

samples. 44

Recent related work on DDM includes (17) who conducted 45

a Bayesian estimation of a collapsing boundary model and 46

(18) who conducted a maximum likelihood estimation. (20) 47

estimate collapsing boundaries in a parametric class, allowing 48

for a random nondecision time at the start. (21) estimate a 49

version of DDM with constant boundaries but random starting 50

point of the signal accumulation process; (22) estimates a 51

similar model where other parameters are made random. (23) 52

partially characterize DDM with constant boundary.∗ 53

Other work on DDM-like models includes the decision field 54

theory of (24–26), which allows the signal process to be mean- 55

reverting. (27) and (28) study models where response time 56

is a deterministic function of the utility difference. (29–34) 57

study dynamic costly optimal information acquisition. 58

1. Choice Problems and Choice Processes 59

The agent is facing a binary choice problem c between action 60

x and action y. In consumption tasks x and y are items the 61

agent is choosing between. To allow for presentation effects, 62

we view c := (x, y) as an ordered pair, so (x, y) 6= (y, x); in 63

applications to laboratory data we let x denote the left-hand 64

or top-most action. In perception tasks x and y are the two 65

∗They ignore the issue of correlation between response times and choices by looking only at
marginal distributions, which makes their conditions necessary but not sufficient.
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answers to the perceptual question; here x and y are held66

constant over all choice problems and d encodes the strength67

of the perceptual stimulus, e.g., the fraction of dots on the68

screen moving to the left. Let C denote the collection of choice69

problems observed by the analyst.70

Let t ∈ R+ denote time. In each trial the analyst observes71

the action chosen and the decision time. In the limit as the72

sample size grows large, the analyst will have access to the73

joint distribution over which object is chosen and at which74

time a choice is made. We denote by F c(t) the probability75

that the agent makes a choice by time t, and let pc(t) be the76

probability that the agent picks x conditional on stopping at77

time t. Throughout, we restrict attention to cases where F78

has full support and no atoms at time 0, so that F (0) = 0. We79

also assume that F has a strictly postive density F ′ > 0, and80

that limt→∞ F (t) = 1. † These restrictions imply the agent81

never stops immediately, that there is a positive probability82

of stopping in every time interval, and that the agent always83

eventually stops. We also assume that each option is chosen84

with positive conditional probability at each time, so 0 <85

pc(t) < 1 for all t. We call (pc, F c) a choice process.86

Given (pc, F c) we define the choice imbalance at each time87

t to be88

Ic(t) := pc(t) log
(

pc(t)
1− pc(t)

)
+ (1− pc(t)) log

(1− pc(t)
pc(t)

)
.89

This is the Kullback-Leibler divergence (or relative entropy)90

between the Binomial distribution of the agent’s time t choice91

(pc(t), 1 − pc(t)) and the permuted choice distribution (1 −92

pc(t), pc(t)). As the Kullback-Leibler divergence is a statistical93

measure of the similarity between distributions, Ic(t) captures94

the imbalance of the agent’s choice at time t. Note that Ic = 095

means that both choices are equally likely, Ic = ∞ when pc96

equals 0 or 1, and that Ic is symmetric about 0.5. We define97

Īc to be the average choice imbalance,98

Īc :=
∫ ∞

0
Ic(t) dF c(t) ,99

T̄ c to be the average decision time,100

T̄ c :=
∫ ∞

0
t dF c(t) ,101

and p̄c to be the average choice probability,102

p̄c :=
∫ ∞

0
pc(t) dF c(t) ,103

and assume that all of these integrals exist. Finally, we relabel104

x and y as needed so that x is chosen weakly more often, i.e.105

p̄c ≥ 0.5 for all x, y.106

2. DDM representation107

The drift diffusion model (DDM) is commonly used to explain108

choice processes in neuroscience and psychology. Througout,109

we call a function b : R+ → R a boundary if it is continuous,110

†Many empirical applications of the DDM include an initial deterministic or stochastic “non-decision
time” where no decision can be made. The assumption in the text allows for an arbitarily small
probability of stopping on any finite time interval, which is observationally equivalent to 0 probaility
on any finite data set.

non-negative, and eventually bounded.‡ The two main ingre-111

dients of a DDM are the stimulus process Z and a boundary 112

function b. In the DDM representation, the stimulus process 113

Zt is a Brownian motion with drift δ and volatility α: 114

Zt = δ t+ αBt, [1] 115

where Bt is a standard Brownian motion, so in particular 116

Z0 = 0. Define the hitting time τ 117

τ = inf{t ≥ 0 : |Zt| ≥ b(t)}, [2] 118

i.e., the first time the absolute value of the process Zt hits the 119

boundary b. Let F ∗(t, δ, b, α) := P [τ ≤ t] be the distribution 120

of the stopping time τ . Likewise, let p∗(t; δ, b, α) be the condi- 121

tional choice probability induced by Eq. (1) and Eq. (2) and a 122

decision rule that chooses x if Zτ = b(τ) and y if Zτ = −b(τ). 123

Our goal in this paper is to determine which data is con- 124

sistent with a DDM representation, and when it is, when the 125

representation can be uniquely recovered from the data. 126

Definition 1 (DDM Representation). Choice process (pc, F c)
has a DDM representation if there exists a drift δc, a volatility
parameter αc > 0 as well as a boundary bc : R+ → R+ such
that for all x, y ∈ X and t ∈ R

pc(t) = p∗
(
t, δc, bc, αc

)
and F c(t) = F ∗

(
t, δc, bc, αc

)
.

The original formulation of the DDM was for perception 127

tasks where the drift δc is a function of the strength of the 128

stimulus process in choice problem c. In consumption tasks 129

researchers typically assume that the drift δc equals the differ- 130

ence between the utility of the two items, i.e., δc = u(x)−u(y) 131

for all c = (x, y), see, e.g., (16). Both formulations require that 132

the boundary is the same for all decision problems. This corre- 133

sponds to cases where the agent treats each decision problem 134

as a random draw from a fixed environment.§ 135

We are interested in characterizing which choice processes 136

admit a DDM representation. The following result follows 137

immediately from rescaling δ and b. 138

Lemma 1. If a choice process exhibits a DDM representation 139

for some α, then it also exhibits a DDM representation for 140

α = 1. 141

We will thus without loss of generality normalize α = 1. We 142

write p∗(t, δ, b) and F ∗(t, δ, b) as short-hands for p∗(t, δ, b, 1) 143

and F ∗(t, δ, b, 1). 144

3. Characterization 145

Given a choice process (pc, F c), define the revealed drift 146

δ̃c :=

√
Īc

2T̄ c
. [3] 147

The revealed drift is high when the agent makes very imbal- 148

anced choices or tends to decide quickly, and is low for choices 149

that are closer to 50-50 or made more slowly. 150

‡That is, there exists b̄ and T̄ such that b(t) ≤ b̄ for all t > T . The model can be extended
to allow the boundary to initially be infinite, which means that the agent never stops in an initial
interval of time.

§ In an optimal stopping model, the shape of the boundary is determined by the agent’s prior over
these draws.
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When δ̃c is non zero and (pc(t)− 1/2)δ̃c > 0 for all t, we 151

define the revealed boundary as152

b̃c(t) := ln pc(t)− ln(1− pc(t))
2δ̃c

. [4]153

The revealed boundary follows the log-odds ratio of the agent’s154

choice at time t, which is zero whenever the agent’s choice is155

balanced and and increases in the imbalance of the agent’s156

choice. The revealed boundary is smaller for pairs with a157

larger revealed drift. In the knife-edge case where the revealed158

drift is 0, the revealed boundary is not defined, and our results159

do not apply. Similarly, for t such that (pc(t) − 1/2)δ̃c < 0,160

b̃c(t) < 0, and b̃c is not a well defined boundary.161

We can extend the identification theorems below to ac-162

comodate a deterministic non-decision time by allowing the163

boundary to be infinite. However, if the non-decision time164

is stochastic, we conjecture that its distribution cannot be165

separately identified without restrictions on the shape of the166

boundary.167

A. Characterization for a fixed decision problem. Our first re-168

sult characterizes the DDM for a fixed decision problem c ∈ C169

and the revealed drift and boundary will exactly match the170

true parameters. We rule out the knife edge case where the171

revealed drift equals zero to ensure that the revealed boundary172

is well defined.¶173

Theorem 1. For c with δ̃c 6= 0 the choice process (pc, F c)174

admits a DDM representation if and only if b̃c(t) ≥ 0 for all175

t ≥ 0 and176

F c(t) = F ∗(t, δ̃c, b̃c).177

Moreover, if such a representation exists, it is unique (up to178

the choice of α) and given by δ̃c, b̃c.179

Thus, the choice process (pc, F c) is consistent with DDM180

whenever the observed distribution of stopping times F c equals181

the distribution of hitting times generated by the revealed182

drift δ̃c and revealed boundary b̃c. Theorem 1 shows that for183

δ̃c 6= 0 the revealed drift and boundary are the unique candi-184

date for a DDM representation. It thus allows us to identify185

the parameters of the DDM model directly from choice data.186

This permits the model to be calibrated to the data without187

computing the likelihood function, which requires computa-188

tionally costly Monte-Carlo simulations. More substantially,189

as Theorem 1 connects the primitives of the model directly to190

data it allows us to better understand both the model and the191

estimated parameters. The estimated drift in the DDM model192

is a measure of how imbalanced and quick the agent’s choices193

are, and the shape of the estimated boundary follows the im-194

balance of the agent’s choices over time. This interpretation195

makes the empirical content of the parameters of DDM model196

more transparent and the model thus more useful. Moreover,197

as we show in Section 4, Theorem 1 allows us to test whether198

the true data generating process is indeed a DDM.199

Note that this theorem shows that the distribution of stop-200

ping times contains additional information that is not captured201

by the mean. For example, a choice process where pc(t) and202

T̄ c are any two given constants is only consistent with one203

¶ If the revealed drift equals zero, one needs to recover the boundary from the distribution of decision
times Fc . This is an open problem in the mathematical literature. See Appendix A for further
discussion.

possible distribution of stopping times F c. A test based only204

on the mean choice probability and mean stopping time will 205

accept any model that matches those two numbers, and in 206

particular will accept a constant boundary regardless of how 207

the choice probability varies over time, thus leading to false 208

positives. 209

B. Characterization for consumption tasks. Here X is the set 210

of consumption alternatives, and each choice problem c consists 211

of a pair of alternatives, so, in this section we index choice 212

problems by superscript xy. For consumption tasks we assume 213

that the order of the items does not matter. This is formally 214

equivalent to a condition that we call symmetry: 215

pxy(t)=1−pyx(t) and F xy(t) = F yx(t) for all t ∈ R+, x, y ∈ X. 216

Definition 2 (DDM Representation). A choice process
(pxy, F xy)x,y∈X has a choice-DDM representation if there ex-
ists a utility function u : X → R, and a boundary b : R+ → R+
such that for all x, y ∈ X and t ∈ R

pxy(t) = p∗
(
t, u(x)− u(y), b

)
and F xy(t) = F ∗

(
t, u(x)− u(y), b

)
.

Theorem 2. Suppose that the choice process (pxy, F xy)x,y∈X 217

has δ̃xy 6= 0 for all x, y ∈ X. It has a choice DDM representa- 218

tion iff 219

(i) it is symmetric, 220

(ii) F xy(t) = F ∗(t, δ̃xy, b̃xy) for all t ≥ 0, 221

(iii) b̃(x,y)(t) = b̃(x,z)(t) for all x, y, z ∈ X and all t ≥ 0. 222

(iv) δ̃(x,y) + δ̃(y,z) = δ̃(x,z) for all x, y, z ∈ X, 223

Thus, in addition to satisfying the condition from Theo- 224

rem 1 pairwise, we have two additional consistency conditions 225

imposed across pairs. Condition (iii) follows from our assump- 226

tion that the agent uses the same stopping boundary in every 227

menu. Condition (iv) comes from the assumption that the 228

drift in a given menu depends on the difference of utilities, 229

that is δxy = u(x)− u(y).‖ 230

An analogous exercise could be done for perception tasks. 231

Here condition (i) would be dropped and (iv) would be replaced 232

with a different, perhaps more complicated condition that 233

specifies the drift as a (potentially parametric) function of the 234

stimulus in choice problem c.∗∗
235

4. A Statistical Test for a Fixed Pair of Alternatives 236

The test we give is based on comparing model predictions 237

with data estimates. We construct estimators of the drift and 238

boundary for this test, that are of interest in their own right. 239

Constructing these estimators is greatly aided by the explicit 240

formulas for the drift and boundary given in Eq. (3) and Eq. (4). 241

We estimate choice probabilities nonparametrically and plug 242

them in the formulas, replacing expectations with sample 243

averages, to estimate the revealed drift and boundary. We then 244

‖The proof of Theorem 2 follows from Theorem 1 and the Sincov functional equation, see, e.g., (35).
∗∗Other exercises along these lines are possible. For instance, (36) models consumption-tasks by

an accumulator model where the item-specific signals are correlated. This amounts to dropping
conditions (iii) and (iv) since it is equivalent to DDM where both the drift and the boundary depend
on x and y.
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simulate many stopping times using the drift and boundary245

estimates. Simulation consistently estimates averages implied246

by the model, as in (37) and (38). We form a chi-squared test247

based on differences of the average over the simulations and248

over the sample of functions of the stopping time.249

A. Estimation of drift and boundary. An essential ingredient250

for the drift and boundary estimators and for the test of the251

model is an estimator of the choice probability pc(t) conditional252

on decision occurring at time t. We focus on a linear probability253

estimator p̂(t) obtained as the predicted value from a linear254

regression of observations of the choice indicator data (a vector255

of zeros and ones) on functions of t. This estimator will be256

nonparametric by virtue of using flexible regressors that are257

designed to approximate any function. We consider both258

power series and piecewise linear functions for the regressors.259

The regularity conditions we give assume that the bound-260

ary is bounded. An unbounded boundary would be needed to261

accomodate a deterministic non-decision time. Unbounded-262

ness is diffcult to allow for in regularity conditions involving263

nonparametric estimation.264

To describe the estimators and the test, let the data consist265

of n observations (τ1, γ1), . . . , (τn, γn) of the decision time τi266

and an indicator variable γi ∈ {0, 1} that is equal to 1 if choice267

d is made and 0 otherwise, for i = 1, ..., n. We construct p̂ (t)268

from a linear regression of γi on functions of G(τi), where G(τ)269

is a strictly increasing cumulative distribution function (CDF)270

that lies in the unit interval [0, 1]. Use of G(τ) allows for271

unbounded τi.††. The resulting choice probability estimator272

p̂(t) is described in detail in an Appendix. Conditions for273

p̂(t) to be consistent and have other important large sample274

properties are given in Assumptions 2 and 3 to follow.275

We estimate the revealed drift δ by plugging in p̂(t) for pd(t)
in formula Eq. (3) and replacing expectations with sample
averages. Let

Î(t) := p̂ (t) ln
[

p̂ (t)
1− p̂ (t)

]
+ [1− p̂ (t)] ln

[
1− p̂ (t)
p̂ (t)

]
,

Ī := 1
n

n∑
i=1

Î (τi) , τ̄ := 1
n

n∑
i=1

τi.

The estimator of δ is then276

δ̂ :=

√
Ī

2τ̄ .277

The estimator of the boundary b (t) is obtained by plugging278

in δ̂ and p̂(t) in the expression of equation Eq. (4), giving279

b̂(t) := 1
2δ̂

ln
[

p̂ (t)
1− p̂ (t)

]
.280

B. Testing. The test is based on comparing sample averages of281

functions of stopping times from the data with simulated aver-282

ages implied by the estimators of the revealed drift and bound-283

ary. To describe the test let mJ(τ) = (m1J(τ), ...,mJJ(τ))′284

be a J × 1 vector of functions of τ . Examples of mjJ(τ) in-285

clude indicator functions for intervals and low order powers286

†† In DDM models where b does not reach zero, decision times are not bounded, so it is important to
allow for an unbounded regressor.

of G(τ). A sample moment vector is m̄ =
∑n

i=1 mJ(τi)/n.‡‡
287

To describe the simulations let {B1
t , ..., B

S
t } be S independent 288

copies of Brownian motion and , 289

τ̂s = inf{t ≥ 0 :
∣∣δ̂t+Bst

∣∣ ≥ b̂(t)}. 290

A moment vector predicted by the model is m̂S = 291∑S

s=1 mJ (τ̂s)/S. Let V̂ be a consistent estimator of the asymp- 292

totic variance of
√
n(m̄ − m̂S) when the model is correctly 293

specified, as we will describe below. The test statistic is 294

Â := n(m̄− m̂S)′V̂ −1(m̄− m̂S). 295

The model would be rejected if Â exceeds the critical value of 296

a χ2(J) distribution. 297

If J is allowed to grow slowly with n andmJ (τ) is allowed to 298

grow in dimension and richness as n grows then this approach 299

will test all the restrictions implied by DDM as n grows. If 300

mJ (τ) is chosen so that any function of τ can be approximated 301

by a linear combination c′mJ (τ) as J grows then the test must 302

reject as J grows when the DDM model is incorrect. An 303

incorrect DDM model will imply c′m̄ and c′m̂S have different 304

probability limits for some c and J large enough. Also, Â ≥ 305

n{c′[m̄− m̂S ]}2/
{
c′V̂ c

}
, so Â grows as fast as n. Restricting 306

J to grow slowly with n makes the test reject for large enough 307

n. 308

It is straightforward to construct V̂ using the bootstrap. 309

Each bootstrap replication starts with a random sample Zjn = 310

(τ j1 , y
j
1), ..., (τ jn, yjn) consisting of i.i.d. observations (τ ji , y

j
i ), 311

(i = 1, ..., n), drawn at random with replacement from the 312

data observations. Here j is a positive integer that denotes 313

the bootstrap replication with (j = 1, ..., B), so there are 314

B replications. For the jth replication Gji , p̂
j(t), δ̂j , b̂j(t), 315

and m̄j are computed exactly as describe above with Zjn 316

replacing the actual data. Using drift coefficient δ̂j and the 317

estimated boundary b̂j(t) from the jth bootstrap replication, 318

S simulations τ̂ bs , (s = 1, ..., S), are constructed as described 319

above, resimulating for each bootstrap replication, and m̂j
S = 320∑S

s=1 mJ(τ̂ js )/S calculated. For ∆̂j = m̄j − m̂j
S and ∆̄j = 321∑B

j=1 ∆̂j/B a bootstrap variance estimator V̂B is 322

V̂B = n

B

B∑
j=1

(∆̂j − ∆̄j)(∆̂j − ∆̄j)′. 323

In Section 3 of SI we give another estimator V̂n based on 324

asymptotic theory. In simulations of synthetic data to follow 325

we find that the bootstrap estimator V̂B leads to rejection 326

frequencies that are closer to their nominal values, so we 327

recommend the bootstrap estimator variance estimator V̂ = 328

V̂B for constructing Â in practice. 329

The test statistic is based only on the distribution of de- 330

cision times, and does not involve model choice probabilities 331

and alternatives chosen in the data. This feature of the test 332

does not affect its power to detect failures of the DDM model, 333

because the choice probabilities for the estimated DDM model 334

are equal to the nonparametric estimates p̂(t). To see this 335

result note that there is a one-to-one relationship between 336

‡‡The Kolmogorov–Smirnoff test uses indicator functions but instead of the the average ofm it takes
the supremum. The Cramer–von Mises test takes the sum of squares. We look at the average ofm
because the target cdf we are comparing with is not fixed, but involves estimates of the boundary
and drift, see (39).
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the revealed boundary and the choice probabilities (given the 337

revealed drift), with revealed choice probabilities given by338

pc(t) = exp(2δ̃cb̃(t))
exp(2δ̃cb̃(t)) + 1

.339

Plugging in the estimated drift δ̂ and boundary b̂(t) to this340

formula gives choice probability pc(t) = p̂(t) equal to the non-341

parametric estimate. Thus, the choice probability implied by342

the estimated DDM model is unrestricted. The joint distribu-343

tion of decision time and choice is completely characterized by344

the marginal distribution of decision times and the conditional345

choice probability. Nothing is lost in excluding the conditional346

choice probability from the test because it is not restricted by347

the estimated model.348

In formulating conditions for the asymptotic distribution349

of this test, we will let mjJ(τ), (j = 1, ..., J) be indicator350

functions for disjoint intervals. Let τjJ = G−1(j/(J + 1)),351

(j = 0, ..., J), τJ+1,J =∞. Consider352

mjJ(t) =
√
J + 1 · 1(τj,J ≤ t < τj+1,J), (j = 1, ..., J).353

The test based on these functions is based on comparing the354

empirical probabilities of intervals with those predicted by355

the model. The normalization of multiplying by
√
J + 1 is356

convenient in making the second moment of these functions357

of the same magnitude for different values of J . Note that we358

have left out the indicator for the interval (0, 1/(J + 1)). We359

have done this to account for the fact that the estimator of the360

drift parameter uses some information about τi, so that we361

are not able to test all of the implications of the DDM for the362

distribution of τi; we can only test overidentifying restrictions.363

Also in the Monte Carlo results we left out the indicator for364

the interval (J/(J + 1), 1). Leaving out this other endpoint365

makes actual rejection rates closer to the nominal ones in our366

Monte Carlo study.367

We derive results under the following conditions:368

Assumption 1. The data (τ1, γ1), . . . , (τn, γn) are i.i.d.369

This is the basic statistical condition that leads to the data370

being more informative as the sample size n grows.371

Assumption 2. The pdf of G(τi) is bounded and bounded372

away from zero.373

This assumption is equivalent to the ratio of the pdf of τi374

to dG(t)/dt being bounded and bounded away from zero. It375

is straightforward to weaken this condition to allow it to only376

requiring it on a compact, connected interval that is a subset377

of (0, 1), if we assume the b(t) is constant on known intervals378

near 0 and where τ is large.379

We also make a smoothness assumption on the boundary380

function.381

Assumption 3. b(G−1(g)) is bounded and s ≥ 1 times dif-382

ferentiable with bounded derivatives on g ∈ [0, 1] and the383

qkK(G), k = 1, ...,K are b-splines of order s− 1.384

This condition requires that the derivatives of b(t) go to385

zero in the tails of the distribution of τi as fast as the pdf386

of G(t) does. We also require that the drift parameter be387

nonzero.388

Assumption 4. δ 6= 0.389

This assumption is clearly important for the revealed bound-390

ary formula in equation (revealed boundary formula). When 391

δ = 0 this formula does not hold, pc(t) = 1/2 for all t, and 392

the boundary need not be constant. Consequently the test 393

given here would not be correct. Given this sensitivity of 394

model characteristics to δ 6= 0 it may make sense to test 395

the null hypothesis that δ = 0. This null hypothesis can be 396

tested using the estimator δ̂ and the bootstrap standard error 397

SEB(δ̂) = {
∑B

j=1(δ̂j − δ̄B)2/B}1/2. A t-statistic
∣∣δ̂/SEB(δ̂)

∣∣ 398

that is substantially greater than the standard Gaussian criti- 399

cal value of 1.96 would provide evidence that δ 6= 0. 400

We need to add other conditions about the smoothness 401

of CDF of τi as a function of the drift δ and the boundary 402

and about rates of growth of J and K. They involve much 403

notation, so we state them in Assumption 5 in Appendix C. 404

We can now state the following result on the limiting dis- 405

tribution of Â for the asymptotic variance estimator V̂ = V̂n 406

described in SI, Section 3. 407

Theorem 3. Suppose that Assumptions 1, 2, 3, 4 and As- 408

sumption 5 in Appendix C are satisfied. Then for the 1 − α 409

quantile c (α, J) of a chi-square distribution with J degrees of 410

freedom 411

P
[
Â ≥ c (α, J)

]
−→ α. 412

This test could be extended to multiple-alternatives settings 413

along the lines of Theorem 2, but we do not do so here.§§
414

5. Examples for Synthetic Data 415

To consider how the estimators and test might work in prac- 416

tice we carry out some simulations where synthetic data was 417

repeatedly generated from a DDM model. In the DDM model 418

we set δ0 = .5 throughout and set the boundary to either be 419

constant at −1 and 1. We set the sample size to be n = 1000 420

in each case. We consider three different boundary estimators: 421

a constant boundary estimator where p̂(t) is the sample pro- 422

portion that alternative 1 is chosen, a p̂(t) depending on cubic 423

functions (1, G,G2, G3)′, and a continuous, piecewise linear 424

function of G where the slope can change when G equals either 425

.33 and .66. We repeat the generation of the simulated data 426

and calculation of the estimators and test 500 times for each 427

case. 428

Figure 2 plots the mean of and pointwise (inner) and uni- 429

form (outer) .025 and .975 quantile bands for the estimated 430

boundary function. The quantile bands for the constant bound- 431

ary are very small because the constant boundary is very 432

precisely estimated relative to the boundaries with cubic and 433

piecewise linear specifications. The quantile bands for cubic 434

and piecewise linear boundaries seem large but are consistent 435

with large sample approximations, as discussed in the Supple- 436

mental Information. In the Supplemental Information we find 437

that δ̂ is a precise estimator of the drift parameter for sample 438

size n = 1000. 439

Table 1 reports Monte Carlo rejection frequencies for the 440

test statistic with bootstrap variance estimator. The p̂(t) is 441

either does not depend on t or depends on piecewise linear 442

functions of G(t) with either no slope change, one slope change 443

at G = .5, or two slope changes at G = .33 and .66. We 444

consider the test statistic with bootstrap variance estimator 445

V̂B obtained from B = 250 bootstrap replications. We set 446

§§ In allowing J to grow with sample size this result is like (40) and (41).
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Figure 2: Boundary function estimation

J = 5 with only the middle three intervals included in the test 447

statistic and J = 8 where only the middle six intervals are448

included. Rejection frequencies are given when critical values449

are chosen using the asymptotic chi-squared approximation450

with nominal rejection frequencies of 1, 5, 10, and 20 percent.451

Table 1: Rejection Rates for Test Statistic

Boundary Estimate 20% 10% 5% 1%

J = 5 Constant .172 .078 .048 .014
Linear .216 .104 .042 .012

1 Slope Change .194 .108 .070 .018
2 Slope Changes .224 .142 .080 .030

J = 8 Constant .192 .106 .054 .008
Linear .214 .116 .066 .020

1 Slope Change .212 .128 .076 .026
2 Slope Changes .248 .158 .112 .060

452

The acceptance regions for a test of level .10 that the453

rejection frequencies are equal their asymptotic values are454

.010± .006, .050± .016, .100± .022, .200± .030 for asymptotic455

levels .01, .05, .10, and .20 respectively. We find some tendency456

of the test statistic to reject too often when the number of457

intervals J is larger and the number of slope changes is larger.458

We found in additional simulations not reported here that459

for p̂(t) cubic in G or the analytic V̂ the test statistic tended460

to overreject even more, especially for the analytic variance461

estimator. In the Appendix we give additional simulation462

results for J = 5 for a DDM model with an exponential463

boundary and for a Poisson model. There we find that the test464

has good power against the Poisson model, but shows little465

tendency to reject the DDM model with exponential boundary466

for p̂(t) piecewise linear in G with two slope changes. We also467

give rejection frequencies for the test for smaller sample sizes468

n = 250 and n = 500̇. There we find that the large sample469

approximation remains quite accurate for the smaller sample 470

sizes for a constant and linear boundary specification, but the 471

approximation is considerably worse than for n = 1000 when 472

slope changes are included. 473

The tendency displayed in Table 1 to overreject for larger 474

J and/or more flexible boundary specifications indicates some 475

difficulty in reliably testing the implications of the DDM model 476

with 1000 observations. This difficulty is not surprising given 477

the high variance of the boundary estimator, which could lead 478

to the local approximation used in the asymptotic theory not 479

working well. Imposing restrictions on the boundary could 480

help with this problem, as it does in Table 1, where more 481

parsimonious specifications tend to overeject less often. One 482

potentially useful nonparametric restriction is monotonicity of 483

the boundary, which could permit inference using the approach 484

of (42). This seems potentially fruitful but is beyond the scope 485

of this paper. 486

Appendix 487

A. Choice Problems with Zero Drift 488

When the drift in the DDM model is 0, p(t) = 1/2 for all 489

t ≥ 0, due to the symmetry of the problem. This implies the 490

following extension of Theorem 1: 491

Theorem 4. For c with δ̃c = 0 the choice process (pc, F c) 492

admits a DDM representation if and only if pc ≡ 1/2 and there 493

exists b̃c such that for all t ≥ 0 494

F c(t) = F ∗(t, δ̃c, b̃c). 495

In this case the boundary is not revealed by the choice 496

probability. The question of how to recover the boundary from 497

the distribution of stopping times is known as the “inverse 498

first-passage time problem”. The existence and uniqueness of 499

the boundary remains an open problem even in the simpler 500

case of a one-sided boundary and a Brownian motion with drift 501

(see the introduction in (43)). Most closely related to our work 502

is (44) whose Theorem 3.1 (under some regularity conditions) 503

connects the boundary and the distribution over choice times 504

in our model through a non-linear volterra integral equation, 505

but does not prove that this equation admits a unique solution. 506

B. The Choice Probability Estimator 507

The choice probability estimator p̂ (t) considered here is the 508

predicted value from from a linear regression of γi on functions 509

of G(τi). To describe p̂(t) let a K × 1 vector of functions with 510

domain [0, 1] be 511

qK (G) = (q1K (G) , . . . , qKK (G))′ . 512

For example qK(G) could consist of powers of G or be piecewise 513

linear functions of the form 1, G, and 1(G > `k−2)(G− `k−2), 514

(k = 3, ...,K). The p̂(t) we consider is 515

p̂ (t) := qK (G(t))′ β̂, qKi = qK(G(τi)),

β̂ :=

(
n∑
i=1

qKi q
K
i
′

)−1 n∑
i=1

qKi γi.

The transformation G(τ) to the unit interval helps p̂(t) be 516

a good estimator with unbounded τ . It is helpful for this 517
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purpose to have G(τi) be quite evenly distributed over the 518

unit interval, as near to uniform as possible. One possible519

choice of G(τ) is the cumulative distribution function of the520

first passage time of a Brownian motion with drift crossing521

a single boundary, with mean and variance matched to that522

of the τi observations. Figure 1 gives a histogram for G(τi)523

from 100,000 simulations of τi for drift δ0 = .5 and a constant524

boundary of −1 and 1.525
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The histogram is bounded well away from zero and infinity526

over most of its range so that we expect the linear probability527

estimator based on this G(τ) should work well. The histogram528

does suggest that the density may grow as G(τ) approaches529

zero and shrink and G(τ) approaches 1. We expect this tail530

behavior to have little effect on finite sample performance of531

the estimator. It could also be controlled for if the boundary is532

constant as τ approaches zero and infinity and that restriction533

is imposed on the boundary estimator.534

C. Smoothness Conditions for the CDF of τi.535

To obtain the limiting distribution of the test statistic we make536

use of smoothness conditions for the CDF of τi as F ∗(t, δ, b)537

as a function of the drift δ and boundary b(·). The three538

key primitive regularity conditions that will be useful involve539

a Frechet derivative D(δ̃ − δ, b̃ − b; δ, b, t) of F ∗(t, δ, b) with540

respect to δ and b. We collect these conditions in the following541

assumption. Let εpn =
√
n−1K ln(K) +K−s.542

Assumption 5. For
∣∣b̃∣∣ = supt

∣∣b̃(t)∣∣ there is C > 0 not543

depending on δ, b, t such that544

a)545

|F ∗(t, δ̃, b̃)−F ∗(t, δ, b)+D(δ̃−δ, b̃−b; δ, b, t)| ≤ C(|δ̃−δ|2+|b̃−b|2);546

b) for each t there is a constant Dδ
0t and function α0t(t)547

such that |α0t(τi)| ≤ C,
∣∣Dδ

0t
∣∣ ≤ C, |dsα0t(t)/dts| ≤ C for s548

equal to the order of the spline plus 1, and549

D(δ̃ − δ, b̃− b; δ, b, t) = Dδ
0t(δ̃ − δ) +E[α0t(τi){b̃(τi)− b(τi)}];550

c)551

|D(δ, b; δ̃, b̃, t)−D(δ, b; δ0, b0, t)| ≤ C(|δ|+|b|)(|δ̃−δ0|+|b̃−b0|).552

d) There is C > 0 such that for ψiδx = I(τi)− E[I(τi)]−553

δ2{τi − E[τi]} and all J,554

(J + 1)E[1(τi < 1/(J + 1))ψ2
iδx] ≥ C.555

e) Each of the following converge to zero:
√
nJε2

pn, nJ3/S,556

J7/2K/(
√
S∆), J7/2K∆, J7/2K3/2εpn, J

5/2K−sα557

Part a) is Frechet differentiability of the CDF of τi in the558

drift and boundary, b) is implied by mean square continuity 559

of the derivative and the Riesz representation Theorem, and 560

c) is continuity of the functional derivative D in δ and b. The 561

test statistic will continue to be asymptotically chi-squared 562

for a stronger norm for b under corresponding stronger rate 563

conditions for J , K, and ∆. 564

D. Additional Tests on Synthetic Data: 565

Table 2 gives rejection frequencies for the test on synthetic data 566

from a DDM model with constant boundary, an exponential 567

boundary b(t) = 1/2 + 2 exp(−3t/2), and a Poisson process. 568

The Poisson process has p(t) = ea/(ea + eb) and F ∗(t) = 569

1− e−λt for λ = ea + eb, with a and b chosen to that p(t) and 570

E[τ ] match those of DDM model with drift 1/2 and b(t) = 1. 571

Table 2 differs from Table 1 in one boundary slope changing 572

at the sample median of G(τ1), ..., G(τn) rather than at .5 and 573

two slopes changing at the .33 and .66 quantiles rather than 574

at the values .33 and .66. Results in Table 2 are for J = 5 575

only. We continue to use B = 250 bootstrap replications and 576

report results for 500 sythetic data set replications. 577

578

Table 2: Rejection Rates for Test Statistic

Model Boundary Estimate 20% 10% 5% 1%

Constant Boundary Constant .182 .096 .048 .014
Linear .220 .128 .060 .012

1 Slope Change .186 .106 .060 .024
2 Slope Changes .236 .166 .106 .056

Exponential Boundary Constant 1.00 1.00 1.00 1.00
Linear .354 .218 .140 .050

1 Slope Change .262 .164 .104 .036
2 Slope Changes .270 .152 .094 .028

Poisson Constant 1.00 1.00 1.00 1.00
Linear .994 .988 .980 .904

1 Slope Change .862 .798 .696 .512
2 Slope Changes .522 .378 .282 .156

579

We find that for the DDM model with a constant boundary 580

the test rejection frequencies increase as the specification of 581

the boundary becomes richer, as in Table 1. Remarkably, for a 582

DDM model with exponential boundary and a piecewise linear 583

estimator with two slope changes, the rejection frequencies are 584

similar to those where the boundary was constant. Thus, in 585

this example specifying an incorrect piecewise linear boundary 586

does not make the asymptotic approximation worse. We also 587

find that the test has good power against a Poisson model, 588

with the rejection frequencies being much larger when the 589

data is generated by a Poisson model than when the data is 590

generated by a DDM model. 591

To see the effect of smaller samples on the large sample 592

approximation we also carried out simulations for n = 250 593

and n = 500 for the DDM model with constant boundary and 594

J = 5. These results are reported in Table 3. 595
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Table 3: Rejection Rates for Smaller Sample Size

n Boundary Estimate 20% 10% 5% 1%

250 Constant .216 .102 .040 .010
Linear .206 .116 .060 .020

1 Slope Change .256 .178 .136 .078
2 Slope Changes .320 .210 .168 .098

500 Constant .200 .084 .038 .010
Linear .180 .090 .048 .018

1 Slope Change .224 .122 .072 .040
2 Slope Changes .294 .198 .144 .064

596

We find that the large sample approximation remains quite597

accurate for the smaller sample sizes for a constant and linear598

boundary specification but the approximation is considerably599

worse than for n = 1000 when slope changes are included.600
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