Learning from Private Information in Noisy
Repeated Gamés

Drew Fudenberiand Yuichi Yamamotb

First version: February 18, 2009
This version: November 3, 2010

Abstract

We study the perfect type-contingently public ex-post equilibrium (PTXE)
of repeated games with incomplete information where players observe im-
perfect public signals of the actions and the map from actions to signal dis-
tributions is itself unknown. The PTXE payoffs when players are patient
are determined by the intersection of the maximal half spaces in various di-
rections; we focus on the “cross-state” directions that consider payoffs in
two or more states. We develop conditions under which the maximal half
spaces in these directions impose no constraints on the equilibrium set, so
that equilibrium play can be as if the players have learned the state. We use
these conditions to provide a sufficient condition for the folk theorem, and
a characterization of the PTXE payoffs in games with a known monitoring
structure.
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1 Introduction

The fact that repeated interactions can allow new and more efficient equilibrium
outcomes is one of game theory’s most important insights. It has been shown to
apply in a range of settings, including games with imperfect public information
about opponents’ actions, and games where the monitoring structure- the map
from actions to signal distributions- is itself unknownt has also been shown

in games with private information about the payoff functiérhis paper studies
games with the combination of these features: the “monitoring structure” is un-
known and there is also private information about the monitoring structure and/or
the payoff functions. This describes, for example, a repeated partnership game
where players observe group output but do not observe each other’s effort, and
each player has private information about the effect of her effort on the probabil-
ity distribution of output.

Our main goal in this paper is to understand how the information structure
of the game- meaning the combination of the monitoring structure and the ini-
tial private information- determines the extent to which the player’s initial pri-
vate information can be revealed in equilibrium. We address this question indi-
rectly, by computing the limit of the equilibrium payoffs when players are patient.
More specifically, we restrict attention to tperfect type-contingently public ex-
post equilibriumor PTXE (Fudenberg and Yamamoto (2010)). These are ex-post
equilibria where each player’s strategy depends only on the realized public out-
comes and his initial private information (hence “type-contingent”) but not on the
player’s private information about his own past actions.

PTXE generalizes several solution concepts: It reduces to the PPXE of Fuden-
berg and Yamamoto (2010) if players have no private information, the belief-free
equilibria of Horner and Lovo (2009) anddtiner, Lovo, and Tomala (2010) when

1For repeated games with public monitoring, see Green and Porter (1984), Radner (1985),
Abreu, Pearce, and Stachetti (1986), Abreu, Pearce, and Stachetti (1990), Fudenberg and Levine
(1994), Fudenberg, Levine, and Maskin (1994), Athey and Bagwell (2001), and Fudenberg,
Levine, and Takahashi (2007). Fudenberg and Yamamoto (2010) consider games where the mon-
itoring structure is unknown.

2See Kohlberg (1975), Forges (1984), Sorin (1984), Hart (1985), Sorin (1985), Aumann and
Maschler (1995), Cripps and Thomas (2003), Gossner and Vieille (2003), Renault and Tomala
(2004), Wiseman (2005), ¢tner and Lovo (2009), Wiseman (2010), andrhkr, Lovo, and
Tomala (2010) for games with private information.
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actions are observetand the perfect public equilibrium (PPE) of Fudenberg,
Levine, and Maskin (1994, hereafter FLM) in complete-information games with
a known monitoring structure. As with ex-post equilibria more generally, these
equilibria are robust to the specification of the players’ prior beliefs: a PTXE for
a given prior distribution is a PTXE for an arbitrary prfor.

Any PPXE of the symmetric information game (where no player has initial
private information about the state) induces a PPXE of the game where some
players do have private information: these PPXE correspond to pooling equilibria
of the incomplete-information game. Thus the folk theorems of Fudenberg and
Yamamoto (2010) apply to games with private information. However, those the-
orems require that the distribution of signals vary with the state in a sufficiently
rich way (essentially so that the state can be learned from the signals generated by
some fixed action profile), and this is more restrictive than necessary when some
players have private information. For example, if one player knows the state, he
may be able to communicate it to the others using a strategy that conditions on
the player’s private information. This paper takes the possibility of such implicit
communication into account, and so generates a larger set of equilibrium payoffs.
In some cases, such as the partnership games we define in Section 3, in which a
player’s productivity is private information, there often exist asymptotically effi-
cient equilibria, while equilibrium payoffs are bounded away from efficiency if
the players ignore their private information.

Moreover, we can characterize the limit payoffs of PTXE with linear program-
ming techniques. Specifically, the set of limit equilibrium payoffs is the intersec-
tion of maximal half spaces in various directions, where the direction veators
assign weights on each player’s payoff in each state, the maximal half space in di-
rectionA is all vectorsv with A - v no greater than the maximum score fgrand
this score is the highest weighted sum of payoffs that can be obtained with con-
tinuation payoffs that satisfy the incentive constraints and whose weighted sum is
no higher than the sum they are supporting.

Roughly speaking, there are PTXE where players learn the state if the score

3These equilibria are different than the belief-free equilibria of repeated games with private
monitoring (Piccione (2002), Ely andalimaki (2002), Ely, Horner, and Olszewski (2005), Ya-
mamoto (2007), Yamamoto (2009), and Kandori (2010)), which require that players be indifferent.

4See Bergemann and Morris (2007) for a discussion of various definitions of ex-post equilib-
rium.



is sufficiently large in “cross-state” directions that give non-zero weight to two or
more states. For this to be the case, informed players must be willing to reveal
their information, and uninformed players must not “jam” the information rev-
elation of their informed opponents. A key point is that the relevant conditions
depend on whether the informed player’s payoff in a given state is given positive
or negative weight. With a positive weight the informed player wants to reveal
the state, and our conditions imply that other players cannot prevent this; with a
negative weight the informed player might prefer to hide the state, but under our
conditions this is not possible.

We use these results to prove a folk theorem. While the exact conditions are
complicated to state, the key assumption is that for each pair of playerd |
(where possibly = j) and each pair of states andw’ # w, either (i) there is a
playerl # i, j whose private information distinguishesand«’, and playet can
reveal this information regardless of the actions ahd j by choosing different
actions in statev and statew/, (ii) playeri or j (or both) can distinguiskw and
«' using initial private information, and the informed player is willing to reveal
this information while the other one cannot interfere, or (iii) there is an action pro-
file a (independent of the private information) that distinguishes (more formally,
“statewise identifies”j from /. Conditions (i) and (ii) lead to a sort of “endoge-
nous learning” where players transmit their private information to the opponents,
while condition (iii) is a sort of “exogenous learning” based on the distribution of
signals at a fixed action profile. Note that condition (i) does not require that player
| is willing to reveal his information. This is because the condition can be used for
directions where playdrs continuation payoff has zero weight and hence is un-
constrained, and our “individual full rank” assumption ensures that there is some
specification of the continuation payoffs that induces playerplay the specified
actions in the two states. In contrast, if no third player can distinguish the states,
then the incentives of the revealing player become relevant, as without additional
conditions it may be that any continuation payoffs that induce playereveal
his information must increase or decrease plgigecontinuation payoff in a way
that lowers the score.

We then consider a few cases with additional structure that simplifies our char-
acterization. We begin with the case where the state space has one component that
only influences payoffs and a second component that only influences the monitor-



ing structure; here we show that when the full rank conditions are satisfied the
limit set can be determined for each payoff function separately. Next we consider
games with a product structure, where there is a separate and independent signal
associated with each player’s action, and moreover each player knows the effect
of his action on the signal distribution while the others do not. For example, in a
game of bilateral production and exchange, the public signal might be the quality
of a player’s output, with each player having private information about the prob-
ability that she will make a high-quality good when she exerts high effort. Here
we show that the scores for two classes of cross-state directions are high enough
to be compatible with the folk theorem, but that the scores in the remaining class
need not be. Finally, as an illustration of our charaterization, we examine in de-
tail a repeated partnership example where only group output is observed, and the
state determines the productivity of playzrWe show that if playef’s private
information reveals play&’s productivity while2 has no private information (i.e.
“1 knows2's productivity”), then the folk theorem holds in general, while if only
player2 knows playeR'’s productivity, the folk theorem can fail, and moreover the
limit equilibrium payoffs can be bounded away from efficiency. Intuitively, player
2 cannot be induced to reveal the state when doing so would lower his equilibrium
payoff, and this leads to a bound on the extent to which equilibria can trade off
player2's payoffs between the two states; in some cases this bound is so strong
that it rules out the efficient outcome.

Finally, we specialize to the case of a known monitoring structure, where we
show that the set of limit equilibrium payoffs with imperfectly observed actions
is the same as in the observed-action case studiedbydriand Lovo (2009) and
Horner, Lovo, and Tomala (2010) provided that the monitoring structure satisfies
a full-rank condition. Hbrner, Lovo, and Tomala (2010) provide an equivalent
characterization (for observed actions) that has a much different form; each char-
acterization may be better suited for some applications. Our results show that
their conclusions about limit payoffs extend to imperfectly observed actions; their
work is complementary and more informative because it also explicitly constructs
equilibrium strategies. The assumption of a known monitoring structure also lets
us provide a sufficient condition for the folk theorem that is easier to verify: the
key is that for every pair of states andw/, there be at least three players whose
private information distinguishes betweenand «’; Horner, Lovo, and Tomala



(2010) use this same condition to show in games with observed actions the set
of ex-post perfect equilibria is non-empty. In the case of one-sided incomplete
information, we are able to further extend and refine their results; for example, we
find a simpler sufficient condition for the existence of PTXE.

2 Framework

2.1 Model

Let | = {1,---,1} be the set of players. At the beginning of the game, Nature
chooses the state of the wordalfrom a finite setQ = {w,---,wo}. Then each
player observes a private signal, which gives (possible imperfect) information
about the true states. The set of player’s private signals@;, is a partition
of Q, and given the true stai® € Q, he observes a private sign@lec ©; that
containsw. For notational convenience, I8t w) denote thisf, i.e.,w € 6 (w),
and letf(w) = (6(w))ic1. Given B € ©;, playeri forms a prior about the true
statew, which is denoted by (6;) € A6;.

Each period, players move simultaneously, and player chooses an action
a from a finite set.> Given an action profila = (a))ic; € A= xic| A, players
observe a public signglfrom a finite sety according to the probability function
n®(a) € AY; we call the function® the “monitoring structure.” Playafs re-
alized payoff isu®(a;,y), so that her expected payoff conditional @nc Q and
acAisg®(a) =y, € Y’()u®(a,Y); g“(a) denotes the vector of expected pay-
offs associated with action profige If there arew’ # w such tha (w) = 6 («')
andu®(a;,y) # ui‘d(ai,y) for someg; € Aj andy € Y, then we assume that player
i does not observe the realized valueupfs the game is playéd.If there are
no suchw' # w, it is immaterial whether or nat; is observed, as playércan
compute it froma;, y, and6.”

SAll of our results extend immediately to the case wh&rdepends oif;.

6As we explain in the next section, the equilibria we consider remain equilibria when players
are provided with additional channels of information about the state. Thus the assumption that
players do not observe their realized payoffs has no role in the results; it allows us to generalize
past work (such as most of the references in footnote 2) that did not require players observe their
realized payoffs.

"We call this the case of known own payoffs; note that it does not imply that each player
knows the their stage-game payoff functigffi as that payoff is an expected value with respect to
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In the infinitely repeated game, players have a common discount factor
(0,1). Let(al,y") be the realized pure action and observed signal in periadd
denote playei’s private history from period one to period peribd 1 by ht =
(af,y")t_;. Leth? = 0, and for each > O, letH! be the set of all{. Likewise, a
public history up to perioti> 1is denoted by' = (y"),_,, andH' denotes the set
of all h'. A strategy for playeris defined to be a mappirgy: ©; x Ui gH! — AA;.
Let S be the set of all strategies for playieand letS= x¢|S.

We define the feasible payoff setin a given stat® beV® = co{(g¥(a))|ac
Al ={g“(n)|n € A(A)}, whereA(A) is the set of all probability distributions over
A2 and we define the set of feasible payoffs of the overall game to be

Note that a feasible payoff vectorc V may be generated using different action
distributionsn® in each statev. If players observev at the start of the game and
are very patient, then any payoffihcan be obtained by state-contingent strategy
of the infinitely repeated game.

2.2 Preliminaries

Playeri’s strategys € S is type-contingently publid it depends only org, € ©;
andht € HY, that is, ifs(8,h) = 5(8, h') whenevemh! andh! correspond to the
same public history. A strategy profifec Sis type-contingently public if is
type-contingently public for eadhe |. Given a type-contingently public strategy
profilese S lets|g n) denote player's continuation strategy when his typeis
and the past public history i, and lets|g.nty = (Sil(g,1) iel 9 This paper studies
a special class of Nash equilibria callpdrfect type-contingently public ex-post
equilibria or PTXE

Definition 1. A strategy profiles € Sis a perfect type-contingently public ex-
post equilibrium(PTXE if sis type-contingently public, and if for ang € Q

the possibly unknown distribution®.

8As in the standard case of a game with a known monitoring structure, the feasiv® et
both the set of feasible average discounted payoffs in the infinite-horizon game when players are
sufficiently patient and the set of expected payoffs of the stage game that can be obtained when
players use of a public randomizing device to implement distributiaver the action profiles.

9Here, the word “continuation strategy” is an abuse of language, becdusg) is not a

strategy for the entire game; it specifies a play for a given 8t not for6 # 6.
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andh' € H', s/(g(«) n) is @ Nash equilibrium of the infinitely repeated game with
Q= {w}.

Remark 1. PTXE is an ex-post equilibrium concept in the sense that it requires
each player’s strategy is a best response irrespective of the true value of the state.
For this reason, the set of PTXE is independent of the players’ beliefs about the
state, which makes the analysis of equilibria much simpler. The ex-post property
also implies that a PTXE for a given partiti@is also a PTXE for any finer par-
tition; in particular a PTXE for the trivial partition (where players have no private
information) remains a PTXE whe@ is informative. The PPXE we considered

in Fudenberg and Yamamoto (2010) are the same as the PTXE with the trivial par-
tition; the point of this paper is that finer partitions @&can support a larger set

of PTXE, as in the examples of Section 6.3, where there are efficient limit PTXE
but the PPXE are bounded away from efficiency uniformlgin

Remark 2. A second consequence of the ex-post nature of PTXE is that a PTXE
of the game where players do not observe their realized stage game payoffs re-
mains a PTXE if players do observe these realized payoffs and the payoffs reveal
information aboutw. That said, additional equilibrium outcomes could arise here
under a relaxed equilibrium definition that allowed players to condition on this
additional private information. We do not investigate that possibility in this paper.

Given a discount factod € (0,1), let E(d) denote the set of PTXE payoffs,
i.e., E(d) is the set of all vectors = (V?); w)c1 <o € R/?l such that there is a
PTXE s satisfying(1— 8)E [ 31— 8" 1g®(a')|s,w| = v for all i andw. Note
thatv € E(9) specifies the equilibrium payoff for all players and all states.

Let d; = (af")gleei whereaie' e AA for eachf € ©;, and letd = (Gi)ie; -
Thusd is an action profile contingent on private information; it specifies a mixed
actiona; for each private signah of each player. Letg(d) = (gf’(ae(w)))(w)
denote the payoff vector of type-contingent profiie If the action profilea is
used independently of private information, we denote its payoff vecto( by =
(97°(0)) i.w)-

By definition, any continuation strateg@ = (S|g(w),nt)weq Of @ PTXE is
also a PTXE. Thus any PTXE specifies PTXE continuation play after each signal
y, where the continuation payoft&(y) = (W®(Y))(i,w)cI xq corresponding to this



signal specify the payoffs for every player and every state. We will wiriteo ) -
w® for the the expected continuation payoff at st@tender action profiler.

In Fudenberg and Yamamoto (2010), we showed that the limit of the equilib-
rium payoffs a®d — 1is determined by the solutiohs(d, A, d) to the following
family of linear programming problems; for each type-contingent action profile
a, directionA € R'*I®1\ {0}, andd € (0,1),

kK'(d,A,0)= max A-v subject to
veR! xI€
wY —R! <2l
() v°=(1-8)g’(a’®)+sm?(a®)) w® (1)
for alli, w,

(i) V> (1-08)g(@,a’ )+ on%@,a’ ) W (2)
forall i, w, anda; € A;,
(i) A-v>A-w(y) forallyey.

If there is no(v,w) satisfying the constraints, we skt(d,A,d) = —oo; if for
everyK > 0 there is(v,w) satisfying all the constraints and-v > K, then let
k*(d,A,0) = co.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-
centive compatibility, and condition (iii) requires that the continuation payoffs lie
in half-space corresponding to direction vectoand payoff vector. Note that
whenA® # 0 and)\j‘*" # 0for somew # ', condition (iii) allows “utility transfer”
across states.

As argued in Fudenberg and Yamamoto (2010), the dcdie A, d) is inde-
pendent 0B, so we denote it big*(d,A). Letk*(A) = sup; k(d, A ) be the highest
score attainable in directioh for any choice ofi. For each\ € R'*19/\ {0} and
ke R, letH(A,k) = {ve Rl .v <k}, with H(A k) = R™I9 for k = o or
A =0,andH (A ,k) = 0for k= —c0 andA # 0. Now let

H*(A) =H(A,K*(A))
be the maximal half-space in directidn and let

Q= [ H'(A).

)\GRIX\Q\
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The following proposition establishes that the intersec@uof the maximal half-
spaces is equal to the limit set of PTXE payoff®as: 1. The proof is omitted, as

it is similar to Fudenberg and Yamamoto (2010), which builds on the techniques
of Fudenberg and Levine (1994).

Proposition 1. If dimQ =1 x |Q|, thenlims_,E(d) = Q.

Our goal in this paper is to use this characterization to compuige,; E(d) in
some cases of interest. To do this we provide conditions under which the maximal
half spaces in the various directions are “large.”

3 Examples

Before developing our general results, we provide a few examples of PTXE to
illustrate the ways that players can “learn the state” in equilibrium.

Example 1. Let | = {1,2} and Q = {w1,wp}, O1 = {(w1),(wp)} and ©, =
{(wn,wn)}. Playerl chooses eithed or D, and player2 chooses eithek or
R. The payoffs for stateu; are in the left panel, and those for statgare in the
right.

L R L R
ulz22/01 Uuj11/01
D|1,0|11 D|10)|22

In this example, botkU, L) and(D,R) are static ex-post equilibria.

Assume thal = A and7’(a) = ¢ if y # a. Note that the signal distribution
does not depend on the state here, so that players cannot learn the state from
state-independent actions. Instead, the efficient outc@@e), (2,2)) can be
approximated if playef reveals his private information to play2rthrough his
actions. Specifically, consider the following three-phase automaton.

e Phase 1. Playet choosed) if 6; = (wy), andD if 61 = (wp). Player2
choosed.. If the observed signal ig = (U,L) ory = (D,R), then go to
Phase 2. Ify= (D, L), then go to Phase 3. yf= (U, R), stay.

e Phase 2. Players choo@de, L) in the rest of the game.
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e Phase 3. Players chood®, R) in the rest of the game.

We claim that the strategy profile with initial state Phdsis a PTXE if &
is close to one and is close to zero. First, players do not want to deviate in
Phase or Phase, as(U,L) and(D,R) are static ex-post equilibria. Also, player
1 with 6; = (w;) does not want to deviate in Phase Indeed, if he deviates
to D, then players are likely to go to Pha3eand play(D,R) forever, while if
he does not deviate, then players are likely to go to PRase that(U,L) is
played thereafter. Likewise, we can check that playesith 6; = (w,) does not
want to deviate in Phask Player2's prescribed play is always a static best
response, and sin@s play has no effect on the transitions between st2géses
not want to deviate either. Note that the payoffs of this equilibrium converge to
(2—¢€,2—¢),(2—¢€,2—¢)).

Example 2. The next example is a two-player partnership game with two actions
{Ci,Dj} per player, three possible outcontésM, L, and two state&? The real-
ized payoff functions are independentwfand given by

u(G,y)=ri(y)—e and u(Diy)=ri(y)

for eachi € I, w € Q, andy € Y. We assume that the state only influences the
productivity of player2's effort: If player 1 choose<C; instead ofD; then the
probabilities ofH andM increase bypy and py, independent of the state. In
contrast, if playe2 choose<; instead ofD, then the probabilities off andM
increase byy andqy in statew,, but they increase only bygy andfBqy in state

wp. If B < 1, the states have different outcome distributions, so can be identified
by repeated observation. We impose restrictions on the realized payoffs so that
the stage game payoffs in each state correspond to a prisoner’s dildbnnisaa
dominant strategy, s@1, D) is a static ex-post equilibriunCy,C,) is efficient,
andV* has a non-empty interidt:

10/f there were only two outcomes as in Radner, Myerson, and Maskin (1986), then payoffs
are bounded away from efficiency even if the state is known, while with three outcomes the folk
theorem holds for generic signal distributions as FLM shows.

Hspecifically we assumei(H) > ri(M) > ri(L); e1 > py(ri(H) —re(L)) + pm(ri(M) —
ri(L)); e > gu(rz(H) — ra(L)) + am(r2(M) — ra(L)); €1 < pu(ra(H) + ra(H) —ra(L) —
ra(L)) + pm(ra(M) +ra(M) —ra(L) —ro(L)); andex < Ban(ra(H) +ra(H) —ra(L) —ra(L)) +
Bam(ra(M) +r2(M) —ry(L) —ra(L)).
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Using our results, we will show that a folk theorem holds if plagemnows
the state and playet does not, but that PTXE payoffs are bounded away from
efficiency for some parameters if play2knows the state and play&rdoes not.
The key is that playe2 can learn whether the true stateuwsor w, by playingC,
no matter what playet does, since playe&r’s marginal productivity is dependent
on the state but not on play#ss action. Thus for the case in which player odly
knows the state, even if playgrtries to hide his private information, play2ican
learn the true state from the signal distribution. On the other hand, if only player
2 knows the state and he tries to hide it then playeannot learn the true state.
That is, if player2 choosed», then for given any playet’s action, the signal
distribution is the same for both states, and hence playannot learn from the
observed signals. See Section 6.3 for details.

4  Sufficient Conditions for Efficient State Learning

In this section we develop “distinguishability” conditions that are sufficient for
limit equilibria in which payoffs are as if players have learned the true state. In
Section 4.2, we relate these conditions to the incentives and information of the
players; roughly speaking, the distinguishability conditions are equivalent to as-
suming that if informed players are willing to reveal the state then uninformed
players cannot prevent them from doing so. When the distinguishability condi-
tions are satisfied, the maximal half spaces in “cross-state” directions (those that
give non-zero weights to payoffs in two or more states) are the whole space, so the
cross-state directions impose no constraints on the limit equilibrium payoffs. The
maximal half spaces in directions that give non-zero weights to a single state are
the same as in the known-state case considered by Fudenberg, Levine, and Maskin
(1994), so combining FLM’s assumptions, our distinguishability assumptions, and
Proposition 1 establishes the existence of limit equilibria with the desired proper-
ties.

4.1 Statewise Full Rank and Statewise Distinguishability

We begin with the statewise full rank condition, which is sufficient for the maxi-
mal score to be infinity for all cross-state directions. For gaah) € | x Q and
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each type-contingent action profilec xic| xgco, AA;, letT; ., (d) be a ma-
trix with rows (7 (a, a_el*‘(w)))yey for all a € A| Let M w)(j,or)(a) be a matrix
constructed by stacking two matric@; ., (a) andlj o) (d).

Definition 2. For each(i, w) and(j, ') satisfyingw # «/, profiled hasstatewise
full rank for (i, w) and (j, ') if N 4)(j.ar) (@) has rankA| + |A;].

Statewise full rank implies that players can distinguisAndaw’ even if player
i at statew or playerj at statew’ deviates. For each pajr,w) and(j, '), there
is more likely to be a type-contingent profite that has statewise full rank as
the partitions®, for playerl become finer. The intuition is that if playéras
more information, then it is easier for the players to learn the true state through
inferences based on playlés actions. Note that PPXE does not allow players to
condition their play on their types, so it rules out this information channel. We
say more about this issue in Section 4.2.

The next lemma shows that statewise full rank is sufficient for the maximal
score to be infinity for all cross-state directions. We say that a type-contingent pro-
file @ is ex-post enforceabliéthere arev e R'*1€l, & € (0,1), andw = (W®) yeq :

Y — R'¥IQ such that (1) holds for alland w, and (2) holds for all, w, anda;.
The proof of the lemma is omitted, as it is very similar to Lemma 6 of Fudenberg
and Yamamoto (2010).

Lemma 1. Suppose profilé is ex-post enforceable and has statewise full rank
for (i, w) and(j, o) satisfyingw # w'. Thenk*(d,A) = o for A such thah # 0
andA® #0.

While the statewise full rank condition is sufficient for efficient learning, it re-
quires at leasfA;| + |Aj| signals. The following condition, statewise distinguisha-
bility, can be satisfied with fewer signals and is sufficient for the maximal score
to be infinity for all cross-state directions that have at least one positive compo-
nent. We will soon relax this condition even further, but this definition is a useful
expositional tool for explaining the more complicated definitions to come.

Definition 3. Profiled statewise distinguishgs, w) from (j, o) if there is§ =
(E(Y))yey € R such that

() m®(a®@).& > nv(a®@). ¢,

12



(i) m(a®@).& = (a,a’ ))-Ezn‘*’(a{,a?}i(w))-fforallaiesupmia(w)
andal € A,

(i) ¥ (a®@)).& =nv(q,a’ 9‘ ). forall a; € A;.

To interpret this condition, without loss of generality we assurfiea®(@)) .
& = 0. Clause (i) of this condition assures that the signals generaté sig-
tistically distinguishw from w/, and moreover picks out a directignwhere the
difference has a particular sign. Clause (ii) says that changing pfaysntinu-
ation payoff function in statev from w(y) to w®(y) + & (y) preserves incentive
compatibility for playeti, and clause (iii) says that the change in plaigetontinu-
ation payoff (ofAw®(y) = & (y)) can be offset to preserve the feasibility constraint
(ALAWP (y) + Aj o AW(D( y) = 0) without changing playe'y’s expected continuation
payoff to any actlon Since clause (i) |mplla§’(ae ) ¢ > 0, this change in
the continuation payoffs increases playsrexpected continuation payoff at state
w, which implies an increases in the score fosuch thatA > 0. Note that this
definition is not symmetric betweerand j because condition (ii) is an inequality
and condition (iii) is an equality. When this condition is satisfied, scaling up the
vectoré can generate arbitrarily large scores for all cross-state direclidhat
have at least one positive component.

Our next step is to replace statewise distinguishability with an ensemble of
three weaker conditions- this ensemble is weaker because it will allow different
action profiles to be used in different directions.

Definition 4. Profile @ m-statewise distinguishe@, w) from (j, «’) if there is
&= (&(Y))yey € RYl such that

() m(a®®).&> n“<a9<w’>>~s,

(i) m(a®@).& =g, a1 @) & > ne@, a®1¥). € forall g € supp® @
anda € A,
(i) m(a®@)). & = ¥ (a;,a®) ). & = n (a0’ ) € for all 4 €

supmfj((‘/) andal € Aj.

Note that this condition relaxes statewise distinguishability by replacing the
last equality in (iii) with an inequality. Lemma 4(a) below shows that a profile that
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mstatewise distinguishes, w) from (j,w') can be used to generate an infinite
score for allA such thatA® > 0 and /\j“" < 0; the “m’" refers to the fact that
positive and negative components are “mixed” in these directions.

Definition 5. Profile & p-statewise distinguishe§, w) from (j, ') if there is
&= (&(Y))yey € RYl such that

() ®(a®@).& > nv(a®@). ¢,

(i) m(a®@).& = n@(a,a’“).€ > no(al,a% ). & for all & € supp*

anda € A,
(i) 7 (a®@)). & = n¥(a;, a® 1. & < (@, a® 1)) € for all a; <
] j i j j
supmje"(d) andal € Aj.

Lemma 4(b) below shows that a profile thastatewise distinguishe$, w)
from (j,w') can be used to generate an infinite score for all “positive” directions
A such than® > 0 and)\j‘*" > 0. As this suggests, this condition is symmetric:

Lemma 2. Supposel p-statewise distinguishes, w) from (j,«’). Thend p-
statewise distinguish€g, ) from (i, w).

Proof. Let £ be a vector utilized tq-statewise distinguiski, w) from (j, o).
Then the vector-¢ satisfies all the conditions g statewise distinguishability of
(j,a) from (i, w). Q.E.D.

Note that ifd statewise distinguishg$, w) from (j, '), then itm-statewise
distinguishes this pair anptstatewise distinguishes this pair.

As we will explain later, the combination of- and p-statewise distinguisha-
bility is sufficient for a static-threat folk theorem. However, it is not sufficient
for a perfect folk theorem, because the maximal score might not be high enough
in cross-state directions where all the non-zero components are negative. The
following condition is sufficient for the score to be infinitely large for these direc-
tions.

Definition 6. Profile @ n-statewise distinguishe@, w) from (j,«) if there is
& = (£(y))yev € R such that

14



(i) m@(a®@).& > n¥(a®@). ¢,

(i) n@(ab®@).& = ”w(ai,affi(w))'f < n“’(a{,affi(w))-f forall g € supmie'(“’)
anda € A,

(i) 7 (a®@). & = n(a;,a® ). & > (a0’ ). € for all a) €

— ~
supmjej(d) anda € A;.

Lemma 4(c) below shows that a profile thastatewise distinguishes, w)
from (j,w') can be used to generate an infinite score for all “negative” directions
A suchthap® <0 and)\j‘*“ < 0. Also, n-statewise distinguishability is symmetric,
as the next lemma shows. We omit the proof, since it is very similar to that of
Lemma 2.

Lemma 3. Supposed n-statewise distinguishes, w) from (j,«’). Thend n-
statewise distinguish€g, ') from (i, w).

Now we state the main result of this section, which shows that the score for
cross-state directions can be infinity if the corresponding statewise condition is
satisfied. The proof can be found in the appendix.

Lemma 4.

(a) Supposéi is ex-post enforceable amd-statewise distinguish€s, w) from
(j,@'). Thenk*(a,A) = oo for A such that\® > 0andA® < 0.

(b) Supposé is ex-post enforceable anuistatewise distinguishés, w) from
(j,w'). Thenk*(a,A) = oo for A such thath,® > Oand)\j“" > 0.

(c) Supposé is ex-post enforceable anmdstatewise distinguishes, w) from
(j, ). Thenk*(a,A) = oo for A such that\® < 0andA{ <O0.

4.2 Sufficient Conditions for Statewise Distinguishability

In games with incomplete information, players have three possible sources of in-
formation about the state: (i) inference based on the public signals at a state-
independent action profile; (ii) the information contained in their own types; and

(i) inferences based on the correlation between the opponents’ actions and the

15



opponents’ types. The first information source is studied by Fudenberg and Ya-
mamoto (2010). The second information source is sufficient for perfect learning if
every player can distinguists andw’. (Note that this corresponds to assumption

(i) of condition (SFR) in Section 5.) Here we investigate the third information
source: inferences based on the correlation between the opponents’ actions and
the opponents’ types. For this information to generate large scores in cross-state
directions, the informed player must be willing to reveal his information, and
uninformed players must not “jam” the information revelation of their informed
opponents. We address these issues by providing simple sufficient conditions un-
der which a type-contingent action profile satisfies the various distinguishability
conditions.

Definition 7. Playeri can reveal whethew or «/ if there area € A andal € A
such thatt®(a) # n (a,a ;).

This says that playdrcan generate different signal distributionsuagnd o/,
using a type-contingent action. Note that this is necessary for playdrslearn
the state from the correlation between playsractions and his types. As the
next lemma shows, this condition is sufficient foistatewise distinguishability
for (i,w) and(i, o).

Lemma 5. Supposé;(w) # 6(«') and playel can reveal whethew or «/'. Then
there isd that p-statewise distinguishds, w) from (i, ).

Proof. Leta c A anda € A be such that®(a) # n%(a/,a_;). Then there is
& e RV such that®(a) - £ > n% (al,a ;) - . Leta’ € arg maxy 1% (&’,a ) - &
and &™ € argminy n*(a',a_i)-&. Let @ be a type-contingent action profile
such that players plaga’,a_i) at statew and (&*,a_;) at stateaw/. Then this
d p-statewise distinguishes, w) from (i, w’). Indeed, clause (i) follows from
n“(af,a i) £ >n®@a)-& >n¥(a,a)-& >nv(a*,a)-&. Also, clauses (ii)
and (iii) hold, by definition ol anda;*. Q.E.D.

To get the intuition, recall thagt-statewise distinguishability is relevant to di-
rectionsA that put positive weights on payoff fdr, w) and(i,«'). In these di-
rections, playei's payoffs atw andw’ are both maximized, so she is willing to
reveal her information at both states.
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In contrast, even if player can reveal whethew or «’ there might be no
profile thatm-statewise distinguishes, w) from (i, w’). The reason is that i
puts negative weight on payoffs @fw’), playeri’s payoffs atw’ is minimized in
the corresponding LP problem so that he might not want to reveal the true state.
However, the following condition is sufficient fan-statewise distinguishability;
the idea is that playeirat statew/ cannot conceal his private information if he
cannot generate the same signal distribution as in aiate

Definition 8. Playeri at &’ cannot hide statev if there isa € A such thatt®(a)
is not in the convex hull o{n""(a{,au)}algeAi.

Lemma 6. Supposé (w) # 6(«') and playeri at &' cannot hide statev. Then
there isd that m-statewise distinguishés, w) from (i, o).

Proof. Letae Abe such thati®(a) is not in the convex hull of 1 (&, ai)taen-

Then from the separating hyperplane theorem, thegssch thatn®(a) - & >

n* (af,ai)-& foralla € A. Leta) € argmay, (&, ;) - & anda;* € argmax, 1 (&), a.)-
¢. Letd be atype-contingent action profile such that players fdéya_;) at state

w and(&™,a_;) at statew. We claim that thigi m-statewise distinguishds, w)

from (i, w'). Clause (i) follows fronm®(af,a i) - & > n®(a)- & > ¥ (a*,a ;) -

¢. Also, clauses (ii) and (i) hold, by definition @ anda*. Q.E.D.

A similar idea applies to-statewise condition; here a relevant directioputs
negative weights on payoffs ét w) and (i, w'), so we need to take into account
playeri’s incentive for information revelation at both states.

Definition 9. Playeri cannot shuffle state® and «' if there isa € A such that
the convex hull off m*(aj,ai) }4c4 and the convex hull o{rr‘*"(ai’,a_i)}a1,/6Ai do
not intersect.

Lemma 7. Supposé (w) # 6(«w') and playeri cannot shuffle state® and '
Then there igi that n-statewise distinguishes, w) from (i, ).

Proof. Leta € Abe such that the convex hull ¢f1”(af,ai) } 54 and the convex
hull of {rt‘*)/(ai’,aLi)}aileAi do not intersect. Then from the separating hyperplane
theorem, there i§ such thatt®(aj,a_i)- & > n‘*"(a{’,a_i) -& for all & € A and

a' € Ai. Leta € argminy (&, ai) - § anda™ € argmayy nv(al,a i)-&. Let
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d be a type-contingent action profile such that players p&iya_;) at statew
and(a,a_) at statew. Then as in the proof of the last lemma, we can show that
this @ n-statewise distinguishés, w) from (i, o). Q.E.D.

Next we consider statewise distinguishability farw) and(j, ') wherei #
and only playeri knows the state; i.e (w) # 6/(«w') and6;(w) = 6j(w').

Definition 10. Player j at statew' is irrelevant for (i, w) if there area € A and
a € A such thatt®(a) is not a linear combination qfrt“’(a{,a/j,auj)}a/j eA;-

This says that there is an action profdesuch that if playeii wants to re-
veal whether the true state is or w' by choosinga; at w and & at o/, the
uninformed playerj cannot interfere, in the sense that a change in plaiger
action at statew’ cannot result in the overall distribution wherplays & be-
ing the same as the distribution i undera. For an example where this con-
dition fails, suppose that there are two players wkh= {a,a]'} for eachi,
and thatn®(a}, a,) = n®(al/,ay) = n® (a,,ay) = n (a!,a,) and n®(a),a}) =
n®(al, &) = n¥(a;,a,) = n¥ (al,a}). Here playerj at statew is not irrelevant
for (i,w). On the other hand this condition can be satisfied even if players
an option to “jam” playei’s information revelation: Suppose that there are two
states,.n and wyp, and that playef knows the state while other players do not.
Let A = {U,D} andA, = {J,NJ}. Suppose that playdrs action is observable
if player 2 choosed\NJ, while it is unobservable if playe2 chooses). Suppose
that playerl’s actions are always observable for edch 1. Let a be an action
profile such thaty = U andaz = NJ, and leta) = D. Thenmn®*(a) is not a linear
combination of{ 1*2(ay, a5, a-12) }a,ca,» SO that playeR at statew is irrelevant
for (1, ).

The following lemma shows that this irrelevance condition is sufficient for
statewise distinguishability (and hence sufficient perand m-statewise distin-
guishability).

Lemma 8. Supposé (w) # 6 («') and playerj # i at o/ is irrelevant for (i, w).
Then there isi that statewise distinguishés w) from (j, ).

Proof. Leta€ A anda € A be such thatt®(a) is not a linear combination of
{n‘*"(a{,aﬁ,auj)}a/jeAj. Then there i€ such that®(a) > 0andn® (a, &, a_ij)-
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¢ =0forall & € Aj. Leta € argmax “(a’,a-i) &, and letd be a type-
contingent action profile such that players plaj,a_i) at statew and(&{,a_) at
statew’. We claim that thigi statewise distinguish€$, w) from (j, ). Clause
(ii) of statewise distinguishability follows frora € argmaxyca, n®(a’,ai)-&.
Also, sincen®(af,a_j) > n“(a) >0 andn“’(a{,a’j,auj) -& =0forall aj € Aj,
clause (i) and (iii) hold. Q.E.D.

The intuition is as follows. Recall that statewise distinguishability is a combi-
nation of p- andm-statewise distinguishability, so the corresponding direcion
gives positive weight to playeis payoff at statew. Therefore, player at state
w is willing to reveal his private information. Also, playgrat statew’ cannot
interfere with this information revelation.

For n-statewise distinguishability, we need a stronger assumption, since the
corresponding\ puts negative weight on play@s payoff at statew, so that he
might want to hide his private information.

Definition 11. Player j at statew is strongly irrelevant for(i, w) if there are
(ai,a-i) € Asuch that any convex combination{of®(a;, a-i) }yx, is nota linear
combination of{ 1% (a, & ,a_j; Vaca;-

This condition is a combination of “cannot hide” and “irrelevant” conditions:
here player at statew cannot conceal his private information and playat state
o is irrelevant to playei’s information revelation.

Lemma 9. Supposé? (w) # 6(w') and playerj # i at o' is strongly irrelevant
for (i,w). Then there il that n-statewise distinguishés, w) from (j, o).

Proof. Letac Aanda € A be such that any convex combination{@f”(af’,a i) } yrca
is not a linear combination o{fn‘*”(a{,a’j,a_ij)}a/jeAj. Then there i€ such that
n®(a’,a_;) > 0 for all &’ € A and (&, a],a i) - & =0 for all & € Aj. Let

a carg mirg{/eA‘. n®(al’,a_i)- &, and letd be a type-contingent action profile such
that players playa’,a i) at statew and(a/,a_;) at statew’. Then as in Lemma
8, we can show that thig n-statewise distinguishes w) from (j,w’). Q.E.D.

When playerj knows the state and playedoes not (i.e.f;(w) # 6;(«w') and
6 (w) = 6(w)), the statewise conditions are satisfied under the same conditions
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as the case where playeknows the state. Recall that andn-statewise condi-
tions are symmetric (Lemmas 2 and 3), so the sufficient conditions for the previous
case apply. For therstatewise condition, we obtain the following lemma.

Lemma 10. Supposej(w) # 6j(w') and playeri # | at w is strongly irrelevant
for (j,«'). Then there igi thatm-statewise distinguishes w) from (j, «').

Proof. Letae Aandaj € Aj be such that any convex combinatior{mf"'(a’j’, aj )}a’j’eAj
is not a linear combination ofr(a,aj,a-ij) taca- Then there i such that
n*(af,a_j) < 0for all & € Aj andn®(/,a],a_i;) - £ =0 for all & € A;. Let

aj € arg Madgyen, n‘*’/(a;,a’j’,auj) -&, and letd be a type-contingent action pro-
file such that players plagej,a_j) at statew and(aj,a) at statew’. Then we

can show that this n-statewise distinguishds, w) from (j, o). Q.E.D.

Finally we consider pair§, w) and(j, w’) where there is a playér i, j who
knows the state (here possibly: j). If either playeri or j can distinguisti from
«, then the previous lemmas still apply. Thus the interesting case is when both
playeri andj do not know the state.

Definition 12. Both playeri at w and playerj at «’ are irrelevant for information
revelation by playel #1, j if there area € Aanda] € A such that any linear com-
bination of{71(&,a,a_i) }ycp is NOt alinear combination ({W'(a’j,a{,aLj| )}a’j eA-

This says that if player wants to reveal his private information then neither
playeri at w nor playerj at &’ can interfere. The next lemma shows that this
condition is sufficient fop-, m-, andn-statewise distinguishability.

Lemma 11. Suppose thereiss |, j € 1,1 #i, j such thatf (w) # 6 («') and that
both playeri at w and playerj at «' are irrelevant for information revelation by
playerl. Then there is am that p-, m-, andn-statewise distinguishds, w) from
(J, ).

Proof. Letac Aanda] € A be such that any linear combination{of® (&, &, a i) }qca
is not a linear combination c{fn"’/(a/j .8, aj )}a/j ea;- Thenthere ar§ andk >0

such thatr®(af,a;,a_j) = K for all & € A; and 1 (a],a(,a_j) - & = 0 for all

a’j € A;. Letd be a type-contingent action profile such that players playstate

w and (a/,a_|) at statew’. Then it is easy to check that this satisfies all the

conditions ofp-, m-, andn-statewise distinguishability. Q.E.D.
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5 Ex-Post Folk Theorems

In this section we provide two sorts of folk theorem in PTXE: The first shows
that all feasible individually rational payoffs can be approximated by payoffs of
PTXE, and the second uses weaker conditions to obtain a “static-threats” version.
In both cases, the key is finding the appropriate conditions on the combination of
initial private information and the information revealed by the public outcomes.
Recall that'l; ) (&) is a matrix with rowg i (a, afi*i(“’)))yey forall g € A,
and thafl; (.« (0) is amatrix constructed by stacking two matridag,,) (o)
andr;j o) (a).

Definition 13. Profile & hasindividual full rank for (i, w) if M ., (d) has rank
|Aj|. Profiled hasindividual full rankif it has individual full rank for all players
and all states.

This condition implies that at each state, every possible deviation of any one
player leads to a statistically different distribution on outcomes.

Definition 14. For each(i,w) and(j, w) satisfyingi # j, profile @ haspairwise
full rank for (i, w) and (j, w) if M o) (j.) (@) has rankA | + |Aj| — 1.

Note that pairwise full rank implies individual full rank; it implies that devia-
tions by one player can be distinguished from deviations by another.

Condition IFR. Every pure action profilé has individual full rank.

Condition PFR. For each(i,w) and (j, w) satisfyingi # |, there is a profiled
that has pairwise full rank fofi, w) and(j, w).

Condition SFR. For each pair of statggv, w') satisfyingw # «/, at least one of
the following two conditions holds: (i) For eacland | (possiblyi = j), there is a
profile d that has statewise full rank fdr, w) and(j, «'). (i) 6 (w) # 6 (w') for
alll 1.

(SFR) requires that for each pair of statesand w’ # w, either (i) for every
(i, ]) there is a profile that lets players distinguish statieom statew’, regardless
of whether playeli deviates in statev or playerj deviates in statey, or (ii)
players can distinguish theseandw’ using their private informatio®.
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Note that (SFR) fails fofi,w) and(i,«’) if ® is independent oév (so that
the monitoring structure is known) arfij(w) = 0;(w') for all j (so no player’s
private information distinguishes betweerandw’). We say more about the case
of a known monitoring structure in Section 7.

The next proposition establishes a general folk theorem in PTXEVLet
{veVVielVwe Q v* > v®} wherev®” = ming ; maxg g°(a,a—i). A subset
W of R'*19l js smoothif it is closed and convex; it has a non-empty interior; and
there is a unique unit normal for each point oMhé?

Proposition 2. Suppose (IFR), (PFR), and (SFR) hold. Then for any smooth strict
subseW of V*, there isd € (0,1) such thaW C E(J) for all & € (,1).

To prove this proposition, we compute the maximal scores for each direction.
The key point is that (SFR) implies the maximal score for cross-state directions
can be made large enough to establish the folk theorem. When the first condition
in (SFR) holds, that conclusion comes from Lemma 1. When the second condition
holds, the following lemma applies:

Lemma 12. Suppose (PFR) and (IFR) hold. L&tbe such that (w) # 6(w)
foralliel, we Qandw # w satisfying(A;’)je; # 0 and ()\jw/)jg # 0. Then
K*(A) > maxey+ A - V.

This lemma shows that the maximal score in cross-state directions doesn’t
exclude any feasible payoffs if all players know the state. The intuition behind
the lemma is simple. If each playéercan distinguishw and w' using private
information@, players can choose different action profiles contingent on whether
the true state iso or w'. Therefore we expect that the score on stateill not
constrain the score on staté so that the maximal score for directions vectors
that only weight these two states will be high enough to achieve the folk theorem.
The formal proof is delegated to the appendix.

Combining this lemma and Lemma 1 shows that the maximum score in all
cross-state directions is at leastx,cy+ A -v. This implies that the sd) is de-
termined byA that has non-zero components only for a single state. The follow-
ing lemmas show that (IFR) and (PFR) imply that the maximal score for such

12A sufficient condition for each point on W to have a unique unit normal is that\Wdis a
C?-submanifold ofR' <1,
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directions ismaxcyv+ A - v. The proofs are omitted, as they are straightforward
generalizations of FLM.

Lemma 13. Suppose (PFR) holds. ThehA) = maxey+ A -vfor all A such that
(i) (A®)ier # 0 for somew and (A“)ic; = O for all ' # w, and (ii) (A®)ic has
at least two non-zero components or at least one positive component.

Lemma 14. Suppose (IFR) holds. Thé#(A) = maxev+ A - vfor all A such that
A < 0for some(i,w) andA{” = 0for all (j, &) # (i, w).

From these lemmas, we obta= V* and hence Proposition 2 follows. Thus
the folk theorem obtains if (IFR), (PFR), and (SFR) hold andfifis full dimen-
sional.

As we have seen in Section 4.1, statewise full rank is stronger than needed for
efficient learning, and can be replaced with statewise distinguishability.

Condition Pointwise-SD. For eachw and «’ satisfyingw # «/, at least one of
the following conditions holds: (i) For eaghand j (possiblyi = j), there is an
ex-post enforceable action profife that m-statewise distinguishe§, w) from
(j,a), there is an ex-post enforceable action profilethat p-statewise distin-
guishes(i, w) from (j, '), and there is an ex-post enforceable action pratile
thatn-statewise distinguishés, w) from (j, ). (ii) 6 (w) # 8(«) forall | € 1.

This says that for each pair of stat@sand w’ # w, either (i) for every(i, j)
there is a profile that lets players distinguish statrom statew’, regardless of
whether player deviates in state or playerj deviates in statey, or (ii) players
can distinguish thes® andw’ using their private informatiof.

Note that (Pointwise-SD) is weaker than (SFR), sinceé lias statewise full
rank, then it satisfies the-, p-, andn-statewise distinguishability conditions, but
the converse is false, as the pointwise condition allows different profiles to be used
for different directions. On the other hand, (Pointwise-SD) is a “strong” form of
statewise distinguishability as it requires tlstatewise condition.

Proposition 3. Suppose (IFR), (PFR), and (Pointwise-SD) hold. Then for any
smooth strict subséW of V*, there isd € (0,1) such thatW C E(J) for all & €
(8,1).
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The proof of this proposition parallels to that of Proposition 2, with the dif-
ference that Lemma 4 is used instead of Lemma 1 for the conclusion that the
maximum scores in cross-state directions is infinite.

An even weaker condition is sufficient for a static-threat folk theorem: For that
result it is sufficient that ther and p-statewise conditions can each be satisfied
for some profile.

Condition Pointwise-WeakSD. For eachw and ' satisfyingw # «/, at least
one of the following conditions holds: (i) For eachnd j (possiblyi = j), there
is an ex-post enforceable action profdethat m-statewise distinguishe§, w)
from (j, ') and there is an ex-post enforceable action prafiléhat p-statewise
distinguishegi, w) from (j, ). (ii) 6(w) # () foralll € 1.

Proposition 4. Suppose (PFR) and (Pointwise-WeakSD) hold. Assume that there
is an ex-post equilibriund@®, i.e., @ such thata®“ € argmax, g®(a;, a®*)
foralliclandwe Q. LetVP={veV[vicl,Vwec Q v* > g®(a}. Then,

for any smooth strict subs@¥ of VO, there isd € (0,1) such thatW C E(J) for

all 6 € (3,1).

The proof of this proposition is similar to that of Proposition 3, with the fol-
lowing differences. In this proposition, we do not assume (IFR) or (Pointwise-
SD), so that Lemma 4(c) and Lemma 14 may not apply. Therefore, it might be
thatk*(A) < maxey+ A -vfor eachA # 0such that® < Ofor all (i, w). For these
directions, we apply the next lemma to show tkiidiA ) > max,.0A -v. The proof
is straightforward and hence omitted.

Lemma 15. Suppose there is a static ex-post equilibricfh Then, for any direc-
tion A, k*(G%A) > A -g(@9).

Also, since Proposition 4 does not assume (IFR), Lemma 12 does not apply,
so it might be thak*(A) < maxey+A - v for some cross-state directions For
these directions, we use the following lemma to show khgk ) > max,c0A - V.

The proof of the lemma can be found in the appendix.

Lemma 16. Suppose (PFR) holds. L&t be such thatf(w) # 6(w') for all
i€l weQandw # wsatisfying(A®)jc; #0and(A*)je; # 0. Thenk*(A) >
max,coA - V.
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6 Applications and Examples

This section explores the effect of some plausible assumptions about the moni-
toring structure. The first two cases are fairly general; the third illustrates how to

apply the general results by determining the limit payoffs in the partnership game
described in Section 3.

6.1 Separable State Space

In general, the set of limit payoffs depends on the state’s impact on both the moni-
toring structure and the payoff functions. When these dependencies are separable,
the characterization of the limit set can be simplified. To see this, suppose that the
state consists of two components, one that influences realized payoffs but not the
monitoring structure and one that influences the monitoring structure but has no
effect on the realized payoffs. That 8,= ® x W, whereu(a;,y) = ui‘*’/(a;,y) if
¢=¢,and’(a) = n{,"/(a) if ¢ = y’'. For example, this separability condition is
consistent with a quantity-setting oligopoly game where players do not know the
probability distribution of the market price, and each player knows their own cost
function but not the cost function of the opponents: Here the price is the public
signaly, and the state (cost parameters) has no effect on the distribution of prices
at fixed output levels. Similar examples arise in partnership games where players
know their own effort cost but not that of the opponents.

Condition -SFR. For each(i, w) and(j,«') satisfyingy # ¢/, there is an ex-
post enforceable profilé that has statewise full rank fér, w) and(j, ).

For each) € W, let Q(y) denote the s for the known monitoring structure
game corresponding tg, i.e., the game where the state space is restricted to
Q = @ x {g} and the payoff functions and the monitoring structurg® for
a givenw € Q are the same as those of the original game. The next proposition
shows that the equilibrium payoff s of the entire game is a product Q)
over ally. Proposition 7 in Section 7 gives a formula to calculate eac&gl
when the monitoring structurg® has “strong full rank.”

Proposition 5. Suppose the state spa@ds separable andy-SFR) holds. Then
Q= XyecwQ(Y).
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Proof. As Lemma 1 shows, if a profilé is ex-post enforceable and has statewise
full rank for (i, w) and(j, ') satisfyingw # &/, thenk*(d,A) = o for direction

A such thatA;(w) # 0 andAj(w') # 0. Thus from (J-SFR),k*(A) = o for all A
such thatAj(w) # 0 andAj(w’) # O for (w, w') satisfyingy # ¢/'. This proves
Q= XyewQ(Y). Q.E.D.

6.2 Games with a Product Structure

In this section, we briefly discuss games with a product structure, in which there is
a separate signg associated with the action of each playerach player knows

the distribution of “her” signal, and no playgr# i has any private information
about the distribution of;. This case is of interest as a number of economic
situations have this extra structure; it applies for example to bilateral production
and exchange, where the public signal is the quality of a player’s output, and each
player has private information about the probability that she will make a high-
guality good when she exerts high effort. This structure on its own is not sufficient
for the various folk theorems in Section 5, becamsstatewise distinguishability

can falil, but there is full statewise distinguishability in all of the other cross-state
directions.

Formally, we assume that {f)= xic| Yi; (i) Q = xie1 Qi; (ili) Ty ey §°(a) =
Syiev, nf;"(a) foreachiel,ac Ay €Y, we Q,andw € Q such thaty = ;
and (V) 1°(a) = iel Yy ey, T§°(a) for eachac A,y €Y, andw € Q. Note
that the distribution of; depends only o and w here. We also assume that
O = {6%w € Qi} where6” = {«/|f = w }; that is, playei knows the distri-
bution ofy; but not the distribution of_j. We also assume that every state has
some impact on the distribution of signals in the following sense: for eac
andw' # w, there isa € A such that®(a) # ' (a). Note that this rules out the
case where the signal distribution is known and the states refer only to the player’s
payoffs.

Intuitively, in this setup each playeis able to signal his private informatian
whenever he wants, as no other player’s action can be confused with his own. Thus
we might expect that the main obstacle to information revelation comes when
playeri’s information will be used to lower his payoff. We verify these intuitions
in the on-line supplementary material. Specifically we provide an example where
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m-statewise distinguishability fails, and prove the following lemma.

Lemma l7.

(@) Let(i,w)and(j,w') be such that+ j andw # «f. Then there is a profile
d that statewise distinguishég w) from (j, «').

(b) Let(i,w) and(j,w’) be such thato_jj # aJLij (and possibly = j). Then
there is a profiled that p-, m-, and n-statewise distinguishe$, w) from
(J, ).

(c) Let(i,w) and(j,w') be such thatj # wj (and possibly = j). Then there
is a profiled that p-statewise distinguishés, w) from (j, o).

6.3 A Two-Player, Two-Actions Partnership

Now we apply our results to Example 2 from Section 3 to illustrate the effect of

players knowing their own productivity. In this example, there are two players,

two actionsA; = {C;, D;}, two states, and three outcomés- {H,M, L}, and the

state only influences the productivity of play®s effort. We will show that the

PTXE folk theorem holds when playéis private information distinguishes,

from wy. On the other hand, when play2s private information distinguisheas;

from wy but playerl’s does not, PTXE cannot approximate the efficient outcome

for a range of parameters. Intuitively, play2icannot be induced to reveal the

state when doing so would lower his equilibrium payoff, and this leads to a bound

on the extent to which equilibria can trade off play&r payoffs between the two

states; in some cases this bound is so strong that it rules out the efficient outcome.
In the example, if playel choose<C; instead ofD4, the probabilities oH

andM increase bypy and pv, independent of the state. In contrast, if plager

choosesC, instead ofD», the probabilities oH andM increase bygy and gu

in statecy, but they increase only bggy and Bqu in statew,.'® We assume

that the vector$py, pm) and(gq,qm) are linearly independent; this implies that

individual full rank and pairwise full rank are satisfied at every profile and every

state. However, as Fudenberg and Yamamoto (2010) show, no type-independent

profile p-statewise distinguished, w;) and (2, wy), and as a result, the set of

PPXE payoffs is bounded away from efficiency uniformly in the discount factor.

13Thus while the state space has a product structure the signals do not.
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6.3.1 The Case where Playet Knows the State

Suppose that playdrknows the state and player 2 does not, tha®is+ { (w1), () }
and®; = {(wy, wp)}. The following table shows whether statewise distinguisha-
bility conditions are satisfied or not in this case; see the on-line supplementary
material for the formal proof.

(i,w), (j,) p-statewise | m-statewise
(Lwn), (Lap) | (C1,Cp) (C1,Cy)
(Lap), (Lw) | (G, &) (C1,Co)
(2,n), (2,an) | ((C1,D1),Co) (C1,C)
(2,a2), (2,a@) | ((C1,D1),C2) | ((C1,D1),Cp)
(L), (2,an) | ((C1,D1),Co) (C1,C2)
(2,ap), (L,n) | ((C1,D1),C2) | Not satisfied
(2w), (Lw) | (C,&) (C1,Cy)
(1, a2), (2,00) (C1,C2) ((C1,D1),C2)

Sincem-statewise distinguishability does not hold f¢2, wy), (1, w;)), the max-

imal scores for the corresponding directions are not infinitely large. Nevertheless,
as shown in the on-line supplementary material, these scores are high enough to
achieve the perfect folk theorem for aflyc (0,1). Very roughly speaking, this

is because the state-independent prdide,Cy) yields sufficiently high payoffs

in the corresponding directions (i.@.; g(D1,Cp) > max.cy+ A - v for directionsA

such that,2 > 0, A" < 0, A,2 = 0, andA;* < 0) and hence players need not to
learn the state to obtain high scores for these directions. This example shows that
the statewise conditions are sufficient but not necessary for the folk theorem.

6.3.2 The Case where Playe? Knows the State

Suppose next that play@rknows the state and play&rdoes not. The following
table shows whether statewise conditions are satisfied or not. Again, see the on-
line supplementary material for the formal proof.
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(i,w), (j,w) p-statewise | m-statewise
(1,0m), (1, 00) (C1,C2) (C1,C2)
(Lwp), (Lan) | (C1,Cp) (C1,Cy)
(2,an), (2,a%) | (C1,(C1,D2)) | (C1,Cp)
(2,ap), (2,m) | (Cq,(C1,D2)) | Not satisfied
(L,om), (2,an) | (C1,(C1,D2)) | (C1,Cp)
(2,a2), (1, 0n) | (C1,(C1,D2)) | (C1,(C1,D2))
(2,0n), (1, ap) (C1,C2) (C1,C2)

(1, ap), (2,0) (C1,C2) Not satisfied

In this case the on-line supplementary material shows that the folk theorem fails
because the maximum score in directidn= ((0,—1),(0,1)) is too low. The
reason is that state-contingent play is needed to generate high payoffs toward this
direction and the failure aftstatewise distinguishability implies that learning the
true state is somewhat costly. Moreover, if the cost of effort is high, then for
A =((0,—¢€),(1,0)) the maximal score can be so low that it rules out equilibrium
with the payoffs of the efficient action profilg€,,Cy). Specifically, this is the
case if playerl’s effort cost is high enough so thg}?(D1,Cy) — g7%(C1,Cy) is

close to zerd? Intuitively, player2 cannot be induced to reveal the state when
doing so would lower his equilibrium payoff, and as a result the maximal score
for directionA with A, < Oiis lower tham - g(Cy,Cy).

7 Known Monitoring Structure

So far we have studied a general model, where both payoffs and monitoring struc-
ture can depend on the state of the world, and provided sufficient conditions for
the folk theorems. However, these sufficient conditions may not be satisfied in
some games. One notable example is the case of a known monitoring structure;
here a state-independent profitecannot induce different signal distributions for
different states, so for players to distinguish the states they must have “enough”
private information. In this section we provide conditions for the limit equilib-
rium payoffs of games with a known monitoring structure to coincide with the

14The derivation of this bound on the maximal score is very similar to the proof of Claims
12 and 13 which are used to prove Proposition 12; all of these proofs are in the supplementary
materials.
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limit equilibrium payoffs of the game with observed actions. This shows that
the results of rner and Lovo (2009) anddtiner, Lovo, and Tomala (2010) are
robust to imperfect monitoring, as PTXE reduces to the belief-free equilibria of
those papers for perfect-monitoring games. Also we provide sufficient condition
for folk theorems with a known monitoring structure.

Formally, themonitoring structure is knowif 11°(a) = rgj"(a) forallye,
acA we Q, andw # w. We maintain this assumption throughout this section.
Sincen® does not depend al, we denote it byr.

In this section, we often impose the following strong full rank condition. As
we will see, under this condition the case of a known but imperfect monitoring
structure is very similar to that where actions are perfectly observedli(a}
denote the matrix with rowér,(a/,ai))ycy for all & € A;. Also, for each € I,
jel,ac A andd € A let Mi.a)j,a) denote the matrix constructed by stacking
two matriced;(a) andl;(&).

Definition 15. The monitoring structurer hasstrong full rankif
(i) M aja has rankAi| +|Aj|—L1foralli,j € | anda € A; and

(i) foranyi,j,e 1, if there isl #1i, ], thenl; a)(j (a.a,)) has rankAil + [Aj]
foralll #i,j,ac A anda # 3.

Note that we allow = j in this definition, and hence the second clause is not
vacuous even in two-player games. The first clause imposes FLM’s pairwise full
rank condition on every action profile. The second clause implies that the state-
wise full rank condition holds fofi, w) and(j, «) if player| can distinguish the
statesw andw’.1® The strong full rank condition is obviously satisfied for games
with perfectly observable actions. It is also satisfied if the signals are isomor-
phic to the actions and players observe the intended action with a small noise, i.e.
Y =Aandry(a) < € for all a € Aandy # a whereg is close to zero.

7.1 Known Monitoring Structure and Strong Full Rank

In this subsection, we show that games with a known monitoring structure and
strong full rank have the same set of limit equilibrium payoffs as games with

15To see this, ledl be such thatr® @) = aanda®“) = (a,a ). Then thisd has statewise full
rank for (i, w) and(j, w'), as the corresponding matrix has rdAl + |A;].

30



observed actions. Specifically, we have the following proposition.

Proposition 6. Suppose that the monitoring structure is known and has strong full
rank. Suppose also th&l is full dimensional. Then the limit PTXE payoff set for
this gamejims_, E(d) = Q, is equal to the limit set of PTXE payoffs (or belief-
free equilibrium payoffs) for the game that has the same information structure
(Q,(0))icr) and the same expected paydifis)ic; but with perfectly observable
actions.

This shows that with a known monitoring structure and strong full rank, the
analysis of the observed-action case carries over in the obvious way. When strong
full rank fails, the known-monitoring-structure game can have a strictly smaller set
of limit equilibrium payoffs than when actions are perfectly observable, for much
the same reason that this can occur when the structure of the game is known.

To prove this proposition, we compute the maximal score for each direttion
and show that the score does not depend on the monitoring imperfection. For this,
it is helpful to classify the directions so that the maximal score can be computed
in the same way for all directions in a given class. As shown by FLM, when the
state is known, there are three sorts of directions to consider: (i) maximizing the
payoff of some playeir(Aj > 0andAj = Oforall j # i), (ii) minimizing the payoff
of some player (Aj < 0andA; = 0for all j #1i), or (iii) trading off the payoffs
of two or more playersA; # O for at least two playerg) In our analysis here we
combine all three sorts of directions together into the classf “single-state”
directions; the maximal scores for sutttan be computed as in FLM? through
N* are the sets of cross-state directions that satisfy the relevant version of statewise
distinguishability, so the maximal scores in these directions are infinitely laRye.
and/\® are directions that (i) weight only the the payoffs of a single playet do
so in more than one state and (ii) do not satisfy the relevant version of statewise
distinguishability.A” is all of the directions that do not fit into classkshrough
6. The maximal scores fak®, A®, andA\’ are not necessarily high enough for the
folk theorem.

Let A! be the set ot € R™*/?l such that(A®)i¢; # 0 for somew € Q and
()\iwl))iel =0 for all W # w. Since these directions consider only a single state,
Lemmas 5.2 and 5.4 of FLM show that the maximum score is the maximum fea-
sible score. As a result we obtain the following lemma.
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Lemma 18. Suppose the monitoring structure is known and has strong full rank.
Then for each\ € AL k*(A) = maxey: A - V.

Let A% be the set oA such thatthere aie= |, je 1,1 #i, ], we Q, andw € Q
such that\® # 0, AJ-‘*’ #0, and 6 (w) # 6 (w'). Here played can distinguish
betweenw andw/, and the strong full rank condition implies that if playeries
to reveal this information by a state-contingent action, both plagestatew and
player j at statew’ are irrelevant to the information revelation. Thus plalsr
private information can be fully revealed, and as a result the maximal scores for
these directions are infinity.

Lemma 19. Suppose the monitoring structure is known and has strong full rank.
Then for each\ € A?, k*(A) = oo

Proof. LetA e A%, andletiel, jel, | #i,j, we Q, andw € Q be such that
AL #0, }\j‘“’ # 0, andf (w) # 6 («'). Since monitoring structure has strong full
rank, both player at w and playerj at«’ are irrelevant for player's information
revelation. Then from Lemmas 11 theredsthat p, m, andn-statewise distin-
guisheq(i, w) from (j, ') and from Lemma 4, we hav€ (A ) = . Q.E.D.

Let A3 be the set oA such that there ariec |, j #1i, w € Q, andw’ # w such
thatA® > 0, Aj‘”/ # 0, and8(w) # 6(«'). Here playei can distinguish between
w and «/, and the score is increasing in play&r payoff in statew. Since the
strong full rank condition implies that play¢rat «' is irrelevant to(i, w), player
i's private information can be fully revealed and the maximal scores for these
directions are infinity as wef®

Lemma 20. Suppose the monitoring structure is known and has strong full rank.
Then for each € A3, k*(A) = o.

Proof. LetA € A3, and leti € I, j #i, w € Q, andw' € Q be such thaA® > 0,
/\j"’/ # 0, and6(w) # 6(w'). Sine the monitoring structure has strong full rank,
playerj atw' is irrelevant for(i, w). Then from Lemma 8, there & that statewise
distinguishegi, w) from (j, w'). SinceA® > 0, Lemma 4 applies. Q.E.D.

16The intersection oA? andA® might be non-empty but this is irrelevant as the maximal score
is infinity for either case.
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Let A* be the set ofA such that there arec |, o' € Q, andw” # «' such
thatA” >0, A" >0, (A®)eq = Ofor all j #i, and6 (') # 6(w”). Here only
playeri’s payoffs matter, the score is increasingi’m payoff in w and «w/, and
playeri can distinguish between these two states. Once again, the maximal scores
for these directions are infinity, as strong full rank implies that playan reveal
whetherw or «'.

Lemma 21. Suppose the monitoring structure is known and has strong full rank.
Then for eachA € A%, k¥(A) = oo

Proof. Let A € A% and leti € I, o € Q, andw” € Q be such thad® > 0,
A¢" >0, and6 (w') # 6 (w"). Since the monitoring structure has strong full rank,
playeri can reveal whether the statedifor /. Then from Lemma 5, there &
that p-statewise distinguishe$, ') from (i, w”). SinceA® > 0 andA%" > 0,
Lemma 4(b) applies. Q.E.D.

Let A>(i) be the set oA such thalA®)weq <0, (A®)weq # 0, (Af*)weq =0
for all j #i, and6j(w) = 6j(«) for all j #i, we Q, andw # w satisfying
AP #0 and)\i“” # 0. Here only player’s payoffs matter, the score is decreasing in
i's payoff, and no other player can distinguish between the states; these directions
determine the minmax payoff for playgitaking into account a trade-off between

the minmax level in one state and the payoffs in other states\Y.et|J;.; A>(i).

Lemma 22. Suppose the monitoring structure is known and has strong full rank.
Then for eachi and A € A3(i), K*(A) = maxy_; Ming ¥ wea A% (W)0° (&, a—i),
that is,k*(A) = —ming_; maXy ¥ wea —AC9” (&, a_;).

The proof is delegated to the appendix. The intuition is as follows: Strong
full rank implies that constraints (i) and (ii) can be satisfied for ja# i, and
becausegA j"’)wEQ = 0 the continuation payoffs assigned ta: i are irrelevant.
Thus we only need to consider continuation payoffs for playat satisfy (i)
and (i) for w such thatA* # 0, and the feasibility constraint (ii). Note also
that playerj # i has to use the same action for all statesw with A® # 0, as
he cannot distinguish these states by definition®(fi). Summing the incentive-
compatibility constraints over the stategtaking into account that® < 0) yields
a “weaker aggregate incentive condition,” which corresponds to a game with a
known state where playés payoff is Y ,cq —A*g(a). Using this analogy, we

33



can show that the maximal score in the direction of minimizing this payoff (that
IS, maximizing— S ,cq —A®V®) is at most the corresponding minmax payoff,
namely—ming , max, ¥ weq —A%9”(a,a—i). We then use the strong full rank
assumption to show that this bound is attained.

Let A® be the set oA such that there isc | such that\,® > 0 for somew € Q,
(A®)weq =0forall j i, 6(w') = 6(w") for all ' € Q andw” # o' satisfying
AY >0andA®" >0, and6j(w) = Bj(w”) forall j #i, o € Q, andw” # w
satisfying/\i"’/ #0 and)\i“)" # 0. In words, this says that only playes payoff has
non-zero weights, that playeicannot distinguish between any two states where
his utility gets positive weight, and no other player can distinguish between any
two states where playés utility gets non-zero weight.

Finally, we construct a sét’ that we show contains all directions that do not
belong to one of the preceding sets. We defifdo be the set of alk satisfying
the following properties.

() (A®)weq # 0and(A{)weq # 0 for somei € I andj #1.
(i) (A9 )er 20and(A?") ¢ # 0for somew € Q andw” # W

(i) 6(w") =8 (") forl €1, w” € Q, andw” # ", if AP # 0 for some
I”#1 andA%" # 0 for somel” #1.

(iv) 6(w”)=8(w")forl €l,w” € Q,andw” # " if A" >0andA?" #
0 for somel’ #1.

In words, this is the set of directions where the score depends on the payoffs of
playersi and|j in some stateo, and where it also depends on the payoff of some
player| (possiblyi or j) in two other statesy’ and w”, but this playel cannot
distinguish between any state$” and w”” if either (condition (iii)) in each of
these states there is at least one other player whose payoff matters or (condition
(iv)) the score is increasing irs payoff in stateww” and depends on the payoff of
somel’ in statew”.

Lemma 23. J7_; A" = R'*I1?\ {(0,---,0)}

Proof. Let A be such that # (0,---,0) andA ¢ A’. It suffices to show that
A€ Uﬁzll\”. If A does not satisfy the clause (i) of the definition/sf, then
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A € AL If A does not satisfy (iii), thed € A%. If A does not satisfy (iv), then
A € A3, If A satisfies (iii) and (iv) but not (i), theh € A*JASUAS. Q.E.D.

Lemma 24. Suppose the monitoring structure is known and has strong full rank.
Then for eachA € ASJA7, k*(A) = maxy A -g(a).

The proof is given in the appendix. The first step of the proof is to show that
for eachA € ASUA’, there is a single “typeB* that is relevant; we use this to
show that the upper and lower bounds on the score arerbaxh A -g(a).

Combining the above lemmas yields the following characterization of the
maximal scores in each direction and thus of thexet

Proposition 7. Suppose the monitoring structure is known and has strong full
rank. Then

maXey+ A -V if AeAl

(1) = o0 if A eANUNSUA?
maXqy mina@ 2weQ Aiwgiw(ai,a—i) it Ae /\S(i) ’
maxg A -g(a) it A e ASUA’

andQ = Nig1,...7p.rent H*(A).

This proposition shows that the monitoring imperfection does not affect the
maximal score. Then the s& does not depend on the monitoring imperfection
as well, and hence Proposition 6 follows.

7.2 One-Sided Incomplete Information

In this subsection we consider the case where only plajgepayoff function
is uncertain, and he knows his own payoff function while the other players do
not. Formally, we say the game has one-sided incomplete informatit{l) =
gi““(a) foralliz1,ac A we Q, andw # w, and thatt; (w) = (w) for all w, and
©; = {(Q)} for all i # 1. This is the assumption made iroHher and Lovo (2009,
Section 4) and HArner, Lovo and Tomala (2009, Section 6) analysis of reputations,
SO once again our results can be seen as extending theirs.

Section 5 of Hrner, Lovo, and Tomala (2010) derives several sufficient con-
ditions forQ (denoted by * in their paper) to be non-empty,which implies that

"They also give tight conditions faD to be non-empty by imposing restrictions on the payoff
functions as well as on the information structure.
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there is a PTXE in the undiscounted case. However these conditions do not assure
the existence of PTXE with the discounted payoff criterion used in this paper, be-
causeQ might not be full dimensional and in that case their existence result and
our Proposition 1 would not apply. In this subsection, we give a simple sufficient
condition forQ to be full dimensional; under this conditio® equals the set of
limit PTXE payoffs so that there are PTXE for sufficiently lae

LetVY be the set of feasible payoffs of the stage game with public randomiza-
tion, that is VY = co{g(a)|a € A}. Note that dinv" is at mos{Q| + 1 — 1, since
g”(a) =g¥(a)foralliz1,acA we Q, andw # w. Let

vU* = {ve VY vida_ Vo, VP> maxgf”(ai, o)}

Condition Non-E. The sevvY* has dimensiofQ| 41 — 1.

This condition is likely to be satisfied if there is an action; that gives low
payoffs to played for every statev. The next proposition shows that (Non-E) is
sufficient for the se@ to be full dimensional; then Proposition 1 applies, and so
(Non-E) is a sufficient condition for the existence of PTXE.

Proposition 8. Suppose that the monitoring structure is known and has strong
full rank, and that there is one-sided incomplete information. Suppose also that
(Non-E) holds. Then di@@=1 x |Q]|.

Proof. Letv be in the relative interior o7V . It suffices to show that*(A) > A -v
forall A.

First, consider € Al. SinceVY* C V*, v is an interior point oV*. Then
A-v<maxey-A-V =k (A) for A € AL Likewise, sincevV* C VY, vis an
interior point of VY. Then,A -v < max,oyu A -V = maxg A -g(a) = k*(A) for
A eNbandA e N,

Sincek*(A) = o for A € A2UASUA?, it remains to considek € AS. By
the definition ofA®, (A{*)weq # 0, A{> < Ofor all w € Q, and(A”) weq = 0 for
all j # 1. Also, sincev is in the relative interior ok/Y*, there isa_; such that
Ve > maxg, 05° (a1, a—1) for all w € Q. Taken together, we obtain

Av= S APVP <y )\f)rg?Xg(f(al,a—l) = > rgin)\f)g(f(al,a—l)

we we we

<maxmin % A1°gf’(ag, a’y) =Kk'(A),
aly A gen
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as desired. Here, the equality in the third line comes from
Af’maxgy’(ay, a-1) = —Ar’min(—gy(ay, a-1)) = [A{’|min(—gy’ (a1, a-1))
=min|Ay”(—0f'(ag, 0-1)) = minA°gP(ag, a-1)).
Q.E.D.

Remark 3. If there is a “commitment typeto*, for which there is soma] <

Aq such thatg® (af,a 1) is independent o&_; andgy (aj,a 1) > g% (a) for

all a; € A1, the minimax payoff of this commitment type equals his best payoff
0¥ (a,a_i). In this case the s& does not have full dimension, and our results
do not apply:® Moreover, in this case the set of PTXE is often empty. Suppose
that there are two players, and playdras a unique best reply agaiagt and call

it &;. In a PTXE, playen in statew* always playa;, so that playe2 must play

a; after every history, independently of the state. Then plaigeoptimal strategy

for statew # w* is to choos&y’ € argmax, ca, 97°(a1, a5) after every history. For
this strategy profile to be a PTXB; must be a best reply ta° for all w # w*,

but such a condition is not satisfied in general. Thus we conclude that there is no
PTXE for any discount factd

7.3 The Folk Theorem with Known Monitoring Structure

Our general folk theorem uses (SFR) or (Pointwise-SD), which require either that
all players can distinguish every pair of states, or that there are prdfilest sat-

isfy various full rank conditions. With a known monitoring structure (and strong
full rank) the following simpler condition is sufficient.

Proposition 9. Suppose that the monitoring structure is known and has strong full
rank. Suppose also that for eat, o') satisfyingw # «/, there are at least three
players who can distinguists and «’, i.e., there aré € |, j #i, andl #1, j such
that 6 (w) # 6(w'), Bj(w) # 6;(«'), and G (w) # 6 («'). Then, for any smooth
strict subseW of V*, there exist® € (0,1) such thatV C E(J) forall § € (5, 1).

BHorner and Lovo (2009) make essentially this point on page 475.

9 there are observed actions, these same assumptions imply that there is not a belief-free equi-
librium. Horner and Lovo (2009) note that there is a belief-free equilibrium with a commitment
type in strictly dominant action games with a unique Stackelberg type.

37



Proof. Since there are at least three players who can distinguiahd «/, any

cross-state direction is an element o\?>. Then, from Proposition 7, we have

k*(A) = 0. Sincek*(A) = maxey:A -v for any A € Al, we obtainQ = V*,
Q.E.D.

Theorem 5.3 of ldrner, Lovo, and Tomala (2010) shows tigats non-empty
for games with perfect monitoring, if there are there are at least three players who
can distinguishw andw’ for each(w, ') satisfyingw # «'; our result shows that
the assumptions of that proposition are in fact sufficient for a folk theorem.

In the next proposition, we consider the case in which there are at least two
players who can distinguish states. Recall ¥atis the set of feasible payoffs of
the stage game with public randomization, tha¥is,= co{g(a)|a € A}.

Proposition 10. Suppose that the monitoring structure is known and satisfies
strong full rank. Suppose also that for eaeh, w') satisfyingw # «/, there are at
least two players who can distinguishand w/, i.e., there aré € | and j # i such
that 6 (w) # 6/(w') and 6j(w) # 6;(w'). LetV** = {ve V*|Fi e VIVie IVw €

Q, v® > 1. Then, for any smooth strict sub3at of V**, there isd € (0,1)
such thaW C E(5) forall 6 € (5,1).

Note that if there is a “bad outcome”e AAsuch thag(a) <v®foralli € |
andw € Q, then we hav&/** =V*, so that the folk theorem obtains. Theorem
5.11 of Horner, Lovo, and Tomala (2010) shows tiiats non-empty for games
with perfect monitoring and a bad outcome, if there are there are at least two
players who can distinguiste and o’ for each(w, ') satisfyingw # «'. Again
our result shows that the assumptions of the proposition are sufficient for a folk
theorem.

Proof. It suffices to show tha¥** C Q. To do so, we compute the maximal score
k*(A) for every direction, using Proposition 7.

First, considen € AL It follows from Proposition 7 that* (A) =maxey+A -v
for this direction. Next, consider such that.® # 0 andA®" # 0 for somei € I,
w € Q, andw” # o', and(A ) weq = O for all j # i. Since there are at least two
players who can distinguisty’ and w”, there isl # i such thatf («') # 6 (w").
ThusA € A?, and hencé*(A) = « for this direction.
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ConsiderA such tha® # 0 andA{" # 0 for somei € I, j #i, & € Q, and
W’ # o, and G (w') # 6 (w") for somel #i,j. Again, A € A? in this case, so
thatk*(A) = . ConsiderA such that® > 0 and)\j‘"" #0forsomei e, j #1i,
W €Q,andw” # o, andf (w') = G (w") for all | #1i, j. Since there are at least
two players who can distinguisly’ and ”, it must be tha(w') # 6 (") and
6j(w') # 0j(w”). This implies thath € A3, and hencé*(A) = o,

Finally, considen such that <0, )\i‘d < Oand)\j‘”" < Oforsome €1, j #i,
W € Q,andw” # o/, and for any paifi, w”) and(j, w"") satisfyingw” # ",
A" <0, andA®" <0, and for anyl #1, j, 6 (") = 6 (). By definition,
A € A7inthis case, so tha€ (A) = max, A -g(a) = max,.yu A - V.

From the above arguments, obviously we heveé C H*(A) for all A. There-
fore,V** C Q. Q.E.D.

8 Conclusion

This paper shows how to extend the insights and techniques of the repeated games
literature to games with imperfectly observed actions, an unknown monitoring
structure, and private information. Our analysis is based on the fact that the set
of PTXE payoffs has a recursive structure, and says little about the entire set of
equilibrium payoffs. When the folk theorem holds in PTXE, or more generally
when there are asymptotically efficient PTXE, the restriction to PTXE may be
of less concern, especially given their desirable robustness properties. When the
set of PTXE is small or empty, it would be nice to know more about the entire
set of sequential equilibrium payoffs; that more difficult problem is still unre-
solved. Another open question is to extend the analysis of PTXE to other settings
where repeated play has been shown to support more efficient outcomes, such
as games with long-run and short-run players (Fudenberg, Kreps, and Maskin
(1990), Fudenberg and Levine (1994)), games with overlapping generations of
players (Kandori (1992b)), community enforcement (Kandori (1992a) and Elli-
son (1993)), games with imperfect private monitoring (Compte (1998) and Kan-
dori and Matsushima (1998)), and games where the state evolves according to a
finite Markov chain (Athey and Bagwell (2008)).
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Appendix

A.1 Proof of Lemma 4
Lemma 4.

(a) Supposé is ex-post enforceable amd-statewise distinguishés, w) from
(J,a'). Thenk*(a,A) = for A such thatn® > Oand)\j“" < 0.

(b) Supposé is ex-post enforceable anuistatewise distinguishés, w) from
(j,@). Thenk*(a,A) = e for A such tha® > 0andA® > 0.

(c) Supposé is ex-post enforceable anmdstatewise distinguishes, w) from
(j,@). Thenk*(a,A) = e for A such thah® < 0andA{ <.

Proof. For part (a), let€ = (£(y))yevy be as in the definition of-statewise dis-
tinguishability. Without loss of generality, assumé’ (a) - & = 0. Let v =
(Z°(y))yey andz” = (2’ (y))yey be such that

K

20)= gt A 0= -5

SA e (a)- &

&(y)

forallyeY. Sincen®(a)-& = n“(a,a_i)-& > 0for & € supmi, we have

m(a,a_)-7° = W%n“’(a;,a_i)-f = %Iw

for all & € suppm. Also, sincen®(a)-& >0andn®(a)-& > n®(&,a-;) - & for
a; ¢ supm;, we have

nw(aiaa*i) 'Ziw:

3)

K K

W#"(a,a,i)-f SW (4)

for all & ¢ supmi. Likewise, sincer®(a)-& > 0, n‘*’/(aj,a,j) -& =0 for all
aj € supmj, andn® (aj,a_;) - & < Ofor all aj ¢ supmj,

/ K
m(a),a-) 2 :_5Afynw(a)_fﬁd(aj>aJ)‘E(Y):O (5)
for all aj € suppj, and
/ / K /
@y, ani) 2 :‘5Aj‘*’nw<a>-5"w(a"’“‘”"5SO ©)
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for all aj ¢ suppj. Finally, it is obvious that
AP (y)+ AP 2 (y) = (7)

forallyeY.
Let (V,W) be a pair of a payoff vector and a function such tiieénforces
(V,a). LetK > maxey A -W(y) — A -V. Then, let

. +7°(y) it (Lw)=(i,w)
W (y) = ¢ W (y)+20(y) i (1,0") = (j,w)
W (y) otherwise

@4 L 1w = (W)

Z

\/d otherwise

We claim that thigv,w) satisfies all the constraints in the LP problem. Obvi-
ously, constraints (i) and (ii) are satisfied for @llw) € (1 x Q) \ {(i,w), (j, ')},
asv? =" andw®(y) = W' (y). Also, since (3) and (4) hold andl enforces
(a,V), we obtain

(1-90)g”(a, a-i) +om*(a, a—i) -w®
(1 8)g° @y, o) + BT, 0_) - (W4 27) = T s = v

for all & € supm;, and

(1-90)g”(a, a-i) +om*(a, a—i) -w®
= (1-9)g” (&, 0-i) + Om°(&, ai) - (W +Z”) 3\7{“+/\£w — &

i
for all & ¢ supmi. Hence,(v,w) satisfies constraints (i) and (ii) fdr, ). Like-
wise, it follows from (5) and (6) thatv,w) satisfies constraints (i) and (ii) for
(J,a'). Furthermore, using (7) arl > maxcy A - W(y) — A -V,

A-w(y) = A -W(y) +ACZ(y) + AT A (y) = A W(y) <A THK=A v
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for ally € Y, and hence constraint (i) holds. Therefok&,a,A) > A -v=A -V+
K. SinceK can be arbitrarily large, we conclu&(a, A ) = e, which proves part
(a) of the lemma.

For parts (b) and (c), lef = (¢(y))yey be as in the definition op- or n-
statewise distinguishability. Without loss of generality, assutfiéa) - & = 0.
The rest of the proof is the same as in part (a). Q.E.D.

A.2 Proof of Lemma 12

Lemma 12. Suppose (PFR) and (IFR) hold. Létbe such that(w) # 6 (w')
foralliel, we Qandw # w satisfying(A)je| # 0 and (/\j‘*”)j@ # 0. Then,
k*(A) > maxey+A - V.

Proof. For eachw € Q, let A(w) = (Ai‘*"(w))(w) be such thatA®(w))ic| =
(A®)iel and()\f"(w))ia =0for all W # w. Let Q* be the set of altv such that
A(w) #0. We claim

K'@A) > S k(@A (w) (8)
we*
for eachd. In words k*(d,A) is at least the sum of the maximal scores when we
solve the LP problem for each statein isolation. To prove this, consider the LP
problem for(d, A ) but constraint (iii) is replaced with a more restrictive condition

(iii") ZAi‘"vf" > Z)\i‘*’wf"(y) forall we QandyeY.
le e

LetkY (d,A) denote the solution to this new problem. Since conditiof) (ibes

not allow utility transfer across different states, considering this new LP problem
is equivalent to solving a separate LP problem for each stateQ* in isolation.
Thus we havek (d,A) = 3 y,co- K (d,A (w)). Sincek*(d,A) > kY (d,A), (8)
follows.

Recall thatA (w) considers only a single state. Thus the maximal score
k*(&,A (w)) depends om ®(@ but not ona? for other®’. This observation, to-
gether with the fact that all players can distinguish any state in th@'semplies
that

sup K'(d,A (w)) = Z’ supk*(a, A (w)).

0 el a
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It follows from Lemmas 13 and 14 thaup; k*(G,A (w)) = maxeyv+ A (w) - .
Therefore,

sup 3 k(@A () =2 Maxh () -v=maxA -V
Using (8), we obtain the desired result. Q.E.D.

A.3 Proof of Lemma 16

Lemma 16. Suppose (PFR) holds. L@t be such thatf(w) # 6 (') for all
€], we Qandw # w satisfying(A{) je # 0 and()\j‘*")j@ #0. Thenk*(A) >
max,cyoA - V.

Proof. The proof is very similar to Lemma 12. The only difference is that in
the last step of the proof, we may not hatgy K" (4, A (w)) = maxev+A (w) -V,

since (IFR) might fail. Instead, we use Lemmas 13 and 15 to showtigak* (d,A (w)) >
max,coA (W) - V. Q.E.D.

A.4 Proof of Lemma 22

Lemma 22. Suppose the monitoring structure is known and has strong full rank.
Then for eachi and A € A3(i), kK*(A) = maxy_; Ming ¥ wea A% (W)0° (&, a_i),
that is,k*(A) = —ming_; maXy ¥ weq —AC9” (&, a_;).

To prove this lemma, we use the following claims.

Claim 1. LetA € A3(i). Then for eachj # i, there is6; € ©; that contains allw
such that\,® # 0.

Proof. Suppose not, so that there axec Q and w’ # w such that such that
6;(w) # Bj(w), A® 0, andA® 0. ThenA ¢ A5(i), since it does not satisfy the
last condition of the definition oA>(i). A contradiction. Q.E.D.

Claim 2. Suppose the monitoring structure is known. Ret A3(i). Then for
eachd = ((Gie')e\.eei)iel, K*(d,A) < ming A -g(a;,afi*i) where@*; is chosen as

_ ) 0. CH
—i Y. .
in Claim 1 anda ;' = (a;” ) jxi-
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Proof. Leta/ € argmin A -g(a,-,aiji). If k*(d,A) = —oo then the result is obvi-
ous. Ifk*(d,A) > —oo, we can choosév,w) to satisfy constraints (i) through (iii)
in the LP problem associated witl@, A, d) for somed € (0,1). It follows from
constraint (ii) that

VO > (1-8)g®(a, a’) + dmia, a’ ') - we

for all i, &, and w such that # 0, since 6j(w) = 6] for j # i for such w.
Multiplying both sides by, summing over alto, and using the fact thatj” = 0
forall j #i, we have

Av= S AWM <(1-8) H A¥g” (a,a’}) +0 % (), a’)ACWE(Y)

weQ we weQye

—(1-8)r-g@,a’)+5 ;wafm W(y),
ye

so from (iii),
Av< (1-8)A-g@,a’ ) +8A v
Subtractlnch/\ -v from both sides and d|V|d|ng byl —J), we getA -v<A-
g&,a *') Thereforek*(d,A,0) < g(a,a *') Q.E.D.

For eachj € I, let@j(a) = — 5 w,co A“g¥(a). LetA € R' be such thad = —1
and5\j = Oforall j #i. Consider the following LP problem:

~ ~

K*(a,A,0) = max A-¥  subjectto

w-\z(EEIR'
(i) Vj=(1-9)§j(a)+dm(a) -Ww; forallj,
(i) 9 :< —8)§j(aj,a_j)+6m(aj,a_;)-W; forall j andaj,
(i) A-V>A-W(y) forally.

This is the problem of finding the maximum score for a known-state game (i.e.,
|Q| = 1) for directionA, so its value (which does not depend @nfollows from
past work:

Claim 3. Suppose the monitoring structure is known and has strong full rank.
Thensup, R*(or,)\) = —Ming_, maxy Gi(a, a_)
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Proof. Strong full rank implies that every pure action profile has individual full

rank. Then from FLM Lemma 6.3, the maximal score for directiois given

by playeri’'s minimax score. Therefor&*(a,i) = —ming_, maxy §i(a, a_i).
Q.E.D.

Claim 4. Suppose the monitoring structure is known and has strong full rank. Let
A € A5(i). Thenk*(@,A) = k*(a,A) if @ is a state-independent actian

Proof. First, we showk*(d,A) < R*(G,X). Whenk*(a,A) = —o, then this in-
equality obviously follows. So assuné&(d,A) > —c. Choose(v,w) to sat-
isfy constraints (i) through (iii) in the LP problem fq,A,d), and letV; =
—Ywea APV andWj = — 3 e APWP(y) for all j € | andye Y. Then this

(7, W) satlsfles all the constraints of the LP problem(fa:)\ 0), andA V=AYV,
This shows thak*(d,A) < k*(a,)\).

Next, we shomk*(a A)> R*(a,j\). As before we restrict attention to the case
of k*(a, )\)

We claim there ar¢z”(y)) (wy) such that

(1-5) (—g(a‘—“w’ —gf”(aa,a_o) _ sm(aa) 2 ©)
ZweQ )‘i
for all w € Q anda; € Aj, and
> A“Z°(y) =0 (10)
we

for all y € Y. To see that this system has a solution, chaossuch tha’r)\i‘d #0,
and eIiminate;-‘" using (10). Then we can check that (9) fof are redundant
equations; that is, (9) fow’ automatically holds if (9) holds for ath # /. This
leaves(|Q| — 1) x |Ai| equations and|Q| — 1) x |Ai| unknowns, and strong full
rank assures that the coefficient matrix has full rank. Therefore, the system has a
solution.

Choose(v W) to satisfy all the constraints of the LP problem for,A,5), let
VP = =5 o, andw{(y) = —ZW'QA +27°(y). SinceA -v= A -V, it suffices to
show that thigv,w) satisfies all the constraints of the LP problem (dr A, d).

(We can ignore the adding-up constraint and the incentive compatibility constraint
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for playerj # i, as strong full rank holds.) Note that
(1-0)g®(a, a—i) + Om(ay, a—i) - W

=(1-9)g”(a, i)+ om(ay,a— (Zw—ZwET~(Y))

i (&,0-i) o Om(a, a—i) - Wi

~(1- )@, 0 )+ (1-9) (—%—g () ) - R
_ (1 0)Gi(a,a—i)+om(a,a_j) - W o Vi @
ZweQ/\i B zweQAiw I

for all & € A; with equality ifa; € supm;. Here, the second equality comes from
(9), and the inequality comes from the fact tif@tw) satisfies the constraints of

the LP problem for{a,A,d). Therefore, thigv,w) satisfies constraints (i) and

(i). Also,

Awly) = 3 ACWEy) ZA“’( M):_wi(y)g_vi:)\.v.

w
o) o) Ywcah

Here, the third equality comes from (10) and the inequality comes from the fact
that(V, W) satisfies the constraints of the LP problem(ar A, ). Therefore, this
(v,w) satisfies constraint (iii). Q.E.D.

It follows from Claims 3 and 4 angj(a) = — ¥ ,ea A“9{’(a) that

k*(A) = suk™(a,A) = —minmaxg;(a, a—i)
a a_i g
= —minmax—A -g(a;, a-i) = maxminA -g(a;, a-).
On the other hand, Claim 2 shows tlatA ) < maxy , ming A -g(&,a—j). There-
fore,k"(A) = maxy_, ming A -g(a;,a_).

A.5 Proof of Lemma 24

Lemma 24. Suppose the monitoring structure is known and has strong full rank.
Then for each\ € ASUA7, k*(A) = maxq A -g(a).

The proof consists of a series of claims.

Claim 5. LetA € A% and leti € | be such thatA®),cq # 0. Then
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(a) there is6* € ©; such thatf (w) = 6* for all w such that\,* > 0; and

(b) for eachj #1i, there is6; € ©; that contains alkw such thatA,* # 0.
LetA € A7. Then

(c) for eachi € |, there is6* € ©; that contains allw such that/\j‘*’ # 0 for
somej #i; and

(d) this 6* contains allw such thatA, > 0.

Proof. For part (a), suppose not, so that there afe= Q and w” # w such that
B(w) # B(w"), AY >0, andA®" > 0. ThenA ¢ A, as forA to be inAS,
6/(w) = 6(w") for all w € Q andw” # w satisfyingA® > 0andA®" > 0. A
contradiction.

For part (b), suppose that there avee Q andw” # ' such thatf;(«') #
6 ("), A* #0,andA?" 0. ThenA ¢ AS, as forA to be inA8, 8)(w') = 8;(w”)
forall j#i, o € Q,andw” # w satisfying)\i‘*" # Oand/\i‘*’” # 0. A contradiction.

For part (c), suppose that there dijew’) and (I, w”) such thatj #1i, | #1,
B(w) # 6(w"), A 0, andA? % 0. ThenA ¢ A, as the last condition of the
definition of A’ requires thaB(w') = 6(w”) foralli € |, o' € Q, andw” # w/
such that)\j‘”’ # 0 for somej # i andA®" # 0 for somel #i. A contradiction.

For part (d), suppose that there are | andw’ € Q such that)\i‘”/ > 0 and
w¢ 6" Let(j,w") be such thaj #i andA®" % 0. Then from part (c)w/’ € 6,
so thatf (w”) = 6* # 6, («'). This implies that ¢ A7, as the last condition of the
definition of A’ requires thaB (/') = 6/(w”) foralli € |, o € Q, andw” # w/
such that.® >0 and)\j‘”” # 0 for somej #i. A contradiction. Q.E.D.
Claim 6. Suppose the monitoring structure is known, andilet A8 JA”. Then
for eachd = ((a?)gco,)ic1, K*(@,A) <A -g(a®) where6* is chosen as in Claim

i
5anda? = (aiQ‘ Jiel -

Proof. Choose(v,w) to satisfy constraints (i) through (iii) in the LP problem as-
sociated with'd, A, d) for somed € (0,1). It follows from constraint (ii) that

v > (1— 5)gi‘”(a;,afii‘) + 57T(ai,a_eiii) -wi®
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foralli €1, a € A, andw € Q such that® # 0, since6;(w) = 6; for j =i for
suchw. In particular, we have

V> (1-08)gP(a® )+ om(a®) - w’ (12)
foralli e | andw € Q such tha® # 0. Also, from constraint (i), we obtain
W= (1-08)gP(a®) +om(a®) - wf’ (12)
foralli € | andw € Q such than® > 0, sincef(w) = 6* for suchw € Q. It
follows from (11) and (12) that
A V<Z 3 A¢ [(1-5)g$(a9*)+5n<a9*) W

we

=(1-8)A-g(@)+o Z(rg,
Using constraint (iii),

Av< (1-8)A-gla +52rg, (1—8)A - g(a®)+8A v

SubtractingdA - v from both sides and dividing byl — &), we getA -v< A -
g(a?). Thereforek*(d,A,d) < g(a?). Q.E.D.

Claim 7. Suppose the monitoring structure is known and has strong full rank. Let
A € A8, Thenk*(A) > maxq A -g(Q).

Proof. Leta € argmax A -g(a’). Without loss of generality we can assume that
a is a pure action profile, so that we denote itdhyin what follows, we show that
k(@A) > A -g(a).

Let A € A8, and let(i,«') be such thad®” > 0. Consider the LP problem
associated witlia, A, ). Note that we can ignore constraints (i) and (ii) foz i,
as(A{)weq =0.

Let v = g®(a) for eachw € Q. Forw # ', let (W*(y))yey be such that

glw(a) = (1_ 5>glw(allvil> + 5n(ai/a ELi) W|w<y) (13)
forall & € Ai. Also, let
/ 1 w,
W (y) = prz (A -g(a) - w;ym Wf”(y>> (14)

48



forallyeY.

We claim that thigv, w) satisfies constraints (i) through (iii) in the LP problem.
First, constraints (i) and (ii) hold fao # «/, since (13) holds. Also, as in the proof
of Claim 4, we have

(1-8)g (o, ai)+dm(a],ai) - (y)

— g @)+ (1) IEAN AU g

for all & € A with equality if &' = &. Here, the inequality is from the fact that
a maximizesargmax\ - g(a’) and )\i“" > 0. This shows that constraints (i) and
(i) hold for /. Finally, constraint (iii) follows from (14). Thus we conclude
K'(a,A) > S wea APV = A -g(a), as desired. Q.E.D.

Claim 8. Suppose the monitoring structure is known and has strong full rank. Let
A € \'. Then for eachu, k*(a,A) > A -g(a).

Proof. Let A € A7, and given this\, let A w)(j,r) D€ @ direction such that the
components fofi, w) and(j,«’) are equal to those of and the remaining com-
ponents are zero. (Thus the directidfly)(j vy has at most two non-zero compo-
nents.) In order to prove the claim, it suffices to show tina¢ enforceable with
respect to the hyperplane orthogonalitat g(a). This enforceability follows
from the following two facts: (i) If the monitoring structure has strong full rank,
thena is enforceable with respect to the hyperplane orthogonal;tg,j ) at
g(a) for each(i, w) and(j, w') such that # j (but possiblyw = «'), A® # 0, and

A j‘*’/ # 0. (ii) a is enforceable with respect to the hyperplane orthogonal &b
g(a) if o is enforceable with respect to the hyperplane orthogona};tg,j )
atg(a) for each(i, w) and(j, ') such thai # j, A® #0, and)\j‘“' # 0. Note that

(i) follows from Lemma 5.4 of FLM, since here we assume that the monitoring
structure does not depend an Likewise, (ii) follows from Lemma 5.3 of FLM,
sinceA € A7 implies that for eachii,w) such that® # 0, there is(j, ') such
thati # j andA{” # 0. Q.E.D.

The statement of Lemma 24 follows from Claims 6, 7, and 8.
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Supplementary Materials

S.1 Proof of Lemma 17 and Failure oim-Statewise Distinguishability

Lemma 17.

(a) Let(i,w) and(j,w’) be such that # j andw # «. Then there is a profile
d that statewise distinguishés w) from (j, «').

(b) Let(i,w) and(j,w’) be such thato_jj # / j; (and possibly = j). Then
there is a profiled that p-, m-, and n-statewise distinguishes, w) from
(j, o).

(c) Let(i,w) and(j,w') be such thatj # wj (and possibly = j). Then there
is a profiled that p-statewise distinguishds, w) from (j, o).

Proof. For part (a), lea be a profile such that, .oy, 1°(a) # Yy ev n§‘"(a) for
somey; € Y;. Since playerlj’s action does not affect the distribution gf % (a)

is not a linear combination o[fn“"(a’j,aLj)}afj ea;» Meaning that playey at state
o is irrelevant for(i,w). From Lemma 8, there ig that statewise distinguishes
(i,w) from (j, ).

For part (b), letibe a profile such thgty, v 3y, cv; () # Tyex Yyjev, n{,‘”(a)
for somey_ij € Y_jj. Since actions of playerandj cannot influence the distribu-
tion ofy_j, any linear combination ofri(a;,a-i) }4ex, is not a linear combina-
tion of {n"’(a’j,aLj)}a/jeAj, meaning that both playerat statew and playerj at
statew’ are irrelevant for information revelation by playet i, j. Then the result
follows from from Lemma 11.

For part (c), first consider the case witk= j. Obviously playel can reveal
whetherw or «/, so that Lemma 5 applies. Next consider the case with. In
this case playerat statew is irrelevant to( j, '), as playei’s action cannot affect

the distribution ofy;. Therefore Lemmas 2 and 8 applies. Q.E.D.

Becausep-statewise distinguishability is satisfied for all cross-state pairs, we
know that the maximal scor"(A) is infinitely large for directiolA such that
there are(i,w) and (j,w’) such thatw # o/, A® > 0, and/\j‘”/ > 0. Thus we
expect that an efficient outcome can be approximated by PTXE payoffs if the
constraints related to the other directions are not too tight.



In general, though, product structure does not guaramtstatewise distin-
guishability for (i,w) and (j,w') with w; # wj. Perhaps the simplest exam-
ple where this condition fails is a bilateral gift-exchange game: There are two
players, and) = Q1 x Q, whereQ; = {w1,w32}. Playeri chooses high effort
(& = G) or low effort (& = Dj), and the quality of player's output is good
(vi = G) or bad ¢ = B). We assume that the probabilipf* (a;) thaty; = G de-
pends only oy anda;, that the two signals are independent, and pﬁ*&t(ci) >
p*2(Ci) > pM*(Di) = p?(Dy). Playeri’s realized payoff is given byi(a, i) =
ri(y—i) —ci(&), whereri(y_;) is the utility from consumption oy_;, andc;(g)
is the effort cost. Suppose th& = {6(w1),0(w2)} where8(wyk) = {w =
(1, ) € Qg = wy} for eachk = 1,2. The following claim shows the fail-
ure of m-statewise distinguishability.

Claim 9. No profiled m-statewise distinguishé$l, (w2, wp1)) from (1, (cn1, wp1)).

Proof. Note that for any type-contingent profile, the distribution ofy, is the
same for statev = (w2, wp1) and for statew’ = (wi1, wp1), sincew, = ). Thus
it suffices to show that there is no profife such that all the conditions ofr
statewise distinguishability are satisfied by ahat depends only oy. Let £€
denote the value df (y) wheny; = G, and&® the value of€ (y) wheny; = B.

Let & be such that playet choosesx; for statew anda] for statew'; since
wy = w5, player2 chooses the same action in both states. Suppose thatm-
statewise distinguishds w) from (j,«'). Then, from clause (i) of the definition,
we have((p{*(Cy) - p§*(D1))at} (Cp) — (p§*(Cy) — p{*(D1)) @ (Ca)) (€6 — £8) >
0If E€&—&B > 0, then clause (jii) implies that; (C;) = 1, and hencé(p;*?(C1) —
pi*2(D1))ar; (Cp) — (P§*(Cy) — i (D1)) @1 (Cy)) (€6 — £B) < 0. Therefore£© -
&B < 0. But then clause (jii) implies thatr1(C1) = 0, and thus((p;*?(C1) —
p*?(D1)) a1 (Cr) — (P3**(C1) — P3*(D1))a1(C1)) (€ — &B) < 0, a contradiction.

Q.E.D.

S.2 Proofs of the Claims in Section 6.3

The first part of this section deals solely with the distinguishability conditions;
the second part adds assumptions on the payoff structure of the game to compute
bounds on the limit payoffs.



S.2.1 Distinguishability

For notational convenience, give a= (£ (y))yey, letp-& =pué(H)+pumé (M) +
(1—prn—pw)é(L) andg-& =aué(H) +amé (M) +(1—an —am)& (L).

Claim 9.

(a) The profile(Cy,Cp) p-statewise distinguishes the paif€l, w), (1, wy)),
(L), (L)), ((2,w1),(1,a2)), and((1, ), (2, wr)),

(b) For each of the pair$(2, w), (2, w2)), (2, w2), (2,wn)), ((1, @), (2, w2)),
and ((2,a),(1,w1)), there is no type-independent profipestatewise dis-
tinguishes this pair.

(c) The profile(Cy,Cy) m-statewise distinguishes the paif€l, w), (1, wy)),
(L, 2), (L, an)), ((2,@1), (2, a2)), (1, 1), (2, 2)), @nd((2, @), (1, @z)).

(d) Foreachofthe pair§(2, ), (2, w1)), (2, a2),(1,@1)), and((1, az), (2, wr)),
there is no type-independent profitestatewise distinguishes this pair.

Proof. For part (a), Lemma 2 assures that it is sufficient to consider the pairs
(L, en), (1, ap)) and((2,w1), (1, ap)). Let& be such thap-& =0andq- & > 0.

We claim that thisf satisfies all the conditions fqu-statewise distinguishability.
Indeed, clause (i) follows from®:(Cy,C,) - & — 1*2(Cq,Cy)- & = (1—-B)q-& > 0.

Also, clause (ii) and (iii) follow from the fact that®(C;,Cy) - £ — m®(D1,Cy)- & =

p- & = 0for eachw and thatri®:(Cy,Cp) - & — m*1(C1,D2)- £ =q- & > 0.

For part (b), Lemma 2 says that it is sufficient to consider the pé2rsv; ), (2, wy))
and((1,w1),(2,ap)). Choosea andé to satisfy clause (i) op-statewise distin-
guishability, i.e.,m*(a) - & > n*2(a) - . Arranging this inequality, we have
(1-B)az(C1)q-& > 0. Thenn®?(a)-& = n*%(a1,Dz) - § + Baz(C1)q- & >
n“2(a1,D») - €, which contradicts clause (iii) op-statewise distinguishability.
Therefore we conclude that there is fm, &) that satisfies clauses (i) and (iii) of
p-statewise distinguishability.

For part (c), letk > 0. Becausep andq are linearly independent, there is a
¢ such thatp- ¢ = 0andq- ¢ = —k. We claim that thi€ satisfies all the condi-
tions of m-statewise distinguishability for the pdifl, a,), (1, )): Condition (i)



holds sincet2(C;,Cy) - & — n*2(Cy,Cp) - &€ = —(1—B)g- & > 0O, condition (ii) fol-
lows from1®2(Cy,Cy) - & — m*2(D1,Cy) - &€ = p- & =0, and condition (iii) follows
from 1%L(Cy1,Cy) - € — 1 (D1,Cy) - € = p- & = 0. For the pairg (1, w), (1, ap)),
((2,@1),(2,@2)), (1, 01),(2,a2)), and((2, @), (1, wp)), use&’ = —¢&; this gets
the sign right in condition (i) and as above conditions (ii) and (iii) hold with equal-
ity becausep- & = 0.

For part (d), suppose that a profitle m-statewise distinguishe@, w) from
(j,). Then clause (i) of the definition afrstatewise distinguishability im-
plies a; choosesC, with positive probability. (Otherwiser:(a) = n“2(a) so
that we haven®(a)-& = n*2(a)- & for any £.) Also, since we consider the
pair (2, a), (2, 1)), ((2,@2), (1,a1)), or (1, ), (2, w1)), we haven®(a) - & —
n‘”’(or) -& = —yq- ¢ for somey > 0, and hence clause (i) requires that the corre-
sponding vectoé satisfyq- & < 0. But this implies thatt®(a) - & < n®(a1,D>) -
¢ for eachw € Q, so that clauses (ii) and (iii) could not hold. Q.E.D.

Claim 10. Suppose that player knows the state but play@rdoes not. Then, no
type-contingent profil& m-statewise distinguishe®, w,) from (1, ).

Proof. Let d be such that playet choosesx; for statew; anda; for stateawy,
while player2 choosesa, for both states. Suppose thatm-statewise distin-
guisheg2, wy) from (1, wy). ¢ From clause (i) of the definition ofstatewise dis-
tinguishability, we havéa;(C1) — a1(C1))p- & — a2(C2)(1—B)g- & > 0. Also,
clause (ii) implies that)- & > 0 for a»(C;) > 0, and hencexry(Cy)q- & > 0. Taken
together, it must be thdior; (C1) — a1(Cy))p- & > 0. However, clause (i) re-
quires thato1(C1) = 1if p-& > 0, anda1(Cy) =0if p-& < 0O; this implies that
(a1(C1) — a1(Cq))p- &€ <0, a contradiction. Q.E.D.

Claim 11. Suppose that playe2 knows the state but playdrdoes not. Then
for each of the pairq(2,wp),(2,w)) and ((1,wr),(2,w1)), there is no type-
contingent profiledr m-statewise distinguishes this pair.

Proof. Consider the paif(2, w»), (2, w1)), and letd be such that playet chooses
a, for statew, and a5 for statewp, while playerl choosesa; for both states.
Suppose thali m-statewise distinguishgs$, w) from (j,«’). Then, from clause
(i) of the definition, we havéBa(Cz) — a2(Cz))q- & > 0. If - & > 0O, then clause
(iii) implies thata,(Cy) = 1, and hencéfas(Cy) — a2(Cz))q- & < 0. Therefore

iv



q-& < 0. But then clauses (iii) implies thaty(Cp) = 0, and thus(Ba5(Cp) —
a2(Cy))q- & <0, a contradiction.

A similar argument shows that no profife-statewise distinguishel, )
from (2, ). Q.E.D.

S.2.2 Limit Equilibrium Payoffs

In what follows, we assume that the payoffs are

u(G,y)=ri(y)—& and u(Diy)=ri(y)

for eachi € | andy € Y, where the functiom; satisfieg;(H) > ri(M) > ri(L); e >
pr(ri(H) —ra(L)) + pm(ra(M) —ra(L)); € > gu(ra(H) —ra(L)) +am(r2(M) —

ra(L)); e < pr(ra(H) +ra(H) —ra(L) —r2(L)) + pm(ra(M) +r2(M) —ra(L) —

ro(L)); ande; < qu(ri(H)+rz2(H)—ri(L) —r2(L))+am(ri(M)+ra(M) —ri(L) —
ra(L)). This implies that the stage game payoffs in each state correspond to a
prisoner’s dilemma whep exceeds some critical lev@ < 1. (That is, for any

B € (B,1), in each stateD; is a strictly dominant strategy for each playeand

the sum of the payoffs is maximized at the profia,C,).)

Proposition 11. Suppose that playet knows the state. The@ = V* for any
Be(B,1).

Proof. Notice thatp-statewise distinguishability holds for &lli, w), (j, w')), and
m-statewise distinguishability holds for &lli, ), (j, &) # ((2,wr), (1,w1)). There-
fore, it suffices to show that* C H*(A) for all A € A*, where/\* is the set of all
A such thatA,2 > 0, A;* < 0, A;? <0, andA,™* = 0. (For the other cross-state
directions, we hav&*(A) = o thanks to statewise distinguishability.)

First we focus ork such thaf\;2 > 0, A;* < 0, andA;% = A, = 0. Consider
the LP problem associated with such a directhioand the type-independent pro-
file (C1,D2). Since we can ignore constraints (i) and (i) foraw”) # (1, w), (2, ap),



the maximal scor&*((Cy,D2),A) is defined to be a solution to

WL WL ) W2y/@2
n\)axz\l Vit AR,

s.t. V(fl (1— 5)9?((:1, D2) +0m“:(Cy,Dy) -Wiol,
Vp? = (1—8)g32(Cy,D2) + 6m“2(Cy, Do) - Wy 7,
V(fl (1-8)gy™ (D1, D2) + 87** (D1, D2) - Wi ™,

V3? > (1-6)0,”(C1,Ca) + 612 (C1,Ca) - W7,
APV APV52 > AW (Y) + A PwoR(y)  forally .
Let vit = g7 (Cy,Dz) andvy? = g32(Cq,D2). Also, letw be such that

07*(C1,D2) = (1— 8)g7* (C1,D2) + 81 (Cy1, Do) - Wy,
05%(C1,D2) = (1— 8)g32(C1,D2) + 67*?(Cy, D) - W52,
0;1(C1,D2) = (1 8)g;*(D1,Dz) + 1t (D1, Dp) - wWi*,
9, %2(Cy,Dp) = (1—5)92 (Cl,C2)+57T‘*’2(C1,C2)-W(2"2,
A0 (Cr, Do) +A,2052(C1, Do) = AWt (y) +AS2wo2(y)  forallye.

To see that there exists suctwanote that the second equation is automatically
satisfied if the first and last equations hold&%(Cy,D;) = n*2(Cy,D>). Elimi-
natew5*(y) using the last equation. Then there remain three linearly independent
equations and three unknowns, so that we can solve the system of eqdations.
Obviously this(v,w) satisfies all the constraints of the above LP problem, and
hencek*((C1,D2),A) > A -v= A -g(Cq,D>). Since the stage game corresponds
to a prisoner’s dilemma for both states; g(Cy,D2) = max,cy A -V, and thus
k*((C1,D2),A) > maxyey A - V. This shows tha¥* C H*(A).

ForA € A* such thatd,? > 0, A[* < 0, A;? < 0, andA,™ = 0, we can show
that k*((C1,D2),A) > A - g(Cq,D2) in a similar way, and hence* C H*(A).

Q.E.D.

Proposition 12. If only player2 knows the state (i.eQ; = {(w1, )} and©, =
{(wn),(wn)}), the folk theorem fails, because the maximal score for direction
A'=((0,-1),(0,1)) is less tharmax,cy+ A’ - v.

20Recall thatr“2 (Cy,Cy) = 1 (Dy, D) + p+ Bq and 1“1 (Cy, Dy) = (D1, D) + p where
P = (PH,Pm;—PH — Pm) andq = (0n,0m,—0GH — Gum). Since(1,1,1)-p=0, (1,1,1)-q=0,
(1,1,1)- 11 (D1,D,) = 1, andp andq are linearly independent, the vectar$: (D1, D), p, andq
are linearly independent. This implies th#2(Cy,Cy), (D1, D5), andn®(Cy, D>) are linearly
independent.
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The proof of this result relies on the following claims.

Claim 12.

(a) Leta denote the type-independent profia, D») for anya; € A;. Then,
k*(a,)\/) < )\/-g(a]_,Dz).

(b) Leta denote the type-independent profif,Cy) for anya; € A;. Then
k“(@,A") < A’-g(a1,Ca) — 5P (g5%(au, D2) — 657 (a4,Ca)).

Proof. Part (a) follows as in Fudenberg and Levine (1994), because the signal
distribution does not depend on the state if pla¥ehoose®».

For part (b), suppose thé,w) satisfy constraints (i) through (iii) of the LP
problem corresponding td andA’. From player2's IC constraint for statew,
we have

B(an (W5 (H) —wy?(L)) +am (W (M) —wy?(L)))
> 10 (g (@, Do) - 69:(a1.C2)). (15)
Then,
Vo? —Vp" =(1-0)(d3%(a1,C2) — 95" (a1, C2))
+0(m*2(ag,Cy) -Wg)z — 1 (a1,Cy) szdl)
=(1-9)(95*(a1,C2) — 93" (a1,Cz)) + dm“*(ay,Ca) - (W52 — W5™)

—8(1—B)(gn (W52 (H) —w52(L)) +am (W52 (M) —w52(L)))
<(1-0)(03%(a1,C2) — 93 (a1,C2)) + S (Va2 — V)

- B0 (e, D2) - g2 (a0, Ca)
Arranging,
Vp?2 — Vot < g3%(a1,Co) — 3t (a1, Cp) — %(92’2(31, D2) —63*(a1,C2))-
So we have
A v< A g(a,Cp) — %(gg’z(al,Dz) —05%(a1,Cy)).
This proves the desired result. Q.E.D.
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Claim 13. Suppose tha®, = {(w), () }.

(a) Letd denote the type-contingent profile such that playehooses; € Ay
and player2 choose€; for statew, while D, for statea,. Thenk*(a,A’) <

A’-g(d) — (93* (a1, D2) — g3t (a1,C2)).

(b) Leta denote the type-contingent profile such that playehooses; € Ay
and player2 choose®; for statew, whileC; for stateaw,. Thenk*(d,A’) <

A’ g(a1,Co) — T3P (052 (a1, D2) — g5%(au, C2)).

Proof. For part (a), suppose thét, w) satisfy constraints (i) through (iii) of the
LP problem corresponding @ andA . From player2's IC constraint for states,
we have

gH (W5 (H) — w5 (L)) +am (Wp* (M) — w5 (L))
> %(g‘g’l(al, D2) — g3 (a1,Cy)).
Then,

Vo? —Vvy' =(1-08)(93” (a1, D2) — 95" (a1,C2))
+8(m*(ay,D2) - Wy? — m**(ag, Cp) - W5™)
2(1—5)(9(2”2(31,D2)—g(ﬁ)l(al,Cz))+6n°’2(a17D2)-(W‘Z*’Z—w‘z*’l)
— 3(qu (W (H) = w5 (L)) + am(wy" (M) — w5 (L))
<(1-5)(952(a1,D2) — g5*(a1,C2)) + 3(V5? —v5*)
—(1-9)(g3*(a1,D2) — 95 (a1,C2)).

Then the result follows as in the proof of Claim 12(b).
For part (b), suppose thét,w) satisfy constraints (i) through (iii) of the LP
problem corresponding i andA. From playe2’s IC constraint for statey, we
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obtain (15). Then we have

Vo2 — Vot =(1-3)(93*(a1,C2) — g3*(a1,D2))
+6(n*2(ay,Cp) - Wy” — 1 (ag, D2) - W5™)
<(1-9)(97?(a1,C2) — 95" (a1,C2))
+ (% (ag,Cp) - Wo? — (8, Cp) - W)
=(1-9)(9”(a1,C2) — 95" (a1,C2)) + 61 (a1, Cp) - (W5” — w5™)
—3(1—B)(am (W52 (H) —w52(L)) + am (W2 (M) —w5?(L)))
<(1-9)(93%(a1,C2) — 95" (a1,C2)) + O(V52 — V)

_ (1_5)’#(92’2@1, D2) —g52(a1,C2)).

Here, the first inequality follows from play&'s IC constraint for statev, and
the second inequality follows from (15). Then the result follows as in the proof of
Claim 12(b). Q.E.D.

Now we prove Proposition 12: In order to ha@e=V*, we needk*(A’) >
maxey+ A’V > g32(C1,C2) — g5 *(D1,D2). However, the above claims imply that
k*(A") < g52(C1,Cz) — g3 *(D1,D5), since

gg)z(clvcz) - g(zﬂl(Dly DZ) > gg)z(D]_, Dz) — g(z")l(Dl7 DZ)
= gp2(a1,D2) — g3t (a1, D7) Vay € Aq,

052(C1,C2) — 93*(D1,D2) > g52(Cq,C2) — g3 (C1,Co)
= g3%(a1,C2) — 031 (a1,Cp)  Vay € Ay,

and

g;)z(CLCZ) - gg)l(DL DZ) > gg)z(CLCZ) - g(z})l(clv D2)
= 05%(a1,C2) — 05" (a1,D2)  Vay € Ay

S.2.3 Inefficiency when Playe® Knows the State

Consider the game studied in Section 6.3. £or 0, let A (g) = ((0,—¢),(1,0)).
We will show that for some parameters, thereisuch thatk*(A(€)) < A(€) -
0(Cq,Cy), so that the efficient outcon®Cq,C,) is not inQ.
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Claim 14.

(a) Letd denote the type-independent profiéa, D,) for somea; € A;. Then
foranye > 0, k*(d,A(g)) <A(g)-9(az,D2).

(b) Letd denote the type-independent profigg,C,) for somea; € A;. Then

for anye >0, k*(d, A (£)) < A (¢)-g(an,C2) — % (g5 (a1, D2) — 657 (a1, C2)).

Claim 15. Suppose that playet knows the state.

(a) Letd denote the type-contingent profile such that playehooses; € A1
and player2 choose<C; for statew,; while D, for statew,. Then for any
£>0,k'(d,A(e)) < A(e) -g(@) — (95" (a1, D2) — 95" (a1,C)).

(b) Leta denote the type-contingent profile such that playehooses; € Ay
and player2 choose®, for statecw, while C; for statew,. Then for any
£>0,k(a,A(g) <A(g)-9(a1,Co) — %(Q(E&(% D2) - 6;”(21.C2)).-

The proofs of the above claims are analogous to those of Claims 12 and 13, so
that we omit them.

Claim 16. Letd be the type-independent profila;,D,) for somea; € A;. If

9:”(C1,C2) —g;*(D1,D2)

O<e<
9g5*(C1,C2) — g3*(D1,D2)

thenA (g) -9(C1,Cz) > k*(a).

Proof. Arranging
91”(C1,C2) — g;*(D1,D2)

E < 3
05*(C1,C2) — g3*(D1,D2)

we obtain
A(€)-9(C1,Co) > A(€)-g(D1,D2).

Since the stage game is a prisoner’s dilemma, we knowib&t- g(D1,D2) >
A(€)-9(Cq,D2). Plugging this into the above inequality, we havg) - 9(C1,Cp) >
A(€)-g(az,D2) for eacha; € A;. This implies thatA (¢) - g(Cq,C2) > k*(@), as
the above claim shows thate) - g(d) > k*(az,D>). Q.E.D.



Claim 17. Suppose that play&knows the state, and létbe the type-independent
profile (az,C,) for somea; € A4, or the type-contingent profile such that playler
chooses; € A; and player2 choose®, for statew; while C, for statew. If

B(9;%(D1,C2) — 972(C1,C2))
B(93*(C1,C2) — 95*(D1,C2)) + (1— B)(932(D1,D2) — 952(D1,C2))’

thenA (¢) -g(C1,C) > k*(a).

&>

Proof. Arranging

B(97%(D1,C2) — 972(C1,C2))

® 7 B(d¥(C1,Cy) — 8 (D1,C2)) + (1— B)(gP*(D1, Dz) — 62(D1,C))

we get

(1-P)e
B
Also, sinceA (€) -g(D1,C2) > A(€) - 9(C1,Cz) andgy?(Dy,D2) — g32(D1,Co) =

952(C1,D2) — g3%(C1,Cz), we have

A(€)-9(C1,C2) > A(e) -9(D1,Co) —

(93?(D1,D2) — g32(D1,C2)).

A(€)-9(C1,Cp) > A(€)-9(C1,C2) — (1_33)8(9(5)2(C1,D2) — 03%(C1,Cy)).

Then from the above claims, we get the desired result. Q.E.D.

Claim 18. Suppose that playe&rknows the state, and lét be the type-contingent
profile such that playel chooses; € A; and player2 choose<C, for state w;
while D5, for statew. If

B(97*(D1,C2) — 9y*(C1,Ca))
B(93*(C1,C2) —93*(D1,C2)) + (1— B)(932(D1,D2) — 932(D1,C2))

and if B > 3, thenA (€) - g(Cy,Cp) > K*(@).
B

&>

Proof. If B > 1, then=F < 1, so that

1-B
B

A(e)-9(as,Co) - “‘BB )¢

(922(a1,D2) — 93%(a1,C2))

> A(€)-g(a1,C2) — £(g52 (a1, D2) — g2 (a1,Co)).
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Recall that in the proof of the previous claim, we have shown that

(1-Pe

A(€)-9(C1,Co) > A(e)-g(a1,Co) — B

(957(a1,D2) — 932 (a1,C2))

for eacha; € A;. Thus it follows that
A(€)-9(C1,C2) > A(€) -9(a1,Cz) — £(g5* (a1, D2) — g3 (a1, C2)).
Then from the above claim, we obtain the desired result. Q.E.D.

Using the last three claims, we can show tha i % and if

B(91%(D1,C2) —91%(C1,C2))
B(95™(C1,C2) — 3™ (D1,Cz)) + (1—B)(d52(D1,D2) — g5?(D1,C2))
0:2(C1,Cz) — g1%(D1, Do)
05*(C1,C2) — g3t (D1,D2)’

<EL

thenk*(A(€)) < A -g(Cq,Cp). Such as indeed exists, ik is sufficiently close
to pH (U]_(H) — Ul(L)) + pM(ul(M) — Ul(L)). (Note that ife; — py (Ul(H) —
U]_(L)) + pwm (Ul(M) — U]_(L)), theng‘l‘)z(Dl,Cz) — g‘l*’Z(Cl,Cz) — 0.
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