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STOCHASTIC CHOICE AND REVEALED PERTURBED UTILITY

BY DREW FUDENBERG, RYOTA IIJIMA, AND TOMASZ STRZALECKI1

Perturbed utility functions—the sum of expected utility and a nonlinear perturba-
tion function—provide a simple and tractable way to model various sorts of stochas-
tic choice. We provide two easily understood conditions each of which characterizes
this representation: One condition generalizes the acyclicity condition used in revealed
preference theory, and the other generalizes Luce’s IIA condition. We relate the dis-
crimination or selectivity of choice rules to properties of their associated perturbations,
both across different agents and across decision problems. We also show that these rep-
resentations correspond to a form of ambiguity-averse preferences for an agent who is
uncertain about her true utility.

KEYWORDS: Control cost, preference for randomization, ambiguity aversion.

1. INTRODUCTION

DETERMINISTIC THEORIES OF CHOICE cannot accommodate the fact that ob-
served choices in many settings seem to be stochastic. This raises the ques-
tion of the extent to which stochastic choice follows a consistent principle that
can be given a simple theoretical foundation. Here we provide conditions un-
der which stochastic choice corresponds to the maximization of the sum of
expected utility and a perturbation function

P(A)= arg max
p∈�(A)

∑
z∈A

u(z)p(z)− c
(
p(z)

)
�(1)

where P(A) is the probability distribution of choices from the set A, u is
the utility function of the agent, and c is a convex perturbation function that
may reward the agent for randomizing; we call this an Additive Perturbed Util-
ity (APU) representation. Such perturbed utility functions and their variants
have been previously used by, for example, Harsanyi (1973b), Machina (1985),
Rosenthal (1989), Clark (1990), Mattsson and Weibull (2002), and Swait and
Marley (2013).2 Because we want to apply the perturbed-utility representation

1We thank Kim Border, Jerry Green, Sonia Jaffe, Kohei Kawaguchi, Mark Machina, Morgan
McClellon, Wolfgang Pesendorfer, Drazen Prelec, Bill Sandholm, Ricky Vohra, Peter Wakker,
and a co-editor and three anonymous referees for helpful comments and suggestions, and NSF
Grants SES 0951462, 1258665, and CAREER Grant 1255062 and Sloan foundation for financial
support.

2Perturbed utility has also been used in the theory of learning in games. Fudenberg and Levine
(1995) showed how this leads to “stochastic fictitious play,” and generates Hannan-consistent
choice, meaning that its long-run average payoff is at least as good as the best response to the
time average of the moves of Nature and/or other players (Hannan (1957)). Hofbauer and Sand-
holm (2002), Benaim, Hofbauer, and Hopkins (2009), and Fudenberg and Takahashi (2011) used
perturbed utility to construct Lyapunov functions for stochastic fictitious play, van Damme and
Weibull (2002) and Iijima (2014) studied perturbed utility in evolutionary models, and Noguchi
(2015) studied convergence to Nash equilibrium in repeated perturbed games.
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to choice sets A of varying size, we adopt an additive form for the perturba-
tion function, as opposed to allowing general functions on �(A). The additive
specification has content because we require the cost function c to depend only
on p. At the other extreme, additivity is vacuous if we allow c to depend on A
and z as well as p(z); we mention some intermediate cases in Section 4.

In contrast to past work on nonlinear perturbed utility, we take a revealed
preference approach: we suppose that the analyst observes the agent’s choice
probabilities from some (but not necessarily all) menus, and show that various
restrictions on the probabilities correspond to particular forms of the perturba-
tion function. In particular, we relate restrictions on the perturbation function
to whether the agent’s choices satisfy various sorts of internal consistency con-
ditions. We argue that the perturbation-function approach provides a simple
and tractable way to model stochastic choice, and that it helps us organize the
empirical evidence and evaluate how much it pushes the boundaries of “ratio-
nal” behavior.

We develop two alternative conditions that characterize the APU represen-
tation. The first condition, Acyclicity, extends the Strong Axiom of Revealed
Preference to stochastic choice. Acyclicity implies that P(x|A) ≥ P(y|A) if and
only if P(x|B) ≥ P(y|B), so that the observed choice probabilities P induce an
ordinal ranking of the items. It also implies that the choice probabilities in-
duce an ordinal ranking of the menus: menu A is weaker than menu B if, for
any x ∈ A ∩ B, P(x|A) ≥ P(x|B). Acyclicity has more bite than these two im-
plications: It also ensures that the rankings on items and on menus “agree”
with each other. Our second characterization of APU, Ordinal IIA, requires
that the observed choice probabilities can be rescaled to satisfy Luce’s (1959)
IIA condition. Either of these conditions implies that the observed choice data
are consistent with APU. To pin down the sense in which the representation
is unique, we assume that the choice data are “rich” and satisfy a continuity
property.

The most commonly used cost function in the literature is the entropy func-
tion c(q) = ηq logq. This cost function generates logistic choice, and so im-
plies that the choice probabilities satisfy Luce’s IIA, which requires that the
ratio of the choice probabilities of x and y is the same in any menu that con-
tains both of them. The more general cost functions allowed in APU let the
model describe a broader range of behavior, and permit tractable conditions
that can be used to organize alternative classes of choice rules. In addition, the
uniqueness of the representation lets us relate the discrimination or selectiv-
ity of choice rules to properties of their associated cost functions, both across
different agents and across decision problems. One focus here is on how the
selectivity of a rule—that is, the weight it places on more frequently chosen
items—varies with the size and attractiveness of the menu.

One interpretation of representation (1) is that agents facing a decision
problem randomize to maximize their non-EU preferences on lotteries, as
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in Machina (1985);3 recent experimental evidence (Agranov and Ortoleva
(2015), Dwenger, Kubler, and Weizsacker (2014)) indicates that stochastic
choice sometimes reflects deliberate randomization by subjects, rather than
random variation in their expected utility functions. In Section 5.1, we show
that such preference for randomization may arise due to uncertainty about the
true utility function. Specifically, we show that the perturbed-utility objective
function corresponds to a game in which the agent has a form of variational
preferences (Maccheroni, Marinacci, and Rustichini (2006)) and so random-
izes to guard against moves by a malevolent Nature. Another interpretation is
that stochastic choice arises due to inattention or implementation costs: It may
be costly to take care to implement the desired choice, so that the agent trades
off the probability of errors against the cost of avoiding them, as assumed by
van Damme (1991) and Mattsson and Weibull (2002).4

Acyclicity can be weakened to Menu Acyclicity, which implies that menus
can be ordered by weakness. An alternative relaxation is Item Acyclicity, which
implies that items can be ordered by their desirability.5 In the setting of de-
terministic choice, these two conditions are each equivalent to Acylicity, and
are also equivalent to Richter’s (1966) congruence axiom, which extends the
Strong Axiom of Revealed Preference to settings where data are incomplete in
the sense that only some menus are observed.

The most familiar stochastic choice model in economics is random util-
ity (RU) (Thurstone (1927), Marschak (1959), Harsanyi (1973a), McFadden
(1973)), which supposes that the agent’s choice maximizes a utility function
that is subject to random shocks. We note that, in contrast to existing charac-
terizations of RU, which impose conditions on how adding items to a menu
changes the difference between choice probabilities (Falmagne (1978)), or the
ratio of choice probabilities (Luce (1959)), we characterize perturbed utility
with axioms that rely only on pairwise ordinal comparisons of the choice prob-
abilities.6 APU rules out some RU models, even some with i.i.d. shocks, but
also allows for choice rules that do not admit a RU representation, so the two

3Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2015) also studied randomization gen-
erated by nonlinear preferences over lotteries; they used a subclass of the non-EU preferences
studied by Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).

4See Weibull, Mattsson, and Voorneveld (2007) for an alternative approach in which the agent
pays costs to improve signal precision. None of these three papers derives the functional forms
from observed behavior.

5As we showed in an earlier version of the paper (Fudenberg, Iijima, and Strzalecki (2014)),
these two conditions characterize more general versions of APU in which costs are item- or menu-
dependent. These models can accommodate several empirical patterns, such as violations of reg-
ularity, that APU cannot.

6Hofbauer and Sandholm (2002) showed that with known utility functions and a fixed menu of
alternatives, any RU that satisfies a smoothness condition has a convex perturbation representa-
tion. In our setting, the analyst does not know the utility function, and in addition, we consider
choices from menus of varying size.
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classes of stochastic choice rules are not nested, though their intersection is
nonempty, as it includes logistic choice.

RU implies that the agent is never made worse off when items are added to
a choice set, which seems counterintuitive in some situations. One advantage
of the perturbed-utility approach that we take here is that it can accommodate
both cases where the agent prefers larger menus and those where she does not.
Of course, purely static choice data (which are what we consider here) are not
enough to reveal whether the agent prefers larger or smaller menus. Fudenberg
and Strzalecki (2015) used cost functions to address this in the special case in
which choice satisfies Luce’s IIA axiom so that choice is logistic; the results in
this paper may help extend the analysis of dynamic stochastic choice to more
general choice rules.

Various recent papers consider extensions of RU. Manzini and Mariotti
(2014) and Aguiar (2015) studied agents who only pay attention to a random
subset of each menu; their main model is a special case of RU. Echenique,
Saito, and Tserenjigmid (2014) considered an agent with a deterministic prior-
ity order who uses logistic choice on the perceived items. Gul, Natenzon, and
Pesendorfer (2014) introduced “attribute rules” which are related to nested
logit.

Although we do use a richness condition to pin down the sense in which the
APU representation is unique, our characterization results (Theorems 1 and 3)
do not require it, and apply when choice is observed for a subset of the possible
menus, as in the work of, for example, Afriat (1967) and Richter (1966) on re-
vealed preference or the work of Gilboa (1990), Gilboa and Monderer (1992),
and Fishburn (1992) on RU when only binary menus are observed.7 As ob-
served by de Clippel and Rozen (2014), in some models of choice it is possible
for limited data to be consistent with the characterizing axioms even when any
specification of choices outside of A would lead to a violation of those axioms.
Our results imply that this problem does not arise here.

2. ADDITIVE PERTURBED UTILITY

Let Z be a set of items (consequences or prizes). To begin, we will assume
that Z is finite; this restriction is relaxed in Section 2.3. A menu is a nonempty
subset of Z; we assume menus are finite whether Z is or not. Let A be the set
of menus for which the choice probabilities of the agent have been observed;
without loss of generality, we assume that every z ∈ Z appears in at least one
menu. We allow for the available choice data to be limited, that is, the collec-
tion A need not include every nonempty subset of Z. We consider a stochastic
choice rule P that maps each menu A ∈ A to a probability distribution on its

7See also Reny (2015), who extended Afriat’s result to infinite data sets, and Kubler, Selden,
and Wei (2014) and Echenique and Saito (2015), who studied revealed preference in the demand
for financial assets.
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elements. Formally, a stochastic choice rule is a mapping P that assigns a mea-
sure P(A) ∈ �(A) to each menu A ∈A. We write P(z|A) to denote the prob-
ability that item z is chosen from the menu A. To relate the observed choice
probabilities to the form of the cost function, we will impose various sorts of
consistency conditions on P .

To facilitate the exposition, we first consider the case where all probabilities
are positive. We relax this assumption in Section 4, where we extend our model
to include deterministic choice, and show how our conditions generalize the
strong axiom of revealed preference.

DEFINITION 1: P satisfies Positivity if P(z|A) is strictly positive for each
A ∈A and z ∈ A.

As noted by McFadden (1973), a zero probability is empirically indistinguish-
able from a positive but small probability. In dynamic settings, Positivity can
also be motivated by the fact that no deterministic rule can be Hannan (or
“universally”) consistent (Hannan (1957), Blackwell (1956)).

We say that a function c is a cost function if c : [0�1] → R ∪ {∞} is strictly
convex and C1 over (0�1), and limq→0 c

′(q) = −∞.

DEFINITION 2—APU: An APU representation has the form

P(A)= arg max
p∈�(A)

∑
z∈A

[
u(z)p(z)− c

(
p(z)

)]

for some utility function u :Z →R and cost function c.

As we show in Section 5.1, perturbed utilities of this sort can arise from the
agent’s ambiguity about the true utility of the various choices.

Perhaps the most familiar stochastic choice rule is logit/logistic choice,
also known as the Luce rule, which is given by P(z|A) = exp(ηu(z))/∑

z′∈A exp(ηu(z′)); as is well known, this choice rule is generated by addi-
tive perturbed utility with cost c(p)= η−1p logp.8 More generally, Theorem 2
shows that logit choice is characterized by c(p) = αp lnp + γp + δ. As is
also well known, this form of APU is observationally equivalent to a ran-
dom utility representation where the additive shocks are i.i.d. Gumbel with
variance η;9 we discuss the relationship between APU and random utility in
Section 5. Other classes of cost functions in the literature include the loga-
rithmic form used by Harsanyi (1973b) c(p) = −η log(p) and the quadratic
perturbation c(p)= ηp2 implicitly assumed by Ben-Akiva and Lerman (1985)
and Rosenthal (1989).10

8See Section 3.6 in Anderson, de Palma, and Thisse (1992).
9This was first shown by E. Holman and A. A. J. Marley (Luce and Suppes (1965)).
10See Voorneveld (2006) for a more detailed analysis on this concept in games.
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As far as we know, logistic choice is the only sort of APU whose revealed
choice implications have already been characterized: The Luce rule is equiva-
lent to the following “IIA” condition if choice probabilities are strictly positive
and a sufficiently rich set of menus is observed.11

DEFINITION 3: P satisfies IIA if, for all A�B ∈ A with x� y ∈ A∩B,

P(x|A)

P(y|A)
= P(x|B)

P(y|B) �

2.1. Characterization of the Model

In this section, we discuss two conditions, each of which characterizes APU.
The first condition, called Acyclicity, is an extension of SARP to the stochastic
setting, as we will see in Section 4. The second condition generalizes IIA to
allow the ratio of choice probabilities to vary with the menu in a particular
way.

We say that a finite sequence of quadruples {(xk�Ak)� (yk�Bk)}nk=1 is admis-
sible if (i) xk ∈ Ak and yk ∈ Bk for all k, (ii) (yk)

n
k=1 is a permutation of the

(xk)
n
k=1, and (iii) (Bk)

n
k=1 is a permutation of the (Ak)

n
k=1.12

In reading the next definition, remember that P(x|A) is only defined for
x ∈ A.

DEFINITION 4: P satisfies Acyclicity if there is no admissible sequence such
that

P(x1|A1) > P(y1|B1)� P(xk|Ak)≥ P(yk|Ak)� and

P(xn|An)≥ P(yn|Bn)�

Although Acyclicity rules out cycles of any length, the condition can be
checked on any given Z and choice data P in a finite number of steps.

To understand Acyclicity, consider a few of its implications. First, note that
Acyclicity implies that, for all x� y ∈ A ∩ B, we have P(x|A) ≥ P(y|A) if and
only if P(x|B) ≥ P(y|B). Thus, P induces an ordinal ranking of all items in Z;
and moreover, that ranking is preserved in every menu (though the particular
numerical values of the likelihoods may change and their ratios do not have
to be preserved). As will become apparent shortly, this ranking is represented
by the utility function u; it implies that the agent choice probabilities do not
reverse due to “menu effects.”

11Luce (1959) assumed choice data at every menu are observable, but it is enough to have all
menus with size 2 or 3, or have Z ∈ A.

12That is, yk = xf(k) for some permutation f : {1� � � � � n} → {1� � � � � n} and Bk = Ag(k) for some
permutation g : {1� � � � � n} → {1� � � � � n}.
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Second, note that Acyclicity implies that, for all x� y ∈ A ∩ B, we have
P(x|A) ≥ P(x|B) if and only if P(y|A) ≥ P(y|B). Thus, P induces an ordi-
nal ranking of all menus in A. One interpretation of P(x|A) ≥ P(x|B) is that
menu A is weaker than menu B in the sense that its items compete less with x
than items in B. As we will show, this ranking is represented by the Lagrange
multiplier in the maximization problem of the agent.

Acyclicity has more bite than the two implications noted above. Intuitively,
it ensures that the rankings on items and on menus “agree” with each other.
For example, take any menus A�B ∈ A and items x� y ∈ A \ B. Then Acyclic-
ity implies that P(x|A) ≥ P(y|A) iff B ∪ {y} is weaker than B ∪ {x}.13 Thus,
Acyclicity implies the Order Independence condition of Tversky (1972), which
leads to a more general but more complicated and less tractable “simply scal-
able” representation. Acyclicity is related to the cancellation condition used in
work on multiattribute decision theory (Scott (1964), Tversky (1964)), but dif-
fers in a few key ways. Most notably, the choice domains in that literature have
a product structure, while in our case P(x|A) is only defined if x ∈ A, and our
choice data need to fit the restriction

∑
z∈A P(z|A)= 1.

Our second characterization of APU generalizes the IIA condition that is
known to characterize the entropy model.

DEFINITION 5: P satisfies Ordinal IIA if for some continuous and monotone
f : [0�1] → R+ ∪ {∞} with f (0)= 0 such that

f
(
P(x|A)

)
f
(
P(y|A)

) = f
(
P(x|B))

f
(
P(y|B))

for each menu A�B ∈ A and x� y ∈A∩B.

Ordinal IIA requires that probabilities can be rescaled so that the rescaled
choice probability ratios are the same in every menu. Ordinal IIA reduces to
IIA under f (q) = q, which implies that the cost function is ηq log(q) for some
η> 0, and thus that cost is proportional to the negative of the entropy function.
If instead f (q) = exp(− 1

q
), the cost is proportional to − logq, as in Harsanyi

(1973b). When Z is finite, it is without loss of generality to suppose that f takes
the form of a “probability distortion” function, that is, that f (1) = 1 so that f
maps [0�1] to [0�1].14

13To see “if,” note that P(z|B∪ {y}) ≥ P(z|B∪ {x}) for all z ∈ B, which implies P(x|B∪ {x})≥
P(y|B ∪ {y}). Thus P(y|A) > P(x|A) violates Acyclicity. To prove the “only if,” suppose to
the contrary that P(z|B ∪ {x}) > P(z|B ∪ {y}) for some z ∈ B. By Acyclicity, P(z′|B ∪ {x}) >
P(z′|B ∪ {y}) for all z′ ∈ B, which implies P(y|B ∪ {y}) > P(x|B ∪ {x}). These and P(x|A) ≥
P(y|A) lead to a cycle.

14This follows from the fact that the data only pin down the value of f at a finite number of
points in (0�1).
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THEOREM 1: Suppose that Positivity holds and A contains all menus with
size 2 and 3. Then the following conditions are equivalent:

1. P satisfies Acyclicity.
2. P satisfies Ordinal IIA.
3. P is represented by APU.

The next section provides some intuition and a proof sketch of both equiva-
lences. The assumption that A includes all menus of sizes 2 and 3 is not needed
for the equivalence of acyclicity and APU; we include it here for expositional
simplicity.

2.2. Proof Sketch

To study the restrictions that APU places on observed choice probabilities,
we first analyze the agent’s maximization problem.

DEFINITION 6: A utility function u, a cost function c, and a function
λ :A→ R satisfy the first order conditions (FOC) for P iff

u(x)+ λ(A) = c′(P(x|A)
)
�(2)

Here λ(A) is the Lagrange multiplier on the constraint that the choice prob-
abilities from menu A sum up to 1. Since c′ is monotone, FOC holds if and only
if P has a separable representation in the following sense:

DEFINITION 7: u : Z → R and λ :A → R are a separable representation of P
if and only if

u(x)+ λ(A) > u(y)+ λ(B) iff P(x|A)> P(y|B)�(3)

LEMMA 1: Assume Positivity holds. Then the following conditions are equiva-
lent:

(a) There exists (u� c) such that P has an APU representation with (u� c).
(b) There exists (u� c�λ) such that P satisfies the FOC with (u� c�λ).
(c) There exists (u�λ) such that P has a separable representation with (u�λ).

We omit the proof of this lemma, which follows the same lines as that of
Lemma 2 in the Appendix, but the intuition for the result is easy to explain:
The equivalence of APU and the FOC follows from the Kuhn–Tucker theorem.
That the FOC implies a separable representation is straightforward from the
strict monotonicity of c′. To show the converse, we use a variant of the usual
ordinal uniqueness argument to show that if P has a separable representation
(u�λ), then there is a strictly increasing and continuous function g : (0�1) →
R that satisfies g(P(x|A)) = u(x) + λ(A), and limq→0 g(q) = −∞. We then
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define c(p) := ∫ p

1/2 g(q)dq, and it is immediate that (u� c) satisfies the first
order conditions.

With the lemma in hand, we prove the equivalence of Acyclicity and APU
in Theorem 1 by demonstrating that Acyclicity is equivalent to the separability
property (property (c)). It is easy to show that Acyclicity is necessary: if there
were both a separable representation (u�λ) and cycle, then along the cycle
we would have u(xi) + λ(Ai) ≥ u(yi) + λ(Bi) for all i with at least one strict.
Summing over i yields a contradiction because of the permutation property.
The proof that Acyclicity is sufficient for (c) formulates the existence of a cycle
as a system of linear inequalities, and obtains the desired conclusion from a
version of Farkas’s lemma.15 This linear programming argument also shows
that Acyclicity can be checked in a finite number of steps.16

To prove the equivalence of Ordinal IIA and APU in Theorem 1, we show
that Ordinal IIA is equivalent to the FOC (property (b)). To see why this is
true, note that the FOC implies that, for each x� y ∈ A∩B,

c′(P(x|A)
) − c′(P(y|A)

) = c′(P(x|B)) − c′(P(y|B))�
Define the strictly increasing function f : (0�1) → R+ by f (q) := exp(c′(q))
to obtain Ordinal IIA. For the converse, we define c′(q) := log(f (q)) and
show that c(q) = ∫ q

1/2 c
′(t)dt is indeed a cost function. We then define u(z) :=

c′(P(z|{x�z}))−c′(P(x|{x�z})), where x ∈Z is an arbitrary fixed element with
u(x) := 0. Proving that (b) holds is now a matter of substituting these defini-
tions into the Ordinal IIA condition.

2.3. Uniqueness

For an arbitrary set of items and menus, the APU representation may not
be unique, but uniqueness obtains when the range of observed behavior is rich
enough.17 Intuitively, under APU, the incentive of an agent depends only on
the payoff differences u(x) − u(y) between items in the menu; to identify the
cost function, we need to be able to vary this utility difference freely.18 To allow
for arbitrary utility differences, we consider an infinite set Z, but we maintain

15Echenique and Saito (2015) used a related result in their analysis of deterministic portfolio
choice. A key technical difference is that their analog of our acyclicity condition imposes con-
straints on the products of various prices, while our conditions are purely ordinal.

16See, for example, Kraft, Pratt, and Seidenberg (1959), who also noted that when a solution to
a linear system with rational coefficients exists in the reals, there is also a solution in the rational
number.

17This is also the case for other models of stochastic choice, such as random utility; see, for
example, Fishburn (1998). Stronger uniqueness results can be obtained when items are lotteries;
see, for example, Gul and Pesendorfer (2006).

18A similar situation arises for variational preferences of Maccheroni, Marinacci, and Rusti-
chini (2006); to obtain uniqueness, they imposed an additional axiom that guarantees that the
range of u is rich enough.
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the assumption that each menu is a finite set; formally, let A be the collection
of all finite, nonempty subsets of Z. We observe a stochastic choice function
P defined on A. When Z is infinite, APU is still characterized by Positivity
and Ordinal IIA. Positivity and Acyclicity characterize APU under additional
technical assumptions of Richness and Continuity.

DEFINITION 8: P satisfies Richness if, for any x ∈ Z and any p�q ∈ (0�1)
s.t. p + q ≤ 1, there exist y� z ∈ Z (not necessarily distinct) such that
P(x|{x� y� z})= p and P(y|{x� y� z})= q.

Richness implies that the range of the utility function u equals R and that
there are at least three items with each utility level.19

DEFINITION 9: P satisfies Continuity if Z is a separable and connected
metric space and, for any menu {x1� � � � � xm} and sequences of items with
limn→∞ xi

n = xi for each i = 1�2� � � � �m,

lim
n→∞

P
(
xi
n|

{
x1
n� � � � � x

m
n

}) = P
(
xi|{x1� � � � � xm

})
� ∀i = 1� � � � �m�

Continuity implies that the utility function u is continuous.

THEOREM 2: Suppose that Positivity and Richness hold.
1. P satisfies Ordinal IIA if and only if there is an APU representation of P .
2. P satisfies Acyclicity and Continuity if and only if there is an APU repre-

sentation of P with continuous u.
Moreover, if (u� c) and (û� ĉ) represent the same P , then there exist constants

α > 0�β�γ�δ ∈ R such that û = αu + β and ĉ(p) = αc(p) + γp + δ for all
p ∈ (0�1).

The utility function u is unique up to positive affine transformations; its scale
matters because higher utility differences between items lead to higher differ-
ences in their choice probabilities, while items with about the same utility are
chosen with about the same probability. Note that u and c are expressed in the
same units; that is why multiplying u by a constant α requires multiplying c by
the same α. Since the absolute level of the cost function does not matter, we
are free to shift it by constants β�δ without changing behavior. Finally, since

19These should be thought of as different items, and not duplicates of the same item. Although
duplicates and similarities between items are important in many contexts, we do not think they
are important in all of them. Like the assumption of an infinite data set, the existence of items
with exactly the same utility is a purely technical condition that is needed to pin down a unique
representation; neither assumption can be satisfied in any real-world application of the model.
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on each menu the probabilities sum to 1, the term γp becomes a constant and
similarly does not affect choice.20

To prove this result, we exploit the fact that under Positivity, Additive Per-
turbed Utility can be seen as an extension of the “Fechnerian” model of
stochastic choice from binary to general menus. This model, which is also
called the “constant utility model,” was studied and axiomatized by Davidson
and Marschak (1959), Debreu (1958), Block and Marschak (1960), and Scott
(1964), among others.

DEFINITION 10: A stochastic choice rule P on binary menus has a Fechnerian
representation if there exist a utility function u : Z → R and a strictly increasing
transformation function g such that P(a|{a�b})= g(u(a)− u(b)).

PROPOSITION 1: Suppose that P is defined on binary menus and satisfies Pos-
itivity, and either Z is finite or Richness and Continuity hold. Then P satisfies
Acyclicity iff P has a Fechnerian representation.21

3. MONOTONE DISCRIMINATION

With the uniqueness result of Theorem 2 in hand, we can relate the dis-
crimination or selectivity of choice rules to properties of their associated cost
functions. Just as with measures of risk aversion, we can do this both by com-
paring the behavior of different agents and by examining how the behavior of
a given agent varies across decision problems.

3.1. Comparing Choice Rules

In this section, we consider a pair of choice rules P1 and P2 that are repre-
sented by APUs with common utility function u, so that differences in choice
probabilities come only from differences in the cost function, and define rank-
ings of their selectiveness in the sense of choosing better options more often.
(The reason for fixing u is that the agent also becomes more selective when
the utility function is multiplied by any λ > 1 holding the cost function fixed.)
These rankings generalize the effect of multiplying the cost function by a pos-
itive number.22 We begin by comparing P1 and P2 at binary menus. We say

20The uniqueness result shows that APU is not nested in the “generalized entropy” represen-
tation of Fosgerau and de Palma (2015) because many cost functions violate their homogeneity
condition (1). Conversely, their representation is not nested in APU, as they showed.

21When P is defined on binary menus only and Z is infinite, Acyclicity may not be strong
enough to imply an APU representation, though the converse is always true and both directions
are true on any finite Z.

22For example, in the literature on learning and evolutionary games, an analyst varies pertur-
bation levels with a fixed utility function to analyze long-run payoffs and the dynamic stability
of equilibria (Fudenberg and Levine (1995), Benaim and Hirsch (1999), Kreindler and Young
(2013)), and in the empirical application of quantal response equilibrium (McKelvey and Palfrey
(1995)) the logit functional form is held fixed and the scale of the perturbation is estimated.
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that agent 1 is more pairwise-selective than agent 2 if she has the same ordinal
ranking over items, but her choices are less random.

DEFINITION 11: P1 is more pairwise-selective than P2 if P1(x|{x� y}) ≥
P2(x|{x� y}) whenever P2(x|{x� y})≥ P2(y|{x� y}).

PROPOSITION 2: Assume that Richness holds for both P1 and P2. For each
i = 1�2, let Pi be represented by APU (u� ci); then P1 is more pairwise-selective
than P2 if and only if c′

1(q)− c′
1(1 − q) ≤ c′

2(q)− c′
2(1 − q) for all q ∈ (1/2�1).

Note that when costs are twice differentiable, the condition in Proposition 2
is equivalent to

∫ q

1−q
c′′

1(p)dp ≤ ∫ q

1−q
c′′

2(p)dp for all q ∈ (1/2�1), which is im-
plied by c′′

1(q) ≤ c′′
2(q) for all q ∈ (0�1). For the logit case, ci(q) = ηiq logq,

this is equivalent to η1 ≤ η2. To characterize all of the implications of c′′
1 ≤ c′′

2 ,
we need to look at nonbinary menus, as in the following.

DEFINITION 12: P1 is more selective than P2 if, for any x�x′� y� zi� z′
i, i = 1�2,

P1(x
′|{x′� y� z′

1}) ≥ P2(x
′|{x′� y� z′

2}) holds whenever

Pi

(
y|{x� y� zi}

) = Pi

(
y|{x′� y� z′

i

})
�

P1

(
x|{x� y� z1}

) = P2

(
x|{x� y� z2}

)
�

Pi

(
x′|{x�x′}) > 1

2

for each i = 1�2.

To understand this condition, here we focus on a situation where (i) {x� y� zi}
and {x′� y� z′

i} have the same menu strength under Pi, i = 1�2, (ii) x′ is better
than x. If P1 is more selective than P2, then P1(x

′|{x′� y� z′
1})−P1(x|{x� y� z1})≥

P2(x
′|{x′� y� z′

2})− P2(x|{x� y� z2}).
PROPOSITION 3: Assume Continuity and Richness. For each i = 1�2, let Pi be

represented by APU (u� ci), where ci is C2. Then P1 is more selective than P2 if
and only if c′′

1(q) ≤ c′′
2(q) for all q ∈ (0�1).

3.2. Decreasing Selectivity

We now use APU to model the idea that the agent is less attentive to small
probabilities and in this sense displays “decreasing selectivity.” Recall that IIA
(corresponding to logit choice and the entropy cost function) implies that the
choice ratio of x and y in the pairwise choice problem {x� y} is the same as it
is in the grand set Z. If the agent has limited cognitive resources to implement
her choices, we might expect that the agent will be more careful in setting the
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probabilities of x and y when they are both more likely to be chosen, so that
there will be more discrimination in weaker menus.23 In other words, we expect
the following condition:

DEFINITION 13: P satisfies Decreasing Selectivity if it satisfies Positivity, and
for all x� y ∈ A∩B, if P(x|A) ≥ P(x|B) and P(x|A)> P(y|A), then

P(x|A)

P(y|A)
≥ P(x|B)

P(y|B) �

Decreasing Selectivity says that choices from stronger menus are more uni-
form than choices from weaker menus. As we show in Section 4, A ⊆ B implies
P(x|A) ≥ P(x|B) under APU, so that the axiom suggests that choice probabili-
ties become flatter as we expand a menu. Note that given the FOCs of an APU,
we can express the choice probability ratios as

P(x|A)

P(y|A)
= c′−1

(
u(x)+ λ(A)

)
c′−1

(
u(y)+ λ(A)

) �(4)

If log c′−1 is convex, then the right-hand side of (4) is increasing in λ. As the
λ of the weaker menu A is higher than that of B, Decreasing Selectivity, leads
to the following result.

PROPOSITION 4: Suppose that P is an APU with a utility function u and cost
function c. Let h = log(c′−1). If h is convex, then P satisfies Decreasing Selectivity.

In many settings, there are many duplicates or near-duplicate choices, so that
menu sizes do not have a natural bound. This motivates the study of choice in
large menus. In such menus, many items will be chosen with small probability,
which leads us to study the ratio of choice probabilities of two items that are
each rarely chosen. Specifically, consider a collection of menus An such that
x� y ∈ An for each n and let pn := P(x|An) + P(y|An). Proposition 4 implies
that, for a convex h, the ratio P(x|An)/P(y|An) is monotone in pn; that is, the
worse the items x and y are compared to the remainder of An, the flatter their
choice ratio. We now investigate what happens in the limit.

DEFINITION 14: P satisfies Asymptotic Non-Selectivity if it satisfies Positivity,
and for any sequence An such that x� y ∈ An if P(x|An) → 0�P(y|An) → 0,
then P(x|An)/P(y|An)→ 1.

23In a deterministic choice setting, Frick (2013) extended Luce’s (1956) model of utility dis-
crimination to capture the idea that items of similar utility are harder to distinguish in larger
menus.
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From formula (4), asymptotic nonselectivity can be expressed as

c′−1
(
u(x)+ λ(An)

)
c′−1

(
u(y)+ λ(An)

) → 1�

For this to hold, the function h must flatten out asymptotically as its argument
u(x) − λ(An) becomes extremely low. This is formalized by the next proposi-
tion.

PROPOSITION 5: Suppose that P is an APU with a utility function u and cost
function c. Let h = log(c′−1). If, for all t, the function h satisfies lims→∞[h(t−s)−
h(−s)] = 0, then P satisfies Asymptotic Non-Selectivity. The converse is true un-
der Richness and Continuity.

EXAMPLE 1: A particular class of cost functions leading to limited discrimi-
nation and asymptotic nonselectivity is the logarithmic form c(q)= −η log(q).
The function h is h(w) = log(− η

w
), defined on (−∞�−η), which is strictly

convex. This also satisfies the condition for Proposition 5, because h(t − s) −
h(−s) = log( s

s−t
) → 0 as s → ∞. As an illustration, consider menus of

the form An = {x� y1� � � � � yn}, where u(x) = 1 and u(yi) = 0 for each i.
Choice probabilities under η= 1 are P(x|An)= 1

2(−n+ √
4 + n2)�P(yi|An)=

n−1[1 − P(x|An)]. The choice probability ratio P(x|An)

P(y1|An)
is decreasing in n and

approaches to 1 as n→ ∞.

4. BEYOND POSITIVITY

So far we have assumed Positivity to simplify the exposition. This rules
out situations in which some items are clearly inferior to others so that they
are never chosen. However, our characterization holds more generally, which
makes it possible to accommodate models that allow both zero and nonzero
choice probabilities, such as the tractable linear choice probabilities used in
Ben-Akiva and Lerman (1985) and Rosenthal (1989). Relaxing positivity also
lets us cover deterministic choice as a special case and thus demonstrate how
our acyclicity condition is a natural extension of past work.

To represent choice without imposing positivity, we use weak APU, which
takes the same form as APU except that the steepness condition limp→0 c

′(p)=
−∞ is not required.24 Formally, a function c is a weak cost function if c :
[0�1] → R∪ {∞} is strictly convex and C1 over (0�1).

24Iijima (2014) and Mertikopoulos and Sandholm (2015) clarified the importance of using
nonsteep cost functions in the study of learning and evolution in games.
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DEFINITION 15—Weak APU: A weak APU representation has the form

P(A)= arg max
p∈�(A)

∑
z∈A

[
u(z)p(z)− c

(
p(z)

)]
�

for some utility function u :Z →R and weak cost function c.

We first note that Acyclicity no longer characterizes weak APU without Pos-
itivity. Let u(x) > u(y) > u(z), and suppose that c is sufficiently small so that
the agent always picks the best item with probability 1, that is, P(x|{x� y� z})=
P(x|{x� y}) = P(x|{x�z}) = P(y|{y� z}) = 1. This violates Acyclicity because
P(y|{y� z}) > P(z|{y� z}) and P(z|{x� y� z}) ≥ P(y|{x� y� z}). We modify the
Acyclicity condition by replacing ≥ with the relation ≥∗ on [0�1] × [0�1] de-
fined by p ≥∗ q iff p > q or p = q ∈ (0�1). The following condition is weaker
than Acyclicity but equivalent to it when Positivity holds.

DEFINITION 16: P satisfies Weak Acyclicity if there is no admissible sequence
such that

P(x1|A1) > P(y1|B1)� P(xk|Ak)≥∗ P(yk|Ak)� and

P(xn|An)≥∗ P(yn|Bn)�

We have the following generalization of our main theorem.

THEOREM 3: Suppose Z is finite. Then P is represented by weak APU if and
only if Weak Acyclicity is satisfied.

The proof idea is essentially the same as in Section 2.2, except that we need
additional care in dealing with choice probabilities that are 0 or 1. FOC now
takes the Kuhn–Tucker form

u(x)− c′(P(x|A)
) + λ(A)

{≥ 0 if P(x|A)= 1,
= 0 if P(x|A) ∈ (0�1),
≤ 0 if P(x|A)= 0.

(5)

We also modify the definition of a separable representation by

u(x)+ λ(A) > u(y)+ λ(B) if P(x|A)> P(y|B)�(6)

u(x)+ λ(A) = u(y)+ λ(B) if 1 >P(x|A)= P(y�B) > 0�

Then we can show that weak APU, the existence of (u� c�λ) that satisfy (5),
and the existence of a separable representation (6) are all equivalent. And we
again formulate the existence of a cycle as a system of linear equalities and
inequalities, and use a version of Farkas’s lemma to show that Weak Acyclicity
is equivalent to the existence of (u� c�λ) that satisfy the FOC.

Like Acyclicity, Weak Acyclicity implies an order on items.
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DEFINITION 17: P satisfies Item Acyclicity if

P(x1|A1) > P(x2|A1)� P(xk|Ak)≥∗ P(xk+1|Ak) for 1 < k< n

implies P(xn|An)�
∗ P(x1|An)�

Item Acyclicity is equivalent to the existence of an ordinal ranking of items.
It can be seen as an extension of Richter’s (1966) congruence axiom, which is
itself a generalization of Houthakker’s (1950) Strong Axiom of Revealed Pref-
erence, and requires that if there is a cycle x1� � � � � xn where each xi is chosen
from a menu that contains xi+1, then if x1 and xn are both in a menu and x1

is chosen, then xn is chosen as well.25 Also, as we showed in an earlier version
of this paper (Fudenberg, Iijima, and Strzalecki (2014)), Item Acyclicity char-
acterizes the more general item-invariant representation, where the cost c can
be different on each menu.

Weak Acyclicity also implies an order on menus.

DEFINITION 18: P satisfies Menu Acyclicity if

P(x1|A1) > P(x1|A2)� P(xk|Ak)≥∗ P(xk|Ak+1) for 1 < k< n

implies P(xn|An)�
∗ P(xn|A1)�

DEFINITION 19: P satisfies Regularity if P(x|B) ≤ P(x|A) for all A�B ∈ A
and x ∈ A⊆ B.

It is easy to see that Menu Acyclicity implies regularity, so a fortiori, APU
are regular.26 Moreover, Menu Acyclicity characterizes a more general form of
weak APU where cost c can depend on items.27 As with Item Acyclicity, Menu
Acyclicity is also equivalent to the existence of a strict utility function when
choice is deterministic (see Proposition 6), so in this case it is also equivalent to

25Unlike SARP, congruence is defined for general menus and not just budget sets. Richter
(1966) studied deterministic choice, and took as primitive a choice correspondence that specifies
a nonempty set of chosen options C(A) ⊆ A for each menu A in some collection. The congru-
ence axiom says that if x ∈ C(A), y ∈ A, xj ∈ C(Aj), and xj+1 ∈ Aj hold for j = 1�2� � � � � n− 1 at
some menus A�A1�A2� � � � �An and items y = x1� � � � � xn = x, then y ∈ C(A). The derived repre-
sentation sets the utilities of x1 and xn to be equal, which in our setting corresponds to the case
where the choice probabilities of x1 and xn are equal.

26To see this, take any A ⊆ B and suppose that P(x|A) < P(x|B) for some x. Then P(y|A) <
P(y|B) holds for any y ∈ A such that P(y|A) > 0; otherwise P(y|A) ≥∗ P(y|B), which violates
Menu Acyclicity. Thus 1 = ∑

y∈A P(x|A)<
∑

y∈B P(y|B) = 1, a contradiction.
27See Fudenberg, Iijima, and Strzalecki (2014). Clark (1990)’s Theorem 1 gives an incor-

rect characterization: The choice data A = {{x�y}� {y� z}� {x�z}}�P(x|{x�y}) = P(y|{y� z}) =
P(z|{x�z}) = 1 satisfy the theorem’s assumptions but do not have the asserted representation.
Clark’s characterization is correct under the additional assumption of Positivity, as then its con-
ditions are equivalent to Menu Acyclicity.
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congruence. Perhaps for this reason, the notion of a revealed weakness ranking
of menus has not been used in the literature on deterministic choice, but it is
a natural counterpart to the revealed attractiveness of items, and is potentially
useful in other models of stochastic choice.28

Finally, we note that though Item Acyclicity and Menu Acyclicity are both
necessary consequences of Weak Acyclicity, they are not sufficient.

EXAMPLE 2: There are three items Z = {x� y� z}, menus A = {y� z}�B =
{x�z}�C = {x� y}, with the choice probabilities P(x|Z) = 0�475, P(y|Z) =
0�425, P(y|A)= 0�525, P(x|B) = 0�575, P(x|C) = 0�525. Notice that the menu
ranking is acyclic (A is weaker than B is weaker than C is weaker than Z)
and the item ranking is acyclic (x is better than both y and z� y is better
than z). However, Weak Acyclicity fails because P(x|B) > P(y|A)�P(y|Z) ≥∗

P(z|B)�P(z|A)≥∗ P(x|Z).

However, when choice is deterministic (and single valued), all three condi-
tions are equivalent.

DEFINITION 20: P is deterministic if, for all A ∈ A, there exists x ∈ A such
that P(x|A)= 1.

PROPOSITION 6: Assume that P is deterministic. Then the following conditions
are equivalent:

1. Item Acyclicity;
2. Menu Acyclicity;
3. Weak Acyclicity;
4. There exists an injective function u : Z → R s.t. P(x|A) = 1 iff u(x) =

maxz∈A u(z).

The equivalence of (1) and (4) follows from Richter (1966), and it is easy to
see that (4) implies (3) which implies (1) and (2). Finally, with deterministic
choice, the menu ranking boils down to that of the best element, which is why
(1) and (2) are equivalent.

5. APU AS PAYOFF UNCERTAINTY VERSUS RANDOM UTILITY

Recent experimental papers show that stochastic choice can arise as deliber-
ate randomization by subjects, rather than random variation in their expected
utility functions. In lottery choice experiments, Agranov and Ortoleva (2015)
found that a large majority of subjects select different options when the same

28The literature following Kreps (1979) generates rankings of menus from data on menu
choice, but we do not use such data here, and two representations that are equivalent in our
setting can have different implications for menu choice—see Fudenberg and Strzalecki (2015).
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menus are offered several times in a row even when they are told that the
menus will be repeated. This tendency is most relevant for “hard” questions
where there is no item that is “clearly” better than others. According to the ex
post questionnaire, “subjects’ typical answer was that they did so because they
did not know which option was best, and thus did not want to commit to a spe-
cific choice.”29 Dwenger, Kubler, and Weizsacker (2014) found that subjects
deliberately choose different options even when asked to make simultaneous
choices from two copies of the same menu of consumption goods, and reported
analogous findings in a field study of students applying to German universities.
This behavior is consistent with the “payoff uncertainty” formulation of APU
that we present below.

5.1. Perturbed Utility Arising From Payoff Uncertainty

There are many possible ways to model the impact of the agent’s uncer-
tainty about the payoffs of various choices including robustness to model mis-
specification, as in Hansen and Sargent (2008). Here we develop a specifica-
tion that generalizes this idea along the lines of the variational preferences of
Maccheroni, Marinacci, and Rustichini (2006).

Suppose that when the agent chooses x, she receives total utility u(x) + εx,
where u(x) is a baseline utility that she knows, and εx is an uncertain taste
shock. For each probability distribution on items p ∈ �(A) that the agent
might choose, her utility is

inf
ε∈RA

∑
x∈A

p(x)
[
u(x)+ εx

] +
∑
x∈A

φ(εx)�(7)

where φ is a convex function.
The interpretation of this objective function is that Nature picks ε = (εx)x∈A

to minimize the agent’s expected payoff. However, it is costly for Nature to
make each component of the vector ε small, so it will choose to assign higher
values to items that are less likely to be chosen. This gives the agent an incen-
tive to choose nondegenerate probability distributions p.

Similar forces are at play in various other models. Maccheroni, Marinacci,
and Rustichini (2006) studied preferences over acts when the agent is uncer-
tain about the probability distribution over an objective state space and Nature
minimizes the agent’s payoff subject to a cost. Here minimax behavior in the re-
sulting game leads the agent to prefer to randomize, as it does in other models
of ambiguity-aversion such as Gilboa and Schmeidler (1989). Saito (2015) stud-
ied the preference for randomization of an ambiguity-averse agent in a model
that allows for more general timing of Nature’s move. He took preferences

29They also found that 29% of the subjects choose the option to flip a costly coin to randomize
over items.
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over menus of acts as primitives, while we look directly at choice probabilities.
Note that these papers assume there is an objective state space. In our setting,
the agent is uncertain about his true utility and the analyst only observes the
items the agent chooses, so our state space is subjective, and the states are the
possible values of ε. Epstein, Marinacci, and Seo (2007) studied a related sub-
jective state space model, where the agent considers a set of utility functions
and Nature picks a utility function in that set to minimize the agent’s payoff,
thereby making randomization valuable to the agent. They studied preferences
on lotteries over menus.

In our setting, the objective function can also be seen as a desire to avoid
feeling regret about items that were not chosen. Here the vector ε specifies the
“extra utility” of each item, and the agent worries that Nature will choose the
largest bonus on items he selects with low probability.

We now show that weak APU corresponds to the additive form ΦA(ε) =∑
x∈Aφ(εx), where φ : R → R ∪ {∞} is strictly convex, continuously differen-

tiable where it is finite-valued, with derivative whose range includes (−1�0).30

We will call any such function φ a cost for Nature function. The additive form
of the Φ function is convenient for putting joint restrictions on choices from
different menus. It can be interpreted as Nature not knowing u and hence
treating each item symmetrically.

DEFINITION 21—Additive Variational Utility: A stochastic choice rule P has
an additive variational utility (AVU) representation if and only if there exists a
utility function u : Z → R and a cost for Nature function φ such that

P(A)= arg max
p∈�(A)

(
inf
ε∈RA

∑
x∈A

p(x)
[
u(x)+ εx

] +
∑
x∈A

φ(εx)

)
�

PROPOSITION 7:
1. P has an AVU representation if and only if P has a weak APU represen-

tation. Moreover, if P has an AVU representation with (u�φ), then P has a weak
APU representation with (u� c), where c(q) = supε{qε − φ(−ε)}. Conversely, if
P has a weak APU representation with (u� c), then P has an AVU representation
with (u�φ), where φ(ε)= supq>0{−εq− c(q)}.

2. P has an AVU representation with limε→∞ φ′(ε) = 0 iff P has an APU
representation.

Our proof of Proposition 7 uses convex duality. The first direction of the
proof of part 1 constructs the cost function c from φ by setting c to be the con-
vex conjugate of the function φ̂(ε) :=φ(−ε). The second direction constructs

30We use these last two conditions on φ only to ensure that arg minεx p(x)εx + φ(εx) exists
and is continuous in p(x) ∈ (0�1).
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φ from the cost function c, by setting φ̂ to be the convex conjugate of c and
then setting φ(ε) := φ̂(−ε). To understand the second part of the proposition,
note that, by the envelope theorem, AVU implies an APU with the marginal
cost c′(p(x)) = −ε∗

x, where ε∗
x = φ′−1(−p(x)) is Nature’s optimal choice εx

against p(x) ∈ (0�1). Because c′ is strictly increasing, ε∗
x is strictly decreasing.

The Inada condition limp→0 c
′(p) = −∞ corresponds to limε→∞ φ′(ε) = 0 so

that limp(x)→0 ε
∗
x = ∞. This generates strictly positive choice probabilities be-

cause the payoff to any x diverges to ∞ as its probability goes to 0. The AVU
that corresponds to logit choice has φ(ε) = γ exp(− ε

γ
). In this case, the opti-

mal choice of Nature is ε∗
x = −γ log(p(x)). The AVU corresponding to log-

arithmic APU has φ(ε) = −η log(ε), with φ(ε) = ∞ for negative ε. In this
case, Nature’s optimal choice is ε∗

x = η

p(x)
.

To relate asymptotic nondiscrimination (Proposition 5) to AVU, note that
as p(x) → 0, Nature will send the corresponding εx to infinity. Because
c′(q) = −φ′−1(−q), c′−1(s) = −φ′(−s), so AVU implies APU with h(s) =
log(−φ′(−s)). Thus the condition lims→∞[h(t − s) − h(−s)] = 0 in Proposi-
tion 5 is equivalent to lims→∞

φ′(s−t)

φ′(s) → 1, so Nature’s marginal cost for rarely
chosen items becomes flat. In this limit, Nature’s choice depends on p but is
insensitive to the differences in utilities, so it is optimal for the agent to assign
about the same probability to all of the rarely chosen items.

5.2. Comparison to Random Utility

We now compare the revealed-preference implications of APU/AVU to
those of random utility models.

DEFINITION 22—Random Utility: A stochastic choice rule P has a random
utility (RU) representation if and only if there exists a utility function u : Z →R
and a random variable ε ∈RZ such that, for each A ∈A and z ∈ A,

P(z|A)= Prob
{
u(z)+ εz ≥ max

y∈A
u(y)+ εy

}
�(8)

Like APU, any RU choice rule satisfies regularity. We say that a RU is sym-
metric if the distribution of {εz} is exchangeable, that is, vectors (ε1� � � � � εn)
and (επ(1)� � � � � επ(n)) have the same distribution for any permutation π. Un-
der positivity, symmetric RU and Fechnerian are observationally equivalent
if the data consist only of binary menus; the additional structure imposed by
APU only matters when choice is observed from some larger menus. More gen-
erally, any symmetric RU satisfies Item Acyclicity, so weak APU with menu-
dependent costs nests symmetric RU. This applies in particular to any RU with
i.i.d. shocks, as in the standard specification of the probit model. As the follow-
ing example illustrates, such RU with i.i.d. shocks excludes some choice data
that are consistent with weak APU.
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EXAMPLE 3: Let Z = {x� y� z} with P(x|{x� y}) > P(y|{x� y}) > 0 and
P(x|{x�z}) > P(z|{x�z}) > 0. Then RU with i.i.d. shocks predicts
P(z|{x� y� z}) > 0, because each of u(x) − u(z) < εz − εx and u(y) − u(z) <
εz − εy holds with positive probability. On the other hand, weak APU can
accommodate P(z|{x� y� z})= 0 when y is preferred to z.

Moreover, as the example below shows, APU can violate the Block–Marshak
conditions (Block and Marschak (1960)) that are necessary for RU.

EXAMPLE 4: When Z = {w�x� y� z}, RU implies31

P
(
w|{w�x}) + P

(
w|{w�x� y� z}) ≥ P

(
w|{w�x� y}) + P

(
w|{w�x�z})�

We now construct an APU that violates this condition. Let u(w) = −1,
u(x) = 3, and u(y) = u(z) = 0, and c(p) = − log(p).32 Then P(w|{w�x}) ≈
0�191, P(w|{w�x� y}) = P(w|{w�x�z}) ≈ 0�177, and P(w|{w�x� y� z}) ≈ 0�161;
thus,

P
(
w|{w�x}) + P

(
w|{w�x� y� z})<P

(
w|{w�x� y}) + P

(
w|{w�x�z})�

Weak stochastic transitivity, the condition that P(x|{x� y}) ≥ 1
2 and

P(y|{y� z}) ≥ 1
2 imply P(x|{x�z}) ≥ 1

2 , can be violated by RU (Marschak
(1959)), while it is satisfied by weak APU. More strongly, even with i.i.d. shocks
RU need not correspond to weak APU.

EXAMPLE 5: Let Z = {x1�x2� y1� y2� y3}. Let the utility function be u(x1) =
u(x2) = w and u(y1) = u(y2) = u(y3) = 0. Let A = {x1�x2� y1} and B =
{x1� y1� y2� y3� y4� y5� y6}. Consider the probit model in which εz follows i.i.d.
normal distribution N(0�1) for each z ∈ Z. Under probit, the choice proba-
bilities are

P(z|A)=
∫ ∏

z′∈A\z
�

(
u(z)+ εz − u

(
z′))φ(εz)dεz�

where � and φ are the cumulative distribution and the density under N(0�1).
Then we have P(x1|B) ≈ 0�4574 > P(x1|A) ≈ 0�4526 and P(y1|A) ≈ 0�0949 >
P(y1|B) ≈ 0�0904 when w is near 1�13. That is, there exists a menu cycle, as B
is weaker than A for x1 but A is weaker than B for y1. This implies that this
choice behavior cannot be rationalized by any weak APU.

31If |Z| = 3, then any choice rule that satisfies regularity has a RU representation (Block and
Marschak (1960)), so any APU has a RU representation.

32Note that this result is different than Proposition 2.2 of Hofbauer and Sandholm (2002),
where the utility function is known.
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To accommodate observed choice behavior that violates IIA, the logit model
has been extended to nested logit.33 Our working paper (Fudenberg, Iijima,
and Strzalecki (2014)) gives a revealed-preference characterization of nested
logit and of an extension that allows for menu-size penalties. It also consid-
ers a particular form of nested model with only two nests, a “default op-
tion” B1 = {x∗} and “everything else” B2. Here we suppose that when deciding
whether to take the default or choose from B2, the agent uses a cost function
that depends on the size of B2, such as

∑
z∈B2

p(z) logp(z)+α log |B2|. We use
this to capture the phenomenon of “choice overload” as seen in Iyengar and
Lepper (2000), where consumers are less likely to purchase when faced with a
superset of a smaller menu.

6. CONCLUSION

As we have shown, perturbed utility functions are relatively tractable and
have an easily understood axiomatic characterization that applies even when
choice data are only observed for a subset of the possible menus. Moreover,
these utility functions can be understood as describing choices of an agent who
faces uncertainty about his true utility, modeled as smooth variational prefer-
ences. These features made it easy to develop further refinements, such as lim-
ited discrimination, which relaxes the IIA assumption implicit in the entropy
cost function. As noted by Chernev (2012), there has been relatively empirical
work on how menu size changes choice probabilities; we hope that the analytic
foundations provided here may stimulate further empirical work. Our results
may also prove helpful in designing more careful empirical analyses of just
what sorts of randomization devices people prefer to use.

APPENDIX

A.1. Proofs of Main Results

A.1.1. Rational Farkas

The following result, called the theorem of the alternative, or Farkas’s
lemma, is usually applied to vector spaces over the field of real numbers R,
but also applies to vector spaces over the field of rational numbers Q.34 Let S
be a finite set and treat QS as a vector space over the field of rational num-
bers Q. Let 〈·� ·〉 denote the inner product in QS . For any vector w ∈ QS and
subset T ⊆ QS , we write w ⊥ T if 〈w� t〉 = 0 for all t ∈ T . For any t� b ∈ QS , we
write t ≤ b whenever this inequality holds pointwise.

33Mattsson, Weibull, and Lindberg (2014) proposed a random utility model that generalizes
nested logit and yields a closed form for the induced choice probabilities.

34See, for example, Kraft, Pratt, and Seidenberg (1959).
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LEMMA A.1.1: Let b ∈ QS and T be a linear subspace of QS . Exactly one of
the following conditions holds:

1. There exists t ∈ T such that t ≤ b.
2. There exists w ∈QS

+ such that w ⊥ T and 〈w�b〉 < 0.

To understand the geometric interpretation of this lemma, consider first the
case when T is a hyperplane, that is, is of dimension |S| − 1, and let B be the
set of all points weakly dominated by b. The set B ∩ T is nonempty whenever
Condition (1) holds. The set B∩T is empty whenever there exists a hyperplane
that separates B from T , namely T itself; because of the shape of B, this hy-
perplane is generated by a vector w ∈ QS

+. This is equivalent to Condition (2).
To obtain the separating hyperplane in the case when T is lower dimensional,
a superspace of T is used.

A.1.2. Lemma 2

LEMMA 2: The following conditions are equivalent:
(a) There exists (u� c) such that P has a weak APU representation with (u� c).
(b) There exists (u� c�λ) such that P satisfies the FOC (5) with (u� c�λ).
(c) There exists (u�λ) such that P satisfies (6) with (u�λ).

PROOF OF LEMMA 2: Equivalence of (a) and (b): By the strict convexity
of the objective function, a necessary and sufficient condition for P(A) =
arg maxp∈�(A) V

u
c (p) is that P(A) solves

max
p∈R|A|

∑
z∈A

[
u(z)p(z)− c

(
p(z)

)] + λ(A)

(∑
z

p(z)− 1
)

+
∑
z

[
λz

0(A)p(z)+ λz
1(A)

(
p(z)− 1

)]

such that λz
0(A)�λz

1(A) ≥ 0 and λz
0(A)p(z) = λz

0(A)(p(z) − 1) = 0 for
each z ∈A, where multipliers λ(A)�λz

0(A), and λz
1(A) are associated with∑

z p(z) = 1, p(z) ≥ 0, and p(z) ≤ 1, respectively. This is equivalent to the
conditions

∀z ∈A� u(z)− c′z
1 (A)+ λz

0(A)= 0�

where λz
1(A) ≥ 0 = λz

0(A) if P(x|A) = 1, λz
0(A) = λz

1(A) = 0 if P(x|A) ∈
(0�1), and λz

0(A)≥ 0 = λz
1(A) if P(x|A) = 0.

(b) implies (c): The separability condition holds because c′−1 is strictly in-
creasing.

(c) implies (b): Suppose that there exist u and λ such that (u�λ) is a separa-
ble representation. It is without loss to assume that both take values in (0�1).
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Then, define

w :=
⎧⎨
⎩

2 if P(z|A)< 1 ∀(z�A) ∈D�

min
{
u(x)+ λ(A)|(x�A) ∈D�P(x|A)= 1

}
otherwise�

w :=
⎧⎨
⎩

0 if P(z|A)> 0 ∀(z�A) ∈D�

max
{
u(x)+ λ(A)|(x�A) ∈D�P(x|A)= 0

}
otherwise�

Let g : [0�1] → R be a strictly increasing and continuous function such
that (i) g(0) = w, (ii) g(P(x|A)) = u(x) + λ(A) if P(x|A) ∈ (0�1), and
(iii) g(1)= w. Such function exists because u(x) + λ(A) > u(y) + λ(B) if
P(x|A) > P(y|B), and u(x) + λ(A) = u(y) + λ(B) if P(x�A) = P(y|B) ∈
(0�1). Define c : [0�1] → R by c(p) = ∫ p

0 g(q)dq. Then FOC (2) is satisfied
at each menu. Q.E.D.

The proof of Lemma 1 follows the same lines, with (5) in part (b) replaced
by (2), so that the FOC holds with equality, and the definition of separability
in (c) tightened from (6) to (3).

A.1.3. Proof of Theorem 1

To show the equivalence of Acyclicity and APU, modify the proof of Theo-
rem 3 to show the equivalence of Acyclicity and (6), and then use Lemma 1.
Because of Lemma 2, it suffices to show the equivalence of Ordinal IIA and (5).

To show that (5) implies Ordinal IIA, we have

c′(P(x|A)
) − c′(P(y|A)

) = c′(P(x|B)) − c′(P(y|B))
for each A�B and x� y ∈ A ∩ B. Setting the strictly increasing function f :
[0�1)→ R+ by f (0)= 0 and f (q) = exp[c′(q)] for each q > 0, we obtain

f
(
P(x|A)

)
f
(
P(y|A)

) = f
(
P(x|B))

f
(
P(y|B))

for each A�B and x� y ∈ A∩B, so that Ordinal IIA is satisfied.
To show that Ordinal IIA implies (5), construct a cost function by setting

c′(q) := log(f (q)) where f is taken from the Ordinal IIA property. Because
c′ is continuous, c(q) = ∫ q

1/2 c
′(t)dt is well defined for each q ∈ (0�1). Note

that c is C1 and strictly convex, and that limq→0 c
′(q) = −∞. Fix any item

x and set u(x) := 0. For any other item z �= x, set u(z) := c′(P(z|{x�z})) −
c′(P(x|{x�z})). Take an arbitrary menu A and y� z ∈ A. There are two exclu-
sive cases.
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Case (i): x ∈ {y� z}. Set y = x without loss of generality. Then

u(z)− u(x) = c′(P(
z|{x�z})) − c′(P(

x|{x�z}))
= log

(
f
(
P

(
z|{x�z}))

f
(
P

(
x|{x�z}))

)

= log
(
f
(
P(z|A)

)
f
(
P(x|A)

))
(∵ Ordinal IIA)

= c′(P(z|A)
) − c′(P(x|A)

)
�

Case (ii): x /∈ {y� z}:
u(z)− u(y) = c′(P(

z|{x�z})) − c′(P(
x|{x�z}))

− c′(P(
y|{x� y})) + c′(P(

x|{x� y}))
= log

(
f
(
P

(
z|{x�z}))

f
(
P

(
x|{x�z}))

f
(
P

(
x|{x� y}))

f
(
P

(
y|{x� y}))

)

= log
(
f
(
P

(
z|{x� y� z}))

f
(
P

(
x|{x� y� z}))

f
(
P

(
x|{x� y� z}))

f
(
P

(
y|{x� y� z}))

)

(∵ Ordinal IIA)

= log
(
f
(
P

(
z|{x� y� z}))

f
(
P

(
y|{x� y� z}))

)

= log
(
f
(
P(z|A)

)
f
(
P(y|A)

))
(∵ Ordinal IIA)

= c′(P(z|A)
) − c′(P(y|A)

)
�

Therefore, the equalities in the above two cases imply that FOC at A is
satisfied.

A.1.4. Proof of Theorem 3

By Lemma 2, it suffices to show the equivalence of Weak Acyclicity and a
separable representation. Suppose that there exists a separable representation
(u�λ). Weak Acyclicity is satisfied, as otherwise then u(xi) + λ(Ai) ≥ u(yi) +
λ(Bi) for all i with at least one strict. Summing over i yields a contradiction
because of the permutation property.

For the converse, let Q∗ be the vector space over the field of ratio-
nal numbers whose coordinates correspond to ordered pairs (α�β) =
{(xα�Aα)� (xβ�Aβ)} with P(xα|Aα) ≥∗ P(xβ|Aβ). Represent a collection of
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these pairs by the vector w whose coordinates count the number of times the
corresponding relation appears.

A collection is a cycle if (a) at least one comparison is strict and (b) each
item and each menu appear the same number of times on each side.

Step 1: We will now represent a cycle as a collection that satisfies certain
linear inequalities. Define b ∈ Q∗ as follows:

b(α�β)=
{−1 if P(xα|Aα) > P(xβ|Aβ),

0 if P(xα|Aα)= P(xβ|Aβ) ∈ (0�1).

Note that for any w ∈ Q∗, 〈w�b〉 < 0 iff at least one comparison in a collection
of order comparisons represented by w is strict. For each z ∈ Z, define tz ∈ Q∗

by

tz(α�β)=
{−1 if xα = z and xβ �= z,

1 if xα �= z and xβ = z,
0 otherwise.

Note that 〈w� tz〉 = 0 iff z features equal number of times on each side of the
cycle represented by w. For each C ∈A, define tC ∈Q∗ by

tC(α�β)=
{−1 if Aα = C and Aβ �= C,

1 if Aα �= C and Aβ = C,
0 otherwise.

Similarly, 〈w� tC〉 = 0 iff C features equal number of times on each side of
the cycle represented by w. Let T be the linear subspace generated by the
collection {tz}z∈Z ∪{tC}C∈A. Thus, w ∈Q∗ represents a cycle if and only if w ⊥ T
and 〈w�b〉< 0.

Step 2: Since Weak Acyclicity implies that there does not exist w that meets
the conditions of Step 1, there cannot exist w ∈ Q∗ such that w ⊥ T and
〈w�b〉< 0. Lemma A.1.1 implies that there exists t ∈ T such that t ≤ b.

Step 3: The existence of such t implies that there exists a separable represen-
tation (u�λ). To see that, note that since t ∈ T , there are functions u : Z → Q
and λ :A→Q such that t = ∑

z∈Z u(z)t
z +∑

C∈A λ(C)tC . Thus, the functions u
and λ are the coordinates of t in T . Next, observe that t ≤ b implies that (u�λ)
is a separable representation: if P(x|A) > P(y|B), then t((x�A)� (y�B)) =
−u(x) − λ(A) + u(y) + λ(B) ≤ b((x�A)� (y�B)) = −1, so u(x) + λ(A) >
u(y) + λ(B). If P(x|A) = P(y|B) ∈ (0�1), then t((x�A)� (y�B)) ≤ 0; by sym-
metry, t((x�A)� (y�B))≥ 0; thus, u(x)+ λ(A)= u(y)+ λ(B).

A.2. Proof of Theorem 2

To prove the first part of the theorem we rely on the same argument as in the
proof of Theorem 1. We only prove the “only if” direction of the second part.
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For this purpose, we construct an increasing sequence of finite subsets Zn of
Z with corresponding APU representations (un� cn). Given this sequence, we
show that the limit cost function c is finite, strictly increasing, and continuous
on (0�1). We use this limit cost function to construct a function f so that Or-
dinal IIA holds, and then the first part of the theorem implies there is an APU
representation.

A.2.1. Intermediate Results

We first show that Continuity, combined with other conditions, implies sev-
eral useful richness properties of P . The first one is just a form of Richness for
binary menus.

LEMMA 3: For any x ∈ Z and any p ∈ (0�1), there exists y ∈ Z such that
P(x|{x� y})= p.

PROOF: A direct consequence of Richness applied to p + q = 1, in which
y = z necessarily holds. Q.E.D.

The second property guarantees the existence of a midpoint between any two
elements of Z.

LEMMA 4: For any x� y ∈ Z, there exists z ∈ Z such that P(x|{x�z}) =
P(z|{y� z}).

PROOF: If P(x|{x� y}) = 0�5, then the existence of z follows from Rich-
ness (with p = q = 1

3 ) and Acyclicity. Otherwise, let f (z) := P(x|{x�z}) −
P(z|{y� z}) and note that by Continuity, f is a continuous function. By
Lemma 3, there exist items x′� y ′ ∈ Z such that P(x′|{x�x′}) =
P(y ′|{y� y ′}) = 0�5. Thus, f (x′) = 0�5 − P(x′|{x′� y}) = 0�5 − P(x|{x� y}) =
−f (y ′), where the equality of the two probabilities follows from Acyclicity.
Since Z is a connected space, the intermediate value theorem implies that
there exists z ∈ Z with f (z)= 0. Q.E.D.

Acyclicity implies the quadruple condition of Davidson and Marschak (1959).

LEMMA 5: For any a�b� c�d ∈ Z, we have P(a|{a�b}) ≥ P(c|{c�d}) if and
only if P(a|{a� c})≥ P(b|{b�d}).

PROOF: Suppose that P(a|{a�b}) ≥ P(c|{c�d}) but P(a|{a� c}) <
P(b|{b�d}). Then since the choice probabilities sum up to 1, P(c|{a� c}) >
P(d|{b�d}) and P(b|{a�b}) ≤ P(d|{c�d}). These four inequalities are a cy-
cle. Q.E.D.

The conditions derived in Lemmas 3 and 5 let us invoke the theorem of
Debreu (1958) to conclude that P on binary menus has a “Fechnerian utility”
representation.
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COROLLARY 1: Under Acyclicity, Richness, and Continuity, there exists u :
Z → R such that P(a|{a�b}) ≥ P(c|{c�d}) iff u(a)−u(b) ≥ u(c)−u(d). More-
over, u is unique up to positive affine transformations.

For any finite subset of Z, the function u induces the same order on elements
as any of the possible APU representations. We use this fact in the proof of
Claims 1 and 3 below.

A.2.2. Constructing a Grid Approximation

Since Z is a separable space, there exists a countable dense set Y =
{y1� y2� � � �}. Let Yn := {y1� � � � � yn}. The finite sets Zn will be constructed recur-
sively. Each of them will be the union of Yn, a standard sequence Z̃n of points
with utility differences equal to 2−n, and additional points with choice proba-
bilities p= k

2n+1 �k= 1� � � � �2n+1.

A.2.2.1. The Construction of Z1. Fix an arbitrary element z0 ∈ Z and let
p∗ ∈ (0� 1

2). By Richness, there exist elements z−1� z1 ∈Z s.t. P(z−1|{z−1� z0})=
p∗ = P(z0|{z0� z1}). By Lemma 4, there exist midpoints z−0�5� z0�5 such that
P(z−1|{z−1� z−0�5}) = P(z−0�5|{z−0�5� z0}) and likewise for z0�5. Let Z̃1 :=
{z−1� z−0�5� z0� z0�5� z1}.

By Richness, there exist A1/4 ∈A and x1/4 ∈ A and such that P(x1/4|A1/4)= 1
4

and P(z0|A1/4) = 1
2 , and there is x3/4 ∈ Z such that P(x1/4|{x1/4�x3/4}) = 1

4 . Let
Z1 := Z̃1 ∪A1/4 ∪ {x3/4} ∪Y1.

By Theorem 1 on Z0, there is an APU representation (û1� ĉ1) of P . Note
that by the FOC, we have that û1(z1)− û1(z0)= ĉ′

1(1 −p∗)− ĉ′
1(p

∗)= û1(z0)−
û1(z−1). Note that (u1� c1) is also an APU representation of P , where

u1(z) := [
û1(z1)− û1(z0)

]−1[
û1(z)− û1(z0)

]
for all z ∈ Z1�

c1(p) := [
û1(z1)− û1(z0)

]−1
[
ĉ1(p)−pĉ′

1

(
1
2

)
− ĉ1

(
1
2

)]
for all p ∈ (0�1)�

Note that u1(zr) = r for r ∈ {−1�−0�5�0�0�5�1} and c1(
1
2) = 0 = c′

1(
1
2). Note

also that by FOC, we have c′
1(

1
2)−c′

1(
1
4)= u1(z0)−u1(x1/4), so c′

1(
1
4)= u1(x1/4).

We also have c′
1(

3
2)− c′

1(
1
4)= u1(x3/4)− u1(x1/4), so c′

1(
3
4)= u1(x3/4).

A.2.2.2. The Construction of Zn+1. By Richness, there are z−n−1� zn+1 ∈
Z s.t. P(z−n−1|{z−n−1� z−n}) = p∗ = P(zn|{zn� zn+1}). By Lemma 4, for any
zr� zr+2−n ∈ Z̃n, there exists a midpoint zr+2−n−1 . Likewise, there is a midpoint
zn+0�5 between zn and zn+1, and there are further midpoints between these, such
as zn+0�25, etc. Let Z̃n+1 := {zr : r = k

2n+1 �k= −(n+ 1)2n+1� � � � � (n+ 1)2n+1}.
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By Richness, for p = k
2n+2 �k = 1� � � � �2n+1, there exist xp ∈ Ap ∈ A such that

P(xp|Ap) = p and P(z0|Ap) = 1
2 . By Richness, there exist x1−p ∈ Z such that

P(xp|{xp�x1−p})= p. Let

Z2 := Z̃2 ∪Y2 ∪
⋃

p=k/2n+2�k=1�����2n+1

Ap ∪
⋃

p=k/2n+2�k=2n+1+1�����2n+2−1

{xp}�

By Theorem 1 on Zn+1, there exists an APU representation (ûn+1� ĉn+1). Use
the rescaling as above so that the representation (un+1� cn+1) has the following
properties:

• un+1(zr)= r for r = k
2n+1 �k= −(n+ 1)2n+1� � � � � (n+ 1)2n+1.

• c′
n+1(p)= un+1(xp) for p= k

2n+2 �k= 1� � � � �2n+2 − 1; c′
n(

1
2)= cn(

1
2) = 0.

A.2.3. Properties of the Limit Cost Function

Define c′(q) := lim supm c′
m(q) for each q ∈ (0�1). FOC implies c′

n(1 −p∗)−
c′
n(p

∗) = un(z1) − un(z0) = 1 for each n, so that c′(1 − p∗) − c′(p∗) = 1. Also
note that c′( 1

2)= 0.

CLAIM 1: c′(q) is strictly increasing and finite at all q ∈ (0�1).

PROOF: First, note that Corollary 1 implies that u(zi+1) − u(zi) = u(zi) −
u(zi−1) for all i, which implies that the range of u is unbounded from both
above and below. Moreover, u(zr+1/2n)−u(zr)= 2−n[u(zr+1)−u(zr)] →n→∞ 0,
which follows since the sequence Z̃n was constructed by taking midpoints and
from the fact that the Fechnerian utility of a midpoint equals the average of
the two endpoints.

Take any q = k
2m+1 � q

′ = k−1
2m+1 for some m ∈ N, k ∈ {2�3� � � � �2m+1 − 1}. By

the above observation, for n′ large enough, there exist zr� zr′ ∈ Z̃n′ such that
u(z−n′) < u(xq′) < u(zr′) < u(zr) < u(xq) < u(zn′). This implies that −n′ =
un(z−n′) < un(xq′) < un(zr′) < un(zr) < un(xq) < un(zn′)= n′ for all n > n′.

Since c′(q) = lim supn un(xq), it follows that c′(q) is finite (and likewise for
c′(q′)). To show monotonicity, note that, by construction, un(zr) − un(zr′) is
independent of n; denote this value δ > 0. By construction, we have c′

n(q) =
un(xq) and c′

n(q
′) = un(xq′), thus, c′

n(q)− c′
n(q

′) > δ, so c′(q)− c′(q′) > δ > 0.
To show that c′ is finite on (0�1), note that, for any q′′ ∈ (0�1), there exist

q�q′ of the form above such that q′ < q′′ < q, so the result follows from weak
monotonicity of c′, which holds by its definition. To show that c′ is strictly in-
creasing on (0�1), note that, for any q > q′ in (0�1), there are k�m such that
q > k

2m > k−1
2m > q′, which ensures c′(q) > c′(q′). Q.E.D.

Let C denote the set of points q ∈ (0�1) at which c′(q) is continuous. By the
previous claim, (0�1) \C is at most countable.
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CLAIM 2: For any A�B, x� y ∈ A ∩ B such that P(x|A)�P(x|B)�P(y|A)�
P(y|B) ∈C , c′(P(x|A))− c′(P(y|A))= c′(P(x|B))− c′(P(y|B)) holds.

PROOF: Denote A ∪ B = {z1� � � � � zm}. By construction of Zn and sepa-
rability of Z, we can choose sequences (zj

n)n∈N�j=1�����m of items such that
limn→∞ zj

n = zj for each j = 1� � � � �m and {z1
n� � � � � z

m
n } ⊆ Zn for each n.

We can choose a subsequence so that limk→∞ c′
nk
(p) = c′(p) for each p =

P(x|A)�P(x|B)�P(y|A)�P(y|B). By Continuity, P(xnk |Ank) → P(x|A),
P(ynk |Ank) → P(y|A), P(xnk |Bnk) → P(x|B), and P(ynk |Bnk) → P(y|B), for
some An�Bn ⊆ {z1

n� � � � � z
m
n } and xn� yn ∈ {z1

n� � � � � z
m
n }. It remains to show that,

along a subsequence, c′
n(P(xn|An)) → c′(P(x|A)) and likewise for the other

three elements, which together with the FOC c′
n(P(xn|An)) − c′

n(P(yn|An)) =
c′
n(P(xn|Bn))− c′

n(P(yn|Bn)) implies the conclusion.
Denote q∗ := P(x|A) and qn := P(xn|An) for each n. Fix ε > 0; because

c′ is continuous at q∗, there is δ > 0 such that |c′(q∗) − c′(q)| < ε
2 for all q ∈

[q∗ − δ�q∗ + δ]. By taking a subsequence, there is n such that |c′
nkl
(q∗ − δ) −

c′(q∗ −δ)|� |c′
nkl
(q∗ +δ)− c′(q∗ +δ)|< ε

2 for all nkl ≥ n. As liml qnkl
= q∗, there

is n′ such that qnkl
∈ [q∗ − δ�q∗ + δ] for all nkl ≥ n′. Therefore, for any nkl ≥

max{n�n′}, we have∣∣c′(q∗) − c′
nkl
(qnkl

)
∣∣

≤ max
{∣∣c′(q∗) − c′

nkl

(
q∗ − δ

)∣∣� ∣∣c′(q∗) − c′
nkl

(
q∗ + δ

)∣∣}
≤ max

{∣∣c′(q∗) − c′(q∗ − δ
)∣∣ + ∣∣c′(q∗ − δ

) − c′
nkl

(
q∗ − δ

)∣∣�∣∣c′(q∗) − c′(q∗ + δ
)∣∣ + ∣∣c′(q∗ + δ

) − c′
nkl

(
q∗ + δ

)∣∣}
< ε�

where the first inequality follows because c′
nkl

is increasing. Q.E.D.

CLAIM 3: c′ is continuous at all q ∈ (0�1).

PROOF: Suppose to the contrary that c′ is discontinuous at some q∗ ∈ (0�1).
Take any q∗∗ ∈ C strictly less than 1 − q∗. Fix x ∈ Z; by Richness 1.1, there
are y� z such that P(x|{x� y� z}) = q∗�P(y|{x� y� z}) = q∗∗. Define a subset H
of (0�1)2 by H := {(P(x|{x� y� z′})�P(y|{x� y� z′})) : z′ ∈ Z}. By continuity of
P and connectedness of Z, the set H is connected. Let H+ := {(px�py) ∈ H :
px ≥ q∗�py ≥ q∗∗} and H− := {(px�py) ∈ H : px ≤ q∗�py ≤ q∗∗}. Note also that
by Acyclicity for all z′ ∈ Z,

P
(
x|{x� y� z′})> q∗ iff P

(
y|{x� y� z′}) > q∗∗;(*)
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thus, H = H+∪H−. By Richness, there exist z−� z+ ∈ Z such that P(z|{z−� z}) >
P(z−|{z−� z}) and P(z|{z+� z}) < P(z+|{z+� z}). By Acyclicity, this implies that
the sets H+ \ {(q∗� q∗∗)} and H− \ {(q∗� q∗∗)} are nonempty.35

Since (0�1) \ C is at most a countable set and H is connected, there exist
sequences zn

+� z
n
− ∈ Z such that C2 ∩H− � (P(x|{x� y� zn

+})�P(y|{x� y� zn
+})) →

(q∗� q∗∗) and C2 ∩ H+ � (P(x|{x� y� zn
−})�P(y|{x� y� zn

−})) → (q∗� q∗∗). By
Claim 2, c′(P(x|{x� y� zn

−})) − c′(P(y|{x� y� zn
−})) = c′(P(x|{x� y� zn

+})) −
c′(P(y|{x� y� zn

+})) for every n, and thus limp↗q∗ c′(p) − limq↗q∗∗ c′(q) =
limp↘q∗ c′(p)− limq↘q∗∗ c′(q), which leads to a contradiction. Q.E.D.

Thus the equality in Claim 2 holds for all menus A�B and items x� y ∈ A∩B,
so Ordinal IIA holds with f := exp[c′]. By the first part, there exists an APU
representation (u� c) of P . By Continuity of P and FOC of the form u(x) −
u(y)= c′(P(x|{x� y}))− c′(1 − P(x|{x� y})), it follows that u is continuous.

Finally, to show uniqueness, let (u� c) and (û� ĉ) be APU representations
of P . Note that P(a|{a�b}) ≥ P(c|{c�d}) iff u(a) − u(b) ≥ u(c) − u(d) iff
û(a) − û(b) ≥ û(c) − û(d). Thus from Corollary 1, û = αu + β for some
α > 0�β ∈ R. Take any p�p′ ∈ (0�1). Then for any q < 1 − p�1 − p′, by Rich-
ness, P(x|A) = p�P(y|A) = q�P(x′|A′) = p′�P(y ′|A′) = q for some menus
and items. By FOC,

ĉ′(p)− ĉ′(p′) = ĉ′(p)− ĉ′(q)+ ĉ′(q)− ĉ′(p′)
= û(x)− û(y)+ û

(
y ′) − û

(
x′)

= α
(
u(x)− u(y)+ u

(
y ′) − u

(
x′))

= α
(
c′(p)− c′(q)+ c′(q)− c′(p′))

= α
(
c′(p)− c′(p′))�

Let γ := ĉ′( 1
2) − αc′( 1

2). Then, for any p ∈ (0�1), ĉ′(p) − ĉ′( 1
2) = α(c′(p) −

c′( 1
2)) and thus ĉ′(p) = αc′(p) + γ. Define δ := ĉ( 1

2) − αc( 1
2) − γ

2 . Then, for
any p ∈ (0�1), ĉ(p) − ĉ( 1

2) = ∫ p

1/2 ĉ
′(q)dq = ∫ p

1/2(αc
′(q) + γ)dq = α(c(p) −

c( 1
2))+ (p− 1

2)γ and thus ĉ(p)= αc(p)+ δ+ γp.

A.3. Proof of Proposition 1

First, suppose that P has a Fechnerian representation. Thus there exists
u such that P(x|{x� y}) ≥ P(x′|{x′� y ′}) iff u(x) − u(y) ≥ u(x′) − u(y ′). De-
fine λ({x� y}) := − u(x)+u(y)

2 for each binary menu {x� y}. Then P(x|{x� y}) ≥

35For example, we show that H+ \ {(q∗� q∗∗)} is nonempty. Suppose not. Then by (*) we have
that q∗∗ ≥ P(y|{x�y� z−}), and since probabilities sum up to 1, we have that P(z−|{x�y� z−}) ≥
P(z|{x�y� z}). The last two inequalities, together with P(z|{z−� z}) > P(z−|{z−� z}), form a cycle;
contradiction.
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P(x′|{x′� y ′}) iff u(x) + λ({x� y}) ≥ u(x′) + λ({x′� y ′}). This separable repre-
sentation ensures that Acyclicity is satisfied.

Second, suppose that Acyclicity is satisfied. Then P has an APU represen-
tation by either Theorem 1 or 2. By FOC, u(x) − u(y) = c′(P(x|{x� y})) −
c′(1 − P(x|{x� y})) holds for any x� y . Because c′ is strictly increasing,
P(x|{x� y}) ≥ P(x′|{x′� y ′}) iff u(x) − u(y) ≥ u(x′) − u(y ′), which implies the
existence of a Fechnerian representation.

A.4. Proof of Proposition 2

Note first that FOC and Pi(x|{x� y}) = 1 − Pi(x|{x� y}), i = 1�2, imply that,
for all {x� y} ∈A,

c′
1

(
P1

(
x|{x� y})) − c′

1

(
1 − P1

(
x|{x� y}))(9)

= u(x)− u(y)= c′
2

(
P2

(
x|{x� y})) − c′

2

(
1 − P2

(
x|{x� y}))�

To show “if” direction, take any x� y with P2(x|{x� y}) ≥ P2(y|{x� y}), which
implies u(x) ≥ u(y). Since c′

i(p) − c′
i(1 − p) is strictly increasing in p,

P1(x|{x� y})≥ P2(x|{x� y}) follows by (9).
To show “only if,” suppose to the contrary that there is q ∈ ( 1

2 �1) such that
c′

1(q) − c′
1(1 − q) > c′

2(q) − c′
2(1 − q). By Richness, there exist x� y such that

P1(x|{x� y}) = q. Since c′
2(p)− c′

2(1 −p) is strictly increasing in p, (9) implies
P2(x|{x� y}) > q, a contradiction.

A.5. Proof of Proposition 3

For each i = 1�2, let λi(A) denote the Lagrange multiplier at menu A under
(u� ci). To show the “only if” part, suppose to the contrary, that c′′

1 ≤ c′′
2 does

not hold at some point in (0�1). By continuity of the second derivatives, there
exists interval (q�q) such that c′′

1(q) > c′′
2(q) for all q ∈ (q�q).

Note that Richness ensures that the range of u is unbounded from be-
low and above. Thus there are x� y such that Pi(x|{x� y}) > q for each
i = 1�2. By Continuity, u is continuous, and {Pi(x|{x� y� z})|z ∈ Z} is con-
nected for each i = 1�2. Note that Pi(x|{x� y� z}) → 0 as u(z) → ∞ and
Pi(x|{x� y� z}) → Pi(x|{x� y}) as u(z) → −∞. Thus by the intermediate theo-
rem, we can take z1 such that P1(x|{x� y� z1}) ∈ (q�q). And likewise we can take
z2 such that P2(x|{x� y� z2}) = P1(x|{x� y� z1}). Note that, for fixed y , the value
λi({x′� y� z′

i}) depends only on utilities (u(x′)�u(z′
i)), and thus can be written

as λi({x′� y� z′
i}) = gi(u(x

′)�u(z′
i)). This function gi is continuous and strictly

decreasing in each argument. Therefore, for a strictly decreasing sequence
εk ↘ 0, we can find an increasing sequence ε′

k ↗ 0 such that g1(u(x) + εk�
u(z) + ε′

k) = g1(u(x)�u(z1)) for all large enough k. Pick such k so that
c′−1

1 (u(x)+ εk + g(u(x)�u(z))) < q. By connectedness and continuity, we can
take x′ and z′

1 such that u(x′) = u(x)+ εk and u(z′
1)= u(z)+ ε′

k. Note that we
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have P1(x
′|{x′� y� z′

1}) < q and P1(y|{x� y� z1}) = P1(y|{x′� y� z′
1}) by construc-

tion. Using the same argument, we can take z′
2 such that g2(u(x

′)�u(z′
2)) =

g2(u(x)�u(z2)), or P2(y|{x� y� z2})= P2(y|{x′� y� z′
2}).

In the above construction, u(x′) > u(x) holds, which ensures P1(x
′|

{x�x′}) > 1
2 . Then, because P1 is more selective than P2, P1(x

′|{x′� y� z′
1}) ≥

P2(x
′|{x′� y� z′

2}) follows.
By FOC, for each i = 1�2,

c′
i

(
Pi

(
x|{x� y� zi}

)) = u(x)+ λi

({x� y� zi})�
c′
i

(
Pi

(
x′|{x′� y� z′

i

})) = u(x′)+ λi

({
x′� y� z′

i

})
�

so

c′
1

(
P1

(
x′|{x′� y� z′

i

})) − c′
1

(
P1

(
x|{x� y� zi}

))
= c′

2

(
P2

(
x′|{x′� y� z′

2

})) − c′
2

(
P2

(
x|{x� y� z2}

))
�

or ∫ P1(x
′|{x′�y�z′

1})

P1(x|{x�y�z1})
c′′

1(p)dp=
∫ P2(x

′|{x′�y�z′
2})

P2(x|{x�y�z2})
c′′

2(p)dp�(10)

By P1(x
′|{x′� y� z′

1})≥ P2(x
′|{x′� y� z′

2}) and P1(x|{x� y� z1})= P2(x|{x� y� z2}), it
leads to a contradiction.

To show the “if,” take any x�x′� y� z1� z2 such that Pi(y|{x� y� zi}) =
Pi(y|{x′� y� z′

i})� i = 1�2 and P1(x|{x� y� z1}) = P2(x|{x� y� z2})�P1(x|{x�x′}) >
P1(x|{x�x′}). As in the “only if” above, FOC implies (10), which ensures
P1(x

′|{x′� y� z′
1})≥ P2(x

′|{x′� y� z′
2}).

A.6. Proof of Proposition 4

To show the first direction, take any A�B with x� y ∈ A ∩ B such that
P(x|A) ≥ P(x|B) and P(x|A) > P(y|A). Acyclicity implies that P(y|A) ≥
P(y|B) holds. Thus from the FOCs u(x)+ λ(A) = c′(P(x|A)), it follows that
λ(A)≥ λ(B) and u(x) > u(z). Using these FOCs, we can express the log-ratio
of choice probabilities as

log
(
P(x|A)

P(y|A)

)
= log

(
c′−1

(
u(x)+ λ(A)

)
c′−1

(
u(y)+ λ(A)

))

= h
(
u(x)+ λ(A)

) − h
(
u(y)+ λ(A)

)
≥ h

(
u(x)+ λ(B)

) − h
(
u(y)+ λ(B)

)
= log

(
c′−1

(
u(x)+ λ(B)

)
c′−1

(
u(y)+ λ(B)

))
= log

(
P(x|B)
P(y|B)

)
�



2404 D. FUDENBERG, R. IIJIMA, AND T. STRZALECKI

where the inequality follows by the convexity of h, u(x)−u(y) > 0, and λ(A)≥
λ(B). Therefore, P(x|A)/P(y|A)≥ P(x|B)/P(y|B).

A.7. Proof of Proposition 5

(1): To show that Asymptotic Non-Discrimination holds, take any se-
quence of menus An such that x� y ∈ An for each n and limn P(x|An) =
limn P(y|An) = 0. From the FOC u(x) + λ(An) = c′(P(x|An)) and
limq→0 c

′(q) = −∞, P(x|An)→ 0 implies λ(An)→ −∞. Therefore,

log
(
P(x|An)

P(y|An)

)
= log

(
c′−1

(
u(x)+ λ(An)

)
c′−1

(
u(y)+ λ(An)

))

= h
(
u(x)+ λ(An)

) − h
(
u(y)+ λ(An)

) → 0

as n → ∞. Therefore, P(x|An)

P(y|An)
→ 1.

(2): Suppose to the contrary that there exists r > 0 such that h(r− t)−h(−t)
does not converge to 0 as t → ∞. Let b ∈ (0�∞] denote the limit superior of
the sequence. Then there exists a sequence {λn}∞

n=1 such that λn → −∞ and
h(r + λn)− h(λn)→ b.

By Continuity, u is continuous, and Richness ensures that its range is un-
bounded from below and above. Define q as the unique solution to r =
c′(q)− c′(1 − q). By Richness, there exist x� y such that P(x|{x� y}) = q. Then
FOC implies u(x)− u(y)= r. We assume u(y)= 0 without loss of generality.

Because of λn → −∞, we have c′−1(r + λn) → 0. By connectedness of Z,
using the intermediate value theorem argument, for each n we can find zn
such that c′−1(r + λn) = P(x|{x� y� zn}). FOC u(x) + λ({x� y� zn}) = c′(P(x|
{x� y� zn})) and u(x) = r imply λn = λ({x� y� zn}). This leads to

log
(
P

(
x|{x� y� zn}

)
P

(
y|{x� y� zn}

))
= log

(
c′−1(r + λn)

c′−1(λn)

)

= [
h(r + λn)− h(λn)

] → b

as n → ∞. Because b > 0, lim P(x|{x�y�zn})
P(y|{x�y�zn}) > 1, which contradicts Asymptotic

Non-Discrimination.

A.8. Proof of Proposition 6

Note that when P is deterministic, P(x|A) ≥∗ P(y|B) iff P(x|A) > P(y|B)
iff P(x|A) = 1 and P(y|B)= 0.

Equivalence of (1) and (4): When P is deterministic, it induces a determinis-
tic and single-valued choice function C :A→ Z by C(A)= x with P(x|A) = 1.
Then Item Acyclicity is satisfied if and only if the deterministic choice function
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satisfies the Congruence axiom (Richter (1966)), that is, there is no sequence
of items x1�x2� � � � � xn such that

x1 = C(A1) �= x2 ∈ A1� x2 = C(A2) �= x3 ∈A2� � � �

xn = C(An) �= x1 ∈ An�

As shown by Richter (1966), this is equivalent to the existence of a preference
over Z such that for each A, C(A) is the set of the most preferred elements
of A. Because Z is finite and C is single valued, this is equivalent to the exis-
tence of a strict utility function that rationalizes C.

(4) ⇒ (3): Let u be an injective function such that P(x|A) = 1 iff u(x) =
maxz∈A u(z). Suppose that Weak Acyclicity is violated by a sequence
P(x1|A1) > P(y1|B1)�P(x2|A2) > P(y2|B2)� � � � �P(xn|An) > P(yn|Bn). Pick
any j1 = 1�2� � � � � n. Because xj1 = yk1 for some k1 = 1�2� � � � � n, P(xj1 |Bk) =
P(yk|Bk) = 0. Also, as Bk = Aj2 for some j2 = 1�2� � � � � n, 1 = P(xj2 |Bk) >
P(xj1 |Bk) = 0. Since n is finite, we can construct a sequence P(xj1 |Bk1) <
P(xj2 |Bk1)�P(xj2 |Bk2) < P(xj3 |Bk2)� � � � �P(xjn |Bkn) < P(xj1 |Bkn), which leads
to a contradiction u(xj1) < u(xj2) < · · ·< u(xjn) < u(xj1).

(3) ⇒ (2): This immediately follows by definition.
(2) ⇒ (1): Suppose that Item Acyclicity is violated by a sequence P(x1|A1) >

P(x2|A1)�P(x2|A2) > P(x3|A2)� � � � �P(xn|An) > P(x1|An). Then, 0 =
P(xk+1|Ak) < P(xk+1|Ak+1)= 1 for each k = 1� � � � � n− 1, and 0 = P(x1|An) <
P(x1|A1)= 1 hold. Thus Menu Ayclicity is also violated, a contradiction.

A.9. Proof of Proposition 7

Proof of (1): For any φ :R → R∪{∞} that is C1 over φ−1(R), strictly convex,
and satisfies (−1�0) ⊆ range(φ′) and any cost function c, define the functions
Vφ : �(A)→ R∪ {∞} and Vc : �(A)→R∪ {∞} as follows:

Vφ(p)= inf
ε∈R|A|

∑
x∈A

p(x)
[
u(x)+ εx

] +
∑
x∈A

φ(εx)�

Vc(p)=
∑
z∈A

(
u(z)p(z)− c

(
p(z)

))
�

Note that Vφ(p) − Vc(p) = ∑
z∈A{c(p(z)) + infεz∈R[p(z)εz + φ(εz)]}. For

any function φ, define the function φ̂ by φ̂(ε) = φ(−ε). Then c(p(z)) +
infεz∈R[p(z)εz + φ(εz)] = c(p(z)) + infεz∈R −[p(z)εz − φ̂(εz)] = c(p(z)) −
supεz∈R[p(z)εz − φ̂(εz)].

To prove the first claim, fix φ and define c to be the convex conjugate of φ̂,
that is, c(q) = supε{qε − φ̂(ε)}. Then c′(q) = φ̂′(−q) = −φ′−1(−q) for each
q ∈ (0�1) from the assumption (−1�0) ⊆ range(φ′). Thus, c is a cost function
and Vφ(p)− Vc(p)= 0 for all p.
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To prove the second claim, note that if we choose φ so that φ̂ is the con-
vex conjugate of c, that is, φ(−ε) = φ̂(ε) =: supq>0{εq − c(q)}, then φ̂′(w) =
c′−1(−w), so it is strictly convex and satisfies (−1�0) ⊆ range(φ′). By the
Fenchel biconjugation theorem (Theorem 12.2 of Rockafellar (1970)) c is the
convex conjugate of φ̂, so likewise Vφ(p)− Vc(p)= 0 for all p.

Proof of (2): Suppose that P is represented by AVU with limε→∞ φ′(ε) = 0.
Part 1 implies that P is represented by APU with c(q) = supε{qε − φ(−ε)},
and since c′(q) = −φ′−1(−q) for each q ∈ (0�1), limq→0 c

′(q)= −∞.
Suppose that P is represented by APU with cost c. Part (1) implies that P is

represented by AVU with φ(ε) = supq∈(0�1]{−εq − c(q)}, so φ′(ε) = −c′−1(w),
and limq→0 c

′(q)= −∞ implies limε→∞ φ′(ε)= 0.
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