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Abstract

We specify a three-stage production function for rice cultivation which incorporates the sequential nature

of both production shocks, including weather, and input choices based on sequentially updated information

sets of history of realized shocks and observed changes in crop growth. The production function is CES

across stages, thus taking into account substantial complementarities between different phases of the

biophysical crop growth process, in contrast to the substitute nature of commonly used Cobb-Douglas

specification. This framework is particularly well-suited for evaluating the effect of climate change on crop

cultivation practices and yields. We apply the model to 11-year panel of rice farmers in Thailand. The

panel structure of our data allows us to analyze both the cross sectional effects of weather shocks and

climate change on yields, and the effects on the mean levels and shape of yield distribution for individual

farmers. We find substantial heterogeneity among farmers in the effect of both weather shocks and climate

change on yields. We consider two alternative climate change scenarios for Southeast Asia, one with mild

increases of temperature and rainfall throughout the year and the other with more extreme temperature

increases and less rainfall during months of rice cultivation. While from the farmer’s perspective

uncertainty of yields decreases with more extreme climate change, cross sectional heterogeneity in

uncertainty increases. Our focus is on detailed partial equilibrium analysis of the effects of climate change

on yields at the crop-plot level, accurate understanding of which is essential for global general equilibrium

modeling of environmental changes. We integrate our economic model of rice production with soil science

crop growth modeling, weather simulators, and global climate change models.
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1 Introduction

We quantify the impact of weather variation and climate change on the production of rain-fed

rice. Rice is a major crop of Thailand both for domestic consumption and export1, as it is for

other countries in Southeast Asia. Crop failure and commodity shortages can lead to disaster,

even national calamities. However our story turns out a bit differently. It is a tale of substantial

heterogeneity in impact of weather variation for the given contemporary climate, as well as for

climate shift scenarios, and changes in uncertainty that farmers face.

We analyze two alternative climate change scenarios, one mild and another more severe. Then,

taking advantage of detailed panel data, we are able to distinguish two dimensions of the effect

of climate change on rice yields. One is the extent of heterogeneity in yield distributions across

households, both in means and in variation, or uncertainty, that is present under a given climate,

and how this cross sectional heterogeneity in means and variation is affected by climate change.

The other is how climate change affects yield uncertainty from the household’s perspective. We

find that extreme climate change increases heterogeneity in levels and uncertainty of yields across

households but decreases uncertainty about yields for a given household.

Our detailed agricultural data are gathered in the field in the Northeast of Thailand, in a semi-

arid tropics zone, as part of Townsend Thai monthly survey, and form a panel for 1999-2009 cov-

ering 11 crop cycles. The data we use cover 268 households and 2,887 crop plots in two provinces,

Sisaket and Burirum. The data contain the details on inputs use including fertilizer, labor, and

land planted; harvests and hence yields; crop operations by name, which allows a multistage ap-

proach to modeling crop production; and a suite of environmental data including initial plot soil

measurements, monthly rainfall within village and temperature at nearby meteorological station.

We integrate soil science crop modeling, weather simulators, and global climate change models

with this multistage crop production model. Farmers are imagined to maximize expected profits,

as if they were risk neutral2. Yields in the final stage are a function of rainfall, temperature and

inputs during that stage. The initial condition for the final stage is the condition of crop-plot3 at the

beginning of the final stage. In turn that plot condition is a function of production activities in the

previous stage, both inputs use and realizations of shocks. We use a combination of a biophysical

1Thailand is the world’s largest rice exporter, and rice is one of Thailand’s top ten exports. Thailand’s share of

world’s rice export averaged 30 percent for 1980-2006 (FAOSTAT, http://faostat.fao.org, exports measured in tons).
2Household production separates from consumption and labor supply decisions when markets are complete. There

is some evidence for this in the Townsend Thai Project monthly data. For details, see Alem and Townsend (2007).

Levels of consumption smoothing by households in these data provide evidence of extensive social networks that

enable consumption smoothing and thus approximate Arrow-Debreu institutions.
3We refer as "crop-plot" to plot- and year-specific observations, or crops cultivated on a given physical plot in a

given year.
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crop production model, called DSSAT, and previous labor effort to measure as best we can the

condition of the plants, i.e. due to human and physical interaction. Households are forward looking

and make expectations of weather and prices into the future based on current information. Finally,

the timing of planting is incorporated through its effect on the timing of stages and therefore on

the weather realization for a given plot. While weather is mostly uniform within a village, or even

across nearby villages, its impact is heterogeneous as farmers plant at different time.

We model crop cultivation as having a general constant elasticity of substitution (CES) spec-

ification between production stages, rather than assuming a special case such as unitary or linear

elasticity. The biophysical nature of crop development suggests limited substitutability between

early and later stages of plant growth. For example, lack of rainfall when seedlings are planted in

the beginning of crop cultivation will result in wilted seedlings, and abundant rainfall in subsequent

months will not compensate for it. Similarly, one cannot substitute labor during planting stage with

labor during harvesting stage; indeed, these two labor inputs are more likely to be complements.

Our general CES approach does not impose any a priori restrictions on the level of substitutabil-

ity or complementarity of production processes in different stages. Instead, we allow the data to

determine these inter-stage elasticities.

This more realistic approach has important implications for the analysis of the effects climate

change has on yields. Limited substitutability of production activities across stages means lack

of flexibility in adjusting timing of inputs use once production has started. For example, once

seedlings are transplanted, labor has to be spent on taking care of the crop, irrespective of an-

ticipated future positive or negative weather shocks. Thus input choices are driven more by the

demands of the current state of the crop, prior to realization of all weather shocks, and less by

expectations of future weather shocks. This lack of flexibility in input timing once production is

in process induces variability in yields for several reasons. First, it makes choice of planting date

much more significant, as that is the only timing decision where the farmer has certain flexibility.

As choice of planting time is made before weather shocks are realized, it is based on farmer’s

weather expectations, and introduces variability in yields due to imperfect foresight (and also po-

tentially due to heterogeneity in expectation formation). Heterogeneity in planting date, in turn,

introduces heterogeneity in stage-specific weather shocks despite the aggregate nature of weather,

since crops on plots that were planted on different dates will be at different stages of growth at the

same calendar time, and so the same aggregate weather realization will affect them differently.

In contrast, Cobb-Douglas specification, with unitary elasticity of substitution across produc-

tion stages, allows farmers substantial flexibility in timing of inputs application even after planting

has started. Consequently, under Cobb-Douglas specification input choices are driven by expec-

tations of future weather shocks and current weather realizations, with current and future inputs
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being substituted for one another depending on the relative effect of current versus expected impact

of weather realizations. That is, under Cobb-Douglas the important factor in farmer’s decisions is

farmer’s weather expectations once planting has started, while under general CES specification

that important factor is farmer’s weather expectations before planting has started and his choice of

planting date based is on these pre-planting expectations. As a result, Cobb-Douglas specification

does not capture heterogeneity in planting time, and consequently it does not capture significant

sources of heterogeneity in yields.4

We model production shocks, which are mainly weather realizations, as stage-specific and cor-

related across stages, employing a general specification that does not restrict the magnitudes of

these correlations in any way. Our baseline model displays some key features. The data in fact dis-

play zero substitutability between soil quality and planting activities, and between growing stage

and harvesting. There is more substitutability between planting stage and intermediate growing

stage. This result underlines the importance of structural CES approach to modeling crop cultiva-

tion (and again the drawbacks of using linear or Cobb-Douglas specification for studying the effects

of climate change on yields). Another implication of this result is that absence of substitutability

between soil quality and planting activities underlines the importance of variation in soil quality in

determining yields. In other words, initial, innate soil quality is a significant source of yield het-

erogeneity. Our estimates also indicate that the effect of weather, and rainfall in particular, is most

pronounced during intermediate growth stage. We find that both DSSAT and previous stage la-

bor are significant measures of intermediate outputs. These results both underline the importance

of properly accounting for nonlinear interactions of weather and soil with crop development, as

biophysical models like DSSAT do, and at the same time demonstrate that using such simulation

models without accounting for human input is not sufficient. To our knowledge, we are among the

first to integrate biophysical soil models with structural production function.5

We study though the lens of the model as it stands the impact of variation in weather, for the

given contemporary climate. We also simulate the impact of weather generated for two alternative

climates, the low and high emissions IPCC SRES climate change scenarios. For this study, we have

chosen to use climate change predictions produced for the 4th Assessment Report of the United

Nations Intergovernmental Panel on Climate Change (IPCC), released in 2007 (Cruz, Harasawa,

4We thank Andrew Foster for pointing out this advantage of CES specification.
5Existing literature contains a number of works that emphasize the potential of cross-disciplinary approach for

the analysis of crop cultivation and present empirical frameworks that integrate biophysical and econometric models.

Examples are Antle and Capalbo (2001), Stoorvogel, Antle, Crissman, and Bowen (2004), Antle and Stoorvogel

(2006) and Valdivia, Antle, and Stoorvogel (2012). However, the economic behavior of farmers in these papers is

represented by generalized reduced-form empirical specifications of input demands, rather than a structural model.

These papers vary in the extent of integration of econometric and biophysical models.
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Lal, Wu, Anokhin, Punsalmaa, Honda, Jafari, Li, and Ninh, 2007). We use an “ensemble-mean”6

output of multiple, internationally reputable coupled Atmospheric-Oceanic General Circulation

Models (AOGCMs) to produce predicted changes for the Southeast Asia region for the time period

2040-2069, relative to the 1960-1990 baseline period7. AOGCMs are computationaly intensive

numerical models driven by equations for atmospheric and oceanic processes, which are integrated

forward sequentially (e.g., temperature, moisture, surface pressure).

Because of the uncertainty in future anthropogenic global emissions (which may differ dramat-

ically due to economic development, policy decisions or technology changes), as well as to assess

the range of likely possible climate changes and impacts, we simulated two alternative economic

scenarios selected from a set of widely-used scenarios developed for the IPCC Third Assessment

Report: the Special Report on Emissions (SRES), the highest emissions trajectory scenario A1F1

and the lowest emissions trajectory scenario B1 (Nakicenovic, Alcamo, Davis, de Vries, Fenhann,

Gaffin, Gregory, Grubler, Jung, and Kram, 2000)8, both for the 2040-2069 time period. We did

not specifically model El Niño impacts, as our primary focus was on impacts and adaptations to

longer-term “baseline” changes.

IPCC ensemble-mean results predict a net increase in yearly average temperature of between

1.32◦C (lowest emissions scenario B1) and 2.01◦C (highest emissions scenario A1F1) and an in-

crease in annual precipitation of 2.25 percent (lowest emissions) and 1.00 percent (highest emis-

sions) for the 2040-2069 period, relative to the baseline 1961-1990 period (Cruz, Harasawa, Lal,

Wu, Anokhin, Punsalmaa, Honda, Jafari, Li, and Ninh, 2007).

Assessing the impact of these changes on future agricultural outputs and crop yields is complex,

as yields are a result of interactions between temperature, precipitation effects, direct physiological

effects of increased CO2, and effectiveness and availability of adaptations (Parry, Rosenzweig,

Iglesias, Livermore, and Fischer, 2004). Consequently, predictions for Asia are mixed. Some

studies find decreases in rain-fed crops in South and South-East Asia (Rosenzweig, Iglesias, Yang,

Epstein, and Chivian, 2001). Others such as Cruz, Harasawa, Lal, Wu, Anokhin, Punsalmaa,

Honda, Jafari, Li, and Ninh (2007), using the HadCM2 global climate model, indicate that crop

yields could likely increase up to 20 percent in East and South-East Asia, while Parry, Rosenzweig,

Iglesias, Livermore, and Fischer (2004) find both increases and decreases in yields for Thailand

6“Ensemble-mean” predictions are the mean output from multiple models, run together to avoid potential bias or

flaws inherent in any particular climate change model, providing a superior delineation of the forced climate change

signal from the natural background variability of the system (Giorgi and Mearns, 2002).
7The models are listed on the IPCC website.
8The SRES scenarios, as with all economic scenarios of emissions and their reliability, are a source of some

controversy. For example, the SRES scenarios have been criticized for their use of Market Exchange Rates (MER) for

international comparison, in lieu of PPP exchanges rates, which correct for differences in purchasing power. However,

for this micro-study, we accept these scenarios as given.
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depending on CO2 regimes.

We find that from a household’s perspective, mean yields decrease with more severe climate

change. While this decrease is statistically significant, its magnitude is low. There is no significant

change in mean household yields for a milder climate change. Yes at the same time, heterogeneity

in mean yields across households, in the cross section, increases for both alternative climate change

scenarios. From the perspective of the farmer, uncertainty in the distribution of yields decreases in

the more extreme climate.

This paper is organized into seven sections. Section 2 outlines the multistage model of rice

cultivation. Section 3 discusses the structure of production shocks and the error term. Section 4

describes the data. Section 5 presents estimates of the multistage model. Section 6 outlines the

integration of economic, crop growth, weather and climate models and presents our analysis of

climate change impact on yields. Section 7 concludes the paper.

2 Modeling Rice Cultivation

Economic analysis of production traditionally assumes that production process occurs in one stage.

All input choices are made at the start of production. Within the single production stage, all inputs

are utilized simultaneously and timing of input usage does not affect realized output. Inputs are

defined solely on the basis of their physical characteristics.

The single stage approach is ill-suited for analysis of agricultural crop production (Antle, 1983;

Antle and Hatchett, 1986)9. Crop production is defined by the process of a crop’s biological

growth, which consists of distinct, chronologically sequential phases. Crop’s need for and respon-

siveness to a given physical input varies across different growth phases. This makes the timing

characteristic of inputs important in analysis of crop cultivation. Depending on the progress of

crop growth, the farmer may want to adjust his use of inputs. As a result, input decisions are

sequential in nature and are not all made at the start of production. The farmer responds to real-

ized production shocks as captured in the state of the crop-plot, while forecasting future shocks

and actions. The farmer can also use realized production shocks to update his information set and

therefore his expectations of production shocks for upcoming stages. This can introduce a bias in

estimation when production shocks influencing input choices are not seen by the econometrician

and end up in the yield error term.

With crop cultivation, each sequential stage can be thought of as a separate production sub-

process with its own production function. We map the growth phases of biological development of

9See also Just and Pope (2001) and Just and Pope (1978) for rigorous discussion of agricultural production func-

tions.
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the rice plant into economic production stages by matching the timing of production operations to

the timing of plant development. First is the juvenile growth phase, during which germination takes

place. It corresponds in the production process to planting of seeds and growing and transplanting

of seedlings. The second is the intermediate phase, during which panicle initiation and heading

occur. It corresponds to crop maintenance stage, which includes such operations as weeding and

fertilizing. Third is the final phase, during which grains fill and mature. It corresponds to harvest

collection and storage.

Using this mapping, we construct a three-stage rice production function. Within each stage,

several operations can be performed simultaneously. Output from the previous stage is an initial

condition for next stage production subprocess. Input decisions are made at the start of each

stage, with updated expectations based on history at that point in time. This approach incorporates

the sequential nature of crop production, where production shocks and input decisions from earlier

stages affect crop-plot conditions and therefore input decisions at later stages. We assume that crop

cultivation process is CES across stages and Cobb-Douglas within stages, with constant returns

to scale in both instances. This approach enables us to describe crop cultivation process as a

system of equations, with one equation specifying final output as a function of all inputs from all

three production stages, and three sets of equations describing input demands for each of the three

production stages.10 We now derive this system of equations.

Let i index the three production stages and let vector xi =
(
xi1 xi2 ... xi,Ni

)′
denote Ni inputs

for stage i . Let yi be the realized output of stage i , with y0 describing initial conditions of pro-

duction such as plot characteristics. Let εi be production shock realized during stage i , with ε0

describing weather in pre-planting months. Then output in stage i is fi (yi−1, xi , εi ) = yi exp (εi ),

for i = 1, 2, 3, where fi is stage i - specific stochastic production process and yi is stage i-specific

CES production function11:

fi (yi−1, xi , εi ) = Ai

(
θ i (yi−1 exp (εi−1))

γ i + (1− θ i )

(
Bi

Ni∏
n=1

x
αin

in

)γ i
)1/γ i

exp (εi ) , (1)

where γ i ≤ 1, and elasticity of substitution between production stages i and i − 1 is equal to

1/
(
1− γ i

)
.12 The order of events in each stage i is as follows. Input decisions xi are made

based on the history of production shocks and intermediate outputs realized in previous stages, and

10We later estimate the composite production function and input decision rules as a system of equations, with error

terms correlating across equations.
11Values of inputs, outputs and production shocks are plot-specific. Plot indexing is omitted for simplicity of

presentation.
12Special cases are Cobb-Douglas specification with γ i = 0, linear with γ i = 1, and Leontieff with γ i = −∞.
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before stage i shocks are realized. Next, production takes place and inputs xi are used at the same

time as production shocks for the current stage, εi , are realized. At the end of the stage, output for

the current stage, yi , is observed. Substituting in recursively for intermediate outputs, we obtain a

composite production function which describes final harvest as a function of initial plot conditions,

and inputs and realized production shocks from all three stages: f
(
y0, {xi , εi }3i=1

)
= y3 exp (ε3),

or

f

(
y0, {xi , εi }

3
i=1

)
= (2)

δ3

[
δ2

(
δ1

[
y
γ 1

0 + (ρ1z1)
γ 1
]γ 2/γ 1 exp

(
γ 2ε1

)
+ (ρ2z2)

γ 2

)γ 3/γ 2

exp
(
γ 3ε2

)
+
(
ρ3z3

)γ 3

]1/γ 3

︸ ︷︷ ︸
y3

exp (ε3) ,

where δi = Aiθ
1/γ i

i , ρi = Ai (1− θ i )
1/γ i , and zi = Bi

Ni∏
n=1

x
αin

in .

At each stage, the farmer chooses inputs to maximize expected profits. Let p denote the price

of final output and wi =
(
wi1 wi2 ... wi Ni

)
denote a vector of stage i input prices. At each stage i ,

expectations are taken conditional on all information available to the farmer at that point, which in-

cludes all realized production shocks, intermediate outputs and factor prices from previous stages,

and all current stage prices: Ii =
{{

y j

}i−1

j=0
,
{
ε j

}i−1

j=0
,
{
w j

}i

j=1

}
. Stage 3 information set also

includes final output price p. We assume that output and factor prices are independent from pro-

duction shocks.

At the beginning of stage 3, the farmer chooses profit-maximizing levels of stage 3 inputs, x3.

At that point, only stage 3 production shock is not yet realized. Therefore, the farmer’s information

set at the beginning of stage 3, I3 =
{{

y j

}2

j=0
,
{
ε j

}2

j=0
,
{
w j

}3

j=1
, p

}
, includes realization of

stage 2 output and all production shocks that occurred in earlier stages. The farmer solves

max
{x3n}

N3
n=1

p A3

(
θ3 (y2 exp (ε2))

γ 3 + (1− θ3)

(
B3

N3∏
n=1

x
α3n

3n

)γ 3
)1/γ 3

︸ ︷︷ ︸ E3

y3

[
exp (ε3)

]
−

N3∑
n=1

w3nx3n,

with expectation of stage 3 production shock, E3

[
exp (ε3)

]
, conditional on information set I3. The

first order conditions are

pE3

[
exp (ε3)

] ∂y3

∂x3n

= w3n ∀n ∈ {1, ..., N3}

and have the standard interpretation that at the optimum level, input’s marginal product is equal to
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its real price.

From the first order conditions it follows that α3 jw3k x3k = α3kw3 j x3 j for all j, k ∈ {1, ..., N3}.

This lets us express all stage 3 inputs in terms of one stage 3 input, say, x31, as x3k =
α3kw31

α31w3k
x31 for

all k ∈ {1, ..., N3}. Solving first for the optimal x31, we can then solve for optimal stage 3 inputs

levels x3k ∀k ∈ {1, ..., N3}:

x3k =

(
θ3

1− θ3

)1/γ 3 α3k y2 exp (ε2)

B3w3kλ3

[
(1− θ3)

1
γ 3−1

(
A3 B3λ3 pE3

[
exp (ε3)

]) γ 3
γ 3−1 − 1

]−1/γ 3

(3)

∀k ∈ {1, ..., N3}, where λ3 =
N3∏

n=1

(
α3n

w3n

)α3n

. Using the approximation ln (x − 1) ≈ ln x , we can

obtain the log-linear approximation

ln x3k ≈ lnα3k + C3 + ln y2 + ε2 −
1

1− γ 3

ln
w3k

p
+ (4)

+
γ 3

1− γ 3

N3∑
n=1,n 6=k

α3n ln
w3k

w3n

+
1

1− γ 3

ln E3

[
exp (ε3)

]
∀k ∈ {1, ..., N3} ,

where the common component of the constant term is C3 =
1
γ 3

ln θ3 +
1

1−γ 3
ln A3 (1− θ3) +

γ 3

1−γ 3

(
ln B3 +

N3∑
n=1

α3n lnα3n

)
. Input demand is increasing in previous intermediate output. As-

suming that current inputs and previous intermediate output are complements rather than substi-

tutes, so that γ 3 < 0, input demand is increasing in expected production shock and in relative

prices of other stage 3 inputs, and decreasing in its own real price.

At the beginning of stage 2, the farmer chooses profit-maximizing levels of stage 2 inputs, x2,

given realized stage 1 output and taking into account his anticipated stage 3 inputs demands. At

this point, the farmer’s information set is I2 =
{{

y j

}1

j=0
,
{
ε j

}1

j=0
,
{
w j

}2

j=1

}
. Farmer solves

max
{x2n}

N2
n=1

E2

[
p
]

E2

[
y3 exp (ε3)

]
−

N2∑
n=1

w2nx2n − E2

[
N3∑

n=1

w3nx3n

]
,

where expectations are conditional on information set I2, y3 is given by equation (1) and is a func-

tion of expected stage 3 inputs demands (3). Substituting equation (3) for stage 3 input demands

{x3n}
N3

n=1, we can express stage 3 production costs,
N3∑

n=1

w3nx3n , and deterministic stage 3 output,
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y3, in terms of deterministic component of stage 2 output, y2:

E2

[
N3∑

n=1

w3nx3n

]
=

(
θ3

1− θ3

)1/γ 3 y2

B3

E2

[
exp (ε2)

λ3g
1/γ 3

3

]

and E2

[
y3

]
= A3θ

1/γ 3

3 y2 E2

[
exp (ε2)

(
1+

1

g3

)1/γ 3

]
,

where g3 = (1− θ3)
1

γ 3−1
(

A3 B3λ3 pE3

[
exp (ε3)

]) γ 3
γ 3−1 − 1. The first order conditions for x2k, k =

1, ..., N2, are

A3θ
1/γ 3

3

∂y2

∂x2k

E2

[(
1+ g3

g3

)1/γ 3

exp (ε2 + ε3)

]
=

w2k

E2

[
p
]+ 1

B3

(
θ3

1− θ3

)1/γ 3 ∂y2

∂x2k

E2

[
exp (ε2)

λ3 pg3

]
.

That is, marginal cost of an intermediate stage 2 input, equal to the right hand side of the above

first order condition, consists of two components, concurrent and anticipated future marginal cost.

Concurrent marginal cost is the input’s real price, w2k/E2

[
p
]
. Anticipated future marginal cost

of an intermediate stage 2 input is its marginal effect on expected production costs of the future

production stage 3. Levels of stage 2 inputs affect optimal usage of future production stage 3 inputs,

and therefore expected stage 3 production costs, through their effect on the level of intermediate

output y2 which is the initial condition for stage 3 production. At the optimal level of stage 2 input

demand, this composite marginal cost is equal to that input’s marginal product, which is the left

hand side of the above first order condition. Note how both stage 2 input’s marginal product and

future marginal cost depend on expected production shock not only for the current stage, but also

for the subsequent stage 3.

Solving again first for the optimal x21, we can then solve for optimal stage 2 input levels:

x2k =

(
θ2

1− θ2

)1/γ 2 α2k y1 exp (ε1)

B2w2kλ2

[
(1− θ2)

1
γ 2−1

(
A2 B2λ2 E2

[
P3 exp (ε2)

]) γ 2
γ 2−1 − 1

]−1/γ 2

(5)

∀k ∈ {1, ..., N2}, where λ2n =
N2∏

n=1

(
α2n

w2n

)α2n

, P3

(
ε3, {w3n}

N3

n=1 , p

)
= θ

1/γ 3

3 pR

γ 3−1

γ 3

3 , and

R3

(
ε3, {w3n}

N3

n=1 , p

)
= (A3 exp (ε3))

γ 3
γ 3−1 −

(
(1− θ3) (B3λ3 p)γ 3

) 1
1−γ 3 .

Component R3 captures the net indirect effect of a change in stage 2 input on stage 3 production

process. This indirect effect comes from the direct positive effect of stage 2 input use on stage 2
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output. On the one hand, higher stage 2 output, which is used as an input in stage 3, results in

higher stage 3 output, other things being equal. On the other hand, recall from equation (3) that

demands for stage 3 inputs increase in stage 2 output. As a result, stage 3 output increases, but so

do stage 3 production costs. From equation (5), the marginal effect of expected stage 3 production

shock on stage 2 input demands, ∂x2k/∂E2 [ε3], is positive, while the marginal effect of expected

stage 3 real input prices on stage 2 input demands, ∂x2k/∂E2

[
w3k/p

]
, is negative. As in stage

3, stage 2 input demand is increasing in previous intermediate outputs, in expected production

shocks, and in relative prices of other stage 2 inputs, and decreasing in its own real price.

Rewrite R3 as

R3

(
ε3, {w3n}

N3

n=1 , p

)
=
(1− θ3)

1
γ 3−1 (A3 B3λ3 p exp (ε3))

γ 3
γ 3−1 − 1

(1− θ3)
1

γ 3−1 (B3λ3 p)
γ 3
γ 3−1

. (6)

For γ 3 < 0, it appears that the effect of expected increase in stage 3 output due to higher stage 2

input use is very pronounced, while the effect of higher stage 3 production costs is negligible. Note

that ∂R3/∂γ 3 < 0, so the stronger is complementarity between production stages 2 and 3 (that is,

the more negative γ 3 is), the more prevalent is the former effect over the latter. We approximate

R3 as R3 ≈ (A3 exp (ε3))
γ 3
γ 3−1 .13 Applying the log approximation to equation (5), we can write

stage 2 input demands as

ln x2k ≈ lnα2k + C2 + ln y1 + ε1 −
1

1− γ 2

ln
w2k

E2

[
p
]+ (7)

+
γ 2

1− γ 2

N2∑
n=1,n 6=k

α2n ln
w2k

w2n

+
1

1− γ 2

ln E2 [ε2 + ε3]

∀k ∈ {1, ..., N2} , where the common component of the constant term is C2 =
1

γ 3(1−γ 2)
ln θ3 +

1
γ 2

ln θ2 +
1

1−γ 2
ln A3 A2 (1− θ2)+

γ 2

1−γ 2

(
ln B2 +

N2∑
n=1

α2n lnα2n

)
.

We solve the farmer’s stage 1 maximization problem in a similar manner, and obtain the fol-

13This approximation eliminates dependence of stage 2 input demands on expected stage 3 factor prices.
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lowing log approximation14 of stage 1 input demands:

ln x1k ≈ lnα1k + C1 + ln y0 −
1

1− γ 1

ln
w1k

E1

[
p
]+ (8)

+
γ 1

1− γ 1

N1∑
n=1,n 6=k

α1n ln
w1k

w1n

+
1

1− γ 1

ln E1 [ε1 + ε2 + ε3] ∀k ∈ {1, ..., N1} ,

where expectations are conditional on the information set I1 = {y0, ε0, w1} and the common com-

ponent of the constant term is C1 =
1

γ 3(1−γ 1)
ln θ3+

1

γ 2(1−γ 1)
ln θ2+

1
γ 1

ln θ1+
1

1−γ 1
ln A3 A2 A1 (1− θ1)+

γ 1

1−γ 1

(
ln B1 +

N1∑
n=1

α1n lnα1n

)
.

Rice cultivation process is described by a system of equations consisting of cumulative pro-

duction function equation for final output (2) and equations approximating input demand for each

of the three stages: (8), (7), and (4).

2.1 Comparison of CES and Cobb-Douglas Specifications

For comparison, let’s consider Cobb-Douglas specification of stage production functions, so that

production activities in different stages are substitutes with unit elasticity of substitution, rather

than potentially complements as allowed for with our CES specification. Let stage production

functions be

fi (yi−1, xi , εi ) = Ai y
βi

i−1

Ni∏
n=1

x
αin

in exp (εi ) .

Constant returns to scale imply that β i +
Ni∑

n=1

αin = 1. Solving farmer’s profit maximization

problem at the beginning of stage 3, we obtain the following stage 3 input demands:

ln x3k = lnα3k + C3 + ln y2 + ε2 −
1

β3

ln
w3k

p
+

1

β3

N3∑
n=1,n 6=k

α3n ln
w3k

w3n

+
1

β3

E3 [ε3]

∀k ∈ {1, ..., N3}, where C3 =
1
β3

(
ln A3 +

N3∑
n=1

α3n lnα3n

)
. Comparing this equation with log

approximation of stage 3 input demands under CES specification in equation (4), there are two

differences. The first difference is the magnitude of the coefficient on expected stage 3 production

shock, E3 [ε3]. The coefficient is positive in both cases; however, it is greater than one under Cobb-

14This approximation eliminates dependence of stage 1 input demands on expected stage 2 and stage 3 factor prices.
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Douglas and less than one under CES when γ 3 < 0, that is, when stage 2 intermediate output and

stage 3 production activities are complements.15 The second difference is that relative prices of

other stage 3 inputs have negative effect on input demand under Cobb-Douglas and positive effect

under CES - again, assuming γ 3 < 0. If γ 3 > 0, so that intermediate stage 2 output and stage 3

production activities are substitutes, these qualitative differences with Cobb-Douglas specification

go away. The same qualitative results hold for input demands in stages 1 and 2.

2.2 Timing Decision

Once planting commences, the timing of the second and third production stages, corresponding

to intermediate growth and harvesting, is dictated by physiology of crop’s development. This is

confirmed by our data, which display consistency in duration of all three production stages across

years16. Thus choice of timing in crop cultivation, and resulting variation of timing of production

stages across households, are driven mainly by household’s choice of when to plant, or, in our

model, of the beginning of stage 1. The choice of planting date is, in turn, driven by observed

and expected weather conditions. For successful seed germination and transplanting of seedlings,

the soil has to contain a certain minimum amount of moisture available to the plant (Hasegawa,

Sawano, Goto, Konghakote, Polthanee, Ishigooka, Kuwagata, Toritani, and Furuya, 2008). An

optimum planting date can then be thought of as satisfying the following two conditions. First,

the farmer must believe that current level of soil moisture is sufficient for planting. Second, the

farmer must believe that rainfall and weather conditions in general in the upcoming month (the

usual duration of stage 1 is one month) are sufficient for the newly planted plants to survive. In

other words, the farmer starts planting when already realized level of soil moisture is sufficiently

high and when his expectations of future weather realizations, conditional on observed history, are

optimal for crop cultivation.

Formally, let i = 0 denote pre-planting stage, during which the farmer chooses a planting date,

and let ε0 denote the weather realization during this pre-planting stage. Farmer chooses ε0 that

maximizes his expected profits:

max
ε0

E0

[
py3 exp (ε3)−

N1∑
n=1

w1nx1n −
N2∑

n=1

w2nx2n −
N3∑

n=1

w3nx3n

]
, (9)

where expectation is conditional on the information set I0 = {y0}. By controlling the overall level

15A more explicit demonstration of the distinction between CES and Cobb-Douglas specifications that was raised

in section 1 requires derivation of input demands under Cobb-Douglas specification for intermediate stages in addition

to the final stage, which we do not include here for brevity of presentation.
16More details are provided in section 4.
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of weather shock realized before planting, or ε0, the farmer effectively chooses the planting date.

For example, if we think of ε0 as rainfall, by choosing a smaller or larger amount of rainfall to be

realized before planting starts, the farmer effectively decides whether planting should take place

earlier or later in a given year, conditional on (perceived) rainfall realizations. Note that input

amounts for stages 1 through 3, as well as final yield, are functions of future production shocks

ε1, ε2 and ε3. Thus optimal planting timing defined by equation (9) maximizes expected profits

conditional on realized and expected weather outcomes.

3 Production Shocks and Error Term

We have three directions of data variation: individual across households, spatial across plots and

villages, and temporal across stages and years. Let k index plots, h index households, v index

villages, i index stages, and t index years. For each province, we have data on four villages over

11 years, with around 33 households per village, and around 2 plots cultivated on average by a

given household per year. For each plot k in year t , we have three sets of production shocks and

error terms, corresponding to three production stages.

Because we have two temporal dimensions, production shocks can potentially be autocorre-

lated across stages (over i) and across years (over t). Similarly, there are three levels of potential

group error correlation, within a physical plot, within a household, and within a village. Let εkhvi t

denote the overall production shock for plot k belonging to household h in village v during pro-

duction stage i in year t , and let ξ khvi t denote the total unobserved by econometrician error term,

similarly defined. We now decompose the overall production shock and error term into observed

and unobserved components.

Weather Shock

One of the main production shocks for rice cultivation is weather, and particularly rainfall and

temperature. At a given point in time, weather is an aggregate shock at village level and is arguably

spatially correlated across villages. In our data, the four sample villages in the same province are

located very close to each other. Figures 1 and 2 illustrate this for Sisaket province. A similar

picture holds for Burirum province. Correlations of monthly rainfall between villages17 in our data

range from 0.95 to 0.98. In addition, plots belonging to sample households from different villages

are often adjacent to one another, and overall plots from all four villages in the same province are

17Our data contain daily village-level rainfall starting from 1998. More detailed description of the data is given in

section 4.
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spatially intermingled. This enables us to assume perfect spatial correlation of monthly weather

across all sample plots in the same province as a good approximation. Although monthly weather is

an aggregate shock, there is substantial variation among farmers in timing of production activities

in a given year. This results in noticeable variation in weather, and in particular rainfall, between

plots in a given stage, making stage weather plot-specific rather than aggregate. Let ρkhvi t denote

weather shock realized on plot k belonging to household h in village v in stage i in year t .

Figure 1: Location of Plots in Four Sample Villages in Sisaket Province

In terms of serial correlation, generally rainfall does not persist from year to year (Paxson,

1992). Weather is more likely to be serially correlated across stages. That is, covariance of ρkhvi t

and ρkhvi ′t is generally different from zero for stages i, i ′ ∈ {1, 2, 3}, while covariance of ρkhvi t

and ρkhvi t ′ is zero for all years t 6= t ′.

Farmers are able to predict, with varying success, the upcoming weather for future stages.

Let ρ̄khvi t denote farmer h’s weather expectation. The difference between realized and expected

weather, ρkhvi t − ρ̄khvi t , is the unanticipated weather shock. Let ρ̃khvi t denote this difference. By

construction, ρ̃khvi t has zero mean and is uncorrelated with farmer’s weather expectation, ρ̄khvi t .

At any given point in time, the effect of rain on plant development would vary depending on the

plot’s soil, elevation and slope. We have a reasonable measure of soil quality, but not of elevation

and slope. If elevation and slope vary substantially across plots, this would be a permanent plot-

specific effect. Let ukhv denote this unmeasured effect for plot k belonging to household h in

14



Figure 2: Zoom in on Plot Locations in Four Sample Villages in Sisaket Province

village v, and rkhvi t denote our measure of plot- and stage-specific weather shock during stage i in

year t . Weather shock can be written as a sum of stage- and plot-specific observed shock and fixed

plot-specific unobserved effect, ρkhvi t = rkhvi t+ukhv. As farmers know the characteristics of their

plots, including plot’s slope and elevation, ukhv is incorporated into farmer’s weather expectation,

ρ̄khvi t . We, as econometricians, on the other hand, do not observe plot’s slope and elevation, and as

a result our measure of a farmer’s weather expectation, r̄khvi t , does not incorporate ukhv. That is,

while for a farmer realized weather shock can be decomposed as ρkhvi t = ρ̄khvi t + ρ̃khvi t , we can

decompose it only as ρkhvi t = r̄khvi t + ρ̃khvi t + ukhv, where ρ̃khvi t is unanticipated by farmer and

observed by us weather shock18 and ukhv is unobserved by us plot-specific fixed effect. Similarly,

our measure of farmer’s weather expectation is accurate only up to ukhv: ρ̄khvi t = r̄khvi t + ukhv.

18ρ̃ phvi t = ρ phvi t − ρ̄ phvi t = rphvi t + u phv − r̄phvi t − u phv = rphvi t − r̄phvi t , and therefore we have an accurate

measure of ρ̃ phvi t . This result comes from assumption that actual weather effect, ρ phvi t , is additive in our measure of

weather, rphvi t , and the unobserved plot fixed effect, u phv .
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Other Production Shocks and Measurement Errors

Household-level shocks are unlikely to be correlated across years19,20, but are likely to persist

from stage to stage in a given year. Let ηhvi t denote these household- and stage-specific shocks,

then E
[
ηhvi t , ηhvi ′t

]
6= 0 for stages i, i ′ ∈ {1, 2, 3} and E

[
ηhvi t , ηhvi t ′

]
= 0 for any years t 6= t ′.

Consequently, E
[
ηhvi t |I1

]
= 0 and E

[
ηhvi ′t |Ii

]
6= 0 for i = 2, 3 and i ′ > i .

Two sources of measurement errors specific to our data should be mentioned. The first is

related to the interaction of fertilizer application and soil quality. We have measured data on soil

variables for a subset of plots, and these measurements were taken in the base year, 1998, and were

not repeated. We have location coordinates for all plots in the sample; using these, plots with no

soil data were assigned values of soil variables from geographically closest plots with soil data. If

fertilizer application is measured accurately but soil quality is not, it will be hard to disentangle

positive effect of fertilizer application on crop development for a given soil quality from the fact

that poor soils require higher fertilizer use. In the latter case, higher fertilizer use would be an

indicator of low soil quality, which has negative effect on crop development. Estimated effect

of fertilizer application on yields will be the net of both positive direct effect of fertilizer use

and negative effect of low soil quality. When soil quality is higher (lower) than reflected by soil

variables, the direct effect of fertilizer will be overestimated (underestimated). This is a fixed plot-

level measurement error and can be included together with unobserved slope and elevation into a

permanent plot-specific effect ukhv.

The second source of measurement error is the structure of the questionnaires, which ask about

activities performed since the last interview, not about dates on which they were performed. Be-

cause interviews are conducted monthly, all our variables measuring timing of production activities

are accurate up to a month. As a result, the difference between the timing of production activity,

in particular of planting, and of the timing of weather realization, can be measured only at month

level. For example, if two plots were planted in May, one in the first week of May, another in the

last week of May, and adequate rain started only in the middle of May, then second plot’s timing is

superior to that of the first plot, but we don’t capture this in our data. This difference between the

two plots ends up in the measurement error term and is specific to plot and stage. Let it be denoted

by ϕkhvi t . As all plots are subject to this measurement error and it is random in nature, we can

think that there is no systematic bias in this error term component.

19There are potential exceptions to this, such as cases of permanent disability.
20As part of preliminary data analysis, we have looked at each household’s placement, by percentile, in the cross

sectional yields distribution for each year, by province. The idea was to check whether some households consistently

have higher yields than other households. The data do not display any patterns of household level persistency in yields

between years.
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Composite Production Shocks and Error Terms

Composite production shock realized on plot k during stage i is the combination of weather and

household shocks, εkhvi t = ρkhvi t + ηhvi t . Farmer’s expectation of this shock is ε̄khvi t = ρ̄khvi t +

η̄hvi t . Both the realized shock and farmer’s expectation of it are serially correlated across stages

and within household and are serially uncorrelated across years.

Combining together all measurement errors and shocks that are unobserved by us, we can

write the composite error term as ξ khvi t = ukhv + ηhvi t + ϕkhvi t . This composite error term is

autocorrelated within a plot across stages and years, and within a household across stages within a

given year. Clustering of error terms at household level allows for unrestricted correlation of error

terms corresponding to the same household, including correlation of error terms corresponding to

the same plot. We have 141 distinct households in the Sisaket province sample, with an average

of 18 observations per household. The number of households in our sample is large enough, and

the number of observations per household is small relative to the number of households, to make

clustering at household level a viable option in practice. It should be noted that clustering does not

correct for potential bias in cases where household-specific shocks ηhvi t or plot fixed effects ukhv

are correlated with explanatory variables.

We model stage production shocks εkhvi t as joint normal variables. Let ζ khvi t be independent

standard normal variables. Define stage 0, or pre-planting, shock for plot k belonging to household

h in village v in year t as εkhv0t = σ 0ζ khv0t+µ0, whereµ0 and σ 0 are parameters. Then production

shock in pre-planting months is a normal variable with mean µ0 and variance σ 2
0. Parameters µ0

and σ 0 are invariant across plots, households, villages and years. We postulate that for each of

successive production stages 1 through 3 production shocks are correlated with the shock from the

previous stage. That is, for i = 1, 2, 3, εkhvi t = σ i

[
σ i−1,iζ khv,i−1,t +

(
1− σ 2

i−1,i

)1/2
ζ khvi t

]
+

µi . Then each εkhvi t is a normal variable with mean µi , variance σ 2
i , and σ i−1,i is the correlation

coefficient between production shocks in adjacent stages i and i − 1. This specification is flexible

with respect to the level of correlation between production shocks in different stages, allowing for

both zero and perfect correlation.

We can now write explicitly the expectation terms in linear approximations of input demands.

Substituting in
εkhv2t − µ2

σ 2

for ζ khv2t , expectation term ln E3

[
exp (εkhv3t)

]
in stage 3 input de-
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mand equation (4) is equal to

ln E3

exp

σ 3

σ 23

εkhv2t − µ2

σ 2︸ ︷︷ ︸
ζ khv2t

+
(

1− σ 2
23

)1/2
ζ khv3t

+ µ3


 =

=
σ 3σ 23

σ 2

εkhv2t + µ3 − µ2

σ 3σ 23

σ 2

+
σ 2

3

(
1− σ 2

23

)
2

,

since shock εkhv2t is already realized by the beginning of production stage 3 and is therefore

included in information set I3 on which expectation E3

[
exp (εkhv3t)

]
is conditional. Similarly,

expectation terms in stage 2 input demand equation (7) and stage 1 input demand equation (8) are,

respectively, equal to

ln E2 [εkhv2t + εkhv3t ] =
σ 2σ 12

σ 1

εkhv1t + µ̂2

and ln E1 [εkhv1t + εkhv2t + εkhv3t ] =
σ 1σ 01

σ 1

εkhv0t + µ̂1,

where µ̂2 is a combination of parameters measuring means µi , variances σ 2
i , and correlation coef-

ficients σ i−1,i of production shocks in stages 1 through 3, and µ̂1 is a combination of parameters

measuring means µi , variances σ 2
i , and correlation coefficients σ i−1,i of production shocks in

stages 0 through 3. In words, expectations of upcoming production shocks incorporate two types

of available information: realized production shocks and knowledge about the distribution from

which future shock realizations are drawn. Most recent production shock realization embodies all

relevant information that is available in preceding history of production shocks.

4 Data

Our data come from the Townsend Thai Project21 (Binford, Lee, and Townsend, 2004). We focus

on rice farmers in two provinces, Sisaket and Burirum, located in predominantly rural and poor

northeastern region of the country. Figure 3 shows location of our sample provinces in Thailand.

The northeastern region accounts for 57 percent of the total area under rice cultivation in Thailand

and 46 percent of the total rice production (Naklang, 2005). In each province, a tambon22 with

four sample villages was selected at random. Data are collected monthly at a household-plot level,

21Detailed description of the project can be found at Thailand Database Research Archive, http://cier.uchicago.edu/.
22Thai equivalent of a U.S county.
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Figure 3: Location of Sample Provinces in Thailand

with many households cultivating several plots in a given year. We use an unbalanced eleven-

year panel for 1999-2009. It includes 141 households in Sisaket province, with a total of 1,888

crop-plot observations over 11 years, and 127 households in Burirum province, with a total of 999

crop-plot observations. Table 1 shows village-level averages of number of years and plots per year

in the data. The first column shows number of households per village, second column shows mean

number of years per household, third column shows mean number of plots cultivated per year per

household, and fourth column shows total number of observations. On average, we have data for

seven years per household, with two crop-plots per cycle.

The data include information on usage and cost of labor and non-labor inputs used in separate

production operations. We also have sets of measures of plot soil quality, some household socio-

economic characteristics, and environmental data such as daily rainfall and temperature. During

each monthly interview, households are asked in detail about all their rice cultivation activities.

For each plot on which they grow rice, households report which operations were performed on the

plot since the last interview, which inputs were used and in which quantities.

The fact that data were gathered monthly for each plot enables us to avoid imposing uniform

bounds on stage timing and duration. Rather, we allow for plot-specific timing and duration of

stages. That is, not all farmers are doing the same thing at the same time. The fact that timing of

stages and of the overall production cycle vary across households and plots has several important
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Table 1: Number of Observations per Household, Village, and Province

Average number of:

Hhds, total years per hhd plots per hhd per year Obs., total

Sisaket province

Village 1 38 9.0 2.6 598

Village 6 43 8.7 2.0 534

Village 9 38 8.3 2.3 434

Village 10 22 9.2 2.3 322

Province total 141 8.8 2.3 1,888

Burirum province

Village 2 24 7.2 1.3 135

Village 10 37 7.2 1.9 316

Village 13 30 6.2 1.9 227

Village 14 36 7.8 2.0 321

Province total 127 7.2 1.8 999

implications. Stage timing reflects variation in a number of plot-specific phenomena that deter-

mine it, such as plot characteristics, current state of the crop, effects of the unobserved production

shocks, expectations of future production shocks, and the farmer’s approach to rice cultivation.

By incorporating variation in stage timing we take advantage of this additional information con-

tained in the data. Moreover, aggregate production shocks such as rainfall have different effects

on different plots because they may hit these plots during different production stages. Thus using

plot-specific stage timing enables us to estimate the effects of changes in rainfall and tempera-

ture on rice cultivation with increased accuracy. When computing amounts of inputs used in each

cultivation operation in each stage, we aggregate input usage over plot- and cycle-specific stage

periods. For the model estimation, we use variation in stage timing between plots that is already

present in the data and do not separately estimate the choice of planting date.

To map growth phases of rice plant into production stages, we look at the timing of cultivation

operations required at different stages of plant growth. At different stages of growth the rice plant

requires different types of care and so calls for performance of different operations. Operations

involved in rice production can be divided into three groups. The first group involves preparatory

operations necessary for initiation of plant growth. These include soil preparation, plowing, and

planting. The final group involves terminal operations that take place at the end of production cycle,

when plant growth nears conclusion. These include harvesting and preparation of harvest for sale

and/or storage. The timing of both preparatory and terminal operations in production cycle is fairly

intuitive: preparatory operations are performed at the beginning of production cycle in stage 1, and
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terminal operations are performed at the end of production cycle in stage 3. The intermediate group

involves operations aimed at plant care during plant development, such as fertilizing and weeding.

The timing of these intermediate operations is less intuitive.

For each plot, we determine the timing of stages 1 and 3 by looking at the timing of operations

that intuitively correspond to each of these stages. That is, the timing of stage 1 is determined

by farmer’s timing of preparatory operations, and the timing of stage 3 is determined by farmer’s

timing of terminal operations. Time period between stages 1 and 3 constitutes stage 2.

Table 2 shows variation in stage duration and timing across years. As noted earlier, we deter-

mine the timing of stages individually for each plot in each cycle. The first column of table 2 shows

the mean value across plots of the starting month for stage 1. Columns two through four show the

standard deviation for the starting month of each stage by province, and the remaining columns

show the province mean and standard deviation of duration of each stage in calendar months. It is

clear from table 2 that while stage durations are fairly consistent over years, there is pronounced

variation in stage timing across years. This suggests that there is effectively one timing decision in

a given year, namely, the choice of starting month for stage 1.

Our weather data consist of village-level daily rainfall data from 1998, and province-level daily

rainfall, temperature and solar radiation data from 1972. Temperature data include daily mean,

minimum and maximum temperature measures.

Rainfall shocks are of high significance for rice cultivation. Rice is a very water-demanding

plant. Most rice cultivation in Northeast Thailand is rainfed and makes little use of irrigation.

According to the report by the International Rice Research Institute, rainfed rice is grown on ap-

proximately 92 percent of the area under rice cultivation in northeastern Thailand (Naklang, 2005).

Farmers have to take the possibility of adverse rainfall shocks into account when making input de-

cisions. The effect of rain on the rice crop also depends on temperature, as higher temperature can

cause higher evapotranspiration and therefore lower soil moisture, the key latent variable. Both the

direct effect of rain on crop and its integration with temperature are nonlinear. We use village-level

total daily rainfall and province-level maximum daily temperature to construct a measure of rain-

fall shock as an estimated linear combination of rain, square of rain, temperature, and interaction

of rain and temperature. Although weather is an aggregate shock, realized and expected weather

varies across plots due to variation in stage timing.

Land variables describe the area used for rice cultivation as well as inherent characteristics of

land that affect rice cultivation, such as quality of soil. In any given cycle households typically

use several land plots. Land plots belonging to the same household need not be adjacent or even

located close to each other. Typically, smaller plots are located close to the house and larger plots

are spread around the village. As was illustrated in section 3, distributions of plots for villages
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in the same province overlap. It is even possible that plots belonging to the same household may

actually be further apart than plots belonging to different households. Similarly, plots belonging to

households from the same village may actually be further apart than plots belonging to households

from different villages. Thus, whether plots belong to the same household or even the same village

is not a good indicator of similarities in soil quality. Rather, soil quality is better captured by the

location of plots relative to one another.

Variables that describe soil quality include measures of chemical composition of soil and its

density. They indicate the soil’s ability to provide nutrients to plants and to retain water and

nutrients after rains and fertilizing. Soil variables describe initial conditions of rice production,

corresponding to y0 in terms of section 2 notation. We use two soil variables, cation exchange

capacity (CEC) and organic matter. CEC measures soil’s capacity to hold cation nutrients. It is

determined by the amounts of clay and humus in the soil, which improve its nutrient and water-

holding capacity. Organic matter helps the soil hold water and supplies nutrients.23 In terms

of section 2 notation, initial condition y0 is an estimated linear combination of two soil quality

measures and area under cultivation.

To construct a measure of intermediate "outputs", we use DSSAT - a powerful computer crop

growth model.24 The DSSAT system takes in amounts and timing of application of non-labor pro-

duction factors such as seeds and chemical fertilizer, as well as detailed data on inherent soil quality

and climatic conditions. The latter include actual historical data on daily variation in precipitation,

maximum and minimum temperature, and solar radiation. DSSAT then employs physical and

biophysical models of soil-plant-atmosphere interactions to simulate, day by day, the biological

growth of the plant by computing crop-specific growth responses, measured precisely in labora-

tory conditions, to physical inputs and changes in soil, water, carbon, and nitrogen. DSSAT tracks

plant’s growth with 30 dynamic indicators, such as number of leaves per stem, root density, and

stem weight.

The big advantage of DSSAT is the great level of detail and accuracy in modeling nonlinear

crop response due to purely climatic and soil conditions. Note, however, that DSSAT does not

take into account labor inputs or idiosyncratic shocks. In other words, DSSAT simulates plant

growth due to exogenous climatic and soil conditions but does not consider all factors and shocks

under which rice cultivation occurs in the field. DSSAT simulations are thus not exact measures

of the actual crop state. Rather, they are approximations of the crop state that should occur under

observed soil parameters, climatic conditions and non-labor crop inputs, as a result of quantified

23CEC is measured in meq/100g, or milliequivalents of hydrogen per 100 grams of dry soil. Organic matter content

is measured in percent.
24DSSAT, or Decisions Support System for Agrotechnology Transfer, has been maintained and supported by the

International Consortium for Agricultural Systems Applications (ICASA).
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crop-specific growth responses measured precisely in laboratory conditions.

DSSAT traces the state of the crop throughout the whole production cycle, something we do

not observe in the survey data. This allows us to use DSSAT simulations as imperfect estimates

of intermediate stage outputs. We use measures of leaf weight and number of tillers as indicators

of intermediate output from stage one, and measure of the progress of grain filling as indicator

of intermediate output from stage two. Because DSSAT does not incorporate labor input, we

use DSSAT indicators of intermediate output together with measures of labor inputs in previous

stages to provide a more accurate proxy for intermediate output. In terms of section 2 notation,

intermediate output y1 exp (ε1) is an estimated linear combination of two DSSAT measures of

intermediate output from stage 1 and labor used in stage 1, and intermediate output y2 exp (ε2) is

an estimated linear combination of one DSSAT measure of intermediate output from stage 2 and

labor used in stage 2.

Typically there are several groups of laborers working on a given plot: household members

who work on their own plot; villagers outside of the household, both relatives and non-relatives,

who work for free, for labor exchange, or for pay; and workers hired through a broker, usually in

teams. In other words, there are several ways for a household to adjust its labor input at a given

point of rice production in response to realization of intermediate output from the previous stage

or production shocks. We measure labor input as total hours by all workers for each production

stage. Apart from labor, other production inputs are seeds and seedlings for planting and chemical

fertilizer. Table 3 provides summary statistics for yields, production inputs, cultivated area, soil

quality measures, factor and final output prices, and rain and temperature for each province. There

are three inputs in stage 1: seeds, seedlings, and labor. Chemical fertilizer and labor are the two

inputs in stage 2. Stage 3 uses only labor input. In total, there are six input demand equations

corresponding to crop cultivation in our data.25 For factor and final output prices, we use the

village average as the measure of actual price26. This reflects the assumption that all households

are price takers in inputs and output markets.

Finally, we have data on whether the household is a member of informal social network in the

village. It is a direct measure of kinship that is not based on transactions, but on whether or not

individuals in a given household are related by blood or marriage to the individuals in any other

household, as of the time of the initial 1998 village census. As mentioned in the introduction, there

is evidence that these networks are effective smoothing mechanisms for households and approxi-

25We do not include equipment use in our estimation as we do not have good data on utilization of household’s

equipment.
26For each price, we first impose lower and upper caps on plot-specific observations. These caps are the first and

the 99th percentiles of the province distribution for a given production stage.
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Table 3: Summary Statistics

Sisaket province Burirum province

Mean St. Dev. Mean St. Dev.

Yield (kh/ha) 1,777.23 803.24 1,984.68 891.00

Initial conditions

Area (ha) 1.12 0.92 1.30 0.87

CEC 2.32 1.20 2.56 1.53

Organic matter 0.52 0.36 0.43 0.25

Amounts of inputs (per hectare)

Stage 1 chemical fert. (kg/ha) 11.32 41.90 40.67 117.27

Stage 2 chemical fert. (kg/ha) 147.15 142.52 113.35 103.93

Seeds (kg/ha) 35.24 66.03 96.46 77.98

Seedlings (sets/ha)a 788.69 703.06 280.63 559.72

Stage 1 labor (hrs/ha) 141.39 139.76 73.49 94.30

Stage 2 labor (hrs/ha) 34.82 68.96 22.96 60.20

Stage 3 labor (hrs/ha) 220.65 157.49 230.30 166.02

Factor and final output prices (in Thai Baht)

Stage 1 chemical fert. (Baht/kg) 10.71 4.44 9.32 3.64

Stage 2 chemical fert. (Baht/kg) 10.76 4.42 9.34 4.03

Seeds (Baht/kg) 8.09 3.64 7.88 2.73

Seedlings (Baht/set)a 1.70 1.66 5.22 5.93

Stage 1 labor (Baht/hr) 101.37 93.39 73.59 59.89

Stage 2 labor (Baht/hr) 69.06 57.26 45.74 45.42

Stage 3 labor (Baht/hr) 127.61 85.79 48.85 21.27

Rice (Baht/kg) 7.35 2.73 7.44 2.27

Rainfall and temperature

Stage 0 total rainfall (cm) 49.94 25.48 36.22 20.98

Stage 1 total rainfall (cm) 25.55 13.28 20.01 8.31

Stage 2 total rainfall (cm) 29.24 16.24 40.08 21.60

Stage 3 total rainfall (cm) 2.92 4.96 6.54 8.20

Stage 0 daily temperatureb (C) 33.85 0.49 34.13 0.57

Stage 1 daily temperatureb (C) 32.95 0.91 33.86 0.83

Stage 2 daily temperatureb (C) 32.19 0.67 32.88 0.59

Stage 3 daily temperatureb (C) 31.09 1.32 30.79 1.43

aOne set contains about 100 seedlings.
bTemperature measure is stage mean of maximum daily temperature.
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mate closely the full insurance.27 In Sisaket province, 87 percent of sample households are part of

their village’s informal networks; the number for Burirum is 80 percent. To be consistent with our

assumption of profit maximization, we estimate our model with Sisaket sample of plots belonging

to households that are part of such networks.

5 Production Function Estimation

We estimate the composite production function and input decision rules as a system. The system

approach to estimation accounts for common components of error terms in different equations

and delivers estimates of the parameters of the composite production function as well as decision

rules for all production inputs. We use iterative feasible general nonlinear least squares (IFGNLS)

estimator. We estimate the model with Sisaket province data. We then use Burirum data to evaluate

model’s accuracy in predicting out of estimation sample.28

Because the equations in the system are sequential in nature, the feedback of the error terms

goes only in one direction and the system is not simultaneous. Stage 1 inputs do not depend on

any realized production shocks, and only contain household or plot-level unobservables that can

potentially correlate with future production shocks. Stage 2 inputs depend on realization of stage

1 production shocks only. Stage 3 inputs depend on realization of production shocks in stages 1

and 2. Composite production function, or yield equation, depends on realization of production

shocks in all three stages. Within a given stage, input amounts are determined simultaneously but

do not influence each other, as is evident from equations (3) and (5).29 So in nature the system is

recursive across stages and seemingly unrelated within stages. However, in practice the system be-

comes seemingly unrelated across stages as well because of possible unobserved error components

discussed in section 3.

System estimation with the error terms clustered by household improves efficiency of the es-

timator and reliability of inference. To address consistency of estimation, we need to examine

the necessity to explicitly account for unobserved household or plot effects in the estimation, via

household fixed effects (FE). This would be the case if either different households use different

production technologies, so that parameters of production function in equation (1) vary across

27See Bonhomme, Chiappori, Townsend, and Yamada (2012), Chiappori, Samphatharak, Schulhofer-Wohl, and

Townsend (2012), and Kinnan and Townsend (2012).
28We plan in future research to calibrate our model to predict the effects of weather shocks and climate change for

the whole of Thailand. We use data from Burirum province, also located in Northeast Thailand but not adjacent to

Sisaket province, to test model’s ability to predict out of estimation sample.
29The same is true for stage 1 inputs. We have omitted stage 1 input equations from section 2 for the sake of brevity

of presentation, as they have the same structure as equations for stage 2 inputs.
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households, or if these unobserved effects correlate with our explanatory variables. The former is

an unlikely scenario, given spatial compactness of our sample. Suppose there is some unobserved

household-level effect, such as a shock to household’s demographics or economic affluence, that

cannot be promptly countered. Such shock could affect household’s input choices and timing of

planting decision, and therefore introduce endogeneity into equations. In this case, explicitly ac-

counting for household fixed effects reduces estimation bias. An unobserved "managerial ability"

of a household would have similar consequences.

There are several disadvantages to using fixed effects. First, FE reduce variation in the data,

focusing on within variation only and not taking into account between variation. This leads to the

estimation of only the short run effects of the explanatory variables, but not the long run effects.

Among our explanatory variables, rainfall (or weather shock in general) and fertilizer use are of

main interest. Within-household or within-plot variation in rainfall shock would capture rainfall

variation across years and therefore is sufficient to estimate the effect of rainfall on yields that we

are interested in. For fertilizer use, estimation based only on within variation will not capture the

overall effect fertilizer has on yields that is characteristic for the population as a whole. However,

given small number of plots cultivated per household, it will eliminate or at least substantially

mitigate the effect of unobserved plot-level slope and elevation data and measurement error in

plot soil quality, denoted by ukhv in the previous section. The average number of observations

per household is 20.24 for Sisaket province and 12.96 for Burirum province, which is arguably

not enough for consistent household FE or plot FE estimation. An important disadvantage of FE

estimation is that it rules out use of explanatory variables that are fixed at the household level. As

section 3 describes, in our data soil quality measures are fixed at plot level. Given small number

of plots cultivated per household, it is possible that low variation in soil quality variables among

plots belonging to the same household will lead to underestimation of the effect of soil quality on

yields in the household FE estimation. We therefore do not use FE in estimation but bear in mind

their potential presence.

Table 4 shows estimates of the structural coefficients of the model. First three rows show esti-

mates of elasticities of substitution. Note the low elasticities for stages 1 and 3, both of which are

not significantly different from zero and are significantly different from unity (the Cobb-Douglas

case). Low stage 1 elasticity underlines the decisive importance of initial conditions such as soil

quality for crop cultivation, suggesting that low soil quality is hard to compensate for with use of

inputs. Thus heterogeneity in soil quality will inevitably lead to heterogeneity in yields. Low elas-

ticity for stage 3 is intuitive. Stage 3 corresponds to harvesting operations, and if the crop hasn’t

developed, no amount of harvesting labor can compensate. Similarly, if no labor is employed to

harvest the crop, the yields will be zero despite the presence of developed crop. Stage 2 elasticity
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estimate is negative, although it is different from zero only at 10 percent significance level. A

negative elasticity estimate implies γ parameter greater than one, while γ = 1 is the upper lim-

iting case of perfect substitution. The 5 percent confidence interval for γ 2 includes γ 2 = 1. We

can interpret this estimate as suggesting that there is a fair amount of trade-off between stage 1

intermediate output, or how well young seedlings are developing after (trans)planting, and stage 2

production operations such as fertilizer application and weeding, as well as stage 2 weather real-

izations. Overall, elasticity estimates suggest that stage 2 is the most opportune period for farmer

to impact his crop’s development.

Measures of initial condition include cultivated area and soil quality measures. Significant pos-

itive coefficient estimate for organic matter variable confirms the expectation that soil quality has

positive effect on crop cultivation. On the other hand, estimate of the coefficient for CEC is nega-

tive and significant. One possible explanation of this result is that our variables are imperfect mea-

sures of actual soil quality, as discussed in section 3. It also appears that larger plots enjoy higher

yields. Stage 1 intermediate output is approximated by DSSAT measures of plot development and

stage 1 labor, as discussed in section 4. Similarly, stage 2 intermediate output is approximated by

DSSAT measures of plot development and stage 2 labor. For both stage 1 and stage 2 intermediate

outputs, DSSAT measures are positive and significant. This is intuitive and means that healthier

crop at the beginning of production stage contributes to better crop development during each stage.

Note that in stage 1, labor used in previous stage is also statistically significant as a proxy for pre-

vious stage output. These results suggest that, on the one hand, DSSAT measures accurately crop’s

development and nonlinear interactions of non-labor inputs, soil quality, and weather realizations.

On the other hand, accounting for only non-labor inputs into crop cultivation is not sufficient to

capture farmer- and plot-specific crop development. Variation in labor input plays a significant

role. This result underlines the danger of relying on biophysical simulations of yields alone when

analyzing variations in yields in general, and in response to changes in weather realizations and

climate change in particular. Stage 2, or crop maintenance stage, is much less labor-intensive than

stage 1, when planting and transplanting - a very labor-intensive activity - are performed. With this

in mind, it is not surprising that in stage 3 labor used in previous stage is not statistically significant

as a proxy for previous stage output.

The weather shock is approximated by rain, rain squared, maximum daily temperature, and

interaction of rain and temperature, by stage. As expected, the effect of weather shock is partic-

ularly pronounced in stage 2, when crop is developing. Estimates also confirm the importance of

accounting for temperature when measuring the effect of rainfall on crop development, rather than

rainfall alone, and the nonlinear nature of their interaction. Interestingly, estimates for stage 1 are

not individually significant. Table 4 also reports results of the joint F test for all weather variables

28



Table 4: Model Parameters, Estimated with Sisaket Data

Variable group Variable Coefficienta St. errorb

Elasticity Stage 1 elasticity 0.084 0.066

Stage 2 elasticity -0.454* 0.239

Stage 3 elasticity 0.056 0.059

Initial condition Area (ha) 0.896*** 0.023

CEC (meq/100g) -0.084*** 0.031

Organic matter (%) 0.043** 0.019

Stage 1 output Number of tillers (DSSAT) 0.414*** 0.054

Leaf weight (kg/ha) (DSSAT) 0.204* 0.118

Stage 1 labor (hrs/ha) 0.277*** 0.08

Stage 2 output Grain filling (DSSAT) 0.391*** 0.07

Stage 2 labor (hrs/ha) 0.038 0.024

Stage 1 weather Rainfall (cm) 0.079 0.048

Rainfall squared 1.06E-05 5.31E-05

Max daily temperature (C/10) 0.097 0.301

Rain*temperature -0.024 0.015

F test for joint significance 12.990** 0.011

Stage 2 weather Rainfall (cm) 0.123*** 0.036

Rainfall squared -5.90E-06 5.97E-05

Max daily temperature (C/10) 0.589* 0.346

Rain*temperature -0.038*** 0.011

F test for joint significance 13.420*** 0.009

Stage 3 weather Rainfall (cm) -0.013 0.105

Rainfall squared 6.25E-04 4.11E-04

Max daily temperature (C/10) 0.344** 0.144

Rain*temperature 0.001 0.034

F test for joint significance 12.270** 0.015

Stage 1 inputs Labor (hrs/ha) 0.155*** 0.023

Chem. fert. (kg/ha) -0.013 0.02

Seedlings (sets/ha)c -0.094*** 0.036

Seeds (kg/ha) -0.091*** 0.021

Stage 2 inputs Labor (hrs/ha) -0.655*** 0.096

Chem. fert. (kg/ha) -0.321*** 0.086

aChi-squared value for joint weather F tests.
bP-value for joint weather F tests.
cOne set contains about 100 seedlings.

***, **, and * denote, respectively, significance at 1%, 5%, and 10% level.
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in each stage, which indicate that the joint effect of weather variables in each stage on final yields

is highly significant.

The last two parts of table 4 show coefficient estimates for stage 1 inputs and stage 2 inputs.

Positive and significant coefficient on stage 1 labor confirms earlier discussion on the high signifi-

cance of labor during particularly labor-intensive stage 1 operations to successful crop cultivation.

Coefficient estimate on stage 1 chemical fertilizer is not significant. Negative and significant co-

efficient estimate for stage 2 chemical fertilizer can be interpreted as indication of negative rela-

tionship between soil quality and yields. As we discussed earlier in section 3, our measures of soil

quality are imperfect and might have poor accuracy for plots on which soil quality variables were

not measured directly. Measurement error might also be an explanation for negative estimates of

the coefficients on seeds and seedlings. Another possible explanation for these negative estimates

is that we specify all inputs in per hectare terms. Planted area does not factor out completely with

CES specification, and we account for this explicitly in estimation. However, as discussed in sec-

tion 2, we use linear approximations of input equations rather than explicit input demands derived

from the farmer’s profit maximization problem. It is possible that per hectare input measures and

planted area do not separate fully in these linear approximations, with some contamination remain-

ing between the two. In this case, negative estimates on seeds and seedlings can reflect the fact

that higher planting density is associated with low survival rate and weakness of young plants.

We next use the model to gauge the importance of rainfall versus other factors in yield variation

between crop-plots and households. There are three main sources of yield variation. Weather, and

rainfall in particular, is one. Predetermined heterogeneity in soil quality is another. Household’s

choice of planting timing and input amounts is the third source. Household’s choice of timing

affects the effective weather shock for a given crop-plot. We perform the following exercise. We

first plot kernel density of actual sample yields. This is the solid line in figure 4 for Sisaket province

and in figure 5 for Burirum province. It is obvious that there is a lot of heterogeneity in yields in

each province. We next predict yields with our estimated model and plot the kernel density of

these predictions. This is the long dash (_ _ _) line in figures 4 and 5. We see that the model does

a good job in explaining existing heterogeneity in yields, both for Sisaket sample, which was used

to estimate the model, and, notably, for Burirum sample as well. This latter result suggests that

our model estimates can be used to make plausible yield predictions out of sample and for other

rainfed rice growing regions in Thailand. Figure 6 illustrates the accuracy of model fit with actual

data by plotting model prediction versus actual yield.

Next we exclude part of the third source of heterogeneity, namely, variation in household’s

choice of input amounts, by using province-year means of labor, seeds, seedlings, and chemical

fertilizer to predict yields with the model. This is the dash-dot (_..._) line in figures 4 and 5. It
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captures variation in yields due to difference in timing, weather realizations, and soil quality. We

see that it explains slightly less of the yield variation. Next, we also exclude variation in soil

quality, by using province-year means of area, soil variables, labor, seeds, seedlings, and chemical

fertilizer to predict yields with the model. This is the dotted (...) line in figures 4 and 5. It captures

variation in yields due to difference in timing and rainfall realizations only. It is clear that while

this is an important source of yield variation, it fails to explain large part of heterogeneity present

in the data in both provinces. This exercise illustrates the significance of soil quality as a source of

yield heterogeneity, even relative to variation in weather shocks.

Figure 4: Kernel Density of Actual and Predicted Yields, Sisaket Sample

Finally, we construct a "weather index" for our sample, by regressing yields on measures of

rain, rain squared, temperature, and interaction of rain and temperature in all three production

stages, 12 weather variables in total, as well as village indicators, for each of the two provinces.

We then predict yields with this simple OLS regression. This "weather index" measure of predicted

yields is based on standard ways weather indices are constructed in weather-based index insurance

contracts. Note that our "weather index" benefits from plot-specific timing of production stages, in-

formation that would not typically be available or utilized in standard weather indices. For Burirum

province, our "weather index" measure has an additional advantage over model predictions, since

the model was estimated with Sisaket sample while "weather index" regression was estimated sep-

arately for each province. The short dash (- - -) line in figures 4 and 5 corresponds to our version

of "weather index". We see that, compared to our most constrained model-based prediction, the
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Figure 5: Kernel Density of Actual and Predicted Yields, Burirum Sample

Figure 6: Accuracy of Model Fit with Actual Data
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"weather index" explains slightly less variation for Sisaket, with a stronger result for Burirum. This

last result illustrates that even when focusing only on one source of yield variation, namely, rainfall

and timing, simple linear approximation can capture noticeably less of yield variation present in

the data than structural approach.

In sum, yields data contain a lot of heterogeneity, a substantial part of which is due to plot-

specific soil quality. An important and interesting question is how different sources of this het-

erogeneity interact with climate change. We next use the model to analyze the effect of climate

change on yields.

6 Climate Change Impact

To analyze the effect of climate change on rice yields, we integrated our estimated economic

model with DSSAT, climate change models, and a weather generation model.30 We first describe

the process we used to predict yields under climate change and characterize the climate change

scenarios we considered. We then present our results.

We simulated future "synthetic" weather from the widely used WGEN weather simulation

model (Richardson, 1981). The WGEN model begins by first calculating an extensive set of statis-

tical parameters describing the observed, historical 1972-2002 daily weather data, including mean

monthly amounts for all key input variables, as well as probabilities of wet days, probabilities of

dry days, and within-year precipitation variation. WGEN then generates daily values for precipita-

tion, maximum and minimum air temperature, and solar radiation for an N-year period at a given

location. The precipitation component of WGEN is a Markov-chain–gamma-distribution model.

The occurrence of wet or dry days is generated with a first-order Markov-chain model in which

the probability of rain on a given day is conditioned on whether the previous day was wet or dry.

Using statistics computed for the historical, 1972-2002 observed weather data, we generated 100

stochastic weather realizations for a "neutral" scenario, which assumes that future climate will be

a direct, linear extension of the late 20th century. These weather realizations approximate weather

conditions that would prevail in 2040-2069 under a neutral scenario. To generate future weather

with SRES climate change scenarios, we inputted future changes to monthly precipitation and

temperature and drew 100 realizations for each scenario.

For the analysis of climate change effects, we selected a random subsample of 83 plots in

30For all analysis in this section, we have used province-level rainfall data, rather than village-level data. The reason

is that weather generator requires long time series of historical weather data in order to generate synthetic weather for

the area and such data are available only on province level.
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Sisaket province31. For each of these 83 plots, we used estimated model together with DSSAT to

predict yields under each weather realization in each of the three considered climate scenarios.

We first used actual data to estimate farmers’ timing decisions. Recall that equation (9) ex-

presses farmer’s choice of ε0, or cumulative realizations of weather shocks at the time of planting,

as maximizing expected profits conditional on information set I0 = {y0}. Thus the calendar month

of planting that is observed in the data is a function of initial conditions y0, such as area planted

and soil quality, and cumulative weather realizations ε0. We approximate this relationship as a

linear combination of our measures of y0 and ε0. Using the whole sample and actual weather re-

alizations, we regressed actual calendar month corresponding to the beginning of stage 1 on the

plot’s cultivated area32, rain and temperature in January through March of current calendar year,

rain and temperature in April through December of the previous calendar year, and household

dummies. We then used the resulting equation to predict the starting month for a given plot for

each synthetic weather realization under each climate scenario. Because this approach uses lagged

data, we end up with 99 observations per plot per climate scenario. Table 5 shows the distribution

of the starting month for the crop cultivation process in actual data, and predicted starting month

for each of the three climate scenarios. It appears that cultivation activities shifted to the right in

time and start on average one month later under the high emissions scenario compared to the neu-

tral climate scenario, with no substantial difference between low emissions and neutral climates.

Using these timing predictions, we constructed plot-specific timing of stages for each of the three

climates, assuming that stage 1 lasts one month, stage 2 lasts two months, and stage 3 lasts two

and a half months as in the actual data despite variation in rain over years. Using actual data, we

estimated output prices as a function of concurrent monthly measures of rain and temperature, 11

monthly lags of rain and temperature, all measured at the provincial level, and indicators for cal-

endar month.33 Using actual data, we also estimated factor prices as functions of calendar month

indicators, and interaction of month indicators with monthly rain and temperature at the provincial

level. We then used these estimates to predict output and factor prices with synthetic weather data

for each of the three climate scenarios we consider.

We next used our estimated production model together with DSSAT to predict inputs amounts

31We could not perform the analysis on the entire sample due to computational constraints. To ensure that final

subsample contained no more than one observation per household, we first selected at random one plot per household,

and then drew at random 83 plots from the remaining subsample.
32Again, we initially included soil quality measures in this regression, but they were highly statistically insignificant,

both individually and jointly. Prediction of planting month with this regression is the first of several sequential compu-

tational steps in our climate change analysis. For this reason, we considered it advisable to use the most parsimonious

specification of the timing equation and excluded soil measures due to their low explanatory power.
33Section 2 assumes that, for a given climate, output and factor prices are independent from weather shocks in the

village. It is possible that the shift from one climate scenario to another alters the distributions of output and factor

prices, which we here approximate by historical experience at the provincial level.
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Table 5: Distribution of the First Month of Production Process

Calendar % of sample with a given first month

month Actual data Neutral climate High emissions Low emissions

3 0.72 0.09 0.33

4 0.05 4.41 1.68 2.08

5 5.29 36.30 17.52 25.08

6 25.82 35.26 42.78 40.95

7 40.05 18.85 25.42 22.34

8 26.46 4.24 10.90 8.31

9 2.33 0.23 1.58 0.90

10 0.02

for all three production stages. This step required alternation between the model and DSSAT,

since DSSAT simulations are used in our model as measures of intermediate output and enter input

equations, while DSSAT requires measures of non-labor production inputs in order to simulate

plant growth. If we pre-specify amounts of seeds, seedlings and fertilizer, DSSAT alone can be run

in one batch for the entire cropping reason. However, in our CES specification DSSAT interacts

with labor input to form a measure of intermediate output. Consequently, input equations depend

on DSSAT measures of intermediate output. We therefore needed model predictions of stage

1 physical non-labor inputs to generate DSSAT measure of stage 1 output; we needed DSSAT

measure of stage 1 output to use the model to predict stage 2 fertilizer and labor use; we then

needed model predictions of stage 1 and stage 2 non-labor inputs to generate DSSAT measure of

stage 2 output; we finally needed this DSSAT measure of stage 2 output to use the model to predict

stage 3 labor use. Finally, having now plot-, stage-, and weather realization-specific predictions of

inputs and weather shocks, we used the model to predict yields. We repeated these steps for our

subsample of 83 plots for 99 weather realizations under each of the three climate scenarios. In sum,

this approach combines DSSAT’s detailed modeling of complex soil and weather interactions with

crop growth, and our model’s structure of farmer’s production choices. It also allows for variation

in timing of production activities both across climates and with a given climate across different

weather realizations.

We consider two alternative climate change trajectories - the high and low emissions. We also

use a neutral climate scenario as a reference base. Table 6 uses 100 weather realizations generated

by WGEN for each climate scenario and compares high and low emission climate scenarios to the

neutral scenario. Panel A of table 6 compares amounts of daily precipitation and panel B com-

pares average temperature during daylight hours. In each panel, the second column contains mean

daily values for each month under the no change, neutral climate scenario. The next three columns
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address the shift from neutral to high-emissions climate. Column three shows the corresponding

change in mean daily values, column four expresses this change in percent, and column five shows

the probability value for the test of the equality means of daily precipitation (of average daily

temperature in panel B) with the null of no change under neutral and high-emissions climates. In

the same manner, columns six through eight address the shift from neutral to low emissions cli-

mate, and columns nine through 11 address the shift from low emissions climate to high emissions

climate.

Climate change is more extreme under high emissions scenario. While daily temperatures

increase under both climate scenarios, the magnitude of increase under the high emissions climate

is about 40 percent higher. Daily precipitation increases throughout the year under low emissions

climate. On the other hand, under the high emissions climate there is less rain in the second half

of the year, starting in June, which is exactly the period of rice cultivation. Thus low emissions

scenario brings moderate increase in temperature and more rain, while high emissions climate

brings both higher increase in temperature and less rain for rice cultivation.

Figure 7 plots the kernel densities of means of household yields34 for each of the three climates.

There is a noticeable shift of the high emissions distribution to the left of neutral and low emissions

distributions, and to a less extent of the low emissions distribution to the left of neutral. These are

standard graphs of impact made in the spirit of what is reported in the literature. Figure 7 gives the

impression that mean yields are falling substantially for most households. However, as will become

evident in the discussion below, the diagram mixes up cross sectional change in heterogeneity and

changing uncertainty facing the households.

We compared predicted yields under the three climate scenarios for each of the 83 plots, one at

a time. We find noticeable variation from plot to plot. Before presenting numerical evidence, we

first illustrate this point visually in figures 8 and 9. Each of these figures shows kernel densities of

yields under neutral, high emissions, and low emissions climate scenarios for one of the plots in

our sample. Each of these two plots is representative of approximately a third of our sample, with

the remaining third of the sample somewhere in between. The difference in the effect of climate

change on the yield distribution for these two plots is obvious. The plot in figure 8 has lower mean

yields under high emissions scenario compared to neutral and low emissions scenarios, due to

higher probability concentration on lower yield realizations. Distributions for both neutral and low

emissions scenarios have yields concentrated at the same higher level; however, this concentration

is much higher under neutral scenario. In other words, while the overall range of yield realizations

doesn’t change much with climate, the probability of the yield distribution shifts to the left, with

higher probabilities associated with lower yield levels. This shift is more pronounced for the high

34All analysis in this section uses yields measured as natural log of kg per hectare.
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Figure 7: Kernel Density of Predicted Yields, by Climate Scenario

emissions scenario, and so the overall distribution for high emissions is skewed to the right.

The situation in figure 9 is different. Here mean yields are similar for the neutral and high

emissions scenarios, with the latter climate having a slightly wider yield range. Under low emis-

sions scenario, the probability concentration is highest at higher yield levels compared to neutral

and high emissions climates.

Figures 8 and 9 also illustrate heterogeneity in yields across plots under the same climate sce-

nario. Comparing these two plots for any given climate, it is clear that, despite the same aggregate

weather shocks, these plots from the same geographical area face completely different yield distri-

butions, both in terms of yield levels and of distribution shape

Given our panel data, we can consider variation in levels and shape of yields distributions

across households for a given climate, across households given a shift from one climate to another,

and within a household given a shift from one climate to another. We start with the former, looking

at cross sectional variation between households under a given climate scenario. We first com-

pute mean and coefficient of variation of yields for each household under each climate scenario.

We then look at the distribution of these household means and coefficients of variation across all

households, moving in the cross section so to speak, for a given climate. The results are summa-

rized in table 7. The first three rows describe coefficient of variation, the normalized measure of

uncertainty. For each climate, column two of table 7 reports fifth percentile of the cross sectional

distribution of household-specific coefficients of variation of yields in our sample, and column
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Figure 8: Kernel Density of Predicted Yields, by Climate Scenario

Figure 9: Kernel Density of Predicted Yields, by Climate Scenario
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three reports the 95th percentile, similarly defined. Column four reports the percentage change

from column two to column three. In the cross sectional distribution of the household-specific co-

efficient of yield variation, the fifth percentile describes low-variation households facing relatively

little uncertainty about their yields, while 95th percentile describes high-variation households fac-

ing the highest uncertainty in our sample. Column four then measures the relative difference in

uncertainty between households on these two opposite ends of uncertainty spectrum. We see from

table 7 that this percentage increase in uncertainty is 35 percent under neutral climate, increases

to 68 percent under high emissions climate, and is 41 percent under low emissions. These num-

bers demonstrate two points. First, it appears that heterogeneity across households in amount of

uncertainty they face increases substantially with a shift to the high emissions climate. Second,

even under neutral and low emissions climates, the heterogeneity in the cross section is non-trivial.

Columns five through seven repeat the same exercise, comparing 25th and 75th percentiles. That

is, columns five though seven present a milder comparison of households with differing but rela-

tively moderate uncertainly levels (less sensitive to extremes). The same qualitative conclusions

emerge, although now the increase in uncertainty between the two groups is more comparable and

only modestly higher under the high emissions climate.

Table 7: Within-Climate Heterogeneity of Yield Distributions Across Households

Climate 5th pctile 95th pctile % diff. 25th pctile 75th pctile % diff.

Household coefficient of variation

Neutral 0.129 0.175 35.23 0.140 0.167 19.26

High emissions 0.100 0.169 68.13 0.129 0.160 23.69

Low emissions 0.126 0.177 41.31 0.142 0.166 16.86

Household mean

Neutral 8.255 9.194 11.37 8.567 9.065 5.82

High emissions 7.924 9.084 14.63 8.186 8.807 7.59

Low emissions 8.112 9.427 16.21 8.404 9.071 7.93

The last three rows of table 7 describe the cross sectional distribution of household mean yields

and are constructed in the same manner. We see that, under a given climate, relative variation in

mean yield levels across households, as measured by the percent difference, is much lower than

relative variation in uncertainty. Interestingly, for mean yields the low emissions climate has largest

cross sectional difference between low-level and high-level households, as presented in columns

four and seven, though the difference in these numbers between climates is small. So, in sum, the

high emissions scenario increases the cross sectional dispersion in uncertainty and, to the much

lesser extent, increases the cross sectional dispersion in means.
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We now examine the variation in yield levels and uncertainty for a given household across

climates. For each household, we have measures of its mean yield and coefficient of yield variation

for each of the three climates, and can compare how these statistics change with a climate shift. We

first look at changes in coefficient of variation. We consider shifts from neutral to high emissions

climate, from neutral to low emissions climate, and from low to high emissions climate. For each of

these climate shifts, we compute the percent change in coefficient of variation for each household

in our sample. We then compute the percent of the sample that experiences change in coefficient of

variation less that -10 percent, between -10 and -5 percent, between 5 and 10 percent, and greater

than 10 percent. These numbers are reported in table 8. For example, row one tells us that, given a

shift from neutral to high emissions climate, 14.5 percent of households experience more than a 10

percent decrease in their coefficient of yield variation, and 32.5 percent of households experience

between five and 10 percent decrease in their coefficient of yield variation. It is clear from table

8 that household-level uncertainty decreases under the high emissions climate and is the highest

under low emissions climate. This result is not surprising given lower rainfall under high emissions

climate and higher rainfall under low emissions climate relative to the neutral scenario. Tables

7 and 8 together illustrate that a more extreme climate change can lead to lower uncertainty of

yields from household’s perspective, at the same time contributing to higher heterogeneity across

households in both uncertainty about and, to a smaller degree, levels of yields.

Table 8: Between-Climate Change in Uncertainty at Household Level

% of sample with given change in c.v.

Climate shift < -10% [-10%, -5%] [5%, 10%] > 10%

Neutral to high emissions 14.46 32.53 4.82 0.00

Neutral to low emissions 3.61 4.82 8.43 10.84

Low to high emissions 27.71 36.14 3.61 0.00

We conclude by comparing mean yields under different climates for each household. These

results are presented in table 9. Columns two and three describe results significant at 5 percent

level, and columns five and six describe results significant at 10 percent level. Columns two and

four report the percent of the sample with significant change in mean yields, and columns three and

five report the corresponding percent change in yields for plots with significant change. Column

one indicates whether the significant change was a decrease or an increase in yields. Four results

are evident. First, shift from either neutral or low emissions to high emissions climate results in

statistically significant decrease in mean yields for majority of the sample. Second, these decreases

in yields, although widespread, are relatively small in magnitude. Third, there is almost no signif-

icant increase in yields under any alternative climate scenario relative to neutral climate. Even a
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shift from neutral to a milder, low emissions climate results in higher yields only for 2.4 percent

of the sample, and this result is not significant at 5 percent level. Fourth, only a small fraction of

households experience significant difference in yields between neutral and low emissions climates,

and for this small fraction the difference in yields is significant only at 10 percent level.35

Table 9: Comparison Test of Mean Yield by Household Across Climates

5% significance 10% significance

% of sample Yield change, % % of sample Yield change, %

Neutral to high emissions

Decrease 68.67 -3.79 73.49 -3.73

Increase 0 0 0 0

Neutral to low emissions

Decrease 0 0 8.43 -2.26

Increase 0 0 2.41 3.75

Low to high emissions

Decrease 22.89 -3.24 68.67 -2.81

Increase 0 0 0 0

7 Conclusion

We develop a three stage structural model of rice cultivation, integrate it with a biophysical model

and a weather generator, and use this framework to evaluate the effect of climate change on rice

yields in Northeast Thailand. We estimate the economic model with data from Sisaket province

and then use data from Burirum province, also located in the Northeast of the country but not

adjacent to Sisaket, to predict out of sample. The results suggest that our model can be calibrated

to estimate the effect of variations in weather and climate on rainfed rice for all of Thailand with

the use of Agricultural Census data. The census data contain key variables that can be matched to

our study, such as soil data, and rainfall and temperature from meteorological stations, all of these

geolocated. In turn, such an extended study would be an input into considerations of rainfall or

weather insurance and into micro founded macro models.

35We repeat the same exercise with profits, comparing mean profits for each household between climate scenarios.

There are no statistically significant differences in mean profits for households in our sample. One exception is that

profits decrease when moving from low emissions to high emissions climate for one household in our sample with this

difference in mean profits significant at 5 percent level, and for two households with this difference in mean profits

significant at 10 percent level.

Household labor constitutes a non-trivial part of total labor input for all households; however, we do not have an

adequate measure of wages for family labor. For this reason, we forego any further analysis of profits. This issue is

common in the literature (see, for example, Karlan, Osei, Osei-Akoto, and Udry (2012)).
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One result that permeates throughout the paper is substantial cross sectional heterogeneity in

yields, both in actual data and in data predicted for alternative climates. Model estimation results

indicate that variation in soil quality is a substantial source of this heterogeneity in yields. Another

source is variation in timing of planting. As a result, a "common" weather shock within the village

has differing effect on rice crops cultivated by different farmers on plots with different soil. Again,

thinking ahead, this has large implications for the provision of insurance and the next generation

of models.

When analyzing the effects of climate change on yields, it is important to distinguish the cross

sectional effect from the effect from the farmer’s perspective. As the results in our paper illus-

trate, uncertainty, as measured by coefficient of variation, from the farmer’s perspective decreases

noticeably under the high emissions climate. However, it decreases much more for farmers at the

"lower" uncertainty end, that is, farmers who low uncertainty levels to begin with, relative to farm-

ers at the "high" uncertainty end. As a result, even though individual farmer-level uncertainty in

yields decreases, cross sectional heterogeneity in uncertainty, as well as, to a lesser extent, mean

yields, go up.

Finally, our results illustrate the complementary nature of production activities for two out of

three crop cultivation stages, underlining the significance of the choice of planting date. This also

means that simpler reduced form estimates of weather variation on yields can be misleading.
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