Inefficient Automation

Martin Beraja (MIT)

Nathan Zorzi (Dartmouth)

September 2022

► Automation raises productivity but displaces workers and lowers their earnings

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers

- ► Automation raises productivity but displaces workers and lowers their earnings
- ▶ Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers
- ► Two **literatures** can justify taxing automation.

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

Tax capital (long-run)

Aiyagari 1995; Conesa et al. 2002

- (i) Improve efficiency in economies with IM
- (ii) Worker displacement/reallocation absent

- ► Automation raises productivity but displaces workers and lowers their earnings
- ▶ Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No optimal policy results that take into account frictions faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

Tax capital (long-run)

Aiyagari 1995; Conesa et al. 2002

- (i) Improve efficiency in economies with IM
- (ii) Worker displacement/reallocation absent

Take worker displacement seriously. How should we respond to automation?

Take worker displacement seriously. How should we respond to automation?

- 1. Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008

Take worker displacement seriously. How should we respond to automation?

- 1. Recognize that displaced workers face two important **frictions**:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents

Take worker displacement seriously. How should we respond to automation?

- 1. Recognize that displaced workers face two important **frictions**:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents

3. Theoretical results:

(i) Interaction between frictions gives rise to inefficient automation

Take worker displacement seriously. How should we respond to automation?

- 1. Recognize that displaced workers face two important **frictions**:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents

3. Theoretical results:

- (i) Interaction between frictions gives rise to inefficient automation
- (ii) Optimal to slown down automation but not tax it in the long-run (even with no preference for redistribution)

Take worker displacement seriously. How should we respond to automation?

- 1. Recognize that displaced workers face two important **frictions**:
 - (i) **Slow reallocation**: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) **Imperfect credit markets**: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008
- 2. Incorporate frictions in a **model** with endog. automation and heterogeneous agents

Theoretical results: 3.

- (i) Interaction between frictions gives rise to inefficient automation
- (ii) Optimal to slown down automation but not tax it in the long-run (even with no preference for redistribution)
- 4. Quantitative: gross flows + idiosync. risk \rightarrow welfare gains from slowing down autom.

Efficient Allocation

Decentralized Equilibrium

Failure of First Welfare Theorem

Optimal Policy

Quantitative Analysis

Continuous time $t \ge 0$

Continuous time $t \ge 0$ Occupations h = A (share ϕ , degree $\alpha \ge 0$) or h = N

Continuous time $t \ge 0$ **Occupations** h = A (share ϕ , degree $\alpha \ge 0$) or h = N $F^{h}(\mu) = \begin{cases} F^{\star}(\mu; \alpha) & \text{if } h = A \\ F(\mu) \equiv F^{\star}(\mu; 0) & \text{if } h = N \end{cases}$

Continuous time $t \ge 0$ **Occupations** h = A (share ϕ , degree $\alpha \ge 0$) or h = N $F^{h}(\mu) = \begin{cases} F^{\star}(\mu; \alpha) & \text{if } h = A \\ F(\mu) \equiv F^{\star}(\mu; 0) & \text{if } h = N \end{cases}$ **Final Good Producer**

► Example

$$G^{\star}\left(\mu^{\mathcal{A}},\mu^{\mathcal{N}};\alpha\right)\equiv G\left(\left\{F^{h}(\mu^{h})
ight\}
ight)$$

(gross complements)

Continuous time $t \ge 0$ Occupations h = A (share ϕ , degree $\alpha \ge 0$) or h = N $F^{h}(\mu) = \begin{cases} F^{*}(\mu; \alpha) & \text{if } h = A \\ F(\mu) \equiv F^{*}(\mu; 0) & \text{if } h = N \end{cases}$ **Final Good Producer** $G^{\star}(\mu^{A}, \mu^{N}; \alpha) \equiv G(\{F^{h}(\mu^{h})\})$ (gross complements) ► Example $\partial_{\mu^{A}}G^{\star}(\mu^{A},\mu^{N};\alpha)\downarrow \text{ in }\alpha \text{ (labor-displacing)}$ $G^{\star}(\mu^{A},\mu^{N};\alpha)$ concave in α (costly)

Continuous time $t \ge 0$ Occupations h = A (share ϕ , degree $\alpha > 0$) or h = N $F^{h}(\mu) = \begin{cases} F^{\star}(\mu; \alpha) & \text{if } h = A \\ F(\mu) \equiv F^{\star}(\mu; 0) & \text{if } h = N \end{cases}$ **Final Good Producer** $G^{\star}(\mu^{A}, \mu^{N}; \alpha) \equiv G(\{F^{h}(\mu^{h})\})$ (gross complements) ► Example $\partial_{\mu^{A}} G^{\star} (\mu^{A}, \mu^{N}; \alpha) \downarrow \text{ in } \alpha \text{ (labor-displacing)}$ $G^{\star}(\mu^{A},\mu^{N};\alpha)$ concave in α (costly)

Workers

 $\mathbf{x} = \{s, h, \xi\}$ (age, occupation, prod.)

Continuous time $t \ge 0$ Occupations h = A (share ϕ , degree $\alpha > 0$) or h = N $F^{h}(\mu) = \begin{cases} F^{\star}(\mu; \alpha) & \text{if } h = A \\ F(\mu) \equiv F^{\star}(\mu; 0) & \text{if } h = N \end{cases}$ **Final Good Producer** $G^{\star}(\mu^{A}, \mu^{N}; \alpha) \equiv G(\{F^{h}(\mu^{h})\})$ (gross complements) ► Example $\partial_{\mu^{A}}G^{\star}(\mu^{A},\mu^{N};\alpha)\downarrow \text{ in }\alpha \text{ (labor-displacing)}$ $G^{\star}(\mu^{A},\mu^{N};\alpha)$ concave in α (costly)

Workers

 $\mathbf{x} = \{s, h, \xi\}$ (age, occupation, prod.)

$$(\mu_t^{\mathcal{A}}, \mu_t^{\mathcal{N}}) egin{cases} = \mathbf{1} & ext{in } t = 0 \ ext{Reallocation} & ext{afterwards} \end{cases}$$

Continuous time $t \ge 0$ Occupations h = A (share ϕ , degree $\alpha > 0$) or h = N $F^{h}(\mu) = \begin{cases} F^{\star}(\mu; \alpha) & \text{if } h = A \\ F(\mu) = F^{\star}(\mu; 0) & \text{if } h = N \end{cases}$ **Final Good Producer** $G^{\star}(\mu^{A}, \mu^{N}; \alpha) \equiv G(\{F^{h}(\mu^{h})\})$ (gross complements) ► Example $\partial_{\mu^{A}}G^{\star}(\mu^{A},\mu^{N};\alpha)\downarrow \text{ in }\alpha \text{ (labor-displacing)}$ $G^{\star}(\mu^{A},\mu^{N};\alpha)$ concave in α (costly)

Workers

 $\mathbf{x} = \{s, h, \xi\}$ (age, occupation, prod.)

 $(\boldsymbol{\mu}_t^{\boldsymbol{A}}, \boldsymbol{\mu}_t^{\boldsymbol{N}}) \begin{cases} = \mathbf{1} & \text{in } t = 0 \\ \text{Reallocation} & \text{afterwards} \end{cases}$

$$U_{0} = \mathbb{E}_{0} \left[\int \exp\left(-\rho t\right) \frac{c_{t}^{1-\sigma}}{1-\sigma} dt \right]$$

Continuous time $t \ge 0$ Occupations h = A (share ϕ , degree $\alpha > 0$) or h = N $F^{h}(\mu) = \begin{cases} F^{\star}(\mu; \alpha) & \text{if } h = A \\ F(\mu) = F^{\star}(\mu; 0) & \text{if } h = N \end{cases}$ **Final Good Producer** $G^{\star}\left(\mu^{A},\mu^{N};\alpha\right) \equiv G\left(\left\{F^{h}(\mu^{h})\right\}\right)$ (gross complements) ► Example $\partial_{\mu^{A}} G^{\star} (\mu^{A}, \mu^{N}; \alpha) \downarrow \text{ in } \alpha \text{ (labor-displacing)}$ $G^{\star}(\mu^{A},\mu^{N};\alpha)$ concave in α (costly)

Workers

 $\mathbf{x} = \{s, h, \xi\}$ (age, occupation, prod.)

 $(\boldsymbol{\mu}_t^{\boldsymbol{A}}, \boldsymbol{\mu}_t^{\boldsymbol{N}}) \begin{cases} = \mathbf{1} & \text{in } t = 0 \\ \text{Reallocation} & \text{afterwards} \end{cases}$

$$U_0 = \mathbb{E}_0 \left[\int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt
ight]$$

Resource constraint

$$\int c_t(\mathbf{x}) d\Lambda = G^* \left(\mu^{\mathbf{A}}, \mu^{\mathbf{N}}; \boldsymbol{\alpha} \right)$$
$$\phi^h \mu_t^h = \int \mathbf{1}_{\{h(\mathbf{x})=h\}} \xi d\pi_t$$

- Reallocation of existing workers is costly (Kambourov-Manovskii, Violante, Costinot-Werning)
 - 1. **Permanent cost**: productivity loss θ due to skill-specificity

$$\xi_{t} = \begin{cases} \lim_{\tau \uparrow t} \xi_{\tau} & \text{if } h'_{t}\left(\mathbf{x}\right) = h\\ (1 - \theta) \times \lim_{\tau \uparrow t} \xi_{\tau} & \text{otherwise} \end{cases}$$

- Reallocation of existing workers is costly (Kambourov-Manovskii, Violante, Costinot-Werning)
 - 1. **Permanent cost**: productivity loss θ due to skill-specificity

$$\xi_t = \begin{cases} \lim_{\tau \uparrow t} \xi_{\tau} & \text{if } h'_t(\mathbf{x}) = h\\ (1 - \theta) \times \lim_{\tau \uparrow t} \xi_{\tau} & \text{otherwise} \end{cases}$$

▶ Reallocation of existing workers is **slow** (Davis-Haltiwanger, Alvarez-Shimer). Two reasons:

- 2. Random opportunities: Workers can move across occupations with intensity λ
- 3. Unemployment/retraining spells: Enter when moving, and exit at rate κ

- Reallocation of existing workers is costly (Kambourov-Manovskii, Violante, Costinot-Werning)
 - 1. **Permanent cost**: productivity loss θ due to skill-specificity

$$\xi_t = \begin{cases} \lim_{\tau \uparrow t} \xi_{\tau} & \text{if } h'_t(\mathbf{x}) = h\\ (1 - \theta) \times \lim_{\tau \uparrow t} \xi_{\tau} & \text{otherwise} \end{cases}$$

▶ Reallocation of existing workers is slow (Davis-Haltiwanger, Alvarez-Shimer). Two reasons:

- 2. Random opportunities: Workers can move across occupations with intensity λ
- 3. Unemployment/retraining spells: Enter when moving, and exit at rate κ
- Arrival of new workers is **slow** (Rebelo et al., Adão et al.). Rate χ . Choose any occupation.

Efficient Allocation

Decentralized Equilibrium

Failure of First Welfare Theorem

Optimal Policy

Quantitative Analysis

Ex post problem

Ex post problem

- Reallocate labor and distribute output
- Close MPLs gap. Stop reallocation at T₀^{FB} (No OLG case)

Ex post problem

- Reallocate labor and distribute output
- Close MPLs gap. Stop reallocation at T₀^{FB} (No OLG case)

$$\int_{\tau_0^{\mathsf{FB}}}^{+\infty} e^{-\rho t} u'\left(c_t^{\mathsf{N}}\right) \Delta_t dt = 0$$

where

$$\Delta_{t} \equiv \underbrace{(1-\theta)\left(1-e^{-\kappa\left(t-T_{0}^{\text{FB}}\right)}\right)}_{\text{Cost} = \text{Skill loss + unemp}} \underbrace{\mathcal{Y}_{t}^{\text{N}} - \mathcal{Y}_{t}^{\text{A}}}_{\text{Cost} = \text{Skill loss + unemp}}$$

is the IRF of Y to reallocation

Ex post problem

- Reallocate labor and distribute output
- Close MPLs gap. Stop reallocation at T₀^{FB} (No OLG case)

$$\int_{\tau_0^{\mathsf{FB}}}^{+\infty} e^{-\rho t} u'\left(c_t^{\mathsf{N}}\right) \Delta_t dt = 0$$

where

$$\Delta_{t} \equiv \underbrace{(1-\theta)\left(1-e^{-\kappa\left(t-T_{0}^{\mathcal{FB}}\right)}\right)}_{\text{Cost} = \text{Skill loss + unemp}} \underbrace{\mathcal{Y}_{t}^{\mathcal{N}} - \mathcal{Y}_{t}^{\mathcal{A}}}_{\mathcal{T}}$$

is the IRF of Y to reallocation

- Choose degree of automation α^{FB}
- ► Reduce *C* today, expand *Y* tomorrow

Ex post problem

- Reallocate labor and distribute output
- Close MPLs gap. Stop reallocation at T₀^{FB} (No OLG case)

$$\int_{\tau_0^{\mathsf{FB}}}^{+\infty} e^{-\rho t} u'\left(c_t^{\mathsf{N}}\right) \Delta_t dt = 0$$

where

$$\Delta_{t} \equiv \underbrace{(1-\theta)\left(1-e^{-\kappa\left(t-T_{0}^{FB}\right)}\right)}_{\text{Cost} = \text{Skill loss} + \text{unemp}} \underbrace{\mathcal{Y}_{t}^{N} - \mathcal{Y}_{t}^{A}}_{\text{Cost} = \text{Skill loss} + \text{unemp}}$$

is the IRF of Y to reallocation

Ex ante problem

- Choose degree of automation α^{FB}
- ► Reduce *C* today, expand *Y* tomorrow

$$\int_{0}^{+\infty} e^{-\rho t} u'\left(c_{t}^{\mathcal{A}}\right) \Delta_{t}^{\star} dt = 0$$

where

$$\Delta_{t}^{\star} \equiv \frac{\partial}{\partial \alpha} \mathbf{G}^{\star} \left(\boldsymbol{\mu}_{t}^{\mathbf{A}}, \boldsymbol{\mu}_{t}^{\mathbf{N}}; \boldsymbol{\alpha}^{\mathbf{FB}} \right)$$

is the IRF of Y to automation (net of cost)

Efficient Allocation

Decentralized Equilibrium

Failure of First Welfare Theorem

Optimal Policy

Quantitative Analysis

Decentralized Choices

Firms

Firms

Choose automation α + labor demand μ_t

$$\max_{\{\alpha,\boldsymbol{\mu}_t\}}\int_0^{+\infty} Q_t \Pi_t(\boldsymbol{\mu}_t;\alpha) \, dt$$

Firms

Choose automation α + labor demand μ_t

$$\max_{\{\alpha,\boldsymbol{\mu}_t\}}\int_0^{+\infty} Q_t \Pi_t(\boldsymbol{\mu}_t;\alpha) \, dt$$

Workers

Choose cons. $\mathbf{c_t}$ and labor supply μ_t
Choose automation α + labor demand μ_t

$$\max_{\{\alpha,\boldsymbol{\mu}_t\}}\int_0^{+\infty} Q_t \Pi_t(\boldsymbol{\mu}_t;\alpha) \, dt$$

Workers

Choose cons. $\mathbf{c_t}$ and labor supply μ_t

Assets: riskless bonds Workers not insured against automation risk

Choose automation α + labor demand μ_t

$$\max_{\{\alpha,\boldsymbol{\mu}_t\}}\int_0^{+\infty} Q_t \Pi_t(\boldsymbol{\mu}_t;\alpha)\,dt$$

Workers

Choose cons. $\mathbf{c_t}$ and labor supply μ_t

Assets: riskless bonds Workers not insured against automation risk

 $\mathbf{x} = \{a, s, h, \xi\}$ (bonds, age, occ., prod.)

Choose automation α + labor demand μ_t

$$\max_{\{\alpha,\boldsymbol{\mu}_t\}}\int_0^{+\infty} Q_t \Pi_t(\boldsymbol{\mu}_t;\alpha)\,dt$$

Workers

Choose cons. $\mathbf{c_t}$ and labor supply μ_t

Assets: riskless bonds Workers not insured against automation risk

 $\mathbf{x} = \{a, s, h, \xi\}$ (bonds, age, occ., prod.)

 $da_{t}(\mathbf{x}) = \left[\mathcal{Y}_{t}^{\star}(\mathbf{x}) + (r_{t} + \chi)a_{t}(\mathbf{x}) - c_{t}(\mathbf{x})\right]dt$

Choose automation α + labor demand μ_t

$$\max_{\{\alpha,\boldsymbol{\mu}_t\}}\int_0^{+\infty} Q_t \Pi_t(\boldsymbol{\mu}_t;\alpha)\,dt$$

Workers

Choose cons. $\mathbf{c_t}$ and labor supply μ_t

Assets: riskless bonds Workers not insured against automation risk

 $\mathbf{x} = \{a, s, h, \xi\}$ (bonds, age, occ., prod.)

 $da_{t}(\mathbf{x}) = \left[\mathcal{Y}_{t}^{\star}(\mathbf{x}) + (r_{t} + \chi)a_{t}(\mathbf{x}) - c_{t}(\mathbf{x})\right]dt$

Borrowing friction

 $a_t(\mathbf{x}) \geq \underline{a}$ for some $\underline{a} \leq 0$

Choose automation α + labor demand μ_t

$$\max_{\{\alpha,\boldsymbol{\mu}_t\}}\int_0^{+\infty} Q_t \Pi_t(\boldsymbol{\mu}_t;\alpha)\,dt$$

No arbitrage
$$\rightarrow Q_t = \exp\left(-\int_0^t r_s ds\right)$$

Equity priced by unconstrained workers

Workers

Choose cons. $\mathbf{c_t}$ and labor supply μ_t

Assets: riskless bonds Workers not insured against automation risk

 $\mathbf{x} = \{a, s, h, \xi\}$ (bonds, age, occ., prod.)

 $da_{t}(\mathbf{x}) = \left[\mathcal{Y}_{t}^{\star}(\mathbf{x}) + (r_{t} + \chi)a_{t}(\mathbf{x}) - c_{t}(\mathbf{x})\right]dt$

Borrowing friction

 $a_t(\mathbf{x}) \geq \underline{a}$ for some $\underline{a} \leq 0$

Environment

Efficient Allocation

Decentralized Equilibrium

Failure of First Welfare Theorem

Optimal Policy

Quantitative Analysis

Proposition. (Failure of FWT)

1. The laissez-faire equilibrium is inefficient if and only if reallocation frictions (λ, κ) and borrowing frictions (\underline{a}) are such that $a^*(\lambda, \kappa) < \underline{a} \leq 0$ for threshold $a^*(\cdot)$.

Proposition. (Failure of FWT)

- 1. The laissez-faire equilibrium is inefficient if and only if reallocation frictions (λ, κ) and borrowing frictions (\underline{a}) are such that $a^*(\lambda, \kappa) < \underline{a} \leq 0$ for threshold $a^*(\cdot)$.
- 2. The threshold $a^{\star}(\lambda,\kappa) < 0$ if and only if reallocation is slow $(1/\lambda \text{ or } 1/\kappa > 0)$.

Proposition. (Failure of FWT)

- 1. The laissez-faire equilibrium is inefficient if and only if reallocation frictions (λ, κ) and borrowing frictions (\underline{a}) are such that $a^*(\lambda, \kappa) < \underline{a} \leq 0$ for threshold $a^*(\cdot)$.
- 2. The threshold $a^{\star}(\lambda,\kappa) < 0$ if and only if reallocation is slow $(1/\lambda \text{ or } 1/\kappa > 0)$.

Interaction between reallocation and borrowing frictions \rightarrow inefficient automation

Failure of the First Welfare Theorem

Failure of the First Welfare Theorem

Efficient cases: instant realloc. (Costinot-Werning) or no borrowing frictions (Guerreiro et al)

Failure of the First Welfare Theorem

Workers expect income to improve as they reallocate \rightarrow Motive for **borrowing**

Compare two optimality conditions for automation

(Firm at laissez-faire)

(Valuing like displaced workers would)

$$\int_0^{+\infty} e^{-\rho t} \underbrace{\frac{u'(c_{0,t}^N)}{u'(c_{0,0}^N)}}_{\exp\left(-\int_0^t r_s ds\right)} \Delta_t^* dt = 0$$

$$\int_{0}^{+\infty} e^{-\rho t} \frac{u'(c^{A}_{0,t})}{u'(c^{A}_{0,0})} \Delta_{t}^{\star} dt = 0$$

where Δ_t^{\star} is the IRF of Y to automation.

Compare two optimality conditions for automation

(Firm at laissez-faire) (Valuing like displaced workers would) $\int_{0}^{+\infty} e^{-\rho t} \underbrace{\frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})}}_{\exp(-\int_{0}^{t} t_{s} ds)} \Delta_{t}^{\star} dt = 0$ $\int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \Delta_{t}^{\star} dt = 0$

► No borrowing constraints $\rightarrow \frac{u'(c_{0,t}^N)}{u'(c_{0,0}^N)} = \frac{u'(c_{0,t}^A)}{u'(c_{0,0}^A)} \rightarrow \text{First best} = \text{Laissez-faire}$

Compare two optimality conditions for automation

(Firm at laissez-faire) (Valuing like displaced workers would) $\int_{0}^{+\infty} e^{-\rho t} \underbrace{\frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})}}_{\exp(-\int_{0}^{t} r_{s} ds)} \Delta_{t}^{\star} dt = 0 \qquad \qquad \int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \Delta_{t}^{\star} dt = 0$ Borrowing constraints $\rightarrow \frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} > \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \rightarrow \text{First best} \neq \text{Laissez-faire}$

Compare two optimality conditions for automation

(Firm at laissez-faire) (Valuing like displaced workers would) $\int_{0}^{+\infty} e^{-\rho t} \underbrace{\frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})}}_{\exp(-\int_{0}^{t} r_{s} ds)} \Delta_{t}^{\star} dt = 0 \qquad \qquad \int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \Delta_{t}^{\star} dt = 0$ Borrowing constraints $\rightarrow \frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} > \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \rightarrow \text{First best} \neq \text{Laissez-faire}$

Firms fail to internalize that displaced workers have a limited ability to smooth consumption while they reallocate.

Environment

Efficient Allocation

Decentralized Equilibrium

Failure of First Welfare Theorem

Optimal Policy

Quantitative Analysis

Suppose: tax on automation τ^{α} + arbitrary transfers/taxes to redistribute

- Suppose: tax on automation τ^{α} + arbitrary transfers/taxes to redistribute
- ► Wedge between first best and laissez-faire optimality condition

$$\tau^{\alpha} = \int_{0}^{+\infty} e^{-\rho t} \left(\frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} - \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \right) \Delta_{t}^{\star} dt$$

- Suppose: tax on automation τ^{α} + arbitrary transfers/taxes to redistribute
- ► Wedge between first best and laissez-faire optimality condition

$$\tau^{\alpha} = \int_{0}^{+\infty} e^{-\rho t} \left(\frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} - \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \right) \Delta_{t}^{\star} dt$$

When is $\tau^{\alpha} = 0$? **Redistributive tools** \rightarrow alleviate borrowing cons. and close MRS gap

Suppose: tax on automation τ^{α} + arbitrary transfers/taxes to redistribute

► Wedge between first best and laissez-faire optimality condition

$$\tau^{\alpha} = \int_{0}^{+\infty} e^{-\rho t} \left(\frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} - \frac{u'(c_{0,t}^{A})}{u'(c_{0,0}^{A})} \right) \Delta_{t}^{\star} dt$$

 Worker/time-specific lump sum transfers → implement any first best (SWT holds) Info requirements? Take-up? Political? (Piketty-Saez, 2013; Guerreiro et al., 2017; Costinot-Werning, 2018)

- Suppose: tax on automation τ^{α} + arbitrary transfers/taxes to redistribute
- Wedge between first best and laissez-faire optimality condition

$$au^{lpha} = \int_{0}^{+\infty} e^{-
ho t} \left(rac{u'(c^N_{0,t})}{u'(c^N_{0,0})} - rac{u'(c^A_{0,t})}{u'(c^A_{0,0})}
ight) \Delta^{\star}_t dt$$

 Symmetric lump sum transf. (UBI) → govt. borrows for workers → restore efficiency Fiscal cost? Distortions? Tighten constraints? (Guner et al., 2021, Aiyagari-Mcgrattan, 1998)

Second best tools: tax automation (*ex ante*) + labor market interventions (*ex post*)

No social insurance for now, reintroduced in quantitative model

Second best tools: tax automation (*ex ante*) + labor market interventions (*ex post*)

No social insurance for now, reintroduced in quantitative model

• Tractability: hand-to-mouth workers ($\underline{a} \rightarrow 0$), no OLG ($\chi = 0$)

Second best tools: tax automation (ex ante) + labor market interventions (ex post) No social insurance for now, reintroduced in quantitative model

▶ Tractability: hand-to-mouth workers ($\underline{a} \rightarrow 0$), no OLG ($\chi = 0$)

Primal problem: control automation α and reallocation T_0

$$\max_{\{\alpha, \mathcal{T}_0, \boldsymbol{\mu}_t, \mathbf{c}_t\}} \sum_{h} \phi^h \eta^h \int_0^{+\infty} \exp\left(-\rho t\right) u\left(c_t^h\right) dt$$

subject to workers' budget constraints, the law of motion of labor, firms choosing labor optimally, and market clearing.

Constrained inefficiency (regardless of Pareto weights)

• Government's optimality conditions to **automate** (α) and **reallocate** (T_0)

$$\int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'\left(c_{0,t}^{N}\right)}{u'\left(c_{0,0}^{A}\right)} \Delta_{t}^{\star} dt = -\Phi^{\star}\left(\alpha^{\text{SB}}, T_{0}^{\text{SB}}; \eta\right)$$

$$\underbrace{\int_{T_{0}^{\text{SB}}}^{+\infty} \exp\left(-\rho t\right) \frac{u'\left(c_{0,t}^{A}\right)}{u'\left(c_{0,0}^{A}\right)} \Delta_{t} dt}_{\text{laissez-faire}} = -\Phi\left(\alpha^{\text{SB}}, T_{0}^{\text{SB}}; \eta\right)$$
pecuniary externalities

Constrained inefficiency (regardless of Pareto weights)

• Government's optimality conditions to **automate** (α) and **reallocate** (T_0)

$$\int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'\left(c_{0,t}^{N}\right)}{u'\left(c_{0,0}^{N}\right)} \Delta_{t}^{\star} dt = -\Phi^{\star}\left(\alpha^{\text{SB}}, T_{0}^{\text{SB}}; \eta\right)$$

$$\underbrace{\int_{T_{0}^{\text{SB}}}^{+\infty} \exp\left(-\rho t\right) \frac{u'\left(c_{0,t}^{A}\right)}{u'\left(c_{0,0}^{A}\right)} \Delta_{t} dt}_{\text{laissez-faire}} = -\Phi\left(\alpha^{\text{SB}}, T_{0}^{\text{SB}}; \eta\right)$$
pecuniary externalities

Proposition. (Constrained inefficiency)

Fix weights η . Then, there is always a small perturbation of the technology $G^{\star}(\cdot)$ such that either $\Phi^{\star}(\cdot) \neq 0$ or $\Phi(\cdot) \neq 0$ — i.e., the equilibrium is *generically* constrained inefficient.

• No pref. for redistribution: weights η^{effic} so that distributional terms cancel out

Government does not distort an efficient alloc. to improve redistribution

(second best)

(laissez-faire)

$$\int_0^{+\infty} e^{-\rho t} \sum_h \phi^h \eta^{h, \text{effic}} \frac{u'(c_{0,t}^h)}{u'(c_{0,0}^h)} \Delta_t^\star dt = 0$$

$$\int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} \Delta_{t}^{\star} dt = 0$$

(second best) (laissez-faire)

$$\int_{0}^{+\infty} e^{-\rho t} \sum_{h} \phi^{h} \eta^{h, \text{effic}} \frac{u'(c_{0,t}^{h})}{u'(c_{0,0}^{h})} \Delta_{t}^{\star} dt = 0 \qquad \qquad \int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} \Delta_{t}^{\star} dt = 0$$

1. The response of output to automation Δ_t^{\star} is **back-loaded** • Figure

(second best) (laissez-faire)

$$\int_{0}^{+\infty} e^{-\rho t} \sum_{h} \phi^{h} \eta^{h, \text{effic}} \frac{u'(c_{0,t}^{h})}{u'(c_{0,0}^{h})} \Delta_{t}^{\star} dt = 0 \qquad \qquad \int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} \Delta_{t}^{\star} dt = 0$$

1. The response of output to automation Δ_t^{\star} is **back-loaded** • Figure

2. Government is more impatient than the firm — priced by unconstrained workers only

(second best) (laissez-faire)

$$\int_{0}^{+\infty} e^{-\rho t} \sum_{h} \phi^{h} \eta^{h, \text{effic}} \frac{u'(c_{0,t}^{h})}{u'(c_{0,0}^{h})} \Delta_{t}^{\star} dt = 0 \qquad \qquad \int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} \Delta_{t}^{\star} dt = 0$$

1. The response of output to automation Δ_t^{\star} is **back-loaded** • Figure

2. Government is more impatient than the firm — priced by unconstrained workers only

 \longrightarrow Optimal to tax automation on efficiency grounds

(second best) (laissez-faire)

$$\int_{0}^{+\infty} e^{-\rho t} \sum_{h} \phi^{h} \eta^{h, \text{effic}} \frac{u'(c_{0,t}^{h})}{u'(c_{0,0}^{h})} \Delta_{t}^{\star} dt = 0 \qquad \qquad \int_{0}^{+\infty} e^{-\rho t} \frac{u'(c_{0,t}^{N})}{u'(c_{0,0}^{N})} \Delta_{t}^{\star} dt = 0$$

The optimal **tax on automation** improves **aggregate efficiency**. It raises consumption early on in the transition, precisely when displaced workers value it more.

Extension: Gradual automation

► Tax capital in the long-run → improve insurance or prevent dynamic inefficiency (Aiyagari, 1995; Chamley, 2001; Conesa et al., 2009; Dávila et al., 2021; Aguiar et al.; 2021)

Extension: Gradual automation

- ► Tax capital in the long-run → improve insurance or prevent dynamic inefficiency (Aiyagari, 1995; Chamley, 2001; Conesa et al., 2009; Dávila et al., 2021; Aguiar et al.; 2021)
- This paper: different rationale for taxing automation
- ► Tax capital in the long-run → improve insurance or prevent dynamic inefficiency (Aiyagari, 1995; Chamley, 2001; Conesa et al., 2009; Dávila et al., 2021; Aguiar et al.; 2021)
- ► This paper: **different rationale** for taxing automation
 - 1. Does not rely on uninsured income risk (or overlapping generations)
 - 2. Slown down automation only when workers reallocate and are borrowing constrained. No tax in the long-run.

- ► Tax capital in the long-run → improve insurance or prevent dynamic inefficiency (Aiyagari, 1995; Chamley, 2001; Conesa et al., 2009; Dávila et al., 2021; Aguiar et al.; 2021)
- This paper: different rationale for taxing automation
 - 1. Does not rely on uninsured income risk (or overlapping generations)
 - 2. **Slown down** automation only when **workers reallocate** and are borrowing constrained. <u>No</u> tax in the long-run.
- ► To clarify 2., extend model so that automation takes place gradually

$$\underbrace{\frac{d\alpha_t = (x_t - \delta\alpha_t) dt}{\text{Law of motion}}}_{\text{Uaw of motion}} \underbrace{Y_t = G^* (\mu_t; \alpha_t) - x_t \alpha_t - \Omega (x_t / \alpha_t) \alpha_t}_{\text{Output net of investment costs}}$$

- ► Tax capital in the long-run → improve insurance or prevent dynamic inefficiency (Aiyagari, 1995; Chamley, 2001; Conesa et al., 2009; Dávila et al., 2021; Aguiar et al.; 2021)
- ► This paper: **different rationale** for taxing automation
 - 1. Does not rely on **uninsured income risk** (or overlapping generations)
 - 2. Slown down automation only when workers reallocate and are borrowing constrained. No tax in the long-run.
- ► To clarify 2., extend model so that automation takes place gradually

$$\underbrace{d\alpha_t = (x_t - \delta\alpha_t) dt}_{\text{Law of motion}}, \qquad \underbrace{Y_t = G^* (\mu_t; \alpha_t) - x_t \alpha_t - \Omega (x_t/\alpha_t) \alpha_t}_{\text{Output net of investment costs}}$$

• Workers are unconstrained in the long-run $\implies \alpha_t^{\sf LF}/\alpha_t^{\sf FB} \to 1$ as $t \to +\infty$

- ► Tax capital in the long-run → improve insurance or prevent dynamic inefficiency (Aiyagari, 1995; Chamley, 2001; Conesa et al., 2009; Dávila et al., 2021; Aguiar et al.; 2021)
- ► This paper: **different rationale** for taxing automation
 - 1. Does not rely on uninsured income risk (or overlapping generations)
 - 2. Slown down automation only when workers reallocate and are borrowing constrained. No tax in the long-run.
- ► To clarify 2., extend model so that automation takes place gradually

$$\underbrace{\frac{d\alpha_t = (x_t - \delta\alpha_t) dt}{\text{Law of motion}}}_{\text{Duty ut net of investment costs}} \underbrace{Y_t = G^* (\mu_t; \alpha_t) - x_t \alpha_t - \Omega (x_t / \alpha_t) \alpha_t}_{\text{Output net of investment costs}}$$

• Workers are unconstrained in the long-run $\implies \alpha_t^{\sf LF}/\alpha_t^{\sf FB} \to 1$ as $t \to +\infty$

Environment

Efficient Allocation

Decentralized Equilibrium

Failure of First Welfare Theorem

Optimal Policy

Quantitative Analysis

task-based framework - Acemoglu-Autor

 $y_t^h = F\left(\mu_t^h; \alpha_t^h\right) = A^h \left(\varphi^h \alpha_t^h + \mu_t^h\right)^{1-\eta}$

quadratic adjustment costs – $\omega \left(x_t / \alpha_t \right)^2 \alpha_t$

$$d\alpha_t^A = \left(x_t - \delta \alpha_t^A\right) dt \qquad \alpha_t^N = 0$$

task-based framework - Acemoglu-Autor

 $y_t^h = F\left(\mu_t^h; \alpha_t^h\right) = A^h \left(\varphi^h \alpha_t^h + \mu_t^h\right)^{1-\eta}$

quadratic adjustment costs – $\omega \left(x_t / \alpha_t \right)^2 \alpha_t$

$$d\alpha_t^A = (x_t - \delta \alpha_t^A) dt \qquad \alpha_t^N = 0$$

Workers

gross flows - Kambourov-Manovskii

$$\mathcal{S}_{t}(\mathbf{x}) = \frac{\left(1 - \phi\right) \exp\left(\frac{V_{t}^{N}\left(\mathbf{x}'(N;\mathbf{x})\right)}{\gamma}\right)}{\sum_{h'} \phi^{h'} \exp\left(\frac{V_{t}^{h'}\left(\mathbf{x}'(h';\mathbf{x})\right)}{\gamma}\right)}$$

uninsured risk – Huggett-Aiyagari

$$\begin{aligned} dz_t^T &= -\rho_z z_t^T dt + \sigma_z dW_t \\ z_t^P &= (1-\theta) \, z_{t,-}^P \text{ when moving} \end{aligned}$$

Incomes and Governmen

task-based framework - Acemoglu-Autor

 $y_t^h = F\left(\mu_t^h; \alpha_t^h\right) = A^h \left(\varphi^h \alpha_t^h + \mu_t^h\right)^{1-\eta}$

quadratic adjustment costs – $\omega\left(\mathbf{x}_{t}/\alpha_{t}\right)^{2}\alpha_{t}$

$$d\alpha_t^{\mathcal{A}} = \left(x_t - \delta \alpha_t^{\mathcal{A}}\right) dt \qquad \alpha_t^{\mathcal{N}} = 0$$

Calibration

internal (7) and external (14)

Workers

gross flows - Kambourov-Manovskii

$$\mathcal{S}_{t}(\mathbf{x}) = \frac{\left(1 - \phi\right) \exp\left(\frac{V_{t}^{N}\left(\mathbf{x}'(N;\mathbf{x})\right)}{\gamma}\right)}{\sum_{h'} \phi^{h'} \exp\left(\frac{V_{t}^{h'}\left(\mathbf{x}'(h';\mathbf{x})\right)}{\gamma}\right)}$$

uninsured risk – Huggett-Aiyagari

$$\begin{aligned} dz_t^T &= -\rho_z z_t^T dt + \sigma_z dW_t \\ z_t^P &= (1-\theta) \, z_{t,-}^P \text{ when moving} \end{aligned}$$

Incomes and Government Para

task-based framework - Acemoglu-Autor

 $y_t^h = F\left(\mu_t^h; \alpha_t^h\right) = A^h \left(\varphi^h \alpha_t^h + \mu_t^h\right)^{1-\eta}$

quadratic adjustment costs – $\omega\left(\mathbf{x}_{t}/\alpha_{t}\right)^{2}\alpha_{t}$

$$d\alpha_t^{\mathcal{A}} = \left(x_t - \delta \alpha_t^{\mathcal{A}}\right) dt \qquad \alpha_t^{\mathcal{N}} = 0$$

Calibration

internal (7) and external (14)

Workers

gross flows - Kambourov-Manovskii

$$\mathcal{S}_{t}(\mathbf{x}) = \frac{\left(1 - \phi\right) \exp\left(\frac{V_{t}^{N}\left(\mathbf{x}'(N;\mathbf{x})\right)}{\gamma}\right)}{\sum_{h'} \phi^{h'} \exp\left(\frac{V_{t}^{h'}\left(\mathbf{x}'(h';\mathbf{x})\right)}{\gamma}\right)}$$

 $uninsured \ risk - {\sf Huggett-Aiyagari}$

$$\begin{aligned} dz_t^T &= -\rho_z z_t^T dt + \sigma_z dW_t \\ z_t^P &= (1-\theta) \, z_{t,-}^P \text{ when moving} \end{aligned}$$

▶ Incomes and Government 📜 ▶ Parameters 📜 ▶ Examp

Automation, Reallocation and Inequality

16/19

Automation, Reallocation and Inequality

16/19

► **Objective**: The government maximizes

$$\mathcal{W}(\boldsymbol{\eta}) \equiv \int_{-\infty}^{+\infty} \int \eta_t(\mathbf{x}) \, V_t^{\mathsf{birth}}(\mathbf{x}) \, d\pi_t(\mathbf{x}) \, dt$$

Second best: Choose $\{\tau_t^x\}$ on investment, rebated to firm owners.

• Numerically: Iterate on $\{\tau_t^x\}$ (parametrically) to find the second best.

Table: Welfare Gains at Second Best Intervention

		Alternative calibrations		Alternative policies	
	Benchmark	Long unempl.	High liquid.	Transfers	Joint
Efficiency	3.8%				
Utilitarian	5.9%				

Note: 'Long unempl.' and 'High liquid.' are alternative calibrations with $1/\kappa = 2$ and -B/Y = 1.4. 'Transfers' denotes \$10k to automated workers. 'Joint' denotes optimal tax on automation and transfers.

Table: Welfare Gains at Second Best Intervention

		Alternative calibrations		Alternative policies	
	Benchmark	Long unempl.	High liquid.	Transfers	Joint
Efficiency	3.8%				
Utilitarian	5.9%				

Note: 'Long unempl.' and 'High liquid.' are alternative calibrations with $1/\kappa = 2$ and -B/Y = 1.4. 'Transfers' denotes \$10k to automated workers. 'Joint' denotes optimal tax on automation and transfers.

Table: Welfare Gains at Second Best Intervention

		Alternative calibrations		Alternative policies	
	Benchmark	Long unempl.	High liquid.	Transfers	Joint
Efficiency	3.8%	3.5%			
Utilitarian	5.9%	5.8%			

Note: 'Long unempl.' and 'High liquid.' are alternative calibrations with $1/\kappa = 2$ and -B/Y = 1.4. 'Transfers' denotes \$10k to automated workers. 'Joint' denotes optimal tax on automation and transfers.

Table: Welfare Gains at Second Best Intervention

		Alternative calibrations		Alternative policies	
	Benchmark	Long unempl.	High liquid.	Transfers	Joint
Efficiency	3.8%	3.5%	0.6%		
Utilitarian	5.9%	5.8%	2.3%		

Note: 'Long unempl.' and 'High liquid.' are alternative calibrations with $1/\kappa = 2$ and -B/Y = 1.4. 'Transfers' denotes \$10k to automated workers. 'Joint' denotes optimal tax on automation and transfers.

Table: Welfare Gains at Second Best Intervention

		Alternative calibrations		Alternative policies	
	Benchmark	Long unempl.	High liquid.	Transfers	Joint
Efficiency	3.8%	3.5%	0.6%	0.3%	
Utilitarian	5.9%	5.8%	2.3%	3.0%	

- Note: 'Long unempl.' and 'High liquid.' are alternative calibrations with $1/\kappa = 2$ and -B/Y = 1.4. 'Transfers' denotes \$10k to automated workers. 'Joint' denotes optimal tax on automation and transfers.
 - ▶ Half-life of automation: 20 years at LF and 47 years at SB in our benchmark

Table: Welfare Gains at Second Best Intervention

		Alternative calibrations		Alternative policies	
	Benchmark	Long unempl.	High liquid.	Transfers	Joint
Efficiency	3.8%	3.5%	0.6%	0.3%	3.9%
Utilitarian	5.9%	5.8%	2.3%	3.0%	8.7%

Note: 'Long unempl.' and 'High liquid.' are alternative calibrations with $1/\kappa = 2$ and -B/Y = 1.4. 'Transfers' denotes \$10k to automated workers. 'Joint' denotes optimal tax on automation and transfers.

Two novel results in economies where automation displaces workers, and these workers face reallocation and borrowing frictions

- Two novel results in economies where automation displaces workers, and these workers face reallocation and borrowing frictions
 - 1. Automation is **inefficient** when frictions are sufficiently severe

Firms fail to internalize that automated workers have a limited ability to smooth consumption

2. Optimal to slow down automation while workers reallocate, but not tax it in the long-run Improve aggregate efficiency by raising consumption when displaced workers are constrained

- Two novel results in economies where automation displaces workers, and these workers face reallocation and borrowing frictions
 - Automation is inefficient when frictions are sufficiently severe
 Firms fail to internalize that automated workers have a limited ability to smooth consumption
 - 2. Optimal to **slow down automation** while workers reallocate, but not tax it in the long-run Improve aggregate efficiency by raising consumption when displaced workers are constrained

Quantitatively: substantial efficiency and welfare gains from slowing down autom.
 Even when the government can implement generous transfers

Taxation of automation. Naito (1999), Guerreiro et al. (2017), Thuemmel (2018), Rebelo et al. (2018), Costinot-Werning (2020), Jaimovich et al. (2020); Acemoglu et al. (2020); Korinek-Stiglitz (2021)

★ Policy interventions on **efficiency grounds**

Labor reallocation. Lucas-Prescott (1974), Alvarez-Veracierto (1999, 2001), Alvarez-Shimer (2011); Keane-Wolpin (1997), Lee-Wolpin (2006); Davis-Haltiwanger (1999), Kambourov-Manovskii (2009)

* Normative analysis with incomplete markets

Optimal policy in HA economies. Aiyagari (1995), Golosov-Tsyvinski (2006), Conesa-Krueger (2006), Conesa et al. (2009), Davila et al. (2012), Heathcote et al. (2017), Aguiar et al. (2021)

* Focus on taxation of automation with labor reallocation frictions

Example. A task-based technology (Acemoglu-Restrepo, 2018):

$$G(\mu^{A}, \mu^{N}; \alpha) = \exp\left(\int_{0}^{\phi} \log\left(\varphi\alpha + \mu^{A}\right) + \int_{1-\phi}^{1} \log\left(\mu^{N}\right)\right)$$
$$= (\varphi\alpha + \mu^{A})^{\phi} (\mu^{N})^{1-\phi}$$

- Automation and labor are perfect substitutes *within* occupations.
- ▶ They can still be complements *across* occupations.
- ▶ Quantitative model. Specification above with gross complements across occup.

Borrowing

Back

Automation returns Δ_t^{\star} are back-loaded

• Assumption (complementarity). $\partial_{\alpha} G^{\star}(\mu, 1-\mu; \alpha)$ has increasing differences in $(\alpha, -\mu)$

Back

Extension I: No Labor Market Intervention

► Active labor market interventions might not be available (Heckman et al., Card et al.)

Extension I: No Labor Market Intervention

► Active labor market interventions might not be available (Heckman et al., Card et al.)

• The government uses automation (α) as a *proxy* for reallocation (T_0)

$$\int_{0}^{+\infty} e^{-\rho t} \sum_{h} \phi^{h} \eta^{h} \frac{u'(c_{0,t}^{h})}{u'(c_{0,0}^{h})} \left(\Delta_{t}^{\star} + T_{0}'(\alpha^{\text{SB}}) \Delta_{t} \right) dt = 0$$

so that

Short unempl/retraining spells $(1/\kappa \text{ low}) \rightarrow \mathbf{tax} \alpha \text{ more}$ Long unempl/retraining spells $(1/\kappa \text{ high}) \rightarrow \mathbf{tax} \alpha$ less

Extension I: No Labor Market Intervention

► Active labor market interventions might not be available (Heckman et al., Card et al.)

• The government uses automation (α) as a *proxy* for reallocation (T_0)

$$\int_{0}^{+\infty} e^{-\rho t} \sum_{h} \phi^{h} \eta^{h} \frac{u'(c_{0,t}^{h})}{u'(c_{0,0}^{h})} \left(\Delta_{t}^{\star} + T_{0}'(\alpha^{\text{SB}}) \Delta_{t} \right) dt = 0$$

so that

Short unempl/retraining spells (1/ κ low) \rightarrow tax α more

Long unempl/retraining spells (1/ κ high) \rightarrow tax α less

• We play with the duration of these spells $(1/\kappa)$ in our quantitative model.

Extension II: Equity concerns

► Incomes:

$$\mathcal{Y}_{t}^{\star}\left(\mathbf{x}\right) = \Pi_{t} + (1 - \tau_{t}) \times \begin{cases} \xi \exp\left(z\right) w_{t}^{h} & \text{if } e = E \\ b\xi \exp\left(z\right) w_{t}^{-h} & \text{if } e = U \end{cases}$$

where b is replacement rate during unemployment.

Assets:

Workers trade riskless bonds, and annuities (Blanchard-Yaari)

Fiscal policy:

Constant debt / GDP, adjusts distorsionary tax $\{\tau_t\}$

Resource constraint:

$$\int c_t(\mathbf{x}) \, d\pi_t + x_t + \omega \left(\frac{x_t}{\alpha_t}\right)^2 \alpha_t = G^*\left(\left\{\frac{\int \mathbf{1}_{\{h(\mathbf{x})=h\}} \xi \, d\pi_t}{\phi^h}\right\}\right) + b \int \mathbf{1}_{\{e=U\}} \tilde{\mathcal{Y}}(\mathbf{x}) \, d\pi_t,$$

Calibration

▶ **Parameters**: External calibration (14) and internal calibration (7)

Parameter Calibration Description Target / Source 0.10 2% real interest rate Discount rate ρ A^A, A^N Productivities 0.94, 1.16 Initial output (1) Adjustment cost 4 Routine empl. share 2015 ω Fraction of automated occupations 0.55 Routine empl. share 1970 ϕ λ Mobility hazard 0.312 Occupational mobility 1970 Fréchet parameter 0.052 Elasticity of labor supply γ

Table 1: Internal Calibration

Table 2: External Calibration

Parameter	Description	Calibration	Target / Source
σ	EIS (inverse)	2	-
χ	Death rate	1/50	Average working life of 50 years
$1-\eta$	Initial labor share	0.64	1970 labor share (BLS)
δ	Depreciation rate	0.1	Graetz-Michaels (2018)
ν	Elasticity of substitution across occs.	0.75	Buera-Kaboski (2011)
$1/\kappa$	Average unemployment duration	1/3.2	Alvarez-Shimer (2011)
θ	Productivity loss from relocation	0.18	Kambourov-Manovskii (2009)
a	Borrowing limit	0	Auclert et al (2018)
$\phi_0,\phi_1,-B/Y$	Government	0.35, 0.18, 0.26	Heathcote et al (2017), Kaplan et al (2018)
ρ_z, σ_z, b	Income	0.023, 0.102, 0.4	Floden-Lindé (2001), Shimer (2005)