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Abstract

We study large-population repeated games where players are symmetric but not

anonymous, so player-specific rewards and punishments are feasible. Players may be

commitment types who always take the same action. Even though players are not

anonymous, we show that an anti-folk theorem holds when the commitment action is

“population dominant,”meaning that it secures a payoff greater than the population

average payoff. For example, voluntary public goods provision in large populations is

impossible when commitment types never contribute, even if monetary rewards can

be targeted to contributors; however, provision is possible if non-contributors can be

subjected to involuntary fines. A folk theorem under incomplete information provides

a partial converse to our result. Along the way, we develop some general results on

symmetric games with incomplete information and/or repeated play.
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1 Introduction

Large-population repeated games model social cooperation in settings including commu-

nity resource management (Ostrom, 1990), voluntary public goods provision (Miguel and

Gugerty, 2005), informal risk-sharing (Ligon, Thomas, and Worrall, 2002), and interactions

in online marketplaces (Friedman and Resnick, 2001). In reality, large groups inevitably con-

tain a few agents who do not behave cooperatively, so it is natural to investigate when social

cooperation is robust to introducing a small share of uncooperative agents. The current

paper shows that such robustness requires that it is possible to punish defectors without also

punishing the rest of the population as severely: that is, that it is possible to hold defectors

to payoffs below the population average. Intuitively, given that a large society is very likely

to contain some defectors, if punishing defectors is too costly then rational players always

prefer to pool with defectors, so in equilibrium everyone defects. If instead punishing defec-

tors is cheaper, rational players can be induced to separate from defectors, and cooperation

can prevail among rational players.

This paper builds closely on our earlier work (Sugaya and Wolitzky, 2020, henceforth

SW20). There, we showed that cooperation is impossible in large-population repeated games

under two conditions:

1. The game has a “pairwise dominant”action, each player may be a commitment type

who always takes this action– what we call a bad apple– and the distribution of the

number of bad apples in the population is “smooth.”An action a0 is pairwise dominant

if whenever some player takes a0 and another player takes a different action, the first

player gets a strictly higher payoff than the second. The smoothness condition holds

if, for example, each player is a bad apple with independent probability z, for any fixed

z ∈ (0, 1) as the population size N →∞.

2. Players are symmetric and anonymous: for any action profile (a1, . . . aN), any permu-

tation π on the set of player-names I = {1, . . . , N}, and any player i ∈ I, we have

ui (a1, . . . , aN) = uπ(i)

(
aπ−1(1), . . . , aπ−1(N)

)
.1 (1)

1This condition is equivalent to the stage game satisfying standard definitions of symmetry and anonymity
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Under these conditions, as N → ∞ social welfare in every Nash equilibrium converges

to that where everyone takes a0, regardless of how the players’actions are monitored. The

logic is that if rational players frequently took actions other than a0, bad apples would get

substantially higher payoffs than rational players. A rational player would therefore deviate

by following the bad-apple strategy of always taking a0, if this deviation were undetectable.

Finally, the smoothness assumption implies that this deviation is almost undetectable when

N is large (even if actions are perfectly monitored).

Granting that anyone could turn out to be a bad apple with some small (independent)

probability, this “anti-folk theorem”precludes cooperation in a range of environments, in-

cluding the following two:

Example 1: prisoner’s dilemma (PD) with anonymous random matching. Each period,

players match in pairs, uniformly at random, to play a standard one-shot, two-player PD.

Players do not observe their partner’s identity before choosing actions (Cooperate or Defect).

Example 2: public goods game. Each period, players decide whether to Work or Shirk,

where working is privately costly but benefits everyone else.

These two examples are actually one and the same, because playing Cooperate without

knowing the partner’s identity is a kind of public good provision. Note that Defect is pairwise

dominant in Example 1; so is Shirk in Example 2.

These examples notwithstanding, anonymity is a very restrictive assumption, because

it rules out player-specific rewards and punishments. For instance, the following games

(described formally later on) are symmetric but not anonymous:

Example 1’: PD with non-anonymous random matching. The same as Example 1, but

players observe their partner’s identity before choosing actions.

Example 2’: public goods game with transfers. The same as Example 2, but each player

also has the option of sending money to any other player, simultaneously with theWork/Shirk

decisions.

(e.g., Plan, 2017, Theorem 1).
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(It is convenient to consider a version of this game with a small transaction cost. For

concreteness, assume that for each dollar player i sends to player j, player j receives only 99

cents, the remaining penny being wasted.)

Example 3: helping with externalities. The same as Example 1’, but taking Cooperate

generates a positive externality for all other players, in addition to benefiting one’s partner.

These games violate condition (1) because actions have different payoff consequences for

different players, but they are still symmetric.2 So, when the population is large and likely

contains a few bad apples, does the folk theorem hold in these games or not?

The current paper shows that our earlier anti-folk theorem extends to all symmetric

games. Unlike in anonymous games, in symmetric games a player may care about which of

her opponents are bad apples, not just how many bad apples there are in the population.

Nonetheless, a player’s expected payoff conditional on the event that there are n bad ap-

ples remains well-defined, and we can reproduce our earlier arguments working with these

expected payoffs.

However, while our anti-folk theorem extends to symmetric, non-anonymous games, these

games rarely have pairwise dominant actions. For instance, the action Defect Against Every-

one is not pairwise dominant in Example 1’ or 3, and the action Shirk and Don’t Send

Anyone Money (or, for short, Shirk and Stiff ) is not pairwise dominant in Example 2’. This

follows because, for example, a player who takes Shirk and Stiff can get a lower payoff than

another player who takes a more generous action, if the latter player receives enough money

from third parties.

To address games like Examples 1’, 2’, and 3, we generalize the notion of a pairwise

dominant action to that of a “population dominant action.”This is an action a0 such that

the payoff of any player who takes a0 exceeds the average payoff in the population by an

amount proportional to the fraction of the population who take actions other than a0. For

example, Shirk and Stiff is population dominant in Example 2’, because the payoff of a

player who takes Shirk and Stiff exceeds the average payoff in the population by at least .01

times the fraction of players who take actions other than Shirk and Stiff .3 In contrast, Defect
2That is, their automorphism groups are player-transitive. We will explain this condition.
3The .01 comes from the assumed transaction cost. Without transaction costs, our arguments would
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Against Everyone is not population dominant in Example 1’, because the payoff of a player

who takes Defect Against Everyone can be lower than the payoffs of the other players in the

population if they cooperate with each other while defecting against the player taking Defect

Against Everyone. In this case, deviating from a more cooperative strategy to Defect Against

Everyone is unprofitable. Finally, we will see that Defect Against Everyone is population

dominant in Example 3 if and only if the externality is suffi ciently large. Intuitively, a larger

externality makes it more diffi cult to hold a free-rider’s payoff below the population average.

In general, the existence of a population dominant action is tied to the impossibility of

targeting punishment toward a specific player. If a population dominant action exists, a

player who takes this action always obtains a payoff greater than the population average. It

is therefore impossible to punish a player who takes such an action without also punishing

the rest of the population just as severely. If instead no action is population dominant, then

a player can be punished for taking any action without punishing the rest of the population

as much. This distinction turns out to be crucial for supporting cooperative outcomes in

large-population games with commitment types.

The main result of the current paper is that our earlier anti-folk theorem extends not only

to symmetric (non-anonymous) games, but also to games with a population dominant (non-

pairwise dominant) action. This result implies that the existence of a population dominant

action is a major obstacle to cooperation in large populations. To see the intuition, suppose

that the committed players in the population take population dominant actions, while the

rational players may take different actions. By the definition of population dominance, on

average the committed players obtain higher payoffs than the rational players. Moreover, if

the distribution of the number of committed players is smooth, then if one rational player

deviates to always taking her population dominant action, this has only a small effect on

the population distribution of actions. Hence, the payoff of a rational player who deviates

to always taking her population dominant action is close to the equilibrium payoff of a

truly committed player. Since this deviation must be unprofitable in equilibrium, and since

committed players obtain higher equilibrium payoffs than rational players, it follows that the

still show that no one can Work, but they would allow the possibility that some players might Shirk while
transferring money back and forth.

4



equilibrium payoffs of committed players and rational players must be very similar. Finally,

again by the definition of population dominance, this implies that rational players must also

almost always take population dominant actions in equilibrium.

We also present a folk theorem for repeated games with incomplete information and

perfect monitoring. When applied to symmetric games, this result implies that our anti-

folk theorem is reasonably tight, and hence that the notion of population dominance cannot

be greatly generalized. Together, our results imply that, for example, cooperation in large

populations with commitment types is possible in Example 1’and in Example 3 with small

externalities (for perfect monitoring) but not in Example 2’ or in Example 3 with large

externalities (for any monitoring structure).

A step in the proof of our anti-folk theorem is that, in symmetric games with public

randomization, the average payoff across players from any equilibrium can be attained in

an equilibrium where all players obtain the same payoff. This result is very natural but it

appears to be novel, and it may be useful beyond our particular problem.

This paper connects to several strands of literature. First, a literature following Green

(1980) and Sabourian (1990) studies large-population repeated games with complete infor-

mation, focusing on the diffi culty of monitoring a large number of players through a coarse

“aggregate signal.”4 Second, the “reputation” literature studies how introducing a small

amount of incomplete information can yield sharp anti-folk theorems in repeated games with

patient players (Fudenberg and Levine, 1989; Mailath and Samuelson, 2006). Third, in in-

complete information settings, several papers develop measures of the pivotality or influence

of a player’s type on an aggregate outcome, and give conditions under which most players’

influence must be small in large populations (al-Najjar and Smorodinsky, 2000; McLean and

Postlewaite, 2002). See SW20 for a more extensive discussion of related literature.

4For some recent results and further references on such models, see Sugaya and Wolitzky (2022).
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2 Preliminaries

2.1 Model

We consider symmetric repeated games with commitment types. These are repeated games

where the stage game, the prior over players’types (rational or committed), and the mon-

itoring structure are all symmetric. This section introduces the model and the relevant

symmetry notions. This material is relatively standard but somewhat notation-heavy; it can

be skimmed on a first reading.

Stage games. An N -player stage game G = (I, A, u) consists of a finite set of players

I = {1, . . . , N}, a finite product set of actions A = ×i∈IAi, and a payoff function ui : A→ R

for each i ∈ I. Throughout the paper, we normalize the range of each ui to lie in [0, 1].

An automorphism on G (Nash, 1951) is a bijection π : I → I together with a bijection

φi : Ai → Aπ(i) for each player i such that

ui (a) = uπ(i) (φ (a)) for all i ∈ I, a ∈ A,

where φ (a) ∈ A is the action profile defined by φ (a)j = φπ−1(j)

(
aπ−1(j)

)
for all j ∈ I.

This says that payoffs are invariant to simultaneously relabeling players according to π and

relabeling actions according to φ. The game G is symmetric if its automorphism group

is player-transitive: for all i, j ∈ I, there exists an automorphism (π, φ) on G such that

π (i) = j.5

Let us formalize Examples 1’and 2’, and check that they symmetric.

PD with non-anonymous random matching. For each player i, Ai = {C,D}I\{i}, with

the interpretation that the j 6= i-coordinate of ai (which we denote as ai,j) is i’s action

upon meeting j. That is, an action is a mapping from the partner’s identity to Cooperate

or Defect. For (x, y) ∈ {C,D}2, let v (x, y) denote player 1’s payoff in the two-player PD at

action profile (x, y). Payoffs in the PD with non-anonymous random matching are given by

ui (a) =
∑

j 6=i v (ai,j, aj,i) / (N − 1). Note that for any bijection π : I → I, the pair (π, φ) is

5This is a standard, general notion of symmetry. For much more on symmetry in N -player games, see,
e.g., Stein (2011), Hefti (2017), Plan (2017), Ham (2021).
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an automorphism, where φ is defined as φi
(

(ai,j)j∈I\{i}

)
=
(
aπ(i),π(j)

)
j∈I\{i} for all i ∈ I and

ai ∈ Ai. This implies that the game is symmetric.

Public goods game with transfers. Let Mi denote the set of vectors mi ∈ {0, . . . , m̄}I\{i}

whose components sum to at most m̄. For each player i, Ai = {W,S}×Mi: player i chooses

Work or Shirk, along with a non-negative integer amount of money to send to each opponent,

up to a total of m̄ dollars. Let wi (ai) ∈ {W,S} denote the first component of ai, and let

mi,j (ai) denote the amount of money i sends to j under ai. Suppose that taking Work

entails a private cost of ζ, but benefits each other player by β/ (N − 1), where ζ, β > 0.

Recall also our assumption that one penny out of every dollar transferred is wasted. Then

payoffs are given by

ui (a) =
∑
j 6=i

β1 {wj (aj) = W}
N − 1

+ v

(∑
j 6=i

(0.99mj,i (aj)−mi,j (ai))

)
− ζ1 {wi (ai) = W} ,

where v is a utility function for money, which is assumed to be strictly increasing, strictly

concave, and bounded above.6 Note that for any bijection π : I → I, the pair (π, φ) is an

automorphism, where, for all i ∈ I and ai ∈ Ai, the action aπ(i) = φi (ai) ∈ Aπ(i) is defined

as wπ(i)

(
aπ(i)

)
= wi (ai) and mπ(i),j

(
aπ(i)

)
= mi,π−1(j) (ai) for all j 6= π (i). So the game is

symmetric.

Note that both of these examples are not only symmetric but also N-transitively symmet-

ric, meaning that for any permutation π on I, there exists a bijection φ such that (π, φ) is an

automorphism. An example of a game that is symmetric but not N -transitively symmetric

is a game “played on a circle,”where each player cares only about her neighbors’actions.

Commitment types. We consider games where each player i has a type θi ∈ {R,B},

where R is the rational type and B is the bad (or “commitment”) type. For each player i,

there is a commitment action a∗i ∈ Ai such that if θi = B then player i is constrained to

take a∗i . Let a
∗ = (a∗i )i∈I . There is a common prior p on the set of players’types {R,B}

N .

It will be convenient to adopt the accounting convention that the rational and commitment

6We introduce a bounded utility function for money rather than just assuming quasi-linear utility because
some of our results will require that payoff are bounded independently of N , which would not be the case
with quasi-linear utility.
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type of each player have the same payoff function, despite having different strategy sets.

We call a triple (G, a∗, p) a game with commitment types. In such a game, we say that

an automorphism (π, φ) of G is admissible if it maps each player i’s commitment action to

player π (i)’s, so that φi (a
∗
i ) = a∗π(i) for all i. We say that a game with commitment types

(G, a∗, p) is symmetric if the group of admissible automorphisms of G is player-transitive,

and in addition the prior p is (N -transitively) symmetric, meaning that for any type profile

θ ∈ {R,B}N and any permutation π : I → I, we have p (θ1, . . . , θN) = p
(
θπ(1), . . . , θπ(N)

)
.

With a symmetric prior, we denote the probability that a given player is a commitment type

by z =
∑

θ:θi=B
p (θ).

Monitoring structures. Given a stage gameG, amonitoring structure (Y, χ) consists of

a finite product set of signals Y = ×i∈IYi and a family of conditional probability distributions

χ (y|a), one for each action profile a ∈ A. For example, perfect monitoring describes the case

where Yi = A for each player i, and χ (y|a) = 1 {yi = a ∀i ∈ I}.

We will need a notion of symmetry that jointly applies to stage games (including games

with commitment types) and monitoring structures. We say that an admissible automor-

phism for the tuple (G, a∗, p, Y, χ) is an admissible automorphism (π, φ) on (G, a∗, p) (defined

above) together with a bijection ψi : Yi → Yπ(i) for each player i such that

χ (y|a) = χ (ψ (y) |φ (a)) for all i ∈ I, y ∈ Y, a ∈ A,

where φ (a) is defined above and ψ (y) ∈ Y is the signal defined by ψ (y)j = ψπ−1(j)

(
yπ−1(j)

)
for all j ∈ I. The tuple (G, a∗, p, Y, χ) is symmetric if the group of its admissible automor-

phisms is player-transitive and the prior p is symmetric.

Repeated games. A repeated game with commitment types Γ = (G, a∗, p, Y, χ, δ) con-

sists of a stage game G, a profile of commitment actions a∗, a prior p ∈ ∆
(
{R,B}N

)
, a

monitoring structure (Y, χ), and a discount factor δ ∈ [0, 1). In each period t = 1, 2 . . ., the

players take actions at, the period-t signal yt is drawn according to χ (yt|at), and each player

i observes yi,t, the i component of yt. A history for player i at the beginning of period t

takes the form hti = (ai,τ , yi,τ )
t−1
τ=1, with h

1
i = ∅. A strategy σi for player i maps histories
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hti to elements of ∆ (Ai), for each t. For each player i, the commitment type of player i is

constrained to play a∗i in every period– that is, to play the strategy Always a
∗
i– while the

rational type of player i chooses a strategy σi to maximize her expected discounted payoff.

We can also let the players observe the outcome of a public randomizing device in each

period, but this is not essential: our folk and anti-folk theorems both hold irrespective of

the availability of public randomization.

Note that the normal form of a repeated game with commitment types Γ is itself a (static)

game with commitment types, where a player’s “action” is her repeated game strategy.

In particular, player i’s commitment “action” is the repeated game strategy Always a∗i .

A preliminary observation is that, when viewed in this way, Γ is symmetric if the tuple

(G, a∗, p, Y, χ) is symmetric. The proof is straightforward and is deferred to the appendix.

Lemma 1 If the tuple (G, a∗, p, Y, χ) is symmetric, then the normal form of the repeated

game with commitment types Γ = (G, a∗, p, Y, χ, δ) is a symmetric game with commitment

types (with an infinite strategy set).

We call such a game Γ a symmetric repeated game with commitment types.

2.2 Payoff-Symmetric Equilibria

We now show that, in any normal form symmetric game with commitment types where

players observe the outcome of a public randomizing device at the beginning of the game,

it is without loss to focus on equilibria where a player’s expected payoff conditional on her

own type and the event that the number of bad types in the population is n is the same

across players. By Lemma 1, the same conclusion applies to symmetric repeated games with

commitment types, when public randomization is available. Since public randomization only

expands the equilibrium payoff set, our main result (the anti-folk theorem given in the next

section) applies a fortiori without public randomization.

Consider any game with commitment types (G, a∗, p). In this section only, we denote

strategy profiles in this game by s, to emphasize the case where (G, a∗, p) is the normal form

of a repeated game. We also allow the strategy set S to be infinite. Given a strategy profile
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s and a type profile θ, let

ρ (s, θ)i =

 si if θi = R

a∗i if θi = B
, for each i ∈ I.

If each player i takes strategy si when she is rational, ρ (s, θ) is the strategy profile in game

G that is actually played at type profile θ. Let |θ| = |i ∈ I : θi = B|, and denote player i’s

expected payoff under strategy profile s conditional on the event that |θ| = n and θi = R

(resp., θi = B) by

un,Ri (s) =
∑

θ:|θ|=n,θi=R

Pr (θ)

Pr (|θ| = n, θi = R)
ui (ρ (s, θ)) and

un,Bi (s) =
∑

θ:|θ|=n,θi=B

Pr (θ)

Pr (|θ| = n, θi = B)
ui (ρ (s, θ)) ,

where un,Ri is well-defined for n ∈ {0, . . . , N − 1} and un,Bi is well-defined for n ∈ {1, . . . , N} =

I. Denote the corresponding population average payoffs by

un,R (s) =
1

N

∑
i∈I

un,Ri (s) , un,B (s) =
1

N

∑
i∈I

un,Bi (s) , and un (s) =
N − n
N

un,R (s)+
n

N
un,B (s) .

To ease notation, we let (s′i; s−i) := (s1, . . . , si−1, s
′
i, si+1, . . . , sN), the strategy profile

where i takes s′i and her opponents take s−i. A strategy profile s ∈ S is a Bayes Nash

equilibrium (NE) in the game (G, s∗, p) if

∑
θ

Pr (θ)ui (ρ (s, θ)) ≥
∑
θ

Pr (θ)ui (ρ ((s′i; s−i) , θ)) for all i ∈ I, s′i ∈ Si.

Let S∗ denote the set of NE in (G, p). Let ∆ (S∗) denote the set of (Borel) probability

distributions over S∗. Note that any distribution in ∆ (S∗) can be attained in an equilibrium

with public randomization at the beginning of the game. Linearly extending payoff functions

to distributions over strategy profiles as usual, we call a distribution s̄ ∈ ∆ (S∗) payoff
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symmetric if

un−1,R
i (s̄) = un−1,R (s̄) and un,Bi (s̄) = un,B (s̄) for all i ∈ I, n ∈ I.

Lemma 2 Let (G, a∗, p) be a symmetric game with commitment types. For any s∗ ∈ S∗,

there exists a payoff symmetric distribution s̄ ∈ ∆ (S∗) such that

un−1,R (s̄) = un−1,R (s∗) and un,B (s̄) = un,B (s∗) for all n ∈ I.

The proof is somewhat lengthy and is deferred to the appendix, but the main idea is

simple. Fix a NE s, and suppose that un,Ri (s) < un,Rj (s) for some i, j, n.7 By symmetry, there

is an admissible automorphism (π, φ) such that π (i) = j. Since s is a NE, a simple argument

implies that the strategy profile s′ = φ (s) is also a NE, and moreover that the vector(
un,Rk (s′)

)
k∈I

is a permutation of the vector
(
un,Rk (s)

)
k∈I
.8 Therefore, the distribution

s′′ = .5s + .5s′ is in ∆ (S∗). Furthermore, payoffs under s′′ are the average of those under s

and s′, so since payoffs under s and s′ are permutations of each other, payoffs under s′′ are

more equal across players than those under s. Thus, for any NE with unequal payoffs, we

can construct a NE with more equal payoffs, which yields the conclusion of the lemma.

As an aside, note that Lemma 2 also applies to symmetric games without commitment

types. While it is very natural that payoff-symmetric equilibria are without loss in symmetric

games with public randomization, we are not aware of a reference for this result.

3 Anti-Folk Theorem

We now present our main result: in symmetric repeated games where the commitment type

actions a∗ are “population dominant”and the prior p is “smooth,”as N →∞ social welfare

in every NE converges to that where a∗ is always played. This generalizes the main result of

SW20, which assumed that the game is anonymous (i.e., (1) holds) and the commitment type

actions are “pairwise dominant,”which is a stronger condition than population dominance.

7The case where un,Bi (s) < un,Bj (s) for some i, j, n is analogous.
8A similar argument appears in Plan (2017).
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We first introduce the relevant definitions. A profile of actions a∗ ∈ A is pairwise domi-

nant if there exists a positive number c > 0 such that the payoff of any player i who takes

a∗i is no less than any other player’s payoff, and exceeds the payoff of any player j who takes

aj 6= a∗j by at least c: that is,

ui (a
∗
i ; a−i)− uj (a∗i ; a−i) ≥ c1

{
aj 6= a∗j

}
for all i, j ∈ I, a−i ∈ A−i.

For instance, Defect is pairwise dominant in the PD with anonymous random matching, and

Shirk is pairwise dominant in the public goods game, but no action is pairwise dominant

in the PD with non-anonymous random matching or the public goods game with transfers

(when m̄ is large).

Next, denote the population average payoff (“social welfare”) at action profile a by

U (a) =
1

N

∑
i

ui (a) .

A profile of actions a∗ ∈ A is population dominant if there exists a positive number c > 0

such that the payoff of any player i who takes a∗i exceeds the population average payoff by

at least c times the fraction of the population whose actions differ from a∗: that is,

ui (a
∗
i ; a−i)− U (a∗i ; a−i) ≥ c

∣∣{j ∈ I : aj 6= a∗j
}∣∣

N
for all i ∈ I, a−i ∈ A−i.

Clearly, a pairwise dominant action is also population dominant. Note that no action is

population dominant in the PD with non-anonymous random matching, but Shirk and Stiff

is population dominant in the public goods game with transfers, with c equal to the minimum

of .01v′ (0) and the private cost of taking Work.9

Pairwise and population dominance are non-nested with the usual notion of dominance

(i.e., ui (a∗i ; a−i) ≥ ui (ai; a−i) for all ai ∈ Ai, a−i ∈ A−i). For example, in the PD with

non-anonymous random matching, Defect Against Everyone is dominant but not pairwise or

9This follows because if n players other than i each transfer $1, the average money holdings of players −i
is at most −.01n/ (N − 1), and hence, since v is concave, the average money utility of players −i is at most
v (−.01n/ (N − 1)), which in turn is less than v (0)−(.01n/ (N − 1)) v′ (0). Hence, ui (a∗i ; a−i)−U (a∗i ; a−i) ≥
.01v′ (0)n/ (N − 1).
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population dominant. One can also give examples where a pairwise or population dominant

action is not dominant; SW20 gives such an example for pairwise dominance.

We assume that, whenever a pairwise or population dominant action profile a∗ exists, it is

also the commitment action profile. The interpretation is that we are focusing on situations

where the commitment types are “selfish.”

It is interesting to consider the above definitions in the context of Example 3.

Helping with externalities. Consider the PD with non-anonymous random matching,

where if a player cooperates she incurs a cost of C > 0, her partner incurs a benefit of

B > C, and the other n − 2 players in society each incur an externality of X. Player i’s

payoff is thus

−C1 {i cooperates}+B1 {i’s partner cooperates}+X (number of other players who cooperate) .

Observe that ifX = 0 then this game reduces to the usual PD with non-anonymous matching

(Example 1’), while if X = B then, since the partner’s identity becomes irrelevant, it reduces

to the PD with anonymous matching (Example 1). We have thus already seen that Defect

Against Everyone is population dominant if X = B, but not if X = 0. In general, it is

easy to see that Defect Against Everyone is population dominant iffX > (B − C) /2.10 This

follows because, whenever a player takes Cooperate rather than Defect, the effect on social

welfare is
1

N
(B − C + (N − 2)X) ,

while the effect on the utility of any third player is X, and

X >
1

N
(B − C + (N − 2)X) ⇐⇒ X >

B − C
2

.

Intuitively, when X > (B − C) /2, the free-rider problem in this game is relatively severe.

Our results will imply that, if each player is committed to Defect Against Everyone with

a small independent probability, then all players almost always defect in every equilibrium

when X > (B − C) /2 and N is large (for any monitoring structure, uniformly in δ), but

10In contrast, the assumption that B > C implies that shirking is not pairwise dominant.
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there is an equilibrium where all rational players always cooperate when X < (B − C) /2

and δ is suffi ciently high (for perfect monitoring, uniformly in N).

Returning to the general model, we let b ≥ 0 denote the greatest impact on total popula-

tion payoffs that can result from a player switching from a∗ to another action. This is given

by

b = max
ai∈Ai,a−i∈A−i

N |U (ai; a−i)− U (a∗i ; a−i)| .

Some of our result will require that, as N →∞, c is bounded away from 0 and b is bounded

away from ∞. These conditions ensure that the advantage of a pairwise dominant action

does not vanish, and that a significant fraction of players must take non-pairwise dominant

actions in order to generate a level of social welfare significantly different from U (a∗).

Next, following SW20, let Bn denote the event that |θ| = n, and let qn denote the

probability of Bn conditional on the event that a given player is rational: qn = Pr (Bn|θi = R)

for n ∈ {0, . . . , N − 1}. Similarly, conditional on the event that a given player is rational,

denote the probability that n− 1 out of the remaining N − 1 players are bad by q−n = qn−1

for n ∈ {1, . . . , N}. By convention, let qN = q−0 = 0. With this convention, q = (qn)Nn=0 and

q− = (q−n )
N
n=0 are both probability distributions on {0, . . . , N}. Denote the total variation

distance between these probability distributions by

∆q,q− = max
N⊆{0,...,N}

∣∣∣∣∣∑
n∈N

(
qn − q−n

)∣∣∣∣∣ .
As discussed in SW20, ∆q,q− is a measure of the detectability of a deviation by the rational

type of player i to the strategy Always a∗i .

We say that a sequence of repeated games indexed by N , (Γ)N , has a smooth distribution

of bad types if limN→∞∆q,q− = 0. For example, this condition holds if the distribution

q ∈ ∆ ({0, . . . , N}) is log-concave for all N and limN→∞ qn = 0 for all n. In particular, this

is the case if types are independent and the commitment probability z is fixed independent

of N . See SW20 for further examples and discussion of the smoothness condition.

We are ready to state our main result. Note that the formulas in the theorem rely on our

assumption that ui (a) ∈ [0, 1] for all i ∈ I and a ∈ A. For a fixed repeated game Γ, this is

14



just a normalization; but when we consider a sequence of repeated games (Γ)N , it requires

that payoffs are bounded independent of N .11

Theorem 1 For any symmetric repeated game with commitment types Γ with a population

dominant action profile a∗, in any Nash equilibrium social welfare U satisfies

|U − U (a∗)| ≤ (1− z) b
1 + c

c
∆q,q− . (2)

In particular, for any sequence (Γ)N of such games that satisfies lim infN→∞ cN > 0 and

lim supN→∞ bN < ∞ and has a smooth distribution of bad types, and any corresponding

sequence of Nash equilibrium social welfare levels (U)N , we have

lim
N→∞

|UN − UN (a∗)| = 0. (3)

Theorem 1 extends the main result in SW20 by generalizing anonymity to symmetry,

and pairwise dominance to population dominance. For example, Theorem 1 implies that

for large N , social welfare in any NE in the public goods game with transfers is close to∑
i vi (0) /N– the welfare level that results when everyone plays Shirk and Stiff – whenever

commitment types play Shirk and Stiff and the distribution of commitment types is smooth.

We emphasize that this conclusion holds even though this game is not anonymous and does

not have a pairwise dominant action.12

The proof of Theorem 1 follows the proof in SW20, with two new ideas. First, a key

point in SW20 is that if the rational type of player i deviates to Always a∗i , then her expected

payoff conditional on Bn is equal to the expected payoff of a bad type conditional on Bn+1.

11However, Theorem 1 goes through if payoffs are bounded by a function ū (N), and the smoothness
condition is strengthened to limN→∞ ū (N) ∆q,q− = 0. (In this case, the right-hand side of (2) must be
multiplied by ū (N).) For example, this condition holds if ū (N) is linear in N and types are independent
with a fixed commitment probability z, as in this case ∆q,q− converges to 0 exponentially fast in N . Note
that, since payoffs are bounded by a linear function of N in Example 3, the conclusion of Theorem 1 applies
in this example.
12Applied to the public goods game with transfers, Theorem 1 is reminiscent of the impossibility theorem of

Mailath and Postlewaite (1990). However, their theorem concerns a static game with two levels of public good
provision and independent types. See SW20 for a more detailed comparison with Mailath and Postlewaite.
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That is, for any payoff-symmetric strategy profile σ, we have

∑
θ:|θ|=n,θi=R

Pr (θ|Bn, θi = R)E [ui (Always a∗i ;σ−i) |θ] = un+1,B for all i ∈ I, n ∈ {0, . . . , N − 1} .

(4)

The first step in proving Theorem 1 is showing that this equation remains valid in symmetric

games. To see this, note that for all i ∈ I, n ∈ {0, . . . , N − 1}, and θ−i such that |θ−i| = n,

we have

Pr (θ−i|Bn, θi = R) =
Pr (θ−i|θi = R)∑

θ̃−i:|θ̃−i|=n Pr
(
θ̃−i|θi = R

)
=

1(
N−1
n

) =
Pr (θ−i|θi = B)∑

θ̃−i:|θ̃−i|=n Pr
(
θ̃−i|θi = B

) = Pr (θ−i|Bn+1, θi = B) ,(5)

where the middle equalities hold because the prior is symmetric. This in turn implies that

∑
θ:|θ|=n,θi=R

Pr (θ|Bn, θi = R)E [ui (Always a∗i ;σ−i) |θ]

=
∑

θ−i:|θ−i|=n

Pr (θ−i| |θ−i| = n, θi = R)E [ui (Always a∗i ;σ−i) |θ]

=
∑

θ−i:|θ−i|=n

Pr (θ−i| |θ−i| = n, θi = B)E [ui (Always a∗i ;σ−i) |θ] = un+1,B,

which yields (4).13

Equation (4) lets us generalize the key lemma of SW20 as follows.

Lemma 3 For any symmetric game with commitment types and any payoff-symmetric NE,∑N−1
n=0 qnu

n,R ≥
∑N−1

n=0 qnu
n,B −∆q,q−, with the convention that u0,B = 1.

Proof. The equilibrium payoffof the rational type of player i equals
∑N−1

n=0 qnu
n,R. If instead

13Note that (5) requires our assumption that the prior is N -transitively symmetric. If we imposed only a
weaker form of symmetry that allowed certain players’types to be especially strongly correlated, (5) would
be violated and the conclusion of Theorem 1 would typically fail, because society could detect a deviation
by player i to Always a∗i by checking specific other players’types.

16



the rational type of player i deviates to Always a∗i , her expected payoff equals

∑
θ

Pr (θ|θi = R)E [ui (Always a∗i ;σ−i) |θ]

=
N−1∑
n=0

qn
∑

θ:|θ|=n,θi=R

Pr (θ|Bn, θi = R)E [ui (Always a∗i ;σ−i) |θ] =
N−1∑
n=0

qnu
n+1,B,

where the first equation is by definition of qn, and the second is by (4). Hence, in any

payoff-symmetric NE, we must have
∑N−1

n=0 qnu
n,R ≥

∑N−1
n=0 qnu

n+1,B. However, by the

same argument as in SW20 (cf. equation (2) in that paper), we have
∑N−1

n=0 qnu
n+1,B ≥∑N−1

n=0 qnu
n,B −∆q,q−. Therefore,

∑N−1
n=0 qnu

n,R ≥
∑N−1

n=0 qnu
n,B −∆q,q−.

Now we can prove Theorem 1. Here, the novelty relative to SW20 involves comparing bad

types’payoffs to the average payoff among players in the population who do not take their

population dominant actions, and showing that this comparison implies that the population

dominant actions must almost always be taken.

Proof of Theorem 1. We restrict attention to payoff symmetric equilibria σ, which is

without loss by Lemma 2. We first show that, whenever |θ| ∈ {1, . . . , N − 1}, in every period

the average payoff among bad types exceeds the average payoffs among rational types by at

least c times the fraction of rational types who take actions other than a∗. To see this, for

any type profile θ with |θ| = n ∈ {1, . . . , N − 1} and any action profile a with ai = a∗i for all

i with θi = B, let m (a) = |{i ∈ I : ai 6= a∗i }|, the number of players who take actions other

than a∗. Denote the average payoffs among bad types, rational types, and all players by

uB =
1

n

∑
i:θi=B

ui (a) , uR =
1

N − n
∑
i:θi=R

ui (a) , and U =
n

N
uB +

N − n
N

uR.

Since a∗ is population dominant, we have

uB ≥ U +
m

N
c =

n

N
uB +

N − n
N

uR +
m

N
c, or equivalently uB ≥ uR +

m

N − nc. (6)

Now denote player i’s expected payoff in period t conditional on type profile θ by

ui,t (θ) = E [ui (at) |θ], and denote her overall expected payoff conditional on θ by ui (θ) =
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(1− δ)
∑

t δ
t−1ui,t (θ). Since (6) holds for every θ and a that arise with positive probability

conditional on Bn, we have, for all t and θ,

1

n

∑
i:θi=B

ui,t (θ) ≥ 1

N − n
∑
i:θi=R

ui,t (θ) +

∑
i∈I Pr (ai,t 6= a∗i |θ)

N − n c.

Taking a discounted sum over periods, and taking the expectation over θ : |θ| = n, we have

1

n
E

[ ∑
i:θi=B

ui (θ) |Bn

]
≥ 1

N − nE
[ ∑
i:θi=R

ui (θ) |Bn

]
+

(1− δ)
∑∞

t=1 δ
t−1∑

i∈I Pr (ai,t 6= a∗i |Bn)

N − n c.

Next, note that

1

n
E

[ ∑
i:θi=B

ui (θ) |Bn

]
=

1

n
E

[∑
i∈I
1 {θi = B}ui (ρ (σ, θ)) |Bn

]

=
1

n

∑
i∈I

Pr (θi = B|Bn)E [ui (ρ (σ, θ)) |Bn, θi = B]

=
1

n

∑
i∈I

n

N
un,Bi (σ) =

1

N

∑
i∈I

un,Bi (σ) = un,B (σ) ,

and similarly 1
N−nE

[∑
i:θi=R

ui (θ) |Bn
]

= un,R (σ). So we have

un,B ≥ un,R + γnc, (7)

where

γn =
(1− δ)

∑∞
t=1 δ

t−1∑
i∈I Pr (ai,t 6= a∗i |Bn)

N − n = (1− δ)
∞∑
t=1

δt−1 1

N

∑
i∈I

Pr (ai,t 6= a∗i |Bn, θi = R) .

With Lemma 3 and inequality (7) in hand, the rest of the proof follows SW20; we include

the remaining steps for completeness. Recalling that u0,B = 1 by convention and u0,R ∈ [0, 1]

by assumption, we obtain

∆q,q− ≥
N−1∑
n=0

qn
(
un,B − un,R

)
≥

N−1∑
n=1

qn
(
un,B − un,R

)
≥

N−1∑
n=1

qnγnc,
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where the first inequality is by Lemma 3, the second is by q0

(
u0,B − u0,R

)
≥ 0, and the third

is by (7). Now define γ =
∑N−1

n=0 qnγn. Since q0 = q0 − q−0 ≤ ∆q,q′ and γ0 ∈ [0, 1], we have

γ = q0γ0 +
N∑
n=1

qnγn ≤ ∆q,q− +
1

c
∆q,q− =

1 + c

c
∆q,q− .

Finally, the discounted sum of the expected fraction of players who take actions other than

a∗ equals

(1− δ)
∞∑
t=1

δt−1 1

N

∑
i∈I

N−1∑
n=0

Pr (Bn ∧ θi = R) Pr (ai,t 6= a∗i |Bn, θi = R)

= (1− δ)
∞∑
t=1

δt−1 1

N

∑
i∈I

N−1∑
n=0

(1− z) qn Pr (ai,t 6= a∗i |Bn, θi = R) = (1− z)
N−1∑
n=0

qnγn = (1− z) γ.

Therefore, expected social welfare differs from U (a∗) by at most (1− z) bγ ≤ (1− z) b1+c
c

∆q,q−.

This yields (2), and taking ∆q,q− → 0 yields (3).

It is straightforward to extend Theorem 1 to games with multiple populations, where the

players within each population are symmetric. For example, consider a variant of the public

goods game with transfers where there are two populations, agents and principals. In every

period, each agent chooses Work or Shirk (where working is privately costly but benefits

all other players), and each principal chooses an amount of money to send to each agent.

(These choices can be simultaneous or sequential.) Suppose that each agent is committed to

Shirk with independent probability zA > 0, and each principal is committed to Stiff (i.e.,

send no money) with independent probability zP > 0. Then the above arguments can be

modified to show that, as N → ∞, all principals almost always Stiff ; and, given this, all

agents almost always Shirk. In contrast, if zP = 0, so the principals are known to be rational

(or, alternatively, if there is a single principal with suffi ciently deep pockets), then there is

an equilibrium where rational agents always Work, and the principal(s) send money to each

agent if and only if she works. This example illustrates how a deep-pocketed principal (or a

group of known-rational principals) can induce effort by a large group of agents, while the

agents would be unable to support effort by transferring money among themselves.
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4 Folk Theorem

We now present a folk theorem for repeated games with incomplete information and perfect

monitoring. This theorem covers asymmetric games, but, when specialized to symmetric

games, it implies a partial converse to Theorem 1. This shows that the population dominance

concept cannot be greatly generalized.

For each type profile θ ∈ {R,B}N , let Γ (θ) denote the complete-information repeated

game where it is common knowledge that the players’types are described by θ. Let R (θ) =

{i : θi = R} and B (θ) = {i : θi = B}. Let A (θ) =
∏

i∈R(θ) Ai ×
∏

i∈B(θ) {a∗i }, let ∆ (A (θ))

denote the set of probability distributions on A (θ), and let ∆∗ (A (θ)) denote the set of

independent mixtures on A (θ), given by
∏

i∈R(θ) ∆ (Ai)×
∏

i∈B(θ) 1 {ai = a∗i }. Denote player

i’s minmax payoff in the game Γ (θ) by vθ−ii = minα∈∆∗(A−i(θ−i)) maxai∈Ai ui (ai;α−i). Denote

the set of feasible payoffs in Γ (θ) by

F (θ) =
{
v ∈ [0, 1]N : ∃α ∈ ∆∗ (A (θ)) s.t. u (α) = v (θ)

}
,

and denote the set of feasible and individually rational payoffs in Γ (θ) by

F ∗ (θ) =
{
v ∈ F (θ) : vi > v

θ−i
i ∀i s.t. θi = R

}
.

Define the set F ∗∗ (θ) to be equal to F ∗ (θ) if the projection of F ∗ (θ) on the set of rational-

player payoff vectors [0, 1]|i:θi=R| has non-empty relative interior, and to be equal to the

convex hull of the set of static NE payoffs in G (θ) otherwise. We say that a family of payoff

vectors (v (θ))θ∈{R,B}N , with v (θ) ∈ F ∗∗ (θ) for each θ, is feasible, individually rational, and

incentive compatible (FIRIC ) if

E [vi (θ) |θi = R] > E
[
max

{
vi (θi = B; θ−i) , min

v∈cl(F ∗∗(θ))
vi

}
|θi = R

]
for all i ∈ I.14 (8)

Note that this definition imposes strict versions of both individual rationality (rational player

i’s payoff exceeds her smallest payoff in cl (F ∗∗ (θ))) and incentive compatibility (rational

14Here cl (·) denotes closure in the relative topology.
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player i’s payoff exceeds her payoff when following the bad-type strategy). Finally, we say

that an expected payoff vector v ∈ [0, 1]N is consistent with FIRIC if there exists a FIRIC

family of payoff vectors (v (θ))θ∈{R,B}N such that v = E [v (θ)].

Theorem 2 Fix any repeated game with commitment types and perfect monitoring, Γ. For

any payoff vector v ∈ [0, 1]N consistent with FIRIC and any ε > 0, there exists δ̄ < 1 such

that, for every δ > δ̄, there exists a sequential equilibrium in Γ with an expected payoff vector

v′ satisfying |vi − v′i| ≤ ε for all i ∈ I.

For example, in the PD with non-anonymous random matching, let v (θ) be the payoff

vector that results when all pairs of rational players cooperate with each other, while everyone

defects against commitment types. It is easy to see that the family (v (θ))θ∈{R,B}N is FIRIC.

Hence, Theorem 2 implies that the corresponding ex ante payoff vector can be approximated

in sequential equilibrium when the players are suffi ciently patient. (In this example, the

payoff vector can actually be exactly attained.)

In contrast, for any symmetric game where the commitment action profile a∗ is population

dominant, any payoffvector consistent with FIRIC is close to u (a∗) when∆q,q− is small. This

follows because, by the same argument as in the proof of Theorem 1, incentive compatibility

implies that the expected discounted fraction of periods in which players take actions other

than a∗ (i.e., the variable γ defined in the proof of Theorem 1), is bounded by 1+c
c

∆q,q−,

where c is the parameter in the definition of population dominance.

We sketch the proof, deferring the details to the appendix.15 Fix a family of FIRIC

payoff vectors (v (θ))θ∈{R,B}N such that v = E [v (θ)]. For any history ht, let θ (ht) denote

the set of players that have “revealed rationality”at history ht by previously taking some

action ai 6= a∗i , and let i (ht) denote the identity of the most recent player (if any) to have

deviated from equilibrium play at history ht. All rational players are supposed to reveal

rationality in the first period of the game. Subsequently, on the equilibrium path, the

players take a sequence of actions that achieve the payoff vector v (θ (ht)), and that have

15The proof is a variation of existing arguments (e.g., Fudenberg and Maskin, 1986; Hörner and Lovo, 2009;
Hörner, Lovo, and Tomala, 2011). As compared to the latter two papers, our construction is simpler because
we do not require that the equilibrium is “belief-free.”Indeed, non-trivial belief-free equilibria typically do
not exist in our setting, because a player who is certain that all of her opponents are commitment types can
only take a static best response.
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the further property that continuation payoffs under the action sequence are always close

to v (θ (ht)).16 Off the equilibrium path, the players take a sequence of actions that achieve

a payoff vector close to argminv′∈cl(F ∗∗(θ(ht))) v
′
i(ht). Since rational players are supposed to

reveal rationality immediately, at any history ht all players who have revealed rationality

believe that the continuation game is the complete information game Γ (θ (ht)). Therefore,

since v (θ (ht)) ∈ F ∗∗ (θ (ht)), the payoff vector v (θ (ht)) is attainable in a continuation

equilibrium as in Fudenberg and Maskin (1986). Moreover, since the family of payoff vectors

(v (θ))θ∈{R,B}N is incentive compatible, and continuation payoffs conditional on each set of

revealed-rational players θ (ht) are approximately constant, it is optimal for a rational player

to reveal rationality in the first period (rather than never revealing rationality, or waiting to

reveal rationality until a later period). In particular, if player i does not reveal rationality

in period 1, then conditional on each opposing type profile θ−i, her continuation payoff

cannot exceed the maximum of vi ((θi = B; θ−i)) (her continuation payoff if she never reveals

rationality) and minv∈cl(F ∗∗(θ)) vi (her continuation payoff subsequent to revealing rationality

after period 1) by more than an arbitrarily small amount. Finally, at off-path histories, a

rational player who has not yet revealed rationality (contrary to equilibrium play) may or

may not prefer to do so, but her play at these histories is irrelevant for the other players’

incentives, so she can be prescribed an arbitrary best response.

To conclude this section, we show how, when applied to symmetric games, Theorem 2

implies a partial converse to Theorem 1. Fix a symmetric game with a commitment action

profile a∗. For each number of bad types n, fix a mixed action profile

αn ∈ argmax
α∈∆(A)

un,R (α)− un,B (α) .

That is, αn maximizes the payoff difference between rational players and bad ones. Next, for

any type profile θ ∈ {R,B}N , let v∗ (θ) denote the payoff vector where rational players take

α|θ|. We will show that, if the commitment action profile a∗ does not satisfy a slightly gen-

eralized version of population dominance, then the family of payoff vectors (v∗ (θ))θ∈{R,B}N

is incentive compatible, and hence, by Theorem 2, can be obtained in equilibrium by pa-

16Sorin (1986) and Fudenberg and Maskin (1991) showed that such a sequence exists.
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tient players, if these payoffs vectors are also individually rational. In other words, for any

symmetric game where our anti-folk theorem does not apply, there exists a strategy profile

where rational players outperform bad players, and this strategy profile can be supported

as an equilibrium if it is individually rational and the players are patient. This observation

implies that Theorem 1 cannot be extended much further.

We say that the commitment action profile a∗ satisfies generalized population dominance

if there exists a positive number c > 0 such that

N−1∑
n=0

N

N − nqncn ≥ 0,

where

cn = min
α∈∆(A)

(
un,B (α)− un (α)− cE [|{i ∈ I : ai 6= a∗i }|α,Bn]

N

)
for all n ∈ {0, . . . , N − 1} .

We note that population dominance can be replaced with generalized population dominance

in Theorem 1.17

Now suppose that a∗ does not satisfy generalized population dominance for any c > 0.

Then, for c∗n = maxα∈∆(A) u
n (α)− un,B (α), we have

∑
n

N
N−nqnc

∗
n ≥ 0. We claim that if this

inequality holds with ∆q,q− slack, so that
∑

n
N

N−nqnc
∗
n−∆q,q− > 0, then the family of payoff

vectors (v∗ (θ))θ∈{R,B}N is incentive compatible: that is,

E [v∗i (θ) |θi = R] > E [v∗i (θi = B; θ−i) |θi = R] for all i ∈ I.18 (9)

To see why this is true, note that, by symmetry, (9) is equivalent to
∑N−1

n=0 qnu
n,R >∑N−1

n=0 qnu
n+1,B. When players take αn for each realized number of bad types n, we have

un,B = un − c∗n =
n

N
un,B +

N − n
N

un,R − c∗n, and hence un,B ≤ uu,R − N

N − nc
∗
n.

17To see why, by the same proof as (7), we have un,B ≥ un,R+(N/ (N − n)) cn+γnc. Taking an expectation
and using

∑N−1
n=1 (N/ (N − n)) qncn ≥ 0, this implies that

∑N−1
n=1 qn

(
un,B − un,R

)
≥
∑N−1

n=1 qnγnc. The rest
of the proof is unchanged.
18Note that (9) is the same as (8), but without individual rationality.
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Taking the expectation over n gives

N−1∑
n=0

qnu
n+1,B =

N−1∑
n=0

qnu
n,B+

N∑
n=0

(
q−n − qn

)
un,B ≤

N−1∑
n=0

qnu
n,R−

N−1∑
n=0

N

N − nqnc
∗
n+∆q,q− <

N−1∑
n=0

qnu
n,R,

as desired.

5 Conclusion

This paper has investigated when a large group of symmetric players can support cooperation

when each of them might be committed to defection. Our main result is that cooperation in

this environment requires that it is possible to punish defectors without simultaneously pun-

ishing the rest of the population as severely. For example, voluntary public goods provision

is impossible when the only available incentive instruments are the withdrawal of provision

and monetary rewards targeted to contributors; however, involuntary fines targeted to non-

contributors restore the possibility of provision. In addition, in the PD with non-anonymous

random matching, cooperation is possible if and only if it does not provide large positive

externalities to third parties.

We have presented our results in a simple model with one rational type, one commitment

type, and (for the folk theorem) perfect monitoring. Extensions to multiple rational or

commitment types are straightforward; see SW20 for a discussion of these extensions in

the anonymous case. In particular, our anti-folk theorem extends whenever players are

committed to population dominant actions with positive (independent) probability, even if

there is also a positive probability that they may be committed to different strategies. The

simple commitment types considered here are thus “canonical,”in the same sense as in the

reputation literature (e.g., Fudenberg and Levine, 1989).

Imperfect monitoring raises interesting issues, some of which we have pursued in other

work. In large-population repeated games with imperfect public monitoring, the prospects

for cooperation depend on the interaction between the discount factor, the population size,

and the precision of monitoring (Sugaya and Wolitzky, 2022). As for private monitoring, in

the PD with non-anonymous random matching where players only observe their partner’s
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actions, cooperation is possible only if players are suffi ciently patient relative to the popu-

lation size, or if the game is augmented with cheap talk (Sugaya and Wolitzky, 2021). The

interaction between incomplete information and private monitoring more generally is a fairly

open area.19

6 Appendix: Omitted Proofs

6.1 Proof of Lemma 1

Fix distinct i, j ∈ I. Since (G, a∗, p, Y, χ) is symmetric, there exists an admissible automor-

phism (π, φ, ψ) on G such that π (i) = j. We construct an admissible automorphism
(
π̃, φ̃

)
on Γ such that π̃ (i) = j, where here admissibility means that φ̃k (Always a∗k) =Always a∗π̃(k)

for all k ∈ I. First, for each player i and period t, let H t
i denote the set of player i’s period

t histories, and define a bijection ηti : H t
i → H t

π(i) by

ηti
(
(ai,τ , yi,τ )

t−1
τ=1

)
= (φi (ai,τ ) , ψi (yi,τ ))

t−1
τ=1 for all hti ∈ H t

i .

Next, let π̃ = π and define φ̃ as follows: for each player i and strategy σi, define φ̃i (σi) to

be the strategy σ̃π(i) that satisfies

σ̃π(i)

(
htπ(i)

) [
aπ(i)

]
= σi

((
ηti
)−1 (

htπ(i)

)) [
φ−1
i

(
aπ(i)

)]
for all htπ(i) ∈ H t

π(i), aπ(i) ∈ Aπ(i).

(10)

Since ηti and φi are bijections, φ̃i is also a bijection. Also, since (π, φ) is admissible, φi (a
∗
i ) =

a∗π(i), and hence φ̃i (Always a
∗
i ) =Always a∗π̃(i).

It remains to show that ui (σ) = uπ(i) (σ̃). For each ht =
(
(ai,τ , yi,τ )

t−1
τ=1

)
i∈I , define η

t (ht)

19A couple exceptions are Yamamoto (2014) and Sugaya and Yamamoto (2020).
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by ηt (ht)j = ηtπ−1(j)

(
htπ−1(j)

)
for all j ∈ I. Then for all ht and (at, yt) ∈ At × Yt, we have

Prσ
(
at, yt|ht

)
=

∏
i

σi
(
hti
)

[ai,t]χ (yt|at)

=
∏
i

σ̃π(i)

(
ηti
(
hti
))

[φi (ai,t)]χ (yt|at)

=
∏
i

σ̃π(i)

(
ηti
(
hti
))

[φi (ai,t)]χ (ψ (yt) |φ (at))

=
∏
π−1(i)

σ̃i

(
ηtπ−1(i)

(
htπ−1(i)

)) [
φπ−1(i)

(
aπ−1(i),t

)]
χ (ψ (yt) |φ (at))

= Prσ̃
(
φ (at) , ψ (yt) |ηt

(
ht
))

where the second line follows from (10), the third line follows from admissibility of (π, φ),

the fourth line changes the index from i to π−1 (i), and the fifth line is by definition of ηt.

Given this, by induction on t, for each t and at ∈ A, we have

Prσ (at) =
∑
yt,ht

Prσ
(
at, yt|ht

)
Prσ

(
ht
)

=
∑
yt,ht

Prσ̃
(
φ (at) , ψ (yt) |ηt

(
ht
))

Prσ̃
(
ηt
(
ht
))

= Prσ̃ (φ (at)) .

Since (π, φ) is an automorphism on G, we have

ui (σ) = (1− δ)
∑
t

δt−1
∑
at

Prσ (at)ui (at) = (1− δ)
∑
t

δt−1
∑
at

Prσ (at)uπ(i) (φ (at))

= (1− δ)
∑
t

δt−1
∑
at

Prσ̃ (φ (at))uπ(i) (φ (at)) = uπ(i) (σ̃) ,

as desired.

6.2 Proof of Lemma 2

We first note a preliminary fact used later in the proof: if (π, φ) is an admissible automor-

phism on G, then

ui (ρ (s, θ)) = uπ(i) ((φ ◦ ρ) (s, θ)) = uπ(i) (ρ (φ (s) , π (θ))) , (11)
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where π (θ) is the type profile defined by π (θ)j = θπ−1(j) for all j ∈ I. Here, the first

equality holds because (π, φ) is an automorphism, and the second holds because, since (π, φ)

is admissible, for each i ∈ I we have

φπ−1(i)

(
ρ (s, θ)π−1(i)

)
=

 φπ−1(i)

(
sπ−1(i)

)
if θπ−1(i) = R

s∗i if θπ−1(i) = B
= ρ (φ (s) , π (θ))i .

Now fix any s∗ ∈ S∗. To simplify notation, for each n ∈ I, let un−1,R = un−1,R (s∗) and

un,B = un,B (s∗). Define

S∗∗ =
{
s ∈ S∗ : un−1,R (s) = un−1,R and un,B (s) = un,B ∀n ∈ I

}
and

U =
{
v ∈ R2N2

: ∃s ∈ S∗∗ s.t. un−1,R
i (s) = v(n−1)N+i and u

n,B
i (s) = vN2+(n−1)N+i ∀i ∈ I, n ∈ I

}
.

Thus, v ∈ U iff there is an equilibrium s such that v is the vector of conditional expected

utilities under s for each player, where the vector v first lists, for each n ∈ {0, . . . , N − 1},

each player’s expected payoff conditional on being rational when there are n bad players;

and then lists, for each n ∈ {1, . . . , N}, each player’s expected payoff conditional on being

bad when there are n bad players. Note that the set U is compact by standard arguments.

Given v ∈ R2N2
, for each n ∈ I, define the N -dimensional vectors

vn−1,R =
(
v(n−1)N+i

)N
i=1

and vn,B =
(
vN2+(n−1)N+i

)N
i=1

.

Note that v is given by the concatenation of the vectors vn−1,R for n ∈ I, followed by the

concatenation of the vectors vn−1,B for n ∈ I. Now define a new vector f (v) ∈ R2N2
by

letting (f (v))(n−1)N+i equal the i
th-lowest component of the vector vn−1,R, for each i ∈ I and

n ∈ I; and letting (f (v))N2+(n−1)N+i equal the i
th-lowest component of the vector vn,B, for

each i ∈ I and n ∈ I. That is, for each n ∈ I, the (n− 1)N + 1st through (n− 1) (N + 1)st

coordinates of the vector f (v) are equal to the increasing rearrangement of the vector vn−1,R,

and the N2 + (n− 1)N + 1st through N2 + (n− 1) (N + 1)st coordinates of the vector f (v)

are equal to the increasing rearrangement of the vector vn,B. Let

F =
{
w ∈ R2N2

: ∃v ∈ U s.t. f (v) = w
}
.
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Note that F is compact, because U is compact and f is continuous. Note also that

(1/N)
N∑
i=1

w(n−1)N+i = un−1,R and (1/N)

N∑
i=1

wN2+(n−1)N+i = un,B for all w ∈ F and n ∈ I.

Let % denote the lexicographic order on R2N2
. Let ŵ denote a maximal element of F

in the lexicographic order.20 Define the vector w̄ ∈ R2N2
by letting w̄(n−1)N+i = un−1,R and

w̄N2+(n−1)N+i = un,B for all i ∈ I and n ∈ I. Note that w̄ % ŵ; otherwise, there would exist

n ∈ I such that ŵ(n−1)N+i ≥ un−1,R for all i ∈ {1, . . . , N}, with strict inequality for some

i, which implies that (1/N)
∑N

i=1 ŵ(n−1)N+i > un−1,R (or, symmetrically, n ∈ I such that

ŵN2+(n−1)N+i ≥ un,B for all i ∈ {1, . . . , N} with strict inequality for some i, implying that

(1/N)
∑N

i=1 ŵN2+(n−1)N+i > un,B), a contradiction.

We now argue that ŵ % w̄. Suppose toward a contradiction that w̄ � ŵ. Let m ∈

{1, . . . , 2N2} denote the smallest index such that ŵm > w̄m. Suppose that m ≤ N2, so there

exist n ∈ I and i ∈ I satisfying m = (n− 1)N + i. (The m > N2 case is symmetric and

omitted.) Let v denote an element of U such that f (v) = ŵ. Since ŵ(n−1)N+i > w̄(n−1)N+i,

(1/N)
∑N

i=1 ŵ(n−1)N+i = un−1,R, and the vector
(
ŵ(n−1)N+i

)N
i=1

is a rearrangement of the

vector vn−1,R, not all components of vn−1,R are equal. Let i, j ∈ I satisfy

i ∈ argmin
k∈I

vn−1,R
k and j ∈ argmax

k∈I
vn−1,R
k ,

and note that vn−1,R
i < vn−1,R

j . Moreover, note that for all n′ < n and i ∈ I, we have

vn
′−1,R

i = un
′−1,R by minimality of m.

Let s ∈ S∗ satisfy un−1,R (s) = vn−1,R for all n ∈ I. Since (G, p) is symmetric,

there exists an admissible automorphism (π, φ) such that π (i) = j and uk (ρ (s̃, θ)) =

uπ(k) (ρ (φ (s̃) , π (θ))) for each k ∈ I, θ ∈ Θ, and s̃ ∈ S. Let s′ = φ (s). We claim that

s′ is a NE. To see this, fix a player k ∈ I and a strategy ŝk ∈ Sk. Let k′ = π−1 (k), and let

20Note that the lexicographic order admits a maximum on a compact subset of R2N2

.
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ŝk′ = φ−1
k′ (ŝk). For every strategy profile s̃, we have

∑
θ

Pr (θ)uk′ (ρ (s̃, θ)) =
∑
θ

Pr (θ)uk (ρ (φ (s̃) , π (θ)))

=
∑
θ

Pr (π (θ))uk (ρ (φ (s̃) , π (θ)))

=
∑
θ

Pr (θ)uk (ρ (φ (s̃) , θ)) , (12)

where the first line follows because (π, φ) is an admissible automorphism (so (11) holds),

the second line follows because π is symmetric, and the third line follows by rearranging the

sum. Hence, we have

∑
θ

Pr (θ)uk (ρ (s′, θ)) =
∑
θ

Pr (θ)uk (ρ (φ (s) , θ)) =
∑
θ

Pr (θ)uk′ (ρ (s, θ))

≥
∑
θ

Pr (θ)uk′ (ρ ((ŝk′ ; s−k′) , θ))

=
∑
θ

Pr (θ)uk
(
ρ
((
ŝk;φ (s)−k

)
, θ
))

=
∑
θ

Pr (θ)uk
(
ρ
((
ŝk, s

′
−k
)
, θ
))
,

where the first and last equalities follow because s′ = φ (s), the second and third equalities

follow by (12) and ŝk′ = φ−1
k′ (ŝk), and the inequality follows because s is a NE. As this

inequality holds for any k ∈ I and ŝk ∈ Sk, we see that s′ is a NE.

Next, for each k ∈ I and n′ ∈ I, let v′(n′−1)N+k = un
′−1,R
k (s′) and v′N2+(n′−1)N+k =

un
′,B
k (s′). Since s′ ∈ S∗, the resulting vector v′ lies in U . Moreover, by (11) and symmetry

of π, for each k ∈ I and n′ ∈ I we have

un
′−1,R
k (s) =

∑
θ:|θ|=n′−1,θk=R

Pr (θ)

Pr (|θ| = n′ − 1, θk = R)
uk (ρ (s, θ))

=
∑

θ:|θ|=n′−1,θk=R

Pr (θ)

Pr (|θ| = n′ − 1, θk = R)
uπ(k) (ρ (φ (s) , π (θ)))

=
∑

θ:|θ|=n′−1,θπ(k)=R

Pr (θ)

Pr
(
|θ| = n′ − 1, θπ(k) = R

)uπ(k) (ρ (φ (s) , π (θ)))

= un−1,R
π(k) (s′) .

Similarly, un
′,B
k (s) = un

′,B
π(k) (s′) for each k ∈ I and n′ ∈ I. Therefore, for each k ∈
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{0, . . . , 2N2 −N}, the vector
(
v′kN+i

)N
i=1

is a permutation of (vkN+i)
N
i=1, which in partic-

ular implies that s′ ∈ S∗∗. Now define the distribution s̄ to be a 50:50 mixture over s and

s′. Clearly, s̄ ∈ ∆ (S∗∗). Let

v̄ = u (s̄) =
1

2
(v + v′) ,

and note that f (v̄) ∈ F . Since, for all n′ < n and k ∈ I, we have vn
′−1,R

k = un
′−1,R, it follows

that

v̄n
′−1,R

k = un
′−1,R for all k ∈ I, n′ < n. (13)

In addition, since π (i) = j, i ∈ argmink∈I v
n−1
k , and j ∈ arg maxk∈I v

n−1
k , we have

v̄n−1,R
i =

1

2

(
vn−1,R
i + vn−1,R

j

)
> vn−1,R

i . (14)

Moreover, since (v′)n−1,R is a permutation of vn−1,R, and v̄ = 1
2

(v + v′), we also have

v̄n−1,R
k ≥ vn−1,R

i for all k ∈ I, and (15)

v̄n−1,R
k > vn−1,R

i for all k ∈ I\ argmin
k′∈I

vn−1,R
k′ . (16)

Since i ∈ argmink∈I v
n−1,R
k′ , (13), (14), (15), and (16) together imply that f (v̄) � f (v). But

this contradicts the maximality of ŵ = f (v) in F . We can thus conclude that ŵ % w̄.

Since w̄ % ŵ and ŵ % w̄, we conclude that ŵ = w̄, proving the lemma.

6.3 Proof of Theorem 2

Fix such a payoff vector v and ε > 0. Let (v (θ))θ∈{R,B}N satisfy (8) and v = E [v (θ)].

Let Θint ⊆ {R,B}N denote the set of type profiles such that the projection of F ∗ (θ) on

the set of rational-player payoff vectors has non-empty relative interior, and hence F ∗∗ (θ) =

F ∗ (θ). By (8), there exists a constant η > 0 such that

vi (θ) ≥ minv′∈cl(F ∗∗(θ)) v
′
i + η for all θ ∈ Θint,

E [vi (θ) |θi = R] > E
[
max

{
vi ((θi = B; θ−i)) ,minv′∈cl(F ∗∗(θ)) v

′
i

}
|θi = R

]
+ η for all i ∈ I.

(17)
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Lemma 4 There exists δ̄ < 1 such that, for every δ > δ̄, the following conditions hold:

1. For each θ ∈ Θint, there exists a sequence of pure action profiles {αt (θ)}∞t=1 such

that v (θ) = (1− δ)
∑∞

t=1 δ
t−1u (αt (θ)) and, for each t, | (1− δ)

∑∞
t′=t δ

t′−1u (αt′ (θ))−

v (θ) | < η/4.

2. For each θ 6∈ Θint, there exists sequence of mixed action profiles {αt (θ)}∞t=1 such that

αt (θ) is a static Nash equilibrium for every θ, v (θ) = (1− δ)
∑∞

t=1 δ
t−1u (αt (θ)), and,

for each t, | (1− δ)
∑∞

t′=t δ
t′−1u (αt′ (θ))− v (θ) | < η/4.

3. For each θ ∈ Θ and i ∈ I, there exists a subgame-perfect equilibrium σi (θ) in the game

Γ (θ) with equilibrium payoff v satisfying vi ≤ minv′∈cl(F ∗∗(θ)) v
′
i + η/4 for all i ∈ I.

Proof. Follows from Fudenberg and Maskin (1991), observing that the set of feasible and

individually rational payoffs has non-empty interior when θ ∈ Θint, and that F ∗∗ (θ) is defined

as the convex hull of the set of static Nash equilibrium payoffs when θ 6∈ Θint.

Without loss, we take δ̄ ≥ 1− η/8.

Recall that θ∗ is the realized set of rational players. For any history ht, let θ (ht) ⊆ θ∗

denote the set of players who have ever taken any action other than a∗ at ht: we call this

the set of players who have revealed rationality at ht.

We now fix an arbitrary static NE in the one-shot game where θ∗ is distributed according

to p, each player i ∈ θ∗ is restricted to take actions in A \ {a∗}, and each player i 6∈ θ∗ is

restricted to take {a∗}. Let α0 ∈ ∆∗ (A (θ∗)) be the equilibrium strategy. Let Σ̄i be the set

of strategies for player i where she takes αi,0 in period 1.

We will prove that each v (θ∗) is attainable without fully constructing the equilibrium

strategy profile: in particular, we will not construct the continuation strategy of a rational

player who does not reveal rationality in the first period, leaving this defined implicitly.

Formally, we will construct a quasi-equilibrium, which is a strategy profile in Σ̄ that satisfies

the following conditions for each player i ∈ θ∗:

1. Player i takes αi,0 in period 1.

2. For each period t ≥ 2 and history ht such that i ∈ θ (ht), it is optimal for player i to

follow the equilibrium strategy at history ht, conditional on the event that θ∗ = θ (ht).
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3. It is optimal for player i to follow the equilibrium strategy in period 1.

We first establish that this suffi ces to deliver the theorem.

Lemma 5 Fix a strategy profile σ ∈ Σ̄. For any belief system µ such that (σ, µ) satisfies

Kreps-Wilson consistency, and for any t ≥ 2, after each (possibly off-path) history ht, every

rational player i believes with probability 1 that θ (ht) ∪ {i} = θ∗.

Proof. It is immediate that every rational player believes with probability 1 that θ (ht) ∪

{i} ⊆ θ∗. Thus, we prove that every rational player believes with probability 1 that, for any

j 6∈ θ (ht) ∪ {i}, player j is a commitment type. Since j 6∈ θ (ht) ∪ {i}, player j takes a∗j for

all periods 1, ..., t− 1. For any completely mixed sequence of strategy profiles converging to

σ, conditional on any sequence of the other players’actions, this action sequence for player

j is played with non-vanishing probability in the (positive probability) event that player j

is bad, but is played with vanishing probability when player j is rational (as αj,0 puts zero

probability on a∗j). Hence, the corresponding limit beliefs put probability 1 on the event that

player j is rational.

Lemma 6 For any quasi-equilibrium, there exists an outcome-equivalent sequential equilib-

rium.

Proof. Given a quasi-equilibrium σ∗, we can construct an outcome-equivalent strategy

profile σ∗∗ by specifying that, for each period t, (i) if either t = 1 or ht satisfies i ∈ θ (ht),

player i follows σ∗i , and (ii) if t > 1 and i ∈ θ∗\θ (ht), player i takes a (dynamic) best response

given the belief that θ∗ = θ (ht) ∪ {i} (and hence, by (i), given the belief that players −i

follow σ∗−i). Since σ
∗∗ ∈ Σ̄, by Lemma 5, at any history ht with t ≥ 2, every rational player

i believes that θ∗ = θ (ht) ∪ {i}. Thus, σ∗∗i is sequentially rational given Conditions 1—3 in

the definition of a quasi-equilibrium.

We now construct a quasi-equilibrium that attains v (θ) whenever θ∗ = θ, for each θ. In

period 1, each player i ∈ θ∗ takes ai according to α0,i in period 1. In period t ≥ 2, players

follow an automaton strategy profile with state (θ, ω), where θ ⊆ I and ω ∈ {0}∪({3, ..., t}×

I). The initial state is θ = θ(h2) and ω = 0.
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Given the current state (θ, ω) and calendar time t, actions are determined as follows: (i)

If ω = 0, then player i takes αi,t−1 (θ) specified in Lemma 4.21 (ii) If ω = (n, τ) for some

n ∈ I and τ ≤ t, then player i takes σni (θ) (hτ :t), where hτ :t = (aτ , ..., at−1) is the history

following period τ (with hτ :τ = {∅}).

Given the current state (θ, ω) and realized action profile at, the next-period state (θ′, ω′)

is determined as follows: (i) If ω = 0 and each player i takes ai,t ∈ suppαi,t−1 (θ), then

(θ′, ω′) = (θ, 0). (ii) If ω = 0 and there is a unique player i who takes ai,t /∈ suppαi,t−1 (θ),

then θ′ = θ ∪ {i} and ω′ = (i, t+ 1). (iii) If ω = (n, τ) and each player i takes ai,t ∈

suppσni (θ) (hτ :t), then θ′ = θ and ω′ = ω. (iv) If ω = (n, τ) and there is a unique player

i ∈ θ who takes ai,t /∈ suppσni (θ) (hτ :t), then θ′ = θ and ω′ = ω. (v) If ω = (n, τ) and

there is a unique player i 6∈ θ who takes ai /∈ σni (θ) (hτ :t) = {a∗i }, then θ′ = θ ∪ {i} and

ω′ = (i, t+ 1).

Conditional on each realization of the set of rational players θ∗, this strategy profile

delivers payoff v (θ∗) from period 2 onward. Since v = E [v (θ)], for suffi ciently large δ the ex

ante expected payoffs are within ε of v.

It remains to verify that the strategy profile is a quasi-equilibrium. Condition 1 holds by

construction. For Condition 2, note that if ω = 0 and θ (ht) ∈ Θint, then, by Lemma 4, the

on-path continuation payoff is at least v (θ (ht))− η/4, while the deviation payoff is at most

(1− δ) (1) + δ
(
minv′∈cl(F ∗∗(θ(ht))) v

′
i + η/4

)
. By (17) and δ ≥ 1 − η/8, the former quantity

is greater, so the prescribed strategy is optimal. If instead ω = 0 and θ (ht) /∈ Θint, then

the prescribed strategy is a sequence of static Nash equilibria. If instead ω 6= 0, then the

prescribed strategy σi (θ) is a subgame-perfect equilibrium.

Finally, for Condition 3, note that

E

[
(1− δ)

∞∑
t=1

ui (at) |σ∗, i ∈ θ∗
]

= E [(1− δ)ui (α) + δvi (θ
∗) |i ∈ θ∗]

≥ E [vi (θ
∗) |i ∈ θ∗]− (1− δ) (1) ≥ E [vi (θ

∗) |i ∈ θ∗]− η

8
. (18)

21Note that the time index is shifted by one since the game Γ (θ) in Lemma 4 does not have the revelation
stage.
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By contrast, we can bound maxσi E
[
(1− δ)

∑∞
t=1 ui (at) |σi, σ∗−i

]
as follows. Taking any

action outside suppα0,i other than a∗i in period 1 is unprofitable, as it leads to a lower payoff

in period 1 (as α0 is a static equilibrium) and the same continuation payoff starting in period

2 (since Condition 2 has established that, for player i ∈ θ (ht), it is optimal to follow the

equilibrium strategy). We thus focus on strategies that take a∗i in period 1. By Lemma

5, player i believes with probability 1 that θ (h1) = θ∗\{i}. By construction, for each θ∗,

conditional on the event θ∗\{i} = θ, taking an action ai,t /∈ suppαi,t−1 (θ) in period t at state

(θ, 0) gives a continuation payoff of at most minv′∈cl(F ∗∗(θ∗)) v
′
i + η/4. Since the sequence of

equilibrium action distributions αt = αt−1 (θ∗\{i}) is deterministic for t ≥ 2, by optimally

choosing the period T in which player i reveals rationality, we have

max
σi
E

[
(1− δ)

∞∑
t=1

ui (at) |σi, σ∗−i, i ∈ θ∗
]

≤ (1− δ) + E

 maxT≥2 (1− δ)
∑T−1

t=2 δ
t−1ui (αt−1 (θ∗\{i}))

+ (1− δ) δT−1 (1) + δT
(
minv′∈cl(F ∗∗(θ∗)) v

′
i + η

4

) |i ∈ θ∗
 .

For each θ∗, recalling that vi (θ
∗\{i}) = (1− δ)

∑∞
t=1 δ

t−1ui (αt (θ∗\{i})), we have

∣∣∣∣∣(1− δ)
T∑
t=1

δt−1ui (αt (θ∗\{i}))−
(
1− δT

)
vi (θ

∗\{i})
∣∣∣∣∣

≤ δT

∣∣∣∣∣vi (θ∗\{i})− (1− δ)
∞∑

t=T+1

δt−T−1ui (αt (θ∗\{i}))
∣∣∣∣∣ ≤ η

4
, (19)
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where the latter inequality follows from Lemma 4. Hence, we have

max
σi
E

[
(1− δ)

∞∑
t=1

ui (at) |σi, σ∗−i, i ∈ θ∗
]

≤ (1− δ) + E

[
max
T≥2

(1− δ)
T−1∑
t=2

δt−1ui (αt−1 (θ∗\{i})) + (1− δ) δT−1 + δT
(

min
v′∈cl(F ∗∗(θ∗))

v′i +
η

4

)
|i ∈ θ∗

]

≤ 3 (1− δ) + E

[
max
T≥1

(1− δ)
T∑
t=1

δt−1ui (αt (θ∗\{i})) + δT+1 min
v′∈cl(F ∗∗(θ∗))

v′i|i ∈ θ∗
]

+
η

4

≤ 3 (1− δ) + E
[
max
T≥1

(
1− δT

)
vi (θ

∗\{i}) + δT+1 min
v′∈cl(F ∗∗(θ∗))

v′i|i ∈ θ∗
]

+
η

2

≤ E
[
max

{
vi (θ

∗\{i}) , min
v′∈cl(F ∗∗(θ∗))

v′i

}
|i ∈ θ∗

]
+

7η

8
,

where the second inequality changes the time index, the third uses (19), and the fourth uses

δ > 1− η/8. Finally, (17) and (18) imply Condition 3.
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