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Abstract

Our understanding of monetary policy is complicated by an indeterminacy problem: the

same path for the nominal interest rate is consistent with multiple equilibrium paths for in-

flation and output. We offer a potential resolution by showing that small frictions in social

memory and intertemporal coordination can remove this indeterminacy. Under our pertur-

bations, the unique equilibrium is the same as that selected by the Taylor principle, but it

no more relies on it; monetary policy is left to play only a stabilization role; and fiscal policy

needs to be Ricardian even when monetary policy is passive.
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1 Introduction

Can monetary policy regulate inflation and aggregate demand? Does the ZLB trigger a defla-

tionary spiral? Does Ricardian equivalence hold when taxation is non-distortionary, markets are

complete, and consumers have rational expectations and infinite horizons? One may be inclined

to respond “yes” to all these questions. But the correct answer, at least within the dominant policy

paradigm (the New Keynesian model), crucially depends on how equilibrium is selected.

The basic problem goes back to Sargent and Wallace (1975): the same path for the nominal

interest rate is consistent with multiple equilibrium paths for inflation and output.1 The stan-

dard approach selects a specific equilibrium by assuming that monetary policy satisfies the Tay-

lor principle (Taylor, 1993), or equivalently that it is “active” in the sense of Leeper (1991). It is

this selection that drives the model’s customary predictions, including the “yes” to the aforemen-

tioned questions. But as stressed by Cochrane (2017, 2018), an alternative selection, based on the

Fiscal Theory of the Price Level (FTPL), can lead to sharply different predictions. This approach

elevates government debt and deficits to key drivers of inflation and output, even when these

variables do not enter the model’s three “famous” equations.2

Both approaches are equally coherent, at least in the sense of being consistent with rational

expectations and the same micro-foundations. They are also hard to test, because they translate

to different assumptions about off-equilibrium strategies of the monetary and fiscal authorities.

As a result, the debate about which approach is “right” has never been settled.3

We shed new light on this conundrum, and offer a possible way out of it, by demonstrating

how the indeterminacy problem of the New Keynesian model hinges on delicate assumptions

about social memory and dynamic coordination. Once we perturb these assumptions, appropri-

ately but tinily, the model’s conventional solution emerges as the unique rational expectations

equilibrium regardless of monetary policy. This reinforces the logic for answering “yes” to the

questions raised in the beginning. And it allows one to think about both the Taylor principle and

the FTPL in new ways, liberated from the equilibrium-selection conundrum.

Preview of results. A crucial stepping stone of our analysis is the translation of a New Keynesian

economy into a dynamic game among the consumers. The details are spelled out in Section 2 but

the basic idea is that an individual’s optimal spending depends on her expectations of future ag-

1There is, however, an important difference between the New Keynesian framework and flexible-price models,
such as that of Sargent and Wallace (1975), which we explain in due course.

2See Leeper (1991), Sims (1994) and Woodford (1995) for the genesis of the FTPL, Bassetto (2002) for a game-
theoretic perspective, and Cochrane (2005, 2017, 2018) for extensions and reinterpretations.

3See Bassetto (2008) for a concise and balanced review of the debate; Canzoneri, Cumby, and Diba (2010) for how
it fits in the broader context of the fiscal-monetary interaction; and Kocherlakota and Phelan (1999), King (2000),
Bassetto (2002), Cochrane (2007), and Atkeson et al. (2010) for more on the role of off-equilibrium strategies.
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gregate spending via GE feedbacks such as the intertemporal Keynesian cross. This explains both

why our game-theoretic prism extends to a wide class of Keynesian economies (think HANK)

and why the key issue is the ability of current and future consumers to coordinate on multiple

self-fulfilling paths for aggregate spending. Our contribution is to expose the fragility of such

coordination to a small friction in social memory.

Our main result, developed in Section 4, models the relevant friction as follows. There are

overlapping generations of finitely-lived consumers. Consumers learn all the shocks (payoff-

relevant or not) realized during their lifetime, but the intergenerational transmission of such

knowledge need not be perfect: for any t , the fraction of the population who know or can other-

wise condition their actions on shocks realized at any τ≤ t is (1−λ)t−τ, where λ ∈ [0,1) parame-

terizes the erosion of social memory over time.

The standard paradigm is nested with λ = 0; it translates to assuming that any shock re-

mains common knowledge in perpetuity; and it admits a continuum of sunspot and “backward-

looking” equilibria whenever the Taylor principle is violated and fiscal policy is Ricardian. We

instead show that all these equilibria unravel as soon as λ> 0. The only surviving equilibrium is

the conventional one, known as the fundamental or minimum-state variable (MSV) solution.

This result allows knowledge of long histories of the exogenous shocks but abstracts from di-

rect observation of past endogenous outcomes such as the past levels of aggregate spending and

inflation. This abstraction is at odds with both the recursive equilibrium representation common

in macroeconomics and a literature that has shown how endogenous outcomes can themselves

serve as coordination devices (Angeletos and Werning, 2006). We address this concern in Section

5 with two additional results, both of which allow for direct observation of past output and past

inflation. This requires an adjustment in the relevant perturbation—in particular, Proposition 4

requires immediate forgetting of a small component of the fundamentals—but the take-home

lesson remains the same.4

Interpreting our contribution. The key logic behind our results echoes the literature on global

games (Morris and Shin, 2002, 2003) and is subject to a similar qualification: indeterminacy may

strike back if markets or other mechanisms facilitate enough coordination (Atkeson, 2000; An-

geletos and Werning, 2006). Note, however, that our context’s multiplicity is sustained by a self-

fulfilling infinite chain over different generations of players: today’s consumers are responding to

a payoff-irrelevant variable because and only because they expect tomorrow’s consumers to do

the same on the basis of a similar expectation about behavior further into the future, and so on.

4Section 5 focuses on the observability of past output and inflation, because, as explained these variables emerge
as the “right” endogenous sunspots in our baseline model. It is an open question whether other endogenous vari-
ables, such as public debt in the FTPL context, can serve as more potent coordination devices.

2



This suggests that the requisite coordination might be harder to attain in our context than in, say,

a self-fulfilling bank run. But a formalization of this broader idea is elusive at this point.

All in all, we therefore view our contribution not as a definite resolution of the New Keynesian

model’s indeterminacy problem but rather in the following terms: (i) as a new lens for under-

standing this problem; (ii) as a formal justification for selecting the fundamental solution; and

(iii) as an invitation to reconsider the applied meaning of both the Taylor principle and the FTPL.

The first two points should be self-evident by now, so let us expand on the last.

Consider first the Taylor principle. Our result removes the need for equilibrium selection but

leaves room for sunspot-like fluctuations along the MSV equilibrium path in at least the following

two forms: overreaction to noisy public news (Morris and Shin, 2002); and shocks to higher-

order beliefs (Angeletos and La’O, 2013; Benhabib et al., 2015). This in turn lets the slope of the

Taylor rule play a new function: to regulate the macroeconomic complementarity and thereby

the aforementioned kind of sunspot-like volatility. Our contribution is therefore not to rule out

“animal spirits” altogether but rather to recast the Taylor principle as a form of on-equilibrium

stabilization instead of an off-equilibrium threat.5

Consider next the FTPL. By guaranteeing that the MSV solution is the only possible solution

regardless of monetary policy, our perturbations do not allow fiscal policy to be used for equi-

librium selection. Our work thus redirects attention to how one can capture the following ques-

tions outside the equilibrium selection conundrum: what is the relation between persistent fiscal

deficits and inflation (Sargent and Wallace, 1981); which authority is “dominant;” and whether

a deficit can be self-financed by an automatic adjustment in the price level and/or the tax base

along the MSV solution (Angeletos et al., 2022).

Local vs global determinacy. Like most of the literature, we work with the linearized New Key-

nesian model and require equilibria to be bounded. This focus has two rationales within the

context of interest. First, unbounded equilibria (namely self-fulfilling hyper-inflations and self-

fulfilling liquidity traps) are customarily ruled out by means other than the Taylor principle6 and

are therefore outside our scope. And second, we, as analysts, have more trust in the New Keyne-

sian model’s local properties than its global properties. Moving beyond the context of interest, the

following seems a safe conjecture: our methods and results guarantee local determinacy around

any given steady state, but do not necessarily speak to the question of global determinacy.

5While this is the exact opposite of the prevailing theoretical approach, it is arguably closer to how Taylor (1993)
himself had originally thought about the issue.

6These are the type of escape clauses considered in, inter alia, Wallace (1981), Obstfeld and Rogoff (1983, 2021),
Taylor (1993), Christiano and Rostagno (2001), Benhabib et al. (2001), and Atkeson et al. (2010).
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Sticky vs flexible prices. Our results are not sensitive to the degree of nominal rigidity, as long

as there is some of it. If instead prices are perfectly flexible, output and inflation are no longer

demand determined, the economy can no longer be understood as a coordination game among

the consumers, and our methods do not apply (at least not in their current form). This touches on

a larger methodological question, whether flexible-price models are proper limits of sticky-price

models (Kocherlakota, 2020). And it suggests that, contrary to conventional wisdom, the New

Keynesian model’s indeterminacy problem might not be a mere translation of the flexible-price

counterpart (Sargent and Wallace, 1975).

Related literature. Kocherlakota and Phelan (1999), Buiter (2002), Niepelt (2004) and others

have interpreted the non-Ricardian assumption as an off-equilibrium threat to blow up the gov-

ernment budget. Cochrane (2005, 2011) has fired back by arguing not only that this interpretation

is misguided but also that the Taylor principle itself amounts to a threat to blow up inflation and

interest rates. While these arguments emphasize the subtlety of both approaches, they do not

help resolve the conundrum: Bassetto (2002, 2005) and Atkeson, Chari, and Kehoe (2010) have

shown that both approaches can be supported with more sophisticated policies, which avoid

such controversial threats and guarantee a proper continuation equilibrium always. By contrast,

our paper seeks to remove the need for equilibrium selection of either kind.

Our main result, Proposition 2, recalls Rubinstein (1989) and the global-games literature (Mor-

ris and Shin, 1998, 2003): certain equilibria unravel because of a series of contagion effects related

to higher-order beliefs. Our second result, Proposition 3, has the flavor of rational inattention:

agents observe an endogenous coordination device with idiosyncratic noise. Our third result,

Proposition 4, connects to Bhaskar (1998) and Bhaskar, Mailath, and Morris (2012): it combines a

purification in payoffs with finite social memory.7 The common thread is the relaxation of com-

mon knowledge and the resulting coordination friction. But the precise connections between our

results and the related literature deserve further exploration.

A large literature has already incorporated information/coordination frictions in the New

Keynesian model (Mankiw and Reis, 2002; Woodford, 2003; Maćkowiak and Wiederholt, 2009;

Angeletos and Lian, 2018). But it has not addressed the determinacy issue: it has focused exclu-

sively on how such frictions improve the empirical properties of the model’s MSV solution, while

assuming away all other solutions (by invoking, implicitly or explicitly, the Taylor principle). We

complement this literature by showing, in effect, that one can hit two birds with one stone.

7Bounded recall is well documented is psychology (Kahana, 2012) and has found important applications in eco-
nomics (e.g., Gennaioli and Shleifer, 2010; da Silveira et al., 2020). While we welcome this interpretation, for our
purposes, just as for the aforementioned papers, it suffices to have bounded social memory: the key is to introduce
a friction in intertemporal coordination.
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A different literature has studied which of the model’s solutions are “learnable” in the sense of

E-stability (McCallum, 2007; Christiano et al., 2018). Although this literature has produced mixed

results,8 it offers complementary light on the question of which solution is most sensible.

The determinacy problem we are after extends from Rational Expectations Equilibrium (REE)

to a larger class of solution concepts that relax the perfect coincidence between subjective beliefs

and objective outcomes but preserve a fixed-point relation between them. This class includes

cognitive discounting (Gabaix, 2020) and diagnostic expectations (Bordalo et al., 2018), but not

Level-K Thinking (García-Schmidt and Woodford, 2019; Farhi and Werning, 2019). The latter pro-

duces a unique solution because it rules out entirely any feedback from objective reality to sub-

jective beliefs. This may be reasonable in the context of unprecedented experiences but seems

less appropriate in the context of stationary environments, which is our focus here.

2 A Simplified New Keynesian Model

Here we introduce our baseline model. Time is discrete and is indexed by t ∈N. There are over-

lapping generations of consumers, each living two periods. Each generation has mass one half;

the young and the old receive the same income; information is the only possible source of hetero-

geneity; and there is no fiscal authority and no public debt. These and a few other simplifications

add transparency to the analysis but do not drive the results; Section 6 will discuss how our argu-

ments extend to a large class of New Keynesian economies.9

The basics

Consider a consumer i born at t and let C 1
i ,t and C 2

i ,t+1 denote her consumption when young and

old, respectively. Her preferences are given by

u(C 1
i ,t )+βu(C 2

i ,t+1)e−%t , (1)

where u(C ) ≡ 1
1−1/σC 1−1/σ, β ∈ (0,1), and %t is an intertemporal preference shock (the usual proxy

for aggregate demand shocks). Her budget constraints in the first and second period of life are

8For example, sunspot equilibria can be E-stable if the interest rate rule is written as a function of expected in-
flation (Honkapohja and Mitra, 2004). And there is a debate on how the E-stability of backward-looking solutions
depends on the observability of shocks (Cochrane, 2011; Evans and McGough, 2018).

9In particular, it is worth emphasizing that our upcoming uniqueness result does not depend on the finite-horizon
specification. Also, although finite horizons (or incomplete markets more generally) can break Ricardian equiva-
lence, this is unrelated to the non-Ricardian assumption in FTPL; the latter regards exclusively equilibrium selection
and operates with finite and infinite horizons alike.
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given by, respectively,

PtC 1
i ,t +Bi ,t = Pt Yt and Pt+1C 2

i ,t+1 = Pt+1(Yt+1 −Tt+1)+ It Bi ,t ,

where Pt is the nominal price level at t , Yt is the real aggregate (also average) income at t , Bi ,t is

nominal saving/borrowing when young, Tt+1 is a real lump-sum tax paid (or transfer received)

when old, and It is the gross nominal interest rate between t and t +1.10

Private saving/borrowing is done in nominal claims against the central bank (“reserves”). The

central bank sets the interest rate on these claims and clears their aggregate value with the afore-

mentioned lump-sum taxes; that is, Pt Tt = It−1Bt−1, where Bt−1 ≡
∫

Bi ,t−1di .11 As it will become

clear momentarily, the aggregate claims are necessarily zero in equilibrium (Bt = 0). Hence, it

would have been without serious loss to abstract from the taxes and directly impose that nom-

inal bonds are in zero net supply, as it is typically done in textbook treatments. The reason we

spell out the additional details here is purely auxiliary: to let consumers have fully specified be-

liefs both on and off equilibrium.

Old consumers are “robots” in the sense that they have no optimization margin: their con-

sumption mechanically adjusts to meet the second-period budget. By contrast, young consumers

are “strategic” in the sense that they optimally choose between consumption and saving, on the

basis of rational beliefs about the state of the economy.

For the time being, we take no stand on what information these beliefs are based on. We only

require that individual consumption is optimal, given possibly arbitrary information. After the

usual log-linearization,12 this translates to the following optimal consumption function:

c1
i ,t = Ei ,t

[
1

1+β yt + β
1+β

(
yt+1 −τt+1

)− β
1+βσ(it −πt+1 −%t )

]
, (2)

where Ei ,t denotes the rational expectation conditional on i ’s information. The familiar, full-

information benchmark is nested by restricting Ei ,t [·] = Et [·] for all i and t , where Et [·] is the

rational expectation conditional on perfect knowledge of all current and past shocks; our own

contribution will rest on relaxing this restriction.

10To ease the exposition, we side-step labor supply. The missing details are filled in Online Appendix B.2 but the
basic point is this: because output is demand-determined, the specification of labor supply is inconsequential. Also
note that the young and the old earn the same income, which guarantees that the steady state interest rate is β−1 > 1
and there is no room for bubbly money a la Samuelson (1958).

11Throughout,
∫

xi di means the cross-sectional average of variable x.
12Throughout, we log-linearize around the steady state in which %t = 0, Πt ≡ Pt

Pt−1
= 1, and It = β−1; and for any

variable X t with steady-state value X ss , we define the corresponding lower-case variable as xt ≡ log X t − log X ss if
X ss 6= 0 and xt ≡ X t /Y ss if X ss = 0. For example, yt = logYt − logY ss but τt ≡ Tt /Y ss. This is standard practice.
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An intertemporal Keynesian cross (aka a Dynamic IS equation)

Pick any t . By aggregating the budgets of the old and using the fact that Pt Tt = It−1
∫

Bi ,t−1di ,

we get
∫

C 2
i ,t di = Yt . By market clearing in the goods market, Ct ≡ 1

2

∫
C 1

i ,t di + 1
2

∫
C 2

i ,t di = Yt .

Combining, we infer that
∫

C 1
i ,t di = Yt = Ct . By aggregating the budgets of the young, we then

verify that
∫

Bi ,t di = 0. (As anticipated, it is as if the net supply of bonds were zero.)

More importantly, from the fact that
∫

C 1
i ,t di = Yt = Ct , we see that aggregate consumption

coincides with the average consumption of the young. Translating this in log deviations, aggre-

gating (2), and replacing yt = ct , we conclude that, for any process of the interest rate and infla-

tion, the process for aggregate spending must satisfy the following equation:

ct = Ēt

[
1

1+βct + β
1+βct+1 − β

1+βσ(it −πt+1 −%t )
]

, (3)

where Ēt [·] = ∫
Ei ,t [·]di is the average expectation of the young.

As evident from its derivation, equation (3) makes no assumption about how interest rates

and inflation are determined. It only combines consumer optimality with market clearing and,

in so doing, it embeds the GE feedback between income and spending. This equation can thus

be read interchangeably as a special case of the “intertemporal Keynesian cross” (Auclert et al.,

2018) and as a Dynamic IS equation.

Connection to the standard New Keynesian model

Although our version of the Dynamic IS equation looks different from its textbook counterpart, it

actually nests it when there is full information. In this benchmark, Ēt can be replaced by Et , which

henceforth denotes the rational expectation conditional on full information about the economy’s

history up to, and inclusive of, period t . Along with the fact that ct and it must themselves be

measurable in such information, this means that in this case equation (3) reduces to

ct = 1
1+βct + β

1+βEt [ct+1]− β
1+βσ(it −Et [πt+1]−%t ),

or equivalently

ct = Et [ct+1]−σ(it −Et [πt+1]−%t ),

which is evidently the same as the Euler condition of a representative, infinitely-lived consumer.

This clarifies the dual role of the adopted OLG structure. With full information, it lets our

model translate to the standard, representative-agent, New Keynesian model. And away from

this benchmark, it eases the exposition by letting the intertemporal Keynesian cross take a par-

ticularly simple form and by equating the players in our upcoming game representation to the

young consumers. These simplifications are relaxed in Section 6, without changing the essence.
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A Phillips curve and a Taylor rule

For the main analysis, we abstract from optimal price-setting behavior (firms are “robots”) and

impose the following, ad hoc Phillips curve:

πt = κ(yt +ξt ), (4)

where κ≥ 0 is a fixed scalar and ξt is a “supply” or “cost-push” shock. The absence of a forward-

looking term in (4) simplifies the exposition significantly, but does not drive the results: as shown

in Section 6, our arguments directly extend to the fully micro-founded, forward-looking, New

Keynesian Phillips curve. With either version of the Phillips curve, the essence (for our purposes)

is that there is a positive GE feedback from aggregate output to inflation. Equation (4) merely

stylizes this feedback in a convenient form.

We finally assume that monetary policy follows a Taylor rule of the following type:

it = zt +φπt , (5)

where zt is a random variable and φ≥ 0 is a fixed scalar. This readily nests it = i∗t +φ(πt −π∗
t )+

ζt , where i∗t and π∗
t are state-contingent “targets” and ζt is a pure monetary shock. Also, no

restriction is imposed on how zt covaries with %t and ξt ; for instance, zt may track the natural rate

of interest or lean against cost-push shocks. In the standard paradigm, this helps disentangle the

stabilization and equilibrium selection functions of monetary policy: the former is served by the

design of zt , the latter by the restriction φ > 1.13 Our perturbations will dispense with the latter

function and guarantee determinacy even under interest-rate pegs (herein nested by φ= 0).

The model in one equation—and the economy as a game

From (4) and (5), we can readily solve for πt and it as simple functions of yt , which itself equals

ct . Replacing into (3), we conclude that the model reduces to the following single equation:

ct = Ēt [(1−δ0)θt +δ0ct +δ1ct+1] (6)

where δ0,δ1 are fixed scalars and θt is a random variable.14 These are given by

δ0 ≡ 1−βσφκ
1+β < 1, δ1 ≡ β+βσκ

1+β > 0, θt ≡− 1

1+φκσ
(
σzt −σ%t +σφκξt −σκEt [ξt+1]

)
. (7)

By construction, equation (6) summarizes private sector behavior and market clearing, for

13See King (2000) and Atkeson et al. (2010) for sharp articulations of this point. Also note that we are restricting
φ ≥ 0. Letting φ < 0 qualifies the Taylor principle (see footnote 17) but does not upset our own result. Finally,
note that (5) has the monetary authority respond to current inflation. But as explained in Online Appendix B.5, our
insights go through if the monetary authority responds to past inflation and/or expected future inflation.

14For the time being, we take no stand how much is known about θt or its components, which is why θt appears
inside the expectation operator in (6). Also, the fact that θt is multiplied by 1−δ0 is just a normalization.
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any information structure and any monetary policy. Different information structures change the

properties of Ēt but do not change the equation itself. Similarly, different monetary policies map

to different values for δ0 or different stochastic processes for θt , via the choice of, respectively, a

value for φ or a stochastic process for zt . But for any given monetary policy, we can understand

equilibrium in the private sector by studying equation (6) alone.

Equation (6) and the micro-foundations behind it also facilitate the interpretation of the econ-

omy as a game among an infinite chain of different generations of players. In this game, the play-

ers acting at t are the young consumers of that period (old consumers, firms, and the monetary

authority are “robots,” in the sense already explained), their actions are their consumption levels,

and their payoffs are obtained as follows. Take the primitive preferences (1); use the budgets to

express C 2
i ,t+1 as functions of C 1

i ,t and of (Yt ,Yt+1, It ,Πt+1); drop the superscript 1 from C 1
i ,t to ease

the notation; and finally use the consumer’s first-order knowledge of market clearing, the Phillips

curve, and the Taylor rule to substitute out (Yt ,Yt+1, It ,Πt+1) and express the consumer’s realized

utility as U (Ci ,t ;Ct ,Ct+1,%t , zt ,ξt ), for some U .

Maximizing this payoff over a player’s own action (and for arbitrary beliefs about the actions

of other players) results in the following log-linearized best response, which is the individual-level

counterpart of (6):

c1
i ,t = Ei ,t [(1−δ0)θt +δ0ct +δ1ct+1] . (8)

Under this prism, δ0 and δ1 parameterize the intra- and inter-temporal degrees of strategic com-

plementarity, respectively, while θt identifies the game’s fundamental (i.e., the only payoff-relevant

exogenous random variable). Finally, by regulating the strength of the underlying GE feedbacks,

different values for β, κ, and φ map to different degrees of strategic complementarity.

This game-theoretic prism is not strictly needed: our formal arguments work directly with

equation (6), which itself can be read as a “consolidated” equilibrium condition. Still, this prism

helps translate the determinacy question from one about eigenvalues (Blanchard and Kahn, 1980)

to one about intertemporal coordination, and in so doing it also allows us to import useful in-

sights from the literature on global games and higher-order uncertainty.

Fundamentals, sunspots, and the equilibrium concept

Aggregate uncertainty is of two sources: fundamentals and sunspots. The former are herein con-

veniently summarized in θt . The latter are represented by a random variable ηt that is indepen-

dent of the current, past, and future values of θt . As explained in Section 5, our arguments extend

to essentially arbitrary specifications of these variables. To ease the exposition, the main analysis

makes the following simplification:
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Assumption 1 (Simplification). Both the fundamental θt and the sunspot ηt are i.i.d. over time,

with means normalized to zero.

Let ht capture the history of all fundamentals and sunspots up to and including period t . To

simplify the exposition, we assume that histories are infinite and, accordingly, focus on stationary

equilibria. More precisely, we let ht ≡ {θt−k ,ηt−k }∞k=0 and we define an equilibrium as follows:

Definition 1 (Equilibrium). An equilibrium is any solution to equation (6) along which: expecta-

tions are rational, although potentially based on imperfect information about ht ; and the outcome

is given by

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

γkθt−k (9)

where {ak ,γk } are known and uniformly bounded coefficients.

Recall that consumer optimality, firm behavior, market clearing, and the policy rule have al-

ready been embedded in equation (6). It follows that the above is the standard definition of a

Rational Expectations Equilibrium (REE), except for the addition of three “auxiliary” restrictions

embedded in (9): linearity, boundedness, and stationarity. Linearity is needed for tractability.

Boundedness amounts to saying that we are only concerned with local determinacy.15 Finally,

the stationarity restriction is without serious loss of generality; it only makes sure that all non-

fundamental equilibria are treated as sunspot equilibria.16

Finally, and circling back to our game-theoretic prism, note that the following is true: be-

cause every consumer is infinitesimal, there is no need to specify off-equilibrium beliefs, and the

economy’s REE coincides with the corresponding game’s Perfect Bayesian Equilibria (PBE).

3 The Standard Paradigm

In this section, we consider the full-information version of our model (which is, in essence, the

standard New Keynesian model); we review its determinacy problem; and we finally contextual-

ize our departures from this benchmark.

15As mentioned in the Introduction, there are two rationales for this focus: that the Taylor principle itself is exclu-
sively about local determinacy; and that we think that the New Keynesian model is a priori designed to speak pri-
marily to “local” phenomena as opposed to, say, hyper-inflations. Also note that the form of boundedness imposed
in Definition 1 is implied by boundedness in the agents’ strategies (i.e., by requiring that ci ,t is a linear function of
Ii ,t with uniformly bounded coefficients, where Ii ,t is a subset of ht and denotes the agent’s information set).

16We explain this in detail in Online Appendix B.3, but the basic idea is simple. Relaxing the stationarity restriction
does not change the essence; it only lets some sunspot equilibria disguise as deterministic paths. But saying that
something is “deterministic” amounts to saying that it is common knowledge in perpetuity, which would be in direct
contradiction to the spirit of our upcoming perturbation (Assumption 2).
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Full information, the MSV solution, and the Taylor principle

Suppose that all consumers know the entire ht , at all t . As shown earlier, it is then as if there

is a representative, fully informed and infinitely lived, consumer—just as in the textbook case.

Accordingly, equation (6), which summarizes equilibrium, reduces to the following:

ct = θt +δEt [ct+1], (10)

where Et [·] ≡ E[·|ht ] is the rational expectation conditional on full information and

δ≡ δ1

1−δ0
= 1+κσ

1+φκσ > 0.

Note that δ is necessarily positive but can be on either side of 1, depending on φ.

Because equation (10) is purely forward looking and θt is i.i.d., ct = cF
t ≡ θt is necessarily an

equilibrium. This is known as the model’s “fundamental” or “minimum state variable (MSV)”

solution (McCallum, 1983), and is the basis of the conventional understanding of how monetary

policy works. For instance, if the central bank can adjust zt in response to the underlying demand

and supply shocks, she can guarantee θt = 0. This directly translates to ct = 0 (“closing the output

gap”) under the MSV solution—but not under other solutions.

To rule out other solutions and justify conventional policy predictions, the standard approach

imposes the Taylor principle. In our context, just as in the textbook treatment, this principle is

defined by the restriction φ > 1. This in turn translates to δ0 +δ1 < 1 and, equivalently, δ < 1.

The former can be read as “the overall degree of strategic complementarity is small to guarantee

a unique equilibrium,” the latter as “the dynamics are forward-stable.” And conversely, φ < 1

translates to “the complementarity is large enough to support multiple equilibria” (δ0 +δ1 > 1)

and the “dynamics are backward-stable” (δ> 1).

This discussion underscores the tight connection between our way of thinking about determi-

nacy (the size of the strategic complementarity) and the standard way (the size of the eigenvalue).

The next proposition verifies this point and also characterizes the type of equilibria that emerge

in addition to the MSV solution once the Taylor principle is violated.17

Proposition 1 (Full-information benchmark). Suppose that ht is known to every i for all t , which

means in effect that there is a representative, fully informed, agent. Then:

(i) There always exists an equilibrium, given by the fundamental/MSV solution cF
t .

(ii) When the Taylor principle is satisfied (φ> 1), the above equilibrium is the unique one.

17By restricting φ ≥ 0, we have restricted δ > 0. If we allow δ < 0, which is possible for φ sufficiently negative,
Proposition 1 and the discussion after it continue to hold, provided that we recast the Taylor principle asδ ∈ (−1,1), or
equivalently asφ ∈ (−1− 2

κσ ,− 1
κσ )∪(1,+∞). This echoes Kerr and King (1996). More importantly, our own uniqueness

result does not hinge on δ> 0.
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(iii) When this principle is violated (φ< 1), there exist a continuum of equilibria, given by

ct = (1−b)cF
t +bcB

t +acηt , (11)

where a,b ∈R are arbitrary scalars and cB
t ,cηt are given by

cB
t ≡−

∞∑
k=1

δ−kθt−k︸ ︷︷ ︸
backward-looking, pseudo-fundamental component

and cηt ≡
∞∑

k=0
δ−kηt−k︸ ︷︷ ︸

pure sunspot component

. (12)

To understand the type of non-fundamental equilibria documented in part (iii) above, take

equation (10), backshift it by one period, and rewrite it as follows:

Et−1[ct ] = δ−1(ct−1 −θt−1). (13)

Since ηt is unpredictable at t −1, the above is clearly satisfied with

ct = δ−1(ct−1 −θt−1)+aηt , (14)

for any a ∈R. As long as δ> 1, we can iterate backward to obtain

ct =−
∞∑

k=1
δ−kθt−k +a

∞∑
k=0

δ−kηt−k = cB
t +acηt . (15)

This is both bounded, thanks to δ> 1, and a rational-expectations solution to (13), by construc-

tion, which verifies that cB
t +acηt constitutes an equilibrium, for any a ∈R. Part (iii) of the Propo-

sition adds that the same is true if we replace cB
t with any mixture of it and the MSV solution.

To illustrate what all these equilibria are, switch off momentarily the fundamental shocks.

Then, cF
t = cB

t = 0 and (11) reduces to ct = acηt , which is a pure sunspot equilibrium of arbitrary

amplitude. In this equilibrium, consumers respond to the current sunspot because and only

because they expect future agents to keep reacting to it, in perpetuity.

Now let us switch off the sunspots and switch on the fundamentals. Multiplicity then takes

the following form: the same path for interest rates or other fundamentals maps to a continuum

of different paths for aggregate spending and inflation. Consider, for example, the solution given

by ct = cB
t . Along it, aggregate spending is invariant to the current interest rate and increases with

past interest rates. This may sound paradoxical but is sustained by basically the same self-fulling

infinite chain as that described above: consumers spend more in response to higher interest rates

because and only because they expect future consumers to do the same in perpetuity. The same

is true for any equilibrium of the form (11) for b 6= 0, and explains why all such equilibria can be

thought of as both non-fundamental and backward-looking.

All in all, the Taylor principle is therefore used not only to rule out sunspots but also to secure

the logical foundations of the modern policy paradigm. The rest of our paper attempts to liberate

these foundations from their strict reliance on the Taylor principle, or any substitute thereof.
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Beyond the full-information benchmark: a challenge and the way forward

Consider conditions (14) and (15). Clearly, these are equivalent representations of the same equi-

librium: the first is recursive, and the second is sequential. This equivalence means that all the

equilibria that can be supported by perfect knowledge of ht = {θt−k ,ηt−k }∞k=0 coincide with those

that can be supported by perfect knowledge of (θt ,ηt ;θt−1,ct−1). But what if agents lack such

perfect knowledge?

Regardless of what agents know or don’t know, one can always represent any equilibrium in

a sequential form, or as in equation (9). This is simply because ct has to be measurable in the

history of exogenous aggregate shocks, fundamental or otherwise. But it is far from clear if and

when there is an equivalent recursive representation. In fact, a finite-state recursive representa-

tion is generally impossible when agents observe noisy signals of endogenous outcomes, due to

the infinite-regress problem first highlighted by Townsend (1983).

This poses a challenge for what we want to do in this paper. On the one hand, we seek to

highlight how fragile all non-fundamental solutions can be to perturbations of the aforemen-

tioned kinds of common knowledge, or to small frictions in coordination. On the other hand, we

need to make sure that these perturbations do not render the analysis intractable.

To accomplish this dual goal, in the rest of the paper we follow two strategies. Our main one,

in Section 4, takes off from (15), or the sequential representation. An alternative, in Section 5,

circles back to (14), the recursive representation. Both strategies illustrate the fragility of non-

fundamental equilibria, each one from a different angle.

4 Uniqueness with Fading Social Memory

This section contains our main result. We introduce a friction in social memory and show how it

yields a unique equilibrium regardless of monetary policy.

Main assumption

For the purposes of this and the next section, we replace the assumption of a representative,

fully-informed agent with the following, incomplete-information variant:

Assumption 2 (Social memory). In every period t , a consumer’s information set is given by

Ii ,t = {(θt ,ηt ), · · · , (θt−si ,t ,ηt−si ,t )},

where si ,t ∈ {0,1, · · · } is an idiosyncratic random variable, drawn from a geometric distribution

with parameter λ, for some λ ∈ (0,1].
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To understand this assumption, note that herein si ,t indexes the random length of the history

of shocks that a period-t agent knows. Next, recall that the geometric distribution means that

si ,t = 0 with probability λ, si ,t = 1 with probability (1−λ)λ, and more generally si ,t = k with prob-

ability (1−λ)kλ, for any k ≥ 0. By the same token, the fraction of agents who know at least the

past k realizations of shocks is given by µk ≡ (1−λ)k .

One can visualize this as follows. At every t , the typical player (young consumer) learns the

concurrent shocks for sure; with probability λ, she learns nothing more; and with the remaining

probability, she inherits the information of another, randomly selected player from the previous

period (a currently old consumer). In this sense, λ parameterizes the speed at which social mem-

ory (or common-p belief of past shocks) fades over time.

Note that Assumption 2 does not influence the MSV solution itself, because Ii ,t always con-

tains the current fundamental. As mentioned in the Introduction, this helps isolate our contribu-

tion from the existing literature on informational frictions, which allows imperfect information

about the current θt but does not address the determinacy issue.

Finally, note that Assumption 2 rules out direct observation of endogenous outcomes, in-

cluding current income and current interest rates. This is consistent with our characterization

of optimal consumption in (2) and by extension with our game representation in (6), because

both of them are valid for arbitrary information. But it also means that we must envision con-

sumers choosing their spending under uncertainty about current income and current interest

rates. Such uncertainty can be motivated in its own right as the product of inattention, but is not

strictly needed for our results.18

Main result

The full-information benchmark is nested with λ= 0; this indeed translates to Ii ,t = ht for all i , t ,

and ht (i.e., perfect and common knowledge of the infinite history at all times). The question of

interest is what happens for λ> 0, and in particular as λ→ 0+. In this limit, the friction vanishes

in the following sense: almost every agent knows the history of shocks up to an arbitrarily distant

point in the past. But the following is also true: as long as λ is not exactly zero, we have that

limk→∞µk = 0, which means that shocks are expected to be “forgotten” in the very distant future.

As shown next, this causes all non-fundamental equilibria to unravel.

18First, this uncertainty vanishes as λ→ 0+, in a sense we qualify in Online Appendix B.4. Second, our analysis
goes through if consumers observe perfectly their own income and own interest rate, provided that we abstract from
signal-extraction about payoff-irrelevant histories; see Online Appendix B.1. Finally, we can accommodate such
signal-extraction if we adopt the variant perturbation of Section 5. We thus invite the reader to take Assumption 2
with an open mind: even though it may not be the most realistic specification of information one can think of, it
allows us to introduce a plausible perturbation away from common knowledge.
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Proposition 2 (Determinacy without the Taylor principle). Suppose that social memory is im-

perfect in the sense of Assumption 2, for any λ> 0. Regardless of φ, or of δ0 and δ1, the equilibrium

is unique and is given by the fundamental/MSV solution.

The result is proven in the Appendix for arbitrary δ0 and δ1. To illustrate the main argument

as transparently as possible, here we set δ0 = 0 and δ1 = δ, for arbitrary δ > 0 (including δ > 1).

This zeroes in on the role of coordination across time. We also abstract from fundamentals and

focus on ruling out pure sunspot equilibria. That is, we specialize equation (6) to

ct = δĒt [ct+1]; (16)

we search for solutions of the form ct =∑∞
k=0 akηt−k ; and we verify that ak = 0 for all k.

By Assumption 2, we have that, for all k ≥ 0,

Ēt [ηt−k ] =µkηt−k

where µk ≡ (1−λ)k measures the fraction of the population at any given date that know, or re-

member, a sunspot realized k periods earlier. Future sunspots, on the other hand, are known to

nobody. It follows that, in any candidate solution, average expectations satisfy

Ēt [ct+1] = Ēt

[
a0ηt+1 +

∞∑
k=1

akηt+1−k

]
= 0+

+∞∑
k=0

ak+1µkηt−k .

By the same token, condition (16) rewrites as

+∞∑
k=0

akηt−k︸ ︷︷ ︸
ct

= δ
+∞∑
k=0

ak+1µkηt−k︸ ︷︷ ︸
Ēt [ct+1]

.

For this to be true for all sunspot realizations, it is necessary and sufficient that, for all k ≥ 0,

ak = δµk ak+1, (17)

or equivalently

ak+1 =
ak

δµk
. (18)

Because µk → 0 as k →∞, |ak | explodes to infinity, and hence a bounded solution does not exist,

unless a0 = 0. But a0 = 0 implies ak = 0 ∀k, which proves that all sunspot equilibria are ruled out

and only the MSV solution survives.19

19Note that this argument does not hinge on the sign of δ.
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Comparison to full information and the importance of limk→∞µk = 0

We will explain the essence of our result momentarily. But first, it is useful to repeat the above

argument for the knife-edge case with λ= 0. In this case, µk = 1 ∀k, and condition (18) becomes

ak+1 = δ−1ak .

When δ< 1 (equivalently φ> 1), this still explodes as k →∞ unless a0 = 0 and hence also ak = 0

∀k. But when δ > 1, the above remains bounded, and indeed converges to zero as k → ∞, for

arbitrary a0 = a ∈R. This explains how λ= 0 recovers the sunspot equilibria of Proposition 1.

Note next that the result does not depend on the assumption that memory decays at an ex-

ponential rate, but it depends on it vanishing asymptotically, i.e., on µk → 0 as k → ∞. If in-

stead µk → µ for some µ ∈ (0,1), multiplicity would have remained for δ> 1/µ; that is, the Taylor

principle would have been relaxed but would not have been completely dispensed with. This is

because, in this case, agents can count on a fraction µ of all future generations to be able to re-

spond to the sunspot in perpetuity. Notwithstanding this point, let us emphasize that the key is

not whether memory actually vanishes over time but rather how agents reason about the future.

We expand on this below.

Finally, note how both the standard argument with λ = 0 and our variant with λ > 0 use the

boundedness assumption, namely that ak does not explode. But whereas in the full-information

case the boundedness assumption—equivalently, the escape clauses articulated in Wallace (1981),

Benhabib et al. (2001), Atkeson et al. (2010), etc.—must be complemented with the Taylor princi-

ple in order to rule out sunspot equilibria, the Taylor principle has become redundant under our

perturbation. To put it differently, the monetary authority still has to commit to “do whatever it

takes” to keep inflation or the output gap within some bounds, but it no more needs to commit

to “blow up interest rates” in response to deviations from the MSV solution.

Intuition and the role of higher-order beliefs

Focus on the effects of the period-0 sunspot and let { ∂ct
∂η0

}∞t=0 stand for the corresponding impulse

response function (IRF). We can then rewrite condition (17) as

∂ct

∂η0
= δµt

∂ct+1

∂η0
.

This is the same condition as that characterizing the IRF of ct to η0 in a “twin” representative-

agent, full-information economy, in which condition (6) is modified as follows:

ct = δ̃tEt [ct+1], with δ̃t ≡ δµt .
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Under this prism, it is as if we are back to the standard New Keynesian model but the relevant

eigenvalue, or the dynamic macroeconomic complementarity, has become time-varying and has

been reduced from δ to δ̃t . Furthermore, because µt → 0 as t →∞, we have that there is T large

enough but finite so that 0 < δ̃t < 1 for all t ≥ T, regardless of δ. In other words, the twin econ-

omy’s dynamic feedback becomes weak enough that ct cannot depend on η0 after T. By backward

induction, then, ct cannot depend on η0 before T either.20

This interpretation of our result must be clarified as follows. Here we focused on the response

of ct to η0. This means that our “twin” economy is defined from the perspective of period 0, and

that δ̃t =µtδmeasures the feedback from t+1 to t in a very specific sense: as perceived by agents

in period 0, when they contemplate whether to react to η0. To put it differently, in this argument, t

indexes not the calendar time but rather the belief order, or how far into the future agents reason

about the effects of an innovation today.

Let us further explain. Because η0 is payoff irrelevant in every t , period-0 agents have an

incentive to respond to it only if they are confident that period-1 agents will also respond to it,

which in turn can be true only if they are also confident that period-1 will themselves be confident

that period-2 agents will do the same, and so on, ad infinitum. It is this kind of “infinite chain”

that supports sunspot equilibria when λ = 0. And conversely, the friction we have introduced

here amounts to the typical period-0 agent reasoning as follows:

“I can see η0. And I understand that it would make sense to react to it if I were con-

fident that all future agents will keep conditioning their behavior on it in perpetuity.

But I worry that future agents will fail to do so, either because they will be unaware of

η0, or because they may themselves worry, like me, that agents further into the future

will not react to it. This makes it iteratively optimal not to react to η0.”

Three remarks help complete the picture. First, the reasoning articulated above, and the proof

given earlier, can be understood as a chain of contagion effects from “remote types” (uninformed

agents in the far future) to “nearby types” (informed agents in the near future) and thereby to

present behavior. This underscores the high-level connection between our approach and the

global games literature (Morris and Shin, 1998, 2003).

Second, the aforementioned worries don’t have to be “real” (objectively true). That is, we can

reinterpret Assumption 2 as follows: agents don’t forget themselves but worry that others will

forget. Strictly speaking, this requires a modification of the solution concept: from REE to PBE

with misspecified priors about one another’s knowledge, along the lines of Angeletos and Sastry

20Although this argument assumed δ0 = 0, it readily extends to δ0 6= 0. In this case, the twin economy has both δ0

and δ1 replaced by, respectively, µtδ0 and µtδ1. That is, both types of strategic complementarity are attenuated.
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(2021). But the essence is the same.

Last but not least, our argument, like the related arguments in the global games literature,

relies on rational expectations (or more precisely on common knowledge of rationality, which

itself is implied by REE). This cuts both ways. On the one hand, it lets our paper speak directly and

precisely to the question of interest, namely the determinacy of rational expectations equilibria.

On the other hand, it begs the question of how monetary policy should be designed if bounded

rationality is itself the source of non-fundamental volatility. While this question is outside the

scope of our paper, we touch again on it in Section 6.

5 Robustness and Complementary Perturbations

In this section, we explain how our uniqueness result generalizes to more flexible specifications of

the fundamentals and the sunspots, provided that Assumption 2 is maintained. We next replace

this assumption with two variants, which accommodate direct observation of past outcomes and,

thereby, endogenous coordination devices. We finally comment on two other subtleties: the dis-

tinction between local and global determinacy; and the role of nominal rigidity. Readers inter-

ested in our paper’s take-home lessons may skip this section and jump to Section 6.

Persistent fundamentals

In the main analysis, we assumed that the fundamental θt is uncorrelated over time. Relaxing

this assumption changes the MSV solution but does not affect our determinacy result.

To illustrate, suppose that θt follows an AR(1) process: θt = ρθt−1 +εt , where ρ ∈ (−1,1) is a

fixed scalar and εt ∼N (0,1) is a serially uncorrelated innovation. As long as ρ 6= 0, an innovation

affects payoffs not only today but also in the future. This naturally modifies the MSV solution.

Indeed, if we guess that ct = γθt for some γ ∈ R and substitute this into (10), we infer that the

guess is correct if and only if γ = 1+δργ. For this to admit a solution, it is necessary and suf-

ficient that ρ 6= δ−1. Provided that this is the case, the MSV solution exists and is now given by

cF
t = 1

1−δρθt . Modulo this minor adjustment, Proposition 2 directly extends. This claim is verified

in Online Appendix C, indeed for a more general specification of the fundamental uncertainty:

such generality naturally modifies the MSV solution but does not interfere with our uniqueness

argument.

Let us now zero in on the role of ρ 6= δ−1 in the above example. This restriction is used to

guarantee the existence of the MSV solution. But it is not used in our argument for ruling out any

other solution (Proposition 2); for that purpose, it suffices to assume that social memory fades
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over time (Assumption 2). Finally, note that the comparative statics of the MSV solution with

respect to θt switch sign depending on whether ρ is lower or higher than δ−1. In particular, when

ρ > δ−1, the MSV solution exhibits the so-called neo-Fisherian property: a sufficiently persistent

increase in the nominal interest rate triggers an increase in inflation and output. This raises a

number of delicate questions, such as whether the MSV solution can be obtained by forward

induction, whether the neo-Fisherian property is robust to bounded rationality (García-Schmidt

and Woodford, 2019) or imperfect information about monetary policy (Angeletos and Lian, 2018),

or even whether the New Keynesian model is mis-specified in a such way that makes it relatively

less reliable for studying persistent changes in interest rates or other fundamentals (ρ > δ−1) as

opposed to studying short-run fluctuations (ρ < δ−1). But these questions are clearly beyond the

scope of our paper.

Persistent sunspots

Let us now revisit the assumption that the sunspot is serially uncorrelated. As in the case of

fundamentals, this assumption can readily be relaxed (see Online Appendix C.2 for details), ex-

cept for one special case: when ηt follows an AR(1) process with autocorrelation exactly equal

to δ−1. In this case, ct = cF
t + aηt is an equilibrium for any a and is supported by knowledge of

the concurrent θt and ηt alone. Social memory of the distant past is no longer needed, because

the exogenous sunspot happens to coincide with the right sufficient statistic of the economy’s

infinite history.

This situation seems unlikely insofar as the sunspot is an exogenous random variable: for-

mally, the requisite sunspot is degenerate in the space of ARMA processes. But what if agents can

devise an endogenous sunspot? For instance, could it be that agents coordinate on an equilibrium

that lets an endogenous outcome, such as ct itself, replicate the requisite sunspot variable? We

already hinted that such coordination, too, can be fragile: in the limit asλ→ 0+, agents were arbi-

trarily well informed about exogenous shocks and endogenous outcomes alike, and yet unique-

ness was obtained. We now reinforce this message by showing how determinacy may remain

with two variant information structures, which, unlike Assumption 2, allow for direct signals of

endogenous outcomes.

Recursive sunspot equilibria: another example of fragility

Recall that, with full information, our model boils down to the following equation:

ct = θt +δEt [ct+1],
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where δ≡ δ1
1−δ0

and Et is the full-information rational expectation. Let us momentarily shut down

the fundamentals, assume that δ> 1, and focus on the set of all pure sunspot equilibria:

ct = a
∞∑

k=0
δ−kηt−k , (19)

for arbitrary a 6= 0. As noted earlier, this can be represented in recursive form as

ct = aηt +δ−1ct−1. (20)

It follows that all sunspot equilibria can be supported with the following “minimal” informa-

tion set: Ii ,t = {ηt ,ct−1}. Intuitively, ct−1 endogenously serves the role of the knife-edge persistent

sunspot discussed earlier.

Taken at face value, this challenges our message. But as shown next, this logic, too, can be

fragile. Suppose that information is given by

Ii ,t = {ηt , si ,t }, with si ,t = ct−1 +εi ,t .

Here, si ,t is a private signal of the past aggregate outcome, εi ,t ∼ N (0,σ2) is idiosyncratic noise,

and σ ≥ 0 is a fixed parameter. When σ = 0, we are back to the case studied above, and the

entire set of sunspot equilibria is supported. When instead σ > 0 but arbitrarily small, agents’

knowledge of the past outcome is only slightly blurred by idiosyncratic noise. As shown next, this

causes all sunspot equilibria to unravel.

Proposition 3. Consider the economy described above. For any σ > 0, no matter how small, and

regardless of δ0 and δ1, there is a unique equilibrium and it corresponds to the MSV solution.

The proof is actually quite simple. But we prefer to delegate it to the Appendix, because the

present example is still special in two regards: it rules out public signals of ct−1; and it rules out

information about longer histories.

The first limitation is easy to address: Proposition 3 readily generalizes to si ,t = ct−1+vt +εi ,t ,

where vt is aggregate noise and εi ,t is idiosyncratic noise. This can be interpreted as a situation

where a publicly available statistic is not only contaminated with measurement error but also

observed with idiosyncratic noise due to rational inattention (Sims, 2003) or imperfect cognition

(Woodford, 2019). It is only in the knife-edge case in which the statistic is common knowledge

that multiplicity survives.21

The second limitation is more challenging, because it opens the Pandora’s box of signal ex-

traction and infinite regress. In the next subsection, we therefore offer a different approach,

which manages to keep this box closed while accommodating direct—and indeed perfect—knowledge

of long histories of aggregate output and inflation.

21See Online Appendix B.6. We thank a referee for prompting us to clarify this subtlety.
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Breaking the infinite chain even when past outcomes are perfectly observed

In the above exercise, we focused on pure sunspot equilibria. Let us now bring back the funda-

mental shocks and consider any of the equilibria of the form cB
t +acηt , which, recall, were obtained

by “solving the model backward” in (15). These can be replicated by letting Ii ,t ⊇ {ηt ,ct−1,θt−1}

and by having each consumer play the following recursive strategy:

ci ,t = δ−1(ct−1 −θt−1)+aηt . (21)

Contrary to the strategy that supported the pure sunspot equilibrium, the above strategy requires

that the agents at t know not only ct−1 but also θt−1. Why is knowledge of θt−1 necessary? Because

this is what it takes for agents at t to know how to undo the direct, intrinsic effect of θt−1 on the

incentives of the agents at t −1.

This suggests that the “infinite chain” that supports all backward-looking equilibria—and all

sunspot equilibria, as well— breaks if the agents at t do not know what exactly it takes to undo

the direct, intrinsic effect of yesterday’s fundamental on yesterday’s behavior. To make this point

crisply, we proceed as follows.

First, we introduce a new fundamental disturbance, denoted by ζt ; we modify equation (8) to

ci ,t = Ei ,t [(1−δ0)(θt +ζt )+δ0ct +δ1ct+1]; (22)

and we let ζt be drawn independently over time, as well as independently of any other shock in

the economy, from a uniform distribution with support [−ε,+ε], where ε is positive but arbitrarily

small. This lets us parameterize the payoff perturbation by ε, or the size of the support of ζt .

Second, we abstract from informational heterogeneity within periods, that is, we let Ii ,t = It

for all i and all t . This guarantees that ci ,t = ct for all i and t , and therefore that we can think of the

economy as a sequence of representative agents, or a sequence of players, one for each period.

Under the additional, simplifying assumption that It contains both θt and ζt , we can then write

the best response of the period-t representative agent as

ct = θt +ζt +δE [ct+1|It ]. (23)

where δ ≡ δ1
1−δ0

, as always, and E [·|It ] is the rational expectation conditional on It . This is simi-

lar to the standard, full-information benchmark, except that we have allowed for the possibility

that today’s representative agent does not inherit all the information of yesterday’s representative

agent: It does not necessarily nest It−1.

Finally, we let It contain perfect knowledge of arbitrary long histories of the endogenous out-

come, the sunspots, and the “main” fundamental; but we preclude knowledge of the past values

of the payoff perturbation introduced above. Formally:
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Assumption 3. For each t , there is a representative agent whose information is given by

It = {ζt }∪ {θt , · · · ,θt−Kθ
}∪ {ηt , · · · ,ηt−Kη}∪ {ct−1, · · · ,ct−Kc }

for finite but possibly arbitrarily large Kη, Kc , and Kθ.

When ε= 0 (i.e., when the ζt shock is absent), Assumption 3 allows replication of all sunspot

and backward-looking equilibria with a short memory, namely with Kη = 0 and Kθ = Kc = 1. This

corresponds to the recursive representation reviewed earlier. But there is again a discontinuity:

once ε> 0, all the non-fundamental equilibria unravel, no matter how large Kη, Kc , and Kθ are.

Proposition 4. Suppose that Assumption 3 holds and ε> 0. Regardless of δ, there is unique equi-

librium and is given by ct = cF
t +ζt , where cF

t is the same MSV solution as before.

How does this connect to Proposition 2? Both results introduce a friction in social memory

and intertemporal coordination, thus breaking the infinite chain behind all non-fundamental

equilibria. But the exact friction is different: whereas in our main result it amounts to asymptotic

forgetting of the distant past, here it amounts to immediate forgetting of a small component of

the fundamentals. This also means a change in the formal argument: whereas our main result

echoes the global games literature, the present one is more closely connected to Bhaskar (1998)

and Bhaskar et al. (2012), which show how the combination of a payoff perturbation and finite

social memory can rule out non-Markov perfect equilibria in a certain class of dynamic games.

At a high level, related is also a literature that studies how multiplicity in repeated games depends

on public versus private monitoring (e.g., Mailath and Morris, 2002; Pęski, 2012). The common

thread between all the literature and our results is the role played by the lack of common knowl-

edge. But the precise connections are elusive and deserve further study.

Local vs global determinacy

Throughout, we work with the linearized New Keynesian model and restrict equilibria to be

bounded. As previously mentioned, this amounts to focusing on local determinacy around a

given steady state (herein normalized to zero). But what about global determinacy?

Let us first address this question within the policy context of interest. To ensure global de-

terminacy, the standard paradigm complements the Taylor principle with an escape clause: to

switch from interest-rate setting to a different policy regime, such as money-supply setting or

even commodity-backed money, should inflation exit certain bounds.22 Under the standard ap-

proach, the escape clause rules out all unbounded equilibria (i.e., self-fulfilling inflationary and

22See, inter alia, Wallace (1981), Obstfeld and Rogoff (1983, 2021), Benhabib et al. (2001, 2002), Christiano and
Rostagno (2001), and the discussion of “hybrid” Taylor rules in Atkeson et al. (2010).

22



deflationary spirals), while the Taylor principle rules out any bounded equilibrium other than

the MSV solution. Under our approach, the Taylor principle becomes redundant but the escape

clause—or a credible commitment to arrest explosive paths—is still needed.

Consider next other contexts, such as the OLG model of money by Samuelson (1958). This is a

non-linear model and it admits two steady-state equilibria: an “autarchic” one, in which the old

and the young consume their respective endowment and money is not traded; and a “bubbly”

one, in which money facilitates Pareto-improving transfers between the young and the old. In

addition, there is a continuum of bounded sunspot equilibria, all of which hover around the first

steady state. In this context, we cannot rule out either one of the steady-state equilibria, because

our methods presume common knowledge of any given steady state. By extension, we cannot

say anything about global determinacy either. But if we linearize that model around each steady

state and apply our assumptions and results, we can guarantee local determinacy of both steady

states, and can therefore rule out the aforementioned sunspot equilibria.23

This clarifies the scope of our theoretical contribution. It seems a plausible guess that Propo-

sition 2 extends to a larger class of linear models, such as that considered in Blanchard (1979) and

Blanchard and Kahn (1980), provided that these can be recast as dynamic coordination games

along the lines we have illustrated here. In non-linear settings, we also expect our results to trans-

late to local determinacy around any given steady state. But we have nothing to say about global

determinacy—except for the points made above for the specific context of interest.

Sticky vs flexible prices

Equation (8), the game representation of our baseline model, is valid for any value of κ, the slope

of the Phillips curve. The same is true for equation (28), the generalization developed in the next

section. This underscores that our game-theoretic prism and, by extension, our main result is

not unduly sensitive to the degree of price flexibility. But what if prices are literally flexible, or

“κ =∞”? In this case, aggregate demand ceases to matter for aggregate output and, as a result,

the economy can no more be represented as a game among the consumers.

This begs the question of whether a version of our insights applies to flexible-price models.

While we will not address this question here, we wish to raise the following flag. In the existing

literature, the real indeterminacy problem of the New Keynesian paradigm is treated as a direct

translation of the nominal indeterminacy problem of flexible-price models, which was the do-

main of Sargent and Wallace (1975). But the two problems turn out to be fundamentally different

23We thank the editor for suggesting the link to Samuelson (1958) and a referee for suggesting another non-linear
example, which is more directly comparable to our setting. We use that example in Online Appendix B.7 to further
illustrate the issues discussed above.
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under our prism. With any non-zero degree of nominal rigidity, output and inflation can be un-

derstood as the outcomes of a game among the consumers and our results go through. But this

game ceases to be well-defined when prices are “truly” flexible.

In our view, this touches on a larger methodological question, whether flexible-price models

are proper limits of models with nominal rigidity (Kocherlakota, 2020) or perhaps whether the

New Keynesian model itself needs modification. But this is clearly beyond the scope of our paper.

6 Applied Lessons

In this section, we translate our main result to two applied lessons: one regarding the FTPL, and

another regarding the Taylor principle. To facilitate these translations, we first illustrate how our

main result extends to a larger class of New Keynesian models than that employed thus far.

Nesting a larger class of New Keynesian economies

Borrowing insight from the HANK literature, let us bypass the micro-foundations of consumer

behavior and instead assume directly that aggregate demand can be expressed as follows:

ct =C
({

Ēt
[

yt+k
]}∞

k=0 ,
{
Ēt [rt+k ]

}∞
k=0

)+%t , (24)

where rt ≡ it −πt+1 stands for the real interest rate, C is a linear function, and %t is an exogenous

(and, for simplicity, perfectly observed) aggregate demand shock. This generalizes equation (2)

from our baseline model, allowing aggregate consumption to depend on expectations about in-

terest rates and income in all future periods, not just the next period. For instance, Angeletos and

Huo (2021) show that, in a perpetual-youth OLG version of the New Keynesian model, equation

(24) takes the following form:

ct = Ēt

[(
1−βω){+∞∑

k=0

(
βω

)k yt+k

}
−βωσ

{+∞∑
k=0

(
βω

)k
(it+k −πt+k+1)

}]
+%t , (25)

where ω ∈ (0,1] is the survival rate. This allows us to cast the decay in social memory as the

byproduct of individual mortality.24 But this interpretation is not strictly needed. For the present

purposes, we take equation (24) as given and think of it as a linear but otherwise flexible specifi-

cation of the intertemporal Keynesian cross (Auclert et al., 2018).

Consider next the supply side. We now replace our baseline model’s ad hoc, static Phillips

24This interpretation restricts λ = 1−ω, where 1−ω is the probability of death. But we could have λ < 1−ω if
newborn consumers inherit some of the information of the dying consumers. And conversely, we could reconcile
λ > 1−ω (e.g., ω = 1) by letting the current generations be altruistic towards future generations (as in Barro, 1974)
but let some information be lost across generations.
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curve with the standard, micro-founded, and forward-looking New Keynesian Phillips curve:

πt = κyt +βEt [πt+1]+κξt , (26)

where κ≥ 0 and β ∈ (0,1) are fixed scalars and ξt is, again, a cost-push shock.25 Finally, we let the

Taylor rule be

it = zt +φy yt +φππt , (27)

for some random variable zt and some fixed scalars φy ,φπ ≥ 0.26

The “famous” three equations are now given by (24), (26) and (27), along with yt = ct (market

clearing). Solving (26) and (27) for inflation and the interest rate, and replacing these solutions

into (24), we can obtain ct as a linear function of
{
Ēt [yt+k ]

}∞
k=0, or equivalently of

{
Ēt [ct+k ]

}∞
k=0 .

We conclude that a process for ct is part of an equilibrium if and only if it solves the following:

ct = Ēt

[
(1−δ0)θt +

+∞∑
k=0

δk ct+k

]
(28)

for some random variable θt that is a linear combination of the primitive shocks (zt ,ξt ,%t ) and

some coefficients {δk }∞k=0, with δ0 < 1 and ∆≡ δ0 +∑∞
k=1 |δk | <∞.27

Similar to equation (6) in our baseline model, this equation helps translate the economy to a

game among the consumers. Accordingly, the coefficients {δk }∞k=0 are transformations of deeper

parameters that regulate the relevant GE feedbacks.28 These feedbacks are now more compli-

cated, and aggregate spending in any given period depends on expectations of economic activity

in all future periods as opposed to merely the next period, but the essence is similar.

The overall strategic interdependence, or the analogue of the sum δ0+δ1 from our main anal-

ysis, is now given by ∆. With ∆> 1, multiple self-fulfilling equilibria can be supported under full

information, in a similar fashion as in Section 3. But they unravel under Assumption 2, because

this again breaks the “infinite chain” behind them. We verify this claim below. The proof is more

25The micro-foundations of (26) are omitted because they are entirely standard. The only point worth mention-
ing is that (26) presumes that firms, unlike consumers, have full information. This simplifies the exposition and
maximizes proximity to the standard New Keynesian model, without affecting the essence. For, as long as the infor-
mational friction is present on the consumer side, it is not necessary to “double” it on the production side.

26We can readily accommodate forward-looking terms in the policy rule. This changes the exact values of the coef-
ficients {δk } in the upcoming game representation, namely equation (28), but does not affect Proposition 5, because
this holds for arbitrary such coefficients. What we cannot readily nest in (28) is a backward-looking Taylor rule, such
as it = zt +φππt−1, or a backward-looking Phillips curve. See, however, Online Appendix B.5 for an illustration of
why this does not upset our result, insofar as, of course, Assumption 2 is maintained.

27For instance, when equation (24) specializes to (25), we get δk ≡ (
1−βω−βωσφy

)(
βω

)k +
ωσκ

(
−βφπ+

(
1−βωφπ

) 1−ωk

1−ω
)
βk , and the restrictions δ0 < 1 and ∆≡ δ0 +∑∞

k=1 |δk | <∞ are readily satisfied.
28These parameters are: the MPCs out of current and future income, { ∂C

∂yk
}∞k=0; the sensitivities of consumption to

current and future real interest rates, { ∂C
∂rk

}∞k=0; the slope, κ, and the forward-lookingness, β, of the NKPC; and the
policy coefficients, φπ and φc .
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tedious than that of Proposition 5 and is delegated to the Appendix, but the basic logic is the

same.29

Proposition 5 (Generalized result). Consider the above generalization, impose Assumption 1 and

2, and let λ> 0. Whenever an equilibrium exists, it is unique and is given by the MSV solution.30

Feedback rules and Taylor principle: equilibrium selection or stabilization?

Go back to the textbook New Keynesian model. Let {i o
t ,πo

t ,co
t } denote the optimal path for in-

terest rates, inflation, and output, as a function of the underlying demand and supply shocks.

And ask the following question: what does it take for the optimum to be implemented as the

unique equilibrium? The textbook answer is that, as long as the monetary authority observes the

aforementioned shocks, it suffices to follow the following feedback rule, for any φ> 1:

it = i o
t +φ(πt −πo

t ).

This is nested in (5) with zt = i o
t −φπo

t , and is sometimes referred to as the “King rule” (after King,

2000). Note then that φ can take any value above 1, and this does not affect the properties of

the optimum. That is, the feedback from πt to it serves only the role of equilibrium selection;

macroeconomic stabilization is instead achieved via the optimal design of zt , and in particular

via its correlation with the underlying demand and supply shocks.

What if the monetary authority does not observe these shocks? Feedback rules may then

help replicate the optimal dependence of interest rates on shocks. But this function could be at

odds with that of equilibrium selection; see Galí (2008, p.101) for an illustration with cost-push

shocks, and Loisel (2021) for a general formulation. From this perspective, our results help ease

the potential conflict between equilibrium selection and stabilization: because feedback rules

are no longer needed for equilibrium selection, they are “free” to be used for stabilization.

At the same time, our results help recast the spirit of the Taylor principle in a new form. When

the equilibrium is unique (whether thanks to our perturbations or otherwise) but the GE feed-

backs between spending and income or inflation are sizable, sunspot-like volatility can obtain

29It seems a safe guess that the result extends to the multi-variate case, where ct is a vector and δk is a matrix. In
other words, our insights apply to a large class of linear, purely forward-looking, rational expectations models, like
that studied by Blanchard (1979) under the full-information assumption. Less straightforward is the extension to
Blanchard and Kahn (1980), namely to linear models that include payoff-relevant state variables (e.g., capital, habit).
Nevertheless, the example in Appendix B.5, which adds such a feature in the form of backward-looking monetary
policy, suggests that our insights extend to this case as well. All in all, we therefore see our result as a justification for
focusing on the fundamental/MSV solution of linear macroeconomic models.

30When θt is uncorrelated over time, the MSV solution is again given by cF
t = θt . More generally, it can be solved

for in a similar way as in the extension of our baseline model that adds persistent fundamentals (Online Appendix
C).
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from overreaction to noisy public news (Morris and Shin, 2002), shocks to higher-order beliefs

(Angeletos and La’O, 2013; Benhabib et al., 2015), or related forms of bounded rationality (An-

geletos and Sastry, 2021). In this context, φ admits a new function: by regulating the strategic

complementarity in the economy, it also regulates the magnitude of such sunspot-like fluctua-

tions along the unique equilibrium path.

Finally, our results reduce the need for communicating either a “threat to blow up the econ-

omy” (Cochrane’s provocative interpretation of the Taylor principle) or the kind of “sophisti-

cated” off-equilibrium strategies articulated in Atkeson et al. (2010). Provided that expectations

are anchored in the narrow sense that private agents are confident that fluctuations in inflation

and output gaps won’t explode away from the steady state,31 it suffices for the monetary authority

to communicate what she plans to do on equilibrium only.

On the Fiscal Theory of the Price Level (FTPL)

We now turn to how our paper relates to the FTPL. To this goal, let us momentarily go back to the

basics: the textbook, three-equation New Keynesian model. Add now a fourth equation, written

compactly (and in levels) as follows:

It−1Bt−1

Pt
= PV St , (29)

where Bt−1 denotes the amount of one-period nominal bonds issued by the government at t−1,32

It−1Bt−1/Pt is the real debt burden at t (inclusive of interest payments), and PV St is the real

present discounted value of primary surpluses.33

As long as the Taylor principle holds, (29) plays no role in the determination of inflation, out-

put and interest rates: these variables are pinned down by the MSV solution of the model’s other

three equations. By the same token, Pt can be treated as an exogenous variable in equation (29)

and the latter can be read as a constraint on fiscal policy: the government must adjust PV St so

as to make sure that (29) holds at the price level dictated by the monetary authority.

The FTPL turns this logic upside down: it lets the government choose PV St as if (29) were

not a binding constraint and, instead, requires that Pt itself adjusts so as to satisfy (29). This is

a coherent alternative as long as an equilibrium other than the MSV solution is selected, which

31One may of course question the credibility and effectiveness of the escape clauses or other commitments that
rule out “unbounded” equilibria (e.g., Wallace, 1981; Christiano and Rostagno, 2001; Atkeson et al., 2010). In fact, one
could even say that, by reducing the importance of the Taylor principle for equilibrium selection, our results help
redirect the question of time inconsistency from this principle (Neumeyer and Nicolini, 2022) to the aforementioned
escape clauses. But these issues are beyond the scope of our paper.

32These bonds (“treasury bills”) are perfect substitutes to the nominal claims held against the central bank (“re-
serves”).

33We continue to work with a cashless economy, which explains the absence of seigniorage in (29).
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in turn is possible in the standard paradigm if and only if the Taylor principle is violated. But

we already argued that the MSV solution is the only possible equilibrium under Assumption 2,

regardless of whether the Taylor principle is satisfied or not. It follows that the FTPL finds no

place under our perturbations.

To illustrate this point, abstract from discount-rate and cost-push shocks (%t = ξt = 0), let

φ = 0, and suppose the government runs a higher deficit today and commits to adjust neither

taxes nor spending in the future. According to the FTPL, (29) can be satisfied without monetary

policy accommodation: there is an equilibrium in which interest rates remain unchanged (it =
zt = 0 for all t ) and nevertheless the price level increases, and the real debt burden falls, so as to

offset the deficit. But since %t = ξt = zt = 0 imply cF
t = θt = 0, this scenario is clearly inconsistent

with the MSV solution and is therefore ruled out by our perturbations. To put it differently, for

the aforementioned fiscal policy to be feasible under our perturbation, it now has to be that it is

supported by sufficient monetary accommodation (i.e., that interest rates fall enough to allow for

the necessary increase in the price level to obtain along the MSV solution itself).34

One may of course question the plausibility of our perturbations. Indeed, if we depart from

Assumption 2 and let consumers condition their spending on noisy signals of the aggregate quan-

tity of public debt, it is possible to resurrect the FTPL equilibrium.35 Furthermore, and more im-

portantly, public debt and deficits naturally enter the fundamentals of the economy, and thereby

its MSV solution, once markets are incomplete (think HANK). Additional work is therefore nec-

essary before one can evaluate the theoretical robustness and empirical plausibility of the FTPL.

Still, by offering a possible way out of the equilibrium selection conundrum, we hope to redirect

attention to the following, arguably more interesting, question: can an increase in the deficit be

self-financed by an FTPL-like adjustment in the price level and the real debt burden (or adjust-

ment in aggregate income and the tax base) along the MSV solution, instead of outside of it? We

explore this question in ongoing work (Angeletos et al., 2022).

34This example illustrates, not only the policy implications of our uniqueness result, but also the following point:
while assumptions about off-equilibrium threats are untestable, the difference between the FTPL and MSV equilib-
ria described above are clearly testable: the two types of equilibria impose different restrictions on the joint paths
of deficits, inflation and interest rates. A separate question, which we explore in ongoing work (Angeletos et al.,
2022), is how the MSV solution itself is modified in economies where Ricardian equivalence breaks because of finite
horizons/incomplete markets.

35As long as consumers have infinite horizons (which is the case of interest in the present context), public debt
is payoff irrelevant in the game among the consumers. In other words, public debt is effectively an endogenous
sunspot. This circles back to the discussion in Section 5. But the endogenous sunspot is now different, so the specific
results of that section are no more applicable.
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7 Conclusion

In this paper, we revisited the indeterminacy issue of the New Keynesian model. We highlighted

how all sunspot and backward-looking equilibria hinge on a delicate, infinite, self-fulfilling chain

between current and future behavior. And we showed how to break this chain, and guarantee

that the model’s fundamental or MSV solution is the unique rational expectations equilibrium re-

gardless of monetary or fiscal policy, by appropriately perturbing the model’s assumptions about

social memory and dynamic coordination.

We thus provided a rationale for why the monetary authority may be able to regulate ag-

gregate demand and inflation without a strict reliance on the Taylor principle or any other off-

equilibrium threat; indeed, our perturbations recovered a unique equilibrium even under an

interest rate peg. But we also discussed how one could reconcile our determinacy result with

sunspot-like volatility in the form of shocks to higher-order beliefs; and we highlighted that a

more hawkish monetary policy can contain such volatility, similarly to the case of traditional de-

mand and supply shocks. More succinctly, we dispense with the Taylor principle as a form of

equilibrium selection but recast its spirit as a novel form of macroeconomic stabilization.

We offered a similar two-sided approach to the FTPL. By removing the need for equilibrium

selection via either the non-Ricardian assumption or the Taylor principle, our paper suggests new

avenues for studying the relationship between fiscal policy and inflation. For instance, consider

the question of whether a higher deficit can be self-financed by an increase in inflation and a

reduction in the real debt burden, holding constant interest rates. The existing version of the

FTPL offers a positive answer to this question by selecting an equilibrium other than the MSV

solution. But if debt and deficits enter aggregate demand because of incomplete markets, the

same answer may be possible along the MSV solution (Angeletos et al., 2022).

As another example, consider the question of whether US fiscal policy will eventually force

the Fed’s hand towards more lax monetary policy, or the related question of which authority is

“dominant.” Such questions seem to call for modeling the interaction between the two authori-

ties as that of two players in a game of chicken (Sargent and Wallace, 1981; Canzoneri et al., 2010).

But for such a game to be well defined, there must exist a unique mapping from the two players’

actions (government deficits and interest rates)—to market outcomes (output, inflation, etc) and

thereby to the players’ payoffs. Such a unique mapping is missing in the standard paradigm, be-

cause of the equilibrium determinacy problem. By providing a possible fix to this “bug,” or at

least a formal justification for bypassing it, our paper may pave the way to new research on these

important policy questions.
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Appendices

A Proofs

Proof of Proposition 1

Part (i) follows directly from the fact that cF
t ≡ θt satisfies (10).

Consider part (ii). Let {ct } be any equilibrium and define ĉt = ct − cF
t . From (10),

ĉt = δEt [ĉt+1]. (30)

From Definition 1,

ĉt =
∞∑

k=0
âkηt−k +

∞∑
k=0

γ̂kθt−k ,

with |âk | ≤ M̂ and
∣∣γ̂k

∣∣≤ M̂ for all k, for some finite M̂ > 0. From Assumption 1, we have

Et [ĉt+1] =
+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂k+1θt−k .

The equilibrium condition (30) can thus be rewritten as

∞∑
k=0

âkηt−k +
∞∑

k=0
γ̂kθt−k = δ

(+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂k+1θt−k

)
.

For this to be true for all t and all states of nature, the following restrictions on coefficients are

necessary and sufficient:

âk = δâk+1 ∀k ≥ 0 and γ̂k = δγ̂k+1 ∀k ≥ 0.

When the Taylor principle is satisfied (φ> 1 and δ < 1), âk and γ̂k explodes unless â0 = 0 and

γ̂0 = 0. We know that the only bounded solution of (30) is ĉt = 0. As a result, cF
t is the unique

equilibrium.

Finally, consider part (iii). cB
t ≡ −∑∞

k=1δ
−kθt−k and cηt ≡ ∑∞

k=0δ
−kηt−k are bounded in the

sense in Definition 1 when the Taylor principle is violated (φ ∈ [0,1) and δ ∈ (1,+∞)). cB
t satisfies

(10). So does ct = (1−b)cF
t +bcB

t +acηt for arbitrary b, a ∈R.
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Proof of Proposition 2

Consider an equilibrium taking the form of (9). From (6), Assumption 1, and Assumption 2, we

know:
+∞∑
k=0

akηt−k +
∞∑

k=0
γkθt−k = (1−δ0)θt + Ēt

[
δ0

(+∞∑
k=0

akηt−k +
∞∑

k=0
γkθt−k

)
+δ1

(+∞∑
k=0

akηt+1−k +
∞∑

k=0
γkθt+1−k

)]

= (1−δ0)θt + Ēt

[+∞∑
k=0

(δ0ak +δ1ak+1)ηt−k +
∞∑

k=0

(
δ0γk +δ1γk+1

)
θt−k

]
,

(31)

and

Ēt [ηt−k ] =

µkηt−k if k ≥ 0

0 otherwise
and Ēt [θt−k ] =

µkθt−k if k ≥ 0

0 otherwise
,

where µk = (1−λ)k is the measure of agents who remember the sunspot and the fundamental

realized k periods earlier. Since (31) is true for all states of nature, we can compare coefficient in

front of ηt−k and use the facts that each sunspot is orthogonal to all fundamentals:

ak =µk (δ0ak +δ1ak+1) = µkδ1

1−µkδ0
ak+1 ∀k ≥ 0,

where we use the fact that δ0 < 1 for the second equality. Because δ1 > 0 and µk → 0 as k →∞,

|ak | explodes to infinity, and hence a bounded solution does not exist, unless a0 = 0. But a0 = 0

implies ak = 0 ∀k.

We now compare coefficients on each θt−k in (31):

γ0 = (1−δ0)+δ0γ0 +δ1γ1 = 1+ δ1

1−δ0
γ1 (32)

γk = (
δ0γk +δ1γk+1

)
µk = µkδ1

1−µkδ0
γk+1 ∀k ≥ 1. (33)

Because δ0 < 1, δ1 > 0, and µk → 0 as k → ∞, |γk | explodes to infinity, and hence a bounded

solution does not exist, unless γ1 = 0. γ1 = 0 implies γk = 0 ∀k ≥ 1. Using (32), we know γ0 = 1.

Together, this means that the equilibrium is unique and is given by ct = cF
t , where cF

t = θt .

Proof of Proposition 3

Since information sets are given by Ii ,t = {ηt , si ,t }, any (stationary) strategy36 can be expressed as

ci ,t = aηt +bsi ,t ,

36That the strategy has to be stationary follows from the stationarity of the equilibrium, as defined in Definition
1. To see this, note that, as long as (9) holds, the projection of ct+1 on the information set {ηt , si ,t } yields Ei ,t [ct+1] =
ãηt + b̃si ,t for some coefficients ã, b̃. By the individual best response (8), it then also follows that ci ,t = aηt +bsi ,t , for
some coefficients a,b.
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for some coefficients a and b. Then, ct+1 = aηt+1 + bct ; and since agents have no information

about the future sunspot, Ei ,t [ct+1] = bEi ,t [ct ]. Next, note that Ei ,t [ct ] = aηt +bχsi t , where

χ= V ar (ct−1)

V ar (ct−1)+σ2
∈ (0,1].

Combining these facts, we infer that condition (8), the individual best response, reduces to

ci ,t = Ei ,t [δ0ct +δ1ct+1] = (δ0 +δ1b)Ei ,t [ct ] = (δ0 +δ1b)
(
aηt +bχsi ,t

)
.

It follows that a strategy is a best response to itself if and only if

a = (δ0 +δ1b)a and b = (δ0 +δ1b)bχ. (34)

Clearly, a = b = 0 is always an equilibrium, and it corresponds to the MSV solution. To have a

sunspot equilibrium, on the other hand, it must be that a 6= 0 (and also that |b| < 1, for it to be

bounded). From the first part of condition (34), we see that a 6= 0 if and only if δ0+δ1b = 1, which

is equivalent to b = δ−1. But then the second part of this condition reduces to 1 =χ, which in turn

is possible if and only if σ= 0 (since V ar (ct−1) > 0 whenever a 6= 0).

Proof of Proposition 4

Given Assumption 3, a possible equilibrium takes the following form:37

ct =
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γkθt−k +χζt . (35)

From (23), we have that

Kη∑
k=0

akηt−k +
Kβ∑

k=1
βk ct−k +

Kθ∑
k=0

γkθt−k +χζt = θt +ζt +δE[
Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=0

βk+1ct−k +
Kθ−1∑
k=0

γk+1θt−k |It ]

= θt +ζt +δ
[

Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=1

βk+1ct−k +
Kθ−1∑
k=0

γk+1θt−k

]

+δβ1

[
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γkθt−k +χζt

]
37Similarly to footnote 36, the stationarity of the coefficients in (35) follows directly from the stationarity of the

respective coefficients in Definition 1.
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where we use Assumption 1 and the fact that ζt is drawn independently over time. For this to be

true for all states of nature, we can compare coefficients:

ak = δak+1 +δβ1ak ∀k ∈ {
0, · · · ,Kη−1

}
and aKη = δβ1aKη (36)

βk = δβk+1 +δβ1βk ∀k ∈ {
1, · · · ,Kβ−1

}
and βKβ

= δβ1βKβ
(37)

γk = δγk+1 +δβ1γk ∀k ∈ {1, · · · ,Kθ−1} and γKθ
= δβ1γKθ

(38)

γ0 = 1+δγ1 +δβ1γ0 and χ= 1+δβ1χ. (39)

First, from the second equation in (39), we know δβ1 6= 1. Then, from the second parts of (36)–

(38), we know aKη = 0, βKβ
= 0, and γKθ

= 0. From backward induction on (36)–(39), we know that

all a,b,γ are zero except for the following:

γ0 = 1.

From the second equation in (39), we then know χ= 1. We conclude that the unique solution is

ct = cF
t +ζt ,

where cF
t = θt .

Proof of Proposition 5

We first note that, with Assumption 1, the MSV solution of (28) is still given by cF
t = θt . Consider

an equilibrium taking the form of (9). From (28), Assumption 1, and Assumption 2, we know:

+∞∑
l=0

alηt−l +
∞∑

l=0
γlθt−l = (1−δ0)θt + Ēt

[+∞∑
k=0

δk

(+∞∑
l=0

alηt+k−l +
∞∑

l=0
γlθt+k−l

)]
, (40)

and

Ēt [ηt−l ] =

µlηt−l if l ≥ 0

0 otherwise
and Ēt [θt−l ] =

µlθt−l if l ≥ 0

0 otherwise
,

where µl = (1−λ)l is the measure of agents who remember the sunspot and the fundamental

realized l periods earlier, as in the proof of Proposition 2. Comparing coefficient in front of ηt−l

and using the facts that each sunspot is orthogonal to all fundamentals:

al =µl

+∞∑
k=0

δk ak+l ∀l ≥ 0. (41)

Because liml→∞µl = 0, there necessarily exists an l̂ finite but large enough µl̂

∑∞
k=0 |δk | < 1.38

Since we are focusing bounded equilibria as in Definition 1, there exists a scalar M > 0, arbi-

38∑∞
k=0 |δk | <∞ because ∆<∞.
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trarily large but finite, such that |al | ≤ M for all l . From (41), we then know that, for all l ≥ l̂ ,

|al | ≤µl̂ M
+∞∑
k=0

|δk | , (42)

where we also use the fact that the sequence {µl }∞l=0 is decreasing. Now, we can use (41) and (42)

to provide a tighter bound of |al |. That is, for all l ≥ l̂ ,

|al | ≤
(
µl̂

∞∑
k=0

|δk |
)2

M .

We can keep iterating. Sinceµl̂

∑∞
k=0 |δk | < 1, we then have al = 0 for all l ≥ l̂ . Using (41) and doing

backward induction, we then know al = 0 for all l , where we use the fact that δ0 < 1.

Now, (40) can be simplified as

∞∑
l=0

γlθt−l = (1−δ0)θt + Ēt

[+∞∑
k=0

δk

∞∑
l=0

γlθt+k−l

]
. (43)

= (1−δ0)θt +
+∞∑
k=0

δkγkθt + Ēt

[+∞∑
l=1

(+∞∑
k=0

δkγk+l

)
θt−l

]
.

For this to be true for all states of nature, we can compare coefficients on each θt−l :

γ0 = 1−δ0 +
+∞∑
k=0

δkγk (44)

γl =µl

+∞∑
k=0

δkγk+l ∀l ≥ 1. (45)

The above two equations can be re-written as:

γ0 = (1−δ0)−1

(
1−δ0 +

+∞∑
k=1

δkγk

)
(46)

γl =
(
1−µlδ0

)−1

(+∞∑
k=1

δkγk+l

)
∀l ≥ 1, (47)

where we use δ0 < 1 and µl < 1.

From Definition 1, we know that there is a scalar M > 0 such that
∣∣γl

∣∣ ≤ M for all l ≥ 0. From

(45), we know, for all l ≥ 1 ∣∣γl
∣∣≤µl

(+∞∑
k=0

|δk |
)

M . (48)

Because liml→∞µl = 0, there necessarily exists an l̂ finite but large enough such that
(∑+∞

k=0 |δk |
)
µl̂ <

1. We then know that, for all l ≥ l̂ , ∣∣γl
∣∣≤µl̂

(+∞∑
k=0

|δk |
)

M .
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Now, we can use the above formula and (45) to provide a tighter bound of
∣∣γl

∣∣: for all l ≥ l̂ ,

∣∣γl
∣∣≤ (

µl̂

)2

(+∞∑
k=0

|δk |
)2

M .

We can keep iterating. Since
(∑+∞

k=0 |δk |
)
µl̂ < 1, we then have γl = 0 for all l ≥ l̂ . Using (47) and

doing backward induction, we then know γl = 0 for all l ≥ 1 and, from (46),

γ0 = 1.

Together, this means that the equilibrium is unique and is given by ct = cF
t = θt . This proves the

Proposition.
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