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1 percentage point higher mortality rate is associated with an increase in migrant 
mortality of approximately 1 percentage point. The fact that they find larger effects 
could reflect the fact that our estimates are adjusted for selection, the specific 
subsample of destinations that their migrants move to, and the specific circum-
stances of the hurricane.

Figure 4 also shows a number of examples that highlight how average life expec-
tancy and treatment effects can diverge. For example, Charlotte, North Carolina 
is a place that in the cross-section has low average life expectancy, despite a rela-
tively favorable treatment effect. The gap reflects Charlotte's unusually poor average 
health capital. At the other extreme, Santa Fe, New Mexico is an example of a place 
with relatively high average life expectancy despite a negative treatment effect. The 
gap reflects the unusually good health capital of Santa Fe residents.

Figure 5 shows the treatment effects–and their 95 percent confidence intervals—
for the 20 most populous CZs. For comparison, we also show average life expec-
tancy in each location. The treatment effects of these locations range from −0.23 
in Denver, Colorado to 1.07 years in New York, New York. Estimates for each CZ’s 
treatment effect and confidence interval are available in the online Appendix.

Table 4 summarizes our estimated treatment effects across CZs. The top row reports 
the standard deviation across CZs of average life expectancy, which is 0.79 years. The 
second row shows the standard deviation of our estimated treatment effects, which is 
0.44, or roughly half of the cross-sectional variation in life expectancy.

Figure 4. Life Expectancy Treatment Effects versus Life Expectancy

Notes: The plot shows a scatterplot of the empirical Bayes (EB)-adjusted age 65 life-expectancy treatment effects 
for CZ ​j​ (​​L​ j​ ⁎​ − ​L 

–
​​) on the average age 65 non-mover life expectancy (​​L​j​​​). The line of best fit comes from a regres-

sion of non-EB-adjusted treatment effects on average non-mover life expectancy. The horizontal and vertical dashed 
lines show the medians of treatment effects and life expectancy, respectively, over all CZs. Confidence intervals for 
the treatment effects and life expectancies of all CZs are provided in the online Appendix.
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To translate these estimates into the impact on life expectancy from moving from 
a place at one part of the distribution of treatment effects to another, we assume the 
treatment effects are normally distributed with a standard deviation equal to our 
estimate in row 2 of the table. This provides a simple summary measure that incor-
porates our split-sample correction for sampling error. This exercise suggests that 
moving from a twenty-fifth percentile area to a seventy-fifth percentile area would 
increase life expectancy by 0.60 years; moving from a tenth to a ninetieth percentile 
area would increase life expectancy by 1.1 years, or roughly half the cross-sectional 
90–10 gap in life expectancy.

The final rows of the table show how much of the cross-sectional variation in life 
expectancy can be explained by our treatment effects. We find that about 15 percent 
of the cross-CZ variance in life expectancy would be eliminated if place effects 
were made equal across areas (with the observed variation in health capital remain-
ing the same). Conversely, we find that about 70 percent of the variation would be 
eliminated if health capital were equalized (with the observed variation in the causal 
effects of place remaining the same).25

25 Note that these shares need not sum to 1, both because of the nonzero correlation between average health 
capital and place effects and because of the nonlinear translation into life expectancy.

Figure 5. Life Expectancy Treatment Effects for 20 Largest CZs

Notes: This figure plots the EB-adjusted life expectancy treatment effect for the 20 most populous CZs (calculated 
using the 2000 and 2010 censuses), sorted by their EB-adjusted life-expectancy treatment effects. Ninety-five per-
cent confidence intervals are calculated as described in online Appendix A using the mean-squared error of each 
optimal prediction of the EB-adjusted life expectancy treatment effect. The x marks indicate the point estimates for 
the age-65 life-expectancy within each CZ.
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B. Heterogeneity

Previous work has found that geographic variation in life expectancy is higher 
for lower-income individuals (Chetty et al. 2016). We replicate this result here, and 
examine to what extent it results from different variances of place effects and health 
capital respectively. We restrict attention to the 100 largest CZs (which constitute 
about half of the non-mover population) to ensure sufficient sample sizes to estimate 
treatment effects for each subgroup.

Table 5 summarizes the results. The first column shows that our main results 
are similar in this restricted sample. The remaining columns re-estimate the model 
separately by race and by Medicaid enrollment (an indicator of low socioeconomic 
status), partitioning both movers and non-movers. Row 2 is consistent with the 
prior Chetty et al. (2016) finding: the standard deviation of life expectancy is larger 
for individuals on Medicaid compared to those not on Medicaid, and larger for 
non-White individuals compared to White individuals. We estimate that the stan-
dard deviation of health capital effects is larger for Medicaid enrollees compared 
to non-Medicaid (row 4), while the standard deviation of treatment effects is more 

Table 4—Life Expectancy Decompositions

Cross-CZ standard deviation of:

(1) Age 65 life expectancy (​​L​j​​​) 0.79
[0.76, 0.83]

(2) Treatment effects (​​L​ j​ ⁎​ − ​L 
–
​​) 0.44

[0.32, 0.55]
(3) Health capital effects 0.73

[0.60, 0.83]
(4) Correlation of treatment and health capital effects −0.04

[−0.15, 0.09]

Share variance would be reduced if:

(5) Place effects were made equal 0.15
[−0.10, 0.46]

(6) Health capital was made equal 0.69
[0.53, 0.83]

Notes: All objects are computed at the CZ level using the split-sample approach described in 
Section IIB and give equal weight to each CZ; 95 percent confidence intervals are computed 
via 100 replications of the Bayesian bootstrap. In row 2, we compute the standard deviation 
of life expectancy if health capital were held constant; specifically, for each CZ ​j​, we compute 
the counterfactual age 65 life expectancy if each CZ had its own ​​γ​j​​​ but the nationally repre-
sentative health capital ​​θ 

–
 ​​ as defined in the text. In row 3, we compute the standard deviation 

in life expectancy if the place effects were held constant; specifically, we define the nationally 
representative place effect as the median of ​​γ​j​​​ among non-movers, and for each CZ ​j​, compute 
the counterfactual age 65 life expectancy where the CZ has its own ​​​θ – ​​j​​​, but a nationally repre-
sentative place effect. Row 4 reports the correlation between the health capital component of 
life expectancy (whose standard deviation is shown in row 3) and the place component of life 
expectancy (whose standard deviation is shown in row 2). This is computed by calculating the 
correlation between the treatment effects in one split sample and the health capital effects in 
the other split sample, and then averaging the resulting correlations from each pair. In row 5, 
we show the share of the variance that would be reduced if place effects were made equal; this 
is computed by calculating the variance of life expectancy with place effects held constant (i.e., 
the square of row 3) and the variance in life expectancy (i.e., the square of row 1), and taking 
1 minus the ratio of these numbers. Row 6 is computed in an analogous fashion. Confidence 
intervals for rows 5 and 6 are computed by using this procedure within each bootstrap.
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similar (row 3). Similar patterns also are apparent for non-Whites compared to 
Whites, although the results are less precise.

These estimates suggest that the greater geographic variation in life expectancy 
for low-income populations may be particularly driven by variation in their health 
capital, rather than by variation in treatment effects of place. This is consistent with 
evidence in Chetty et al. (2016) suggesting that variation in area life expectancy for 
low-income individuals is strongly correlated with health behaviors such as smok-
ing and exercise.

C. Correlates of Treatment Effects

To provide some suggestive evidence on what may drive the treatment effects 
we estimate, we explore their correlation with various observable place characteris-
tics. In keeping with the existing literature, we focus primarily on observables that 
proxy for the environment and for medical care. We present detailed definitions, 
data sources, and summary statistics for these measures in online Appendix D.

Figure 6 reports bivariate correlations of both average life expectancy and our 
estimated treatment effects with various area level characteristics. Each place char-
acteristic has been normalized to have mean 0 and standard deviation 1. We empha-
size that these are simply correlations and need not reflect causal effects. Still, most 
of the results follow intuitive patterns.

The top panel shows that places with favorable treatment effects tend to have 
higher quality and quantity of health care. Treatment effects are significantly posi-
tively correlated with hospital quality (as measured by the Hospital Compare score), 
primary care physicians per capita, and specialists per capita. Areas with favorable 
treatment effects have fewer hospital beds per capita.

Measures of utilization—including utilization itself, along with imaging tests and 
diagnostic tests—are also positively correlated with our treatment effects, though 

Table 5. Heterogeneity by Medicaid Status and Race

Baseline 
(Large CZs)

Medicaid status Race

Non-Medicaid Medicaid White Non-White

(1) Number of movers 710,990 650,246 60,744 629,126 81,864

Cross-CZ standard deviation of:
(2) Life expectancy (​​L​j​​​) 0.66

[0.64, 0.68]
0.63

[0.61, 0.65]
1.54

[1.49, 1.59]
0.56

[0.53, 0.58]
1.35

[1.23, 1.46]
(3) Treatment effects (​​L​ j​ ⁎​ − ​L 

–
​​) 0.47

[0.40, 0.53]
0.46

[0.38, 0.54]
0.72

[0.37, 1.01]
0.48

[0.41, 0.54]
0.74

[0.00, 1.17]
(4) Health capital effects 0.53

[0.44, 0.59]
0.52

[0.44, 0.63]
1.50

[1.30, 1.81]
0.52

[0.45, 0.62]
1.04

[0.72, 1.57]

Notes: This table summarizes the decompositions for the largest 100 CZs by population in 2000, estimated sep-
arately by race and Medicaid status during the year prior to the reference year. Both non-mover and mover sam-
ples are partitioned by race or Medicaid status. Sample sizes in row 1 exclude movers to or from any CZ outside of 
the 100 largest CZs; this leaves us with about one-third of the baseline mover sample. Row 2 shows the cross-CZ 
standard deviation of life expectancy at 65 among non-movers in the indicated sample. All standard deviations in 
rows 2, 3, and 4 are computed using the split-sample approach, giving equal weight to each CZ. Brackets show the 
95 percent confidence intervals computed via 100 iterations of the Bayesian bootstrap. Since standard deviations 
cannot be negative, any split-sample approach that produces a negative result we set to 0.00.
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the magnitudes are smaller than they are for hospital quality or physician quantity. 
Our finding of a positive correlation between an area’s health care utilization and 
its estimated impact on life expectancy is intriguing in light of the large literature 
debating the impact of health care utilization on health outcomes (Chandra and 
Staiger 2007, Doyle 2011, Skinner 2011, Doyle et al. 2015).

The bottom panel examines correlates with various non health care area char-
acteristics. Areas with favorable place effects on life expectancy tend to have less 
pollution, less extreme summer and winter temperatures, fewer homicides, and 

Figure 6. Correlations with Place Characteristics

Notes: The dots in this panel report bivariate variance-weighted least squares regression results of our life expec-
tancy treatment effects (​​L​ j​ ⁎​ − ​L 

–
​​) on z-scores of the indicated place characteristic; online Appendix D provides more 

detail on their definitions. The x marks report bivariate variance-weighted least squares regression results of our 
age 65 life-expectancy estimates (​​L​j​​​) on z-scores of the indicated place characteristic. All regressions are at the CZ 
level, and the regressions are weighted by the inverse variance of each measure. Ninety-five percent confidence 
intervals are based on standard errors from the regressions. In this figure, the sample for each bivariate regression 
is all CZs for which that place characteristic is defined (see online Appendix Table A.11 column 3), although the 
results are nearly identical if we instead use the 554 CZs for which every place characteristic (except homicide 
rates) is defined.
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fewer automobile fatalities. They also tend to have higher income and education, 
which could reflect either greater demand for quality health care and amenities that 
reduce mortality or sorting of people with higher incomes and more education to 
high-treatment-effect areas. These areas also tend to exhibit better health behaviors 
(more exercise, less smoking, and lower obesity), which may similarly reflect either 
demand or sorting. Places with higher shares of urban populations tend to have more 
favorable treatment effects. The share of people over the age of 60 is uncorrelated 
with our treatment effects.

In general, the correlation of the characteristic with the estimated place compo-
nent of life expectancy is smaller (in absolute value) than the correlation with the 
cross-sectional life expectancy. This difference is particularly pronounced for health 
behaviors and demographics, consistent with the raw correlations reflecting not only 
the causal effects but also the direct impacts of these variables on health capital.

VI.  Validation and Robustness

A. Additive Separability

Equation (1) assumes that health capital and current place have additively separa-
ble effects on log mortality. As discussed above, we consider this a strong assump-
tion but one that is attractive economically since it has the intuitive implication 
that health capital and current location affect the level of mortality multiplicatively. 
Thus, the level of mortality of individuals with poor health capital (high ​​θ​i​​​) will vary 
more across areas than that of individuals who have better health capital.

One way to assess the validity of the assumption that place effects are separable 
from health capital is to test whether these place effects differ across subsets of 
enrollees. We construct four partitions of our mover sample based on move year, 
gender, age at move, and individual health at move. Each partition results in two 
groups with approximately the same number of movers; we estimate the model sep-
arately for movers in each group. For each partition, we use two summary statistics 
to evaluate the stability of place effects across the two groups. Online Appendix 
Table A.5 shows the results.

First, we analyze the standard deviation of place effects for each group. For 
five of the eight groups, the estimated standard deviations fall within the confi-
dence interval ​​[0.038, 0.067]​​ of our baseline estimates. The three exceptions are 
“young movers” (standard deviation  =  0.075), movers in “good health” (standard 
deviation  =  0.101), and male movers (standard deviation  =  0.068).26

Second, we examine the correlation of place effects between the two groups. 
The correlation of the place effects between the two subsamples ranges from 0.16 
(when we partition by individual health) to about 0.24 (when we partition by gender 
or move year). To assess these correlations, we need to adjust for the role of sam-
pling error, as it reduces the correlation between any two independent subsamples 
even if the true place effects are the same. Online Appendix Figure A.4 compares 
the estimated correlations to the distribution of correlation coefficients produced 

26 Note that observing a higher standard deviation of place effects in logs for movers in “good health” does not 
contradict the fact discussed above that the level effect of place will be smaller for those with better health capital.
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by randomly partitioning the mover sample into two equally sized groups and 
re-estimating the model 200 times. The median correlation of place effects between 
two random partitions is 0.29. For partitions based on age, move year, and gender, 
the correlation coefficients are within the 95  percent confidence interval formed 
from the distribution of correlation coefficients from the random partitions. Only 
the correlation coefficient for the partition based on individual health is outside of 
this interval.

Overall, the evidence for the additive separability assumption is somewhat mixed. 
It is comforting that the estimates are relatively stable across subsamples, and that in 
most cases we cannot reject equality. However, there are some statistically signifi-
cant deviations from additivity, particularly along the dimension of baseline health.

While this is an important point of caution, note that when we split the sample 
by health in the final panel of Table A.5 (and thus relax additivity along this dimen-
sion), the estimated standard deviation of place effects actually increases in both 
subsamples.27 This suggests that any bias due to imposing additivity may render our 
main results conservative.

B. Health Capital Fixed Post-Move

Equation (1) also assumes that health capital ​​(​θ​i​​)​​ is time constant. This means 
that the only systematic changes in health over time allowed by our model are due 
to age and calendar year. While this is a strong assumption, we believe that it is a 
reasonable approximation for our elderly population over the relatively short time 
horizon of our sample (1–12 years post-move).

The key threat to this assumption would be an immediate causal effect of des-
tination on health capital. Movers to some locations might tend to adopt healthier 
eating habits, start exercising, or stop smoking, perhaps due to peer effects and/or 
the supply of complementary amenities. Movers to other locations might see their 
health affected by environmental factors such as pollution. If such changes in behav-
ior or environment translate into large and immediate changes in health capital, 
some of our estimated place effects would partly capture the effect of these health 
capital adjustments. However, our read of the existing literature as well additional 
analyses we conduct of the time path of the treatment effects on mortality suggest 
that any threats to our identifying assumption may be quantitatively modest.

C. Evidence of Behavioral Responses and Their Impact

Three key facts lead us to expect that the magnitude of any such confounds is 
likely to be modest. First, available evidence suggests health behaviors are often 
relatively inelastic to environmental changes, particularly for the elderly. Substantial 
dietary changes are rare among adults of any age, even in the presence of significant 
events such as a diabetes diagnosis or retirement (Hut and Oster 2018). Consistent 
with this, a recent study of the impact of moving on nutrition finds no relation-
ship between the diets of movers and the average nutrition of residents in their 

27 This implies that the contributions of health capital and current place on log mortality differ within these 
subsamples relative to the full pooled sample.
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destinations (Hut 2018).28 Evidence of systematic changes in smoking behavior 
around moves for the general adult population is mixed,29 and rates of starting and 
stopping smoking decline sharply with age.30

Second, the impact of any behavioral change on mortality is also likely to be 
smaller for the elderly, as they have accumulated a large stock of existing health 
capital from experiences earlier in life. For example, Doll et al. (2004) finds that 
the gain in life years from smoking cessation is decreasing in age of cessation, with 
someone who stops smoking at age 60 achieving only 30 percent of the gain of 
someone who stops smoking at age 30.

Third, even if health behaviors did change immediately on move, we would 
still expect the resulting changes in health capital, and thus the observable impact 
on mortality, to cumulate gradually over time rather than changing discretely on 
impact. For example, studies of the impact of smoking cessation on mortality find 
effects that grow gradually over the subsequent 10–15 years; estimated effects in 
the first few years are a small share of the total effect of cessation (Kawachi et al. 
1993, Mons et al. 2015, US Department of Health and Human Services 2020). The 
evidence in the next section suggests that the place effects we measure affect mor-
tality on impact and do not grow over time, making it less likely they are driven by 
the effect of behavioral change.

Time Path of the Treatment Effects of Place.—Results from two types of analy-
ses suggest that the treatment effects of place following moves appear immediately 
upon move and do not grow over time. First, we consider an alternative binary logit 
model of mortality, in which the outcome is mortality within a fixed window of ​n​ 
years. This allows us to estimate effects separately for different window lengths ​n​, 
providing insight into the time path of mortality effects. It also provides a check on 
the robustness of our results to the Gompertz functional form assumed in our main 
model. We replace estimating equation (3) with a binary logit model of ​n​-year mor-
tality. All covariates are the same as in equation (3) except that we include in the ​​X​i​​​ 
a fully interacted set of five-year age bins, race, and sex, rather than including age 
linearly and interacting race and gender. We estimate the logit model for one-year, 
two-year, three-year, and four-year mortality.

28 Relatedly, Allcott et al. (2019) finds economically small effects of supermarket entry on measures of healthy 
eating within eight years of entry.

29 Jokela (2014) finds no evidence that moving to disadvantaged neighborhoods in Australia is associated with 
systematic changes in smoking or physical activities for a broad sample of age groups within a ten-year period. 
Halonen et al. (2016) finds moving to disadvantaged areas in Finland is associated with increased smoking on 
average within five years; Ivory et al. (2015) finds similar results within five years for moves to disadvantaged 
areas in New Zealand, but finds no impact of moves to areas with higher preexisting smoking rates. Pulakka et al. 
(2016) finds in Finland that increases in distance to a tobacco store increase the probability of quitting smoking 
but decreases in distance do not increase the probability of relapse among former smokers within nine years. The 
only one of these studies to look specifically at the over-65 population is Halonen et al. (2016), which finds no 
significant effect.

30 Compared to the population of adult smokers as a whole, smokers who are 65 or older are less likely to want 
to quit (Babb et al. 2017) and smoking rates among the elderly have declined by a much smaller amount than rates 
among the overall adult population between 2005 and 2015 (Jamal et al. 2016). This is consistent with evidence 
that individuals between the ages of 18 and 44 report that they are more likely to attempt quitting to smoke than 
older age groups (Goren et al. 2014). Smoking take-up rates are also much smaller among older individuals, with 
approximately 99 percent of smokers starting before age 26 (US Department of Health and Human Services 2017).
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Table 6 reports the results. The first row reports our baseline estimates of the 
standard deviation of the mortality index ​​(​γ​j​​ + ​​θ – ​​j​​)​​ and the standard deviation of the 
selection-corrected place effects ​​γ​j​​​ from Table 3. In our baseline, the standard devi-
ation of ​​γ​j​​​ is about half the standard deviation of ​​γ​j​​ + ​​   θ​​j​​​. The last four rows show 
the results of the logit model for different horizons. The impact of place shows up 
immediately in the first year after move. Place effects on mortality are similar, and 
statistically indistinguishable, over the first four years post-move. This pattern is 
consistent with our place effects picking up contemporaneous place effects ​​γ​j​​​ rather 
than endogenous health capital changes which we would expect to adjust more 
slowly.

Second, we limit the observation window for movers in our baseline model to 
two​​, four​​, or six​​ years post-move. As with the subsample analyses in Table 5, we 
restrict this analysis to the 100 largest CZs to ensure sufficient sample sizes for 
these subsamples. Online Appendix Table  A.6 shows that the cross-CZ standard 
deviation of treatment effects and health capital effects are similar when we use 
either the full sample or these more limited observation windows. Online Appendix 
Figure A.5 shows the scatterplot of treatment effects and health capital effects for 
the subsample including only moves four years after the move against the baseline 
estimates; the estimates are highly positively correlated, and clustered around a line 
with a slope of 1. As further evidence, the robustness analysis in Section VIE below 
shows similar results when we limit the sample to movers 70 or older (who we 
expect are even less likely to change their health behaviors upon move).

Taken together, this evidence is consistent with our estimated place effects cap-
turing causal effects that affect movers on impact, and argues against bias due to 
endogenous adjustment of health capital. To explain the large effects we see in the 

Table 6—Logistic Model

Standard deviation of  
mortality index ​​(​γ​j​​ + ​​θ 

–
 ​​j​​)​​

Standard deviation of 
place effects ​​(​γ​j​​)​​

(1) (2)

Baseline 0.099
[0.095, 0.103]

0.054
[0.040, 0.069]

Logistic model:
  1-year mortality 0.062

[0.061, 0.063]
0.081

[0.071, 0.090]
  2-year mortality 0.068

[0.068, 0.069]
0.073

[0.062, 0.079]
  3-year mortality 0.077

[0.076, 0.077]
0.083

[0.076, 0.088]
  4-year mortality 0.086

[0.086, 0.086]
0.082

[0.075, 0.089]

Notes: Column 1 reports the cross-CZ standard deviation of our mortality index. Row  1 
reports results for the baseline Gompertz specification (see Table 3). For the baseline specifi-
cation, the mortality index is age, race, and sex adjusted; for the logit specifications it is not. 
Furthermore, in the logit specifications, rather than a ​β ⋅ t​ term, five-year age bins are fully 
interacted with race and sex. Column 2 reports the cross-CZ standard deviation of our place 
effects. Ninety-five percent confidence intervals are reported underneath the point estimates, 
and are computed with 100 replications of the Bayesian bootstrap. All standard deviations are 
computed using the split-sample approach, and all standard deviations in both columns give 
equal weight to each CZ.
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first years post-move, any such bias would need to be associated with large changes 
in behavior that translate into immediate rather than cumulative mortality impacts.

D. Selection Correction Assumptions

The key novel assumption in our selection correction strategy is Assumption 2: 
that the relative importance of the unobserved and observed components of health 
capital correlated with movers’ destinations is proportional to the relative impor-
tance of the components correlated with movers’ origins. In our baseline approach 
we make a stronger assumption and assume that these ratios are not just propor-
tional, but in fact are equal (i.e., that ​φ  =  1​). Here, we provide some support for 
this assumption, and also document the robustness of our findings to relaxing it.

Empirical Support.—One way to provide support for this baseline assumption is 
to ask whether the analogous condition would hold if some of our observed health 
measures had in fact been unobserved. That is, suppose we divide ​​H​i​​​ into ​K​ sub-
sets ​​H​ i​ k​​. For each subset, we imagine a hypothetical world where the elements of ​​H​ i​ k​​ 
are the unobservables and the elements of ​​H​ i​ −k​  = ​ H​i​​ \ ​H​ i​ k​​ are the observables, so 
the analogs of ​​h​i​​​ and ​​η​i​​​ would be ​​h​i​​  = ​ H​ i​ −k​ ​λ​​ −k​​ and ​​η​i​​  = ​ H​ i​ k​ ​λ​​ k​​ (where ​​λ​​ −k​​ and ​​λ​​ k​​ 
are the appropriate subvectors of ​λ​). Denote the associated origin and destination 
components by ​​h​ j,k​ dest​​, ​​h​ j,k​ 

orig​​, ​​η​ j,k​ dest​​, ​​η​ j,k​ 
orig​​. We would like to confirm that

	​ ​ 
std​(​η​ 

j​(i)​,k​ 
orig ​)​
 _ 

std​(​h​ 
j​(i)​,k​ 
orig ​)​

 ​  ≈  ​ 
std​(​η​ j​(i)​,k​ 

dest ​)​
 _ 

std​(​h​ j​(i)​,k​ 
dest ​)​

 ​    ∀ k.​

To implement this test, we define 100 different subsets ​​H​ i​ k​​, each of which is a ran-
dom draw of 13 of the 27 total conditions. In each case we include log utiliza-
tion in ​​H​ i​ −k​​. For each subset, we estimate equation (3) and compute ​​​η ˆ ​​ j,k​ 

orig​  = ​​ τ ˆ ​​ j,k​ 
orig​​,  

​​​h ˆ ​​i​​  = ​ H​ i​ −k​ ​​λ ˆ ​​​ −k​​, and ​​​η ˆ ​​i​​  = ​ H​ i​ k​ ​​λ ˆ ​​​ k​​. We then compute the implied ​​​h ˆ ​​ j,k​ dest​​ and ​​​h ˆ ​​ j,k​ 
orig​​ by 

re-estimating equation (4), and compute ​​​η ˆ ​​ j​ dest​​ from equation (6) maintaining our 
baseline assumption that ​φ  =  1​.

Panel A of Figure 7 shows the results. This figure plots ​std​(​η​ 
j​(i)​,k​ 
orig ​)​/std​(​h​ 

j​(i)​,k​ 
orig ​)​​ on 

the x-axis and ​std​(​η​ j​(i)​,k​ 
dest ​)​/std​(​h​ j​(i)​,k​ 

dest ​)​​ on the y-axis. If these ratios vary proportion-
ately for any subset of health measures ​k​, they should lie on a line that goes through 
the origin. The results support this; the points have a clear monotonic relationship 
and we estimate an intercept of −0.26.31

Panel B of Figure 7 directly examines how our key estimates vary if we re-estimate 
the entire model using the different subsets of observables ​​H​i​​​ in panel A. It plots the 
distribution of these 100 estimates for the standard deviation of treatment effects 

31 If anything, panel A of Figure 7 suggests that the true constant of proportionality ​​φ​2​​​ in Assumption 2 may be 
somewhat smaller than our baseline assumption of ​​φ​2​​​​  =  1​. If ​​φ​2​​  =  1​, the points should have a slope of 1. The 
observed slope of ​3.86​ is larger. To look at this another way, online Appendix Figure A.6 shows the distribution of 
the ratio of ​std​(​η​ j​(i)​,k​ 

dest ​)​/std​(​h​ j​(i)​,k​ 
dest ​)​​ to ​std​(​η​ 

j​(i)​,k​ 
orig ​)​/std​(​h​ 

j​(i)​,k​ 
orig ​)​​ across the 100 draws. This ratio is always larger than 

1 with a median value of 1.97.
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(left-hand panel) and the correlation of the estimated treatment effects with our 
baseline estimates (right-hand panel). The results indicate that the standard devia-
tion of treatment effects is lowest in our baseline model, suggesting it is conserva-
tive, and that the correlation of treatment effects with the baseline is high.

Another way to assess the validity of our baseline approach is to apply it to out-
comes that, unlike mortality, are observed repeatedly for the same individual. For 
such outcomes, we can follow Finkelstein, Gentzkow, and Williams (2016) and 
adjust for selection directly by including individual fixed effects. We can then com-
pare the fixed effects estimates for these outcomes to those we obtain using our 
selection-correction approach.

Figure 7. Support for Selection-Correction Assumptions

Notes: Panel A plots ​std​(​η​ j​(i)​,k​ 
dest ​)​/std​(​h​ j​(i)​,k​ 

dest ​)​​ against ​std​(​η​ 
j​(i)​​ 
orig​, k)​/std​(​h​ 

j​(i)​,k​ 
orig ​)​​ for 100 different subsets ​​H​ i​ k​​; each 

point in the scatter plot represents a different definition of ​k.​ For each ​k​, ​​H​i​​​ includes log(overall utilization) and a 
random subset of 13 of the 27 chronic conditions. Panel B reports various summary statistics about the treatment 
effects (​​L​ j​ *​ − ​L 

–
​)​ produced by each of the 100 different definitions of ​k​ in panel A. The left figure in panel B plots 

the standard deviation across CZs of the treatment effects from each of these alternate specifications; the dotted line 
shows the standard deviation across CZs of the treatment effects in the baseline specification (Table 4). All standard 
deviations are computed using the split-sample approach. The right figure in panel B plots the correlation of the 
treatment effects in each of the alternate specifications with the baseline treatment effects.
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The panel regression of Finkelstein, Gentzkow, and Williams (2016) is

(7)	​ ​y​ijt​​  = ​ α​i​​ + ​γ​j​​ + ​ω​t​​ + ​x​it​​ β + ​ϵ​ijt​​​

where ​​y​ijt​​​ is an outcome observed in a panel, such as a particular measure of health 
care utilization; ​​α​i​​​, ​​γ​j​​​, and ​​ω​t​​​ are individual, CZ, and calendar year fixed effects; 
and ​​x​it​​​ consists of dummies for five-year age bins as well as fixed effects for relative 
year for movers.

We consider three panel outcomes ​​y​ijt​​​ that we can construct using the inpatient 
and outpatient claims data: an indicator for any hospital admission, an indicator for 
any emergency room visit, and an indicator for any outpatient visit. For each of these 
outcomes, we first assume that we only observe the outcome once post-move (as we 
do for mortality), and estimate equation (3) for the binary outcome measured one 
year post-move. We report results both with and without the selection correction. We 
then estimate equation (7) and compare.

The results are shown in online Appendix Table A.7. In all cases, the selection 
correction moves the estimates closer to the panel estimates. For both any hospital 
admission and any emergency room visit, this is a substantial change, closing more 
than half the gap between the naive uncorrected estimates and the panel estimates. 
For any outpatient visit, the effect of the selection correction is smaller, though in 
the right direction. These results provide independent validation that our selection 
correction succeeds in reducing bias due to unobservables.

Relaxing the Assumptions.—We assess robustness to relaxing our baseline 
assumptions of equal selection and equal ratios, which together imply ​​ 1 __ φ ​  =  1​. We 
focus on the implied variability of the place effects ​​γ​j​​​ and of the treatment effects  
​​L​ j​ ⁎​ − ​L 

–
​​ as summary outcomes in this exercise. The results are summarized in 

online Appendix Table A.8.
The first row reports results from our baseline approach ​​(​ 1 __ φ ​  =  1)​​; our baseline  

estimate of the standard deviation of treatment effects is 0.44. Row 2 consid-
ers the value of ​​ 1 __ φ ​​ that minimizes the implied ​std​(​γ​j​​)​​. Note, ​std​(​γ​j​​)​​ is not mono-

tonic in ​​ 1 __ φ ​​, but is minimized when ​​ 1 __ φ ​  =  cov​(​τ​ j​ dest​, ​η​ j​ baseline​)​/var​(​η​ j​ baseline​)​​, where  

​​η​ j​ baseline​  = ​ (std​(​τ​ 
j​(i)​​ 
orig​)​/std​(​h​ 

j​(i)​​ 
orig​)​)​​h​ j​ dest​​ is the population value of our baseline esti-

mator ​​​η ˆ ​​ j​ dest​​ in equation (6).32 In our data ​cov​(​τ​ j​ dest​, ​η​ j​ baseline​)​/var​(​η​ j​ baseline​)​  =  1.26​,  
suggesting that assuming our baseline assumption of ​​ 1 __ φ ​  =  1​ implies a conser-
vative estimate of the importance of place effects relative to alternatives ​​ 1 __ φ ​  <  1​ 
or ​​ 1 __ φ ​  >  1.26​. In practice, the results in row 2 indicate that if we choose the 
variance-minimizing value ​​ 1 __ φ ​  =  1.26​, the implied standard deviation of treat-
ment effects falls to ​0.43​. In row 3, we show that if we set ​​ 1 __ φ ​​ equal to the median 

32
 Since ​​η​ j​ dest​  = ​  1 __ φ ​ ⋅ ​η​ j​ baseline​​, we have ​​γ​j​​  = ​ τ​ j​ dest​ − ​ 1 __ φ ​ ⋅ ​η​ j​ baseline​​ and thus

	​ var​(​γ​j​​)​  =  var​(​τ​ j​ dest​)​ + var​(​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​ − 2 ⋅ cov​(​τ​ j​ dest​, ​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​.​

Minimizing with respect to ​​ 1 __ φ ​​ yields the desired result. 
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value 1.97 from Figure A.6, the implied standard deviation of treatment effects  
is 0.45.33

In the bottom rows of the table, we show results for the values of ​​ 1 __ φ ​​ that min-
imize the absolute difference between the standard deviation of the place effects 
estimated via the panel approach and via the adjusted cross-sectional approach, 
separately for the different outcome variables from Table  A.7. Specifically, in 
rows 4 through 6 we choose the value of ​​ 1 __ φ ​​ that minimize this difference for the 
outcomes of any emergency room visit, any hospital admission, and any out-
patient visit respectively, while in row 7 we use the value of ​​ 1 __ φ ​​ that minimizes 
the average absolute difference across all three outcomes. The values of ​​ 1 __ φ ​​ range 
from ​1.75​ to ​7.10​, and the resultant standard deviation of the treatment effects is 
increasing in ​​ 1 __ φ ​​, from 0.48 (for ​​ 1 __ φ ​  =  1.75​) to 2.27 (for ​​ 1 __ φ ​  =  7.10)​. We conclude 
that our results are not sensitive to modest deviations from our baseline assump-
tion ​​ 1 __ φ ​  =  1​, and that this assumption is, if anything, conservative in the sense that 
the alternatives imply even larger effects of place.

E. Robustness

Online Appendix Table A.9 reports a suite of additional robustness checks. For 
each, we report a number of key results: the standard deviation of average life expec-
tancy ​​(​L​j​​)​​, the standard deviation of area treatment effects ​​(​L​ j​ ⁎​ − ​L 

–
​)​​, the correla-

tion between the treatment effects estimated in that row and the baseline treatment 
effects, and the correlation between average life expectancy and the treatment effects  
​​(corr ​(​L​j​​, ​L​ j​ ⁎​)​)​​. The first row repeats our baseline estimates for reference; once again, 
we focus on the 100 largest CZs since many of the robustness analyses are con-
ducted on subsamples of the data.

In row 2, we estimate a variant of our baseline model that allows the coefficients 
on age, demographics, and health (​β​, ​ψ​, and ​λ​, respectively in equation (3)) to differ 
for movers and non-movers.

In row 3, we interact the components of observed health ​​H​i​​​ with an enrollee’s age 
in the year prior to their reference year ​​t​ i​ ⁎​​. Since we define ​​H​i​​​ as of ​​t​ i​ ⁎​ − 1​ for all 
enrollees, our baseline specification assumes that the coefficients that relate specific 
chronic conditions to log mortality are independent of age. This robustness check 
relaxes that assumption in a limited way.

In row 4, we add an interaction between gender and age to the Gompertz model.
In row 5, we add average race- and sex-adjusted mortality rates in a mover’s ori-

gin county as a control variable. This adjusts for selection of movers across different 
areas within origin CZs.

In row 6, we restrict the sample of moves to those of more than 100 miles, as 
measured between the centroids of the mover’s origin and destination zip codes.

In row 7, we restrict the sample of movers to those who are 70 or older at the 
time of move and moved after 2003. Given the range of years that we observe in our 

33 The finding that a relatively large change in ​​ 1 __ φ ​​ corresponds to a relatively small change in the standard devi-
ation in treatment effects reflects the fact that our baseline estimate happens to fall on the flat part of the func-
tion relating ​​ 1 __ φ ​​ to var ​​(​γ​j​​)​​. Over this range increasing ​​ 1 __ φ ​​ increases the term ​var​(​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​​ but also increases the 
term ​cov​(​τ​ j​ dest​, ​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​​ and these two effects approximately cancel out. 
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data, this ensures that movers who joined Medicare at age 65 were observed in their 
origin for at least five years.

In rows 8 and 9, we focus on moves in which the gap between life expectancy in 
the mover’s origin and in her destination is either above or below the median gap 
among all movers.

In row 10, we exclude any moves in which the origin CZ is geographically 
adjacent to the destination CZ.

In row 11, we exclude moves to Florida, Arizona, and California. This provides a 
check that patterns of selection specific to these popular retirement destinations are 
not biasing our results.

Rows 12 and 13 restrict the sample to moves occurring in 1999–2003 or to 
moves occurring in 2004–2012, respectively. In the latter case we define the ref-
erence year ​​t​ i​ ⁎​​ for non-movers to be the second year they appear in the data in the 
2004–2012 period.

In all of these cases, the results are qualitatively unchanged. The correla-
tion between the estimated treatment effects and our baseline treatment effects is 
above ​0.9​ in all but three cases, and above ​0.8​ in all cases.

VII. Conclusion

This paper documents a substantial impact of current locations on mortality. 
We estimate that moving from the tenth percentile area in terms of impact on life 
expectancy to the ninetieth percentile area would increase life expectancy at 65 by 
1.1 years, or about 5 percent of average remaining life expectancy at 65. Equalizing 
place effects would reduce the cross-sectional variation in life expectancy at 65 by 
15 percent.

We emphasize that these findings capture short-run, partial equilibrium impacts 
of place on life expectancy for an elderly population. Effects could well be differ-
ent in younger populations. They could also be different over longer time horizons 
during which health capital itself could be substantially affected by location. We 
consider this a promising area for further work, especially since our results suggest 
an important role for health capital in affecting life expectancy. More work is needed 
to understand what aspects of health capital are important causal determinants of 
life expectancy, and the extent to which current environment in childhood or adult-
hood affects health capital.

Our findings also suggest that it is important to better understand what aspects 
of current environments are important for life expectancy. We present suggestive, 
cross-sectional evidence on the characteristics of places that are more favorable for 
life expectancy. More work is needed to understand the causal mechanisms. In addi-
tion, while our partial equilibrium analysis takes place characteristics as fixed, it 
would be interesting to understand the extent to which they are endogenously deter-
mined by the composition of an area’s population in equilibrium.
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