
Online Appendix to “Optimal Long-term Health
Insurance Contracts: Characterization, Computation,

and Welfare Effects”

Soheil Ghili, Ben Handel, Igal Hendel, and Michael D. Whinston

August 15, 2022

1 Appendix A: Characterization of Equilibrium Con-

tracts with One-Sided Commitment

To recount some basics from the main text: We suppose that there are a total of T periods,

t = 1, ..., T . The consumer’s within-period utility function is u(·). It is strictly increasing

and strictly concave. Health expenses in period t are denoted mt. The consumer’s health

status in period t is λt, which determines his period-t expected medical expenses, E(mt|λt).
The consumer’s income in period t is yt. We assume that the consumer’s utility function u(·)
and income path (y1, ..., yT ) are known. The consumer also has a switching cost incurred

whenever he changes insurers, equal to σ ≥ 0. (We will establish our proposition for the

general case of a nonnegative switching cost; Proposition 1 will follow as the special case of

σ = 0.)

We denote by Λt
t′ the consumer’s history of health statuses from period t to period t′, Λt

t′ ≡
(λt, ..., λt′). Similarly, the consumer’s history of medical expense realizations from period t

to period t′ is M t
t′ ≡ (mt, ...,mt′). We will refer to Λt

t′ as the consumer’s “continuation health

history” starting at period t. At the start of period t, the probability of the continuation

health history Λt
t′ being reached depends only on the consumer’s health history at period t,

Λ1
t , which we refer to as the consumer’s period-t “health state,” and is given by f(Λt

t′|Λ1
t ).
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Finally, we denote by
〈

Λt
t′ ,Λ

t′+1
t′′

〉
a health history constructed by putting together Λt

t′ and

Λt′+1
t′′ .

1.1 Contracts

We are concerned with identifying optimal contracts that may be signed at each date and

history. Since at the start of a period t the future depends only on the consumer’s health

state Λ1
t , an optimal contract will depend only this, and not on previous medical expense

1In our empirical work we suppose that f(·|·) is a second-order Markov process, generated by a transition

process f̂(λt+1|λt−1, λt). As such, we will then refer to Λt = (λt−1, λt) as the consumer’s period-t health
state.
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realizations. We therefore denote a contract signed with the consumer at health history

Λ1
t by cΛ1

t
(·).2 The contract cΛ1

t
(·) is a function that specifies the consumer’s consumption

level in each future period t′ ≥ t for each possible continuation history (Λt+1
t′+1,M

t
t′).

3 Thus,

the consumption level specified by cΛ1
t
(·) in period t′ ≥ t can in general be written as

cΛ1
t
(Λt+1

t′+1,M
t
t′).

It will be useful in what follows to consider contracts that would break even if subsidized

by some amount. To this effect, we say that contract cΛ1
t
(·) breaks even with subsidy S ∈ R

if

ΣT
τ=tδ

τ−t ([yτ − E[mτ |Λ1
t ]− E[cΛ1

t
(Λt+1

τ+1,M
t
τ )|Λ1

t ]
)

= −S (9)

We say that the contract is a “zero profit contract” if it breaks even with subsidy S = 0, and

we denote the set of all contracts signed at Λ1
t that break even with subsidy S by BS(Λ1

t ).

The value to the consumer of contract cΛ1
t
(·) starting at health state Λ1

t is denoted

VΛ1
t
(cΛ1

t
(·)) and is defined as follows:

VΛ1
t
(cΛ1

t
(·)) = ΣT

τ=tδ
τ−t[E[u(cΛ1

t
(Λt+1

τ+1,M
t
τ ))|Λ1

t ] (10)

For t′ > t, we denote by cΛ1
t |Λ

t+1
t′

(·) a “sub-contract” of cΛ1
t
(·) that is given by looking at

the consumption levels implied by cΛ1
t
(·) (weakly) after the realization of continuation health

history Λt+1
t′ . Mathematically, cΛ1

t |Λ
t+1
t′

(·) could also be looked at as a stand-alone contract

signed at the beginning of year t′ given health state
〈
Λ1
t ,Λ

t+1
t′

〉
. Obviously, cΛ1

t |Λ
t+1
t′

(·) being

zero-profit neither implies nor is implied by cΛ1
t
(·) being zero-profit.

Definition 1, repeated here, then describes an optimal contract given an initial subsidy

level S:

Definition 3 c∗
Λ1
t
(·|St) is an optimal contract signed in period t at health state Λ1

t with

subsidy St if it solves the following maximization problem:

max
c
Λ1
t
(·)∈BSt (Λ1

t )
VΛ1

t
(cΛ1

t
(·)) (11)

s.t. V〈Λ1
t ,Λ

t+1
t′ 〉(cΛ1

t |Λ
t+1
t′

(·)) ≥ V〈Λ1
t ,Λ

t+1
t′ 〉(c

∗
〈Λ1

t ,Λ
t+1
t′ 〉

(·| − σ)) for all Λt+1
t′ with t′ > t

2In this appendix, we suppress the dependence of the contract on the consumer’s type θ, consisting of his
utility function u(·) and income path y = (y 1..., yT ).

3Recall that λt+1 and mt are realized during period t and the consumption specified for period t can
depend on them.
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In what follows, we will denote the special case of c∗
Λ1
t
(·|0) (the optimal zero-profit con-

tract) by c∗
Λ1
t
(·) for simplicity. Also, c∗

Λ1
t |Λ

t+1
t′

(·|S) is the subcontract of optimal contract

c∗
Λ1
t
(·|S) that starts in period t′ at history

〈
Λ1
t ,Λ

t+1
t′

〉
; c∗

Λ1
t |Λ

t+1
t′

(·) is the special case of a

subcontract of zero-profit optimal contract c∗
Λ1
t
(·).

Note that equation (11) provides a recursive definition of the optimal contract. The

constraint in this definition makes sure that at no continuation health history Λt+1
t′ does the

customer prefer to lapse to c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·| − σ), the optimal contract starting at health state〈
Λ1
t ,Λ

t+1
t′

〉
with non-positive subsidy −σ ≤ 0. The non-positive subsidy comes from the fact

that an insurer seeking to lure the consumer away from the contract c∗
Λ1
t
(·|S) must effectively

compensate the consumer for the fact that he incurs the switching cost σ.4 The constraint

ensures us that, following the realization of continuation health history Λt
t′ , the consumer

does not prefer to lapse to any other contract c(Λ1
t ,Λ

t+1
t′ )(·) that would at least break even

given the need to compensate the consumer for his switching cost, and that also satisfies

no-lapsation.

To begin, we first prove a lemma demonstrating that an optimal contract signed in a

period t always specifies at each period t′ ≥ t and continuation health history Λt
t′ a deter-

ministic consumption level; that is, consumption that does not depend upon the realization

during period t′ of the consumer’s period t′+1 health status, nor the consumer’s continuation

medical expenses from period t to t′,M t
t′ . In particular, upon arriving at any period t′ and

continuation health history Λt
t′ , the contract offers the consumer full within-period insurance

against his period t′ medical expenses.

Lemma 2 For any t′ ≥ t and (Λ1
t ,Λ

t+1
t′+1,M

t
t′ , S), we have:

c∗Λ1
t
(Λt+1

t′+1,M
t
t′ |S) = c∗Λ1

t
(Λt+1

t′ |S).

Proof of Lemma 2. Consider a period t′ and two continuation histories (Λ
t+1

t′+1,M
t

t′) 6=
(Λ̂t+1

t′+1, M̂
t
t′) with Λ

t+1

t′ = Λ̂t+1
t′ ≡ Λt+1

t′ that can both happen with positive probability condi-

tional on Λ1
t , and suppose that, contrary to the statement of the lemma,

c∗Λ1
t
(Λ

t+1

t′+1,M
t

t′ |S) 6= c∗Λ1
t
(Λ̂t+1

t′+1, M̂
t
t′|S).

We show that one could then construct a contract that is strictly preferred by the cus-

tomer to c∗
Λ1
t
(·|S) and does not violate no-lapsation or the budget constraint. To do this, we

4The consumption level specified in the contract offered by the new insurer is net of the consumer’s
switching cost.
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consider contract cΛ1
t
(·) such that for (Λt+1

t′+1,M
t
t′) ∈ {(Λ

t+1

t′+1,M
t

t′), (Λ̂
t+1
t′+1, M̂

t
t′)} we have

cΛ1
t
(Λt+1

t′+1,M
t
t′ |S) = E[c∗Λ1

t
(Λt+1

t′+1,M
t
t′|S)| (

〈
Λ1
t ,Λ

t+1
t′+1

〉
,M t

t′) ∈ {(
〈

Λ1
t ,Λ

t+1

t′+1

〉
,M

t

t′), (
〈

Λ1
t , Λ̂

t+1
t′+1

〉
, M̂ t

t′)}]

and otherwise,

cΛ1
t
(Λt+1

t′+1,M
t
t′ |S) = c∗Λ1

t
(Λt+1

t′+1,M
t
t′|S).

Given that the utility function u(·) is strictly concave, this consumption-smoothing

modification will imply that the customer strictly prefers cΛ1
t
(·) over c∗

Λ1
t
(·|S). Also, this mod-

ification does not change the contract’s expected profit. Finally, this modification weakly

improves the expected utility of the contract at all possible super-histories of Λ1
t . Thus,

contract cΛ1
t
(·) also satisfies no-lapsation. But this contradicts the optimality of c∗

Λ1
t
(·|S).�

Given lemma (2), we can simplify notation and write contracts in the form of cΛ1
t
(Λt+1

t′ |S).

However, in what follows it will actually be more convenient and clearer (despite some

redundancy in the notation) to write the contract as a function of the full health history

Λ1
t′ =

〈
Λ1
t ,Λ

t+1
t′

〉
that has been reached at date t′ ≥ t; hence in the form of cΛ1

t
(Λ1

t′ |S).

We introduce two more notations on comparing contracts to one another before we turn

to the proposition and its proof. First, for two contracts cΛ1
t
(·) and ĉΛ1

t
(·) offered at the same

health state Λ1
t , we say the former is “preferred” to the latter, and write cΛ1

t
(·) � ĉΛ1

t
(·) if

VΛ1
t
(cΛ1

t
(·)) ≥ VΛ1

t
(ĉΛ1

t
(·)).

Second, for two contracts signed at the same health state Λ1
t , we say cΛ1

t
(·) “dominates”

ĉΛ1
t
(·), and write cΛ1

t
(·) ≥ ĉΛ1

t
(·), if the former offers a weakly higher consumption level than

the latter at any possible future health history, including period t. That is, for every t′ ≥ t

and history Λ1
t′ =

〈
Λ1
t ,Λ

t+1
t′

〉
with f(Λt+1

t′ |Λ1
t ) > 0, we have cΛ1

t
(Λ1

t′) ≥ ĉΛ1
t
(Λ1

t′). Note that if

cΛ1
t
(·) ≥ ĉΛ1

t
(·), then for any t′ > t and Λt+1

t′ we have cΛ1
t |Λ

t+1
t′

(·) ≥ ĉΛ1
t |Λ

t+1
t′

(·).5

The strict versions of the above two relationships (i.e. � and >) are defined in the natural

way.

1.2 Proposition and Proof

We establish the following result, from which Proposition 1 follows as the special case where

the switching cost σ equals zero.6

Proposition 4 The optimal contract c∗
Λ1
t
(·) is fully characterized by the zero-profit condition

and, for all t′ > t and Λt
t′ such that f(Λt

t′|Λ1
t ) > 0, the condition that the consumer receives

5The same need not be true for �.
6The proof in this subsection assumes the consumer does not engage in secret savings; we establish this

fact formally in Appendix B.
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the following certain consumption level:

c∗Λ1
t
(Λ1

t′) = max{c∗Λ1
t
(Λ1

t ), max
τ∈{t+1,...,t′}

c∗〈Λ1
t ,Λ

t+1
τ 〉(

〈
Λ1
t ,Λ

t+1
τ

〉
)| − σ)}. (12)

In words, the optimal contract c∗
Λ1
t
(·) offers in each period t′ > t at history Λ1

t′ =
〈
Λ1
t ,Λ

t+1
t′

〉
the maximum among the first-period consumption levels offered by all the equilibrium con-

tracts available along the way on continuation health history Λt+1
t′ .

The proof strategy is based on strong induction: We assume the proposition is true for

the optimal contracts c∗
Λ1
t′

(·) at all Λ1
t′ with t′ > t, and then show it is also true for the period-t

optimal contracts c∗
Λ1
t
(·) for any Λ1

t . To establish the result, we show that if for some Λ1
t ,

optimal contract c∗
Λ1
t
(·) does not satisfy (12), then there is a “modification of” c∗

Λ1
t
(·) that (i)

is strictly preferred to c∗
Λ1
t
(·) by the consumer; and (ii) satisfies no-lapsation and zero-profit.

Before we get to the proof itself, we introduce a notation on how to “modify” a contract.

Definition 4 Let min{t′, t′′} ≥ t. We say contract ĉΛ1
t
(·) is an ε-transfer, from Λ1

t′ to Λ1
t′′,

on contract cΛ1
t
(·), and write ĉΛ1

t
(·) = tr[cΛ1

t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] if:

1. ĉΛ1
t
(Λ1

t′) = cΛ1
t
(Λ1

t′)− ε

2. ĉΛ1
t
(Λ1

t′′) = cΛ1
t
(Λ1

t′′) +
[
ε× f(Λt+1

t′ |Λ
1
t )

f(Λt+1
t′′ |Λ

1
t )
× δt′−t′′

]
3. For all τ ≥ t and Λt

τ /∈ {Λt
t′ ,Λ

t
t′′}, we have ĉΛ1

t
(Λt

τ ) = cΛ1
t
(Λt

τ )

In words, this ε-transfer just transfers some consumption between health histories Λ1
t′ and

Λ1
t′′ after applying a multiplier to the transfer to keep the discounted expected consumption

unchanged. Our improvements on c∗
Λ1
t
(·) in the counter-positive strategy will be constructed

using ε-transfers. We record two facts about such transfers:

Remark 1 ε-transfers preserve the expected discounted profit: If c∗
Λ1
t
(·) ∈ BS(Λ1

t ) for some

S ∈ R, then tr[cΛ1
t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] ∈ BS(Λ1

t ).

Remark 2 For every Λt
t′ and Λt

t′′ with cΛ1
t
(Λ1

t′) > cΛ1
t
(Λ1

t′′) there exists an ε0 > 0 such that

for all ε ≤ ε0 we have tr[cΛ1
t
(·), ε,Λt

t′ ,Λ
t
t′′ ] � cΛ1

t
(·).

Remark 3 follows immediately from the fact that the ε-transfer does not change the

expected discounted consumption in the contract, while Remark 4 follows because of the

consumer is strictly risk averse [u(·) is strictly concave].

Before proceeding to the proof of the proposition, we observe that in any optimal contract,

the continuation contract specified at every future health history must itself be an optimal

contract starting at that history for some subsidy:
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Claim 1 For t′ > t, define St′ as the expected loss sustained by the insurer under contract

c∗
Λ1
t
(·|St) after the realization of health history Λ1

t′ =
〈
Λ1
t ,Λ

t+1
t′

〉
. Formally:

St′ = ΣT
τ=t′δ

τ−t′
(
E[c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
τ

〉
|St)− yτ −mτ |Λ1

t′ ]
)
.

Then, the following is true:

c∗
Λ1
t |Λ

t+1
t′

(·|St) = c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′), (13)

where

In words, Claim 2 states that any continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) of c∗
Λ1
t
(·|St) is in fact

the optimal solution to the generalized problem outlined in Definition 1 for history
〈
Λ1
t ,Λ

t+1
t′

〉
when the subsidy available to the consumer is exactly the amount St′ .

Proof of Claim 2. If at any continuation history Λt
t′ the condition in the claim did

not hold we could replace the continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) by c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′) and

do strictly better for the consumer without violating no-lapsation or changing the required

subsidy St for contract c∗
Λ1
t
(·|St), a contradiction to the optimality of c∗

Λ1
t
(·|St). �

We now turn to proving the proposition. To do so, we will actually prove a more

general statement than the proposition, using strong induction on the number of periods.

The following lemma is the general result that implies our proposition:

Lemma 3 Consider optimal contract c∗
Λ1
t
(·|St). There exists a unique c̄ ∈ R such that

c∗
Λ1
t
(Λ1

t |St) = c̄, and for any t′ > t and Λt+1
t′ such that f(Λt+1

t′ |Λ1
t ) > 0, we have

c∗Λ1
t
(
〈
Λ1
t ,Λ

t+1
t′

〉
|St) = max{c̄, c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)}. (14)

In words, Lemma 7 says that at any subsequent period t′ and history
〈
Λ1
t ,Λ

t+1
t′

〉
, contract

c∗
Λ1
t
(·|St) gives the larger value between (i) consumption that it immediately gives, and (ii) the

consumption that the optimal, break-even contract with subsidy −σ signed in the beginning

of period t+ 1 at history 〈Λ1
t , λt+1〉 would offer.

Note that condition (30) of the lemma implies that any two optimal contracts signed

at time t and health history Λ1
t , but with differing subsidies S ′′t > S ′t, are ordered by the

dominance relation according to the level of the inital consumptions they specify, which

by the break-even condition are ordered according to the size of the subsidies; that is,

c∗
Λ1
t
(·|S ′′t ) > c∗

Λ1
t
(·|S ′t).
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Proof of Lemma 7. The proof goes by induction. For t = T , the result is straightfor-

ward, given that there is no period after t = T ; at that point, cΛ1
T
(Λ1

T |S) = yT−E[mT |λT ]+S.

We now turn to the proof for t < T , assuming, by way of induction, that the result holds

for any τ > t and any Sτ . We begin by showing that (30) holds for any period t+ 1 history

〈Λ1
t , λt+1〉; i.e., that

c∗Λ1
t |λt+1

(
〈
Λ1
t , λt+1

〉
|St) = max{c∗Λ1

t
(Λ1

t |St), c∗〈Λ1
t ,λt+1〉(

〈
Λ1
t , λt+1

〉
| − σ)}. (15)

To this end, we consider two cases regarding history nodes ending at period t+ 1.

Case 1. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is binding for contract c∗

Λ1
t
(·|St).

Formally:

VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) = VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (16)

Note that by Claim 2, the continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) is itself the optimal contract

c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. Thus, (32) implies that

c∗Λ1
t |λt+1

(·|St) = c∗〈Λ1
t ,λt+1〉(·| − σ). (17)

Next, note that the immediate consumption c∗
Λ1
t
(Λ1

t |St) in contract c∗
Λ1
t
(·|St) must satisfy

c∗Λ1
t
(Λ1

t |St) ≤ c∗Λ1
t
(
〈
Λ1
t , λt+1

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ), (18)

otherwise an ε-transfer from the immediate consumption at history Λ1
t to history 〈Λ1

t , λt+1〉
would strictly improve the contract c∗

Λ1
t
(·|St) from the perspective of the consumer, without

changing the expected profit. This transfer would also satisfy no-lapsation, given that it

weakly increases the consumption given by c∗
Λ1
t
(·|St) at any history that happens strictly

after time t. Thus, (31) holds at all period-(t+ 1) histories at which lapsation binds.

Case 2. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is not binding for contract

c∗
Λ1
t
(·|St). That is,

VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) > VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (19)

As in the previous case, given Claim 2, the continuation contract c∗
Λ1
t |λt+1

(·|St) is itself the

optimal contract c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. Therefore, by our induction assumption,

there is some c̄ such that (i) c̄ = c∗
Λ1
t |λt+1

(〈Λ1
t , λt+1〉 |St) and (ii) for any history

〈
∆1
t , λt+1,Λ

t+2
t′

〉
with t′ ≥ t+ 2 we have:

c∗Λ1
t |λt+1

(
〈
∆1
t , λt+1,Λ

t+2
t′

〉
|St) = max{c̄, c∗〈Λ1

t ,λt+1〉(
〈
∆1
t , λt+1,Λ

t+2
t′

〉
| − σ)}. (20)
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But this, combined with inequality (36), tells us it must be that

c̄ > c∗〈Λ1
t ,λt+1〉(

〈
Λ1
t , λt+1

〉
| − σ). (21)

We now claim that

c̄ = c∗Λ1
t
(Λ1

t |St). (22)

That is, c̄ is equal to the immediate consumption offered by contract c∗
Λ1
t
(·|St). To see this,

note that if c̄ > c∗
Λ1
t
(Λ1

t |St), then an ε-transfer from the history (Λ1
t , λt+1) to the immediate

history Λ1
t will increase the consumer’s expected utility, will not change the expected profit

from the contracts, and will preserve no-lapsation if ε is small enough, given (36). This con-

tradicts the assumption that c∗
Λ1
t
(·|St) is the optimal contract. Conversely, if c̄ < c∗

Λ1
t
(Λ1

t |St),
the reverse ε-transfer will strictly increase the consumer’s expected utility and preserve the

insurer’s expected profit. It also preserves no-lapsation since it weakly increases consumption

at any history strictly after Λ1
t . Thus, (31) also holds at all period-(t+ 1) histories at which

lapsation does not bind.

To sum up, cases 1 and 2 show that for any history λt+1, no matter whether no-lapsation

is binding or not, (31) holds. Next, we combine (31) with the induction assumption to extend

the argument, which currently applies only to period-(t+ 1) histories 〈Λ1
t , λt+1〉, also to any

history
〈
Λ1
t ,Λ

t+1
t′

〉
with t′ > t+ 1. By Claim 2, we know that for some appropriate St+1, we

have:

c∗Λ1
t
(
〈
Λ1
t , λt+1

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1) (23)

and

c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1) (24)

By induction, we know that

c∗(Λ1
t ,λt+1)(

〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1) = max{c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1), c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−σ)}

(25)

Replacing into equation (42) from (40) and (41), we get:

c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) = max{c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St), c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)}

(26)

Now, substituting for c∗
Λ1
t
(〈Λ1

t , λt+1〉 |St) from (31), we get:

8



c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) (27)

= max{max{c∗Λ1
t
(Λ1

t |St), c∗(Λ1
t ,λt+1)(

〈
Λ1
t , λt+1

〉
| − σ)}, c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)}

= max{c∗Λ1
t
(Λ1

t |St),max{c∗(Λ1
t ,λt+1)(

〈
Λ1
t , λt+1

〉
| − σ), c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)}}

But by our induction assumption, the inner maximum equals c∗〈Λ1
t ,λt+1〉(

〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−

σ); substituting this into (44) tells us that (30) holds for contracts signed in period t. Ap-

plying induction establishes the lemma.�

Proof of Proposition 4. Applying Lemma 7 to the special case of St = 0, we get that

for any Λ1
t and Λt+1

t′ such that f(Λt+1
t′ |Λ1

t ) > 0, we have that

c∗Λ1
t
(
〈
Λ1
t ,Λ

t+1
t′

〉
) = max{c∗Λ1

t
(Λ1

t ), c
∗
〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)}

Since Lemma 7 holds for c∗〈Λ1
t ,λt+1〉(·|−σ) as well, we can expand c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
|−σ)

in the same way as above. Then we can do this again and again, until we get that for all

t′ > t and Λt
t′ such that f(Λt

t′|Λ1
t ) > 0,

c∗Λ1
t
(Λ1

t′) = max{c∗Λ1
t
(Λ1

t ), max
τ∈{t+1,...,t′}

c∗〈Λ1
t ,Λ

t+1
τ 〉(Λ

1
τ )| − σ)}, (28)

which is exactly the statement made in the proposition.�

2 Appendix B: Self-Selection

In this appendix we prove Proposition 2. We first establish the following Lemma:

Lemma 4 Let p = (pτ , ..., pT ) and p̂ = (p̂τ , ..., p̂T ) be guaranteed premium paths (that start

in period τ) such that p̂ ≥ p and consider a type θ consumer who is in health state Λ1
τ in

period τ . Suppose that (i) the insurer earns a non-negative expected payoff when guaranteed

premium path p is chosen by the consumer (given the consumer’s subsequent optimal lapsation

behavior), (ii) under premium path p, in every period t > τ and health state Λ1
t in which

the consumer optimally does not lapse, the insurer’s expected continuation payoff is non-

positive, and (iii) the consumer never secretly saves when facing either of these premium

paths. Then the insurer’s expected continuation payoff is non-negative if premium path p̂ is

chosen in period τ by the consumer.
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Proof. Let U(t,Λ1
t ) and Û(t,Λ1

t ) denote the type θ consumer’s continuation payoff in

period t at health state Λ1
t given optimal lapsation behavior under p and p̂ respectively. Let

HL(t) and ĤL(t) denote the sets of health states at which the consumer optimally lapses

in period t, under p and p̂ respectively; HNL(t) and ĤNL(t) are the complementary sets of

health states at which the consumer does not lapse. Finally, let Π(t,Λ1
t ) and Π̂(t,Λ1

t ) denote

the insurer’s expected continuation payoff at (t,Λ1
t ) given the consumer’s optimal lapsation

behavior under p and p̂ respectively. Assumption (i) therefore says that Π(τ,Λ1
τ ) ≥ 0, while

assumption (ii) says that Π(t,Λ1
t ) ≤ 0 if t > τ and Λ1

t ∈ HNL(t) [of course, Π(t,Λ1
t ) = 0 for

all Λ1
t ∈ HL(t)].

Note, first, that U(t,Λ1
t ) ≥ Û(t,Λ1

t ) for all (t,Λ1
t ): starting in period t, the consumer who

faces p could adopt the same lapsation behavior as when facing p̂ and receive a weakly higher

continuation payoff since under p he would be facing lower premia, and his optimal lapsation

behavior under p yields a still higher payoff.7 Next, the fact that U(t,Λ1
t ) ≥ Û(t,Λ1

t ) for

all (t,Λ1
t ) implies that HL(t) ⊆ ĤL(t): in any health state in which the consumer lapses in

period t when facing p, he also lapses when facing p̂. Finally, consider the expected payoff of

the insurer starting at (τ,Λ1
τ ) under p. This is the probability weighted average of the payoffs

achieved along the various possible sequences of health states (Λ1
τ , ...,Λ

1
T ). For each sequence

the insurer earns premiums and incurs costs until the consumer lapses. Since HL(t) ⊆ ĤL(t),

each such sequence hits lapsation weakly earlier under p̂ than under p. Since, under path

p, Π(t,Λ1
t ) ≤ 0 if t > τ and Λ1

t ∈ HNL(t), the earlier termination behavior under ĤL (but

earning the same premiums p prior to lapsation) would weakly raise the expected payoff

earned by the insurer for the sequence by changing a non-positive expected continuation

payoff into a continuation payoff of zero. Moreover, the fact that the premiums earned until

lapsation are higher under p̂ than under p, while the expected costs are the same, means

that a change from premium path p to path p̂, holding lapsation behavior fixed at ĤL, would

further raise the insurer’s expected payoff earned from this health state sequence. As a

result, Π(τ,Λ1
τ ) ≤ Π̂(τ,Λ1

τ ).

We next establish the following Lemma:

Lemma 5 Suppose that in each period t ≥ τ the menu of contracts offered to a consumer

who is in health state Λ1
t and wishes to sign a new contract is the set of optimal guaranteed

premium path contracts for that consumer, {pθ∗t (Λ1
t )}θ∈Θ, and that moreover, in each period

t > τ this menu is self-selective and induces no secret savings. Then a type θ consumer in

health state Λ1
τ will not secretly save when facing guaranteed premium path pθ∗τ (Λ1

τ ).

7Note that the consumer who lapses in a period t when in some health state Λ1
t would receive the same

new contract regardless of whether he was lapsing from p or from p̂.
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Proof. Observe first that, under the assumptions of this lemma, if the consumer does

not secretly save and then lapses in period t > τ when in health state Λ1
t his new insurance

contract will have guaranteed premium path pθ∗t (Λ1
t ) = pθ∗τ (Λ1

τ )−∆(t,Λ1
t ) for some ∆(t,Λ1

t ) ∈
R.8 Thus, he will optimally lapse in that period and state if and only if ∆(t,Λ1

t ) > 0; that

is, he lapses if and only if he gets a cheaper guaranteed premium path.

Next, we argue that if the consumer instead secretly saves under contract pθ∗τ (Λ1
τ ), then

he will optimally lapse whenever he would have if he did not secretly save (and possibly

in additional states as well). To see this point, suppose that the consumer has secretly

saved prior to arriving in period t in health state Λ1
t and he chooses not to lapse when he

would have if he had not secretly saved. Then he would be better off instead lapsing and

choosing the same new contract choice as if he had not secretly saved (choosing the cheaper

guranteed premium contract that he would have lapsed to if he had not secretly saved), while

keeping his future lapsation and savings behavior unchanged: doing so would only change

his realized utility until the next lapsation, and would raise his payoff until that point in

time by lowering his premiums.

Next, since in an optimal contract the insurer’s continuation profits are always non-

positive, by hastening lapsation secret savings can only weakly raise the profit of the insurer

offering the consumer contract pθ∗τ (Λ1
τ ). Moreover, the assumptions of the lemma imply that

(because of self-selection and no future secret savings) all insurers providing the consumer

with insurance after lapsation from contract pθ∗τ (Λ1
τ ) will earn zero.9 Thus, the total profit

of insurers is non-negative with secret savings.

Finally, since total insurer profit is non-negative (and continuation profits are never

strictly positive), the consumption path that results from secret savings was feasible in the

no-secret savings problem. Hence, secret savings cannot raise the consumer’s discounted

expected utility and therefore the consumer will not prefer to secretly save.

We next establish the following Lemma:

Lemma 6 Suppose that in each period t ≥ τ the menu of contracts offered to a consumer

who is in health state Λ1
t and wishes to sign a new contract is the set of optimal guaranteed

premium path contracts, {pθ∗t (Λ1
t )}θ∈Θ, and that moreover, in each period t > τ this menu is

self-selective and induces no secret savings. Then an insurer earns a non-negative continu-

ation expected discounted profit if in period τ a type θ′ consumer in health state Λ1
τ chooses

the guaranteed premium path pθ∗τ (Λ1
τ ) that is intended for a type θ consumer in health state

Λ1
τ .

8That is, the new guaranteed premium path will differ from the old one by the same amount in each
period (starting in period t).

9Note that a consumer with utility function u who arrives in period t in health state Λ1
t with savings

S and who has remaining income path y = (yt, ..., yT ) is equivalent to a consumer who has income path
yS ≡ (yt + S, ..., yT ) ∈ Θ and will self-select the policy intended for type θ = (yS , u).
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Proof. The proof is by induction. Consider the following induction hypothesis:

Induction Hypothesis: Under contract pθ∗τ (Λ1
τ ), if starting in period t > τ the consumer

has not yet lapsed, lapsation behavior of type θ′ starting in period t is either (A) the

same as for type θ (meaning, it is the same after any history of health states between

periods τ and t and sequence of decisions not to lapse), or (B) different and raises the

continuation expected discounted profit of the insurer starting in period t compared to

the continuation payoff the insurer receives when facing a type θ consumer.

Observe that the Induction Hypothesis holds if t = T , since then lapsation behavior is

the same for type θ′ as for type θ – both types lapse if and only if E[mT |λT ] < pθT , where pθT
is the last period price in guaranteed premium path pθ∗τ (Λ1

τ ) ≡ (pθτ , ..., p
θ
T ).

Now suppose that the Induction Hypothesis holds for periods t, ..., T , and consider period

t − 1 (≥ τ + 1) after some previous history of health states and a sequence of decisions in

which the consumer has not yet lapsed. Recall that by Lemma 5 the type θ consumer does

not secretly save; however, the type θ′ consumer may.

Suppose first that, under pθ∗τ (Λ1
τ ), period t− 1 lapsation behavior is different for type θ′

than for type θ in a health state Λ1
t−1 in which type θ would not lapse. Then lapsation by

type θ′ in state Λ1
t−1 would remove a continuation that had a weakly negative continuation

payoff for the insurer when facing type θ and replace it with a zero continuation payoff when

facing type θ′.

Suppose, instead, that state Λ1
t−1 is one in which type θ would lapse in period t − 1,

choosing a contract with premium path p̂, while type θ′ does not lapse. We will show

that this changes what would have been a zero payoff continuation for the insurer into a

continuation with a non-negative expected payoff when facing type θ′. By the self-selection

assumption, we know that the contract p̂ that type θ chooses is pθ∗t−1(Λ1
t−1), the optimal

guaranteed premium path contract for that consumer, so the insurer offering that contract

breaks even. Note now that since that contract induces the type θ consumer to lapse there

is a ∆ > 0 such that p̂k = pθk − ∆ for all periods k ≥ t − 1 (this is true because the

two guaranteed premium paths differ only in offering different initial premiums and then

the premium change each period equals the change in the type θ’s income). Hence, by

Lemma 4, if the type θ consumer were instead not to lapse from path pθ∗τ (Λ1
τ ) ≡ (pθτ , ..., p

θ
T )

in this state, the insurer’s expected continuation payoff would be non-negative. But the

Induction Hypothesis then implies that it is also non-negative (and hence at least as large as

the continuation payoff of zero arising when facing type θ) when the type θ′ consumer does

not lapse in this state: the insurer’s payoffs in period t− 1 from the two types are the same

as both the premium paid and the expected medical costs are the same for the two types.

The transitions to the period t state Λ1
t are also the same. But, by the Induction Hypothesis,
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the insurer’s expected continuation payoff under contract pθ∗τ (Λ1
τ ) is weakly higher starting

in period t when facing the type θ′ consumer than when facing a type θ consumer. So the

Induction Hypothesis holds in period t−1, and hence – applying induction – in period τ +1.

Finally, consider period τ . The argument is similar to that above: If a type θ′ consumer

in health state Λ1
τ chooses the premium path pθ∗τ (Λ1

τ ) intended for a type θ consumer in

health state Λ1
τ , the insurer’s first period costs are the same as if a type θ consumer in health

state Λ1
τ had chosen that contract, and the transitions to health states in the next period are

the same as well. If the lapsation behavior starting in period τ+1 were the same, the insurer

would break even. But, we have just concluded that if the lapsation behavior is different,

the insurer’s expected continuation payoff must be weakly higher. Thus, the insurer must

have a non-negative expected payoff when a type θ′ consumer in health state Λ1
τ chooses

contract pθ∗τ (Λ1
τ ) in period τ .

We now prove Proposition 2:

Proof. of Proposition 2: We suppose that, in each period t = 1, ..., T , the menu of

optimal guaranteed premium path contracts {pθ∗t (Λ1
t )}θ∈Θ,Λ1

t∈Ht is offered, where pθ∗t (Λ1
t ) ≡

{yt − cθ∗t (Λ1
t )}Tt=1. The proof is by induction. Consider the following induction hypothesis.

Induction Hypothesis: In each period t > τ the menu is self-selective and induces no

secret savings: that is, if a consumer of type θ agrees to a new contract he chooses that

type’s optimal contract pθt (λt) and engages in no secret savings.

The hypothesis is clearly true for τ = T − 1, as given any previous history the menu

{pθT (Λ1
T )} is a singleton with pT = E[mT |λT ], and hence necessarily self-selective, while there

is no possibility of secret savings as period T is the last period. Now suppose it is true

for some τ ; we argue that it is then also true for τ − 1. Lemma 5 implies that a type θ

consumer in health state Λ1
τ−1 choosing pθ∗τ−1(Λ1

τ−1) in period τ − 1 will not secretly save.

From Lemma 6 we know that if a type θ consumer chooses in period τ − 1 when in health

state Λ1
τ−1 the contract intended for him then insurers break even, but if he chooses instead

the contract intended for type θ′ then insurers earn non-negative profits (all future insurers

break even in both cases). But the policy intended for the type θ consumer maximizes the

type θ consumer’s discounted expected utility subject to the constraint that insurers at least

break-even (and the constraint that continuation profits can never be strictly positive). The

policy intended for type θ′ was therefore feasible for type θ, which implies that it cannot be

preferred by type θ.

Applying induction, the menu {pθ∗t (Λ1
1)}θ∈Θ,Λ1

1∈H1
is self-selective and induces no secret

savings.
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3 Appendix C: Proof of Proposition 3 (Consumer In-

ertia and Myopia)

The proof of Proposition 3 follows closely the proof of Proposition 1. Recall that we model

inertia as a cost σ > 0 incurred by the consumer upon switching firms, which is equivalent

to supposing that any new lapsation-inducing contract starts with subsidy −σ. To model

myopia, we suppose that the consumer applies a discount factor β < γ to future consumption,

where γ is the discount factor of the insurers (and planner, when we conduct welfare analysis).

The proof strategy is based on induction: The result holds vacuously for t = T . Then, for

t < T , we assume the proposition is true for the optimal contracts c∗
Λ1
t′

(·) at all Λ1
t′ with t′ > t,

and show it is also true for the period-t optimal contracts c∗
Λ1
t
(·) for any Λ1

t . To establish the

result, we show that if for some Λ1
t , the optimal contract c∗

Λ1
t
(·) does not satisfy (7), then

there is a modification of c∗
Λ1
t
(·) that (i) is strictly preferred to c∗

Λ1
t
(·) by the consumer; and

(ii) satisfies no-lapsation and zero-profit.

Before we get to the proof itself, we introduce notation on how to modify a contract.

Definition 5 Let min{t′, t′′} ≥ t. We say contract ĉΛ1
t
(·) is an ε-transfer, from history Λ1

t′

to history Λ1
t′′, on contract cΛ1

t
(·), and write ĉΛ1

t
(·) = tr[cΛ1

t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] if:

1. ĉΛ1
t
(Λ1

t′) = cΛ1
t
(Λ1

t′)− ε

2. ĉΛ1
t
(Λ1

t′′) = cΛ1
t
(Λ1

t′′) +
[
ε× f(Λt+1

t′ |Λ
1
t )

f(Λt+1
t′′ |Λ

1
t )
× δt′−t′′

]
3. For all τ ≥ t and Λt

τ /∈ {Λt
t′ ,Λ

t
t′′}, we have ĉΛ1

t
(Λt

τ ) = cΛ1
t
(Λt

τ )

In words, this ε-transfer just transfers some consumption between health histories Λ1
t′ and

Λ1
t′′ after applying a multiplier to the transfer to keep the discounted expected consumption,

and hence insurer cost, unchanged. Our improvements on c∗
Λ1
t
(·) will be constructed using

ε-transfers. We record two facts about such transfers:

Remark 3 ε-transfers preserve the expected discounted profit: If c∗
Λ1
t
(·) ∈ BS(Λ1

t ) for some

S ∈ R, then tr[cΛ1
t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] ∈ BS(Λ1

t ).

Remark 4 For every Λt
t′ and Λt

t′′ with ψt′
(
cΛ1

t
(Λ1

t′)
)
> ψt′′

(
cΛ1

t
(Λ1

t′′)
)

there exists an ε0 > 0

such that for all ε ≤ ε0 we have tr[cΛ1
t
(·), ε,Λt

t′ ,Λ
t
t′′ ] � cΛ1

t
(·).

Remark 3 follows immediately from the fact that, using the insurers’ discount factor δ,

the ε-transfer does not change the expected discounted consumption in the contract, while

Remark 4 follows because the consumer is strictly risk averse [u(·) is strictly concave].
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Before proceeding to the proof of the proposition, we observe that in any optimal contract,

the continuation contract specified at every future health history must itself be an optimal

contract starting at that history for some subsidy:

Claim 2 For t′ > t, define St′ as the expected loss sustained by the insurer under contract

c∗
Λ1
t
(·|St) after the realization of health history Λ1

t′ =
〈
Λ1
t ,Λ

t+1
t′

〉
. Formally:

St′ = ΣT
τ=t′δ

τ−t′
(
E[c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
τ

〉
|St)− yτ −mτ |Λ1

t′ ]
)
.

Then, the following is true:

c∗
Λ1
t |Λ

t+1
t′

(·|St) = c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′), (29)

In words, Claim 2 states that any continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) of c∗
Λ1
t
(·|St) is in fact

the optimal solution to the generalized problem outlined in Definition 1 for history
〈
Λ1
t ,Λ

t+1
t′

〉
when the subsidy available to the consumer is exactly the amount St′ .

Proof of Claim 2. If at any continuation history Λt
t′ the condition in the claim did

not hold we could replace the continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) by c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′) and

do strictly better for the consumer without violating no-lapsation or changing the required

subsidy St for contract c∗
Λ1
t
(·|St), a contradiction to the optimality of c∗

Λ1
t
(·|St). �

We now turn to proving Proposition 3. To do so, we will actually prove a more general

statement than the proposition, using induction on the number of periods:

Lemma 7 Consider optimal contract c∗
Λ1
t
(·|St). There exists a unique c̄ ∈ R such that

c∗
Λ1
t
(Λ1

t |St) = c̄, and for any t′ > t and Λt+1
t′ such that f(Λt+1

t′ |Λ1
t ) > 0, we have

ψt′
(
c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
t′

〉
|St)
)

= max{ψt(c̄), ψt′
(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)

)
}. (30)

In words, Lemma 7 says that at any subsequent period t′ and history
〈
Λ1
t ,Λ

t+1
t′

〉
, contract

c∗
Λ1
t
(·|St) gives –after applying the myopic transformation– the larger value between (i) con-

sumption that it immediately gives, and (ii) the consumption that the optimal, break-even

contract with subsidy −σ signed in the beginning of period t+ 1 at history 〈Λ1
t , λt+1〉 would

offer.

Remark 5 Note that condition (30) of Lemma 7 implies that any two optimal contracts

signed at time t and health history Λ1
t , but with differing subsidies S ′′t > S ′t, are ordered
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by the dominance relation according to the level of the initial consumptions they specify,

which by the break-even condition are ordered according to the size of the subsidies; that is,

c∗
Λ1
t
(·|S ′′t ) ≥ c∗

Λ1
t
(·|S ′t), with strict inequality at the initial history Λ1

t .

Proof of Lemma 7. The proof goes by induction. For t = T the result is immediate:

given that there is no period after t = T , condition (30) holds vacuously, and at that point

cΛ1
T
(Λ1

T |S) = yT − E[mT |λT ] + S. We now turn to the proof for t < T , assuming, by way of

induction, that the result holds for any τ > t and any Sτ . We begin by showing that (30)

holds for any period t+ 1 history 〈Λ1
t , λt+1〉; i.e., that

ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)

= max{ψt
(
c∗Λ1

t
(Λ1

t |St)
)
, ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ)

)
}. (31)

To this end, we consider two cases regarding history nodes ending at period t+ 1.

Case 1. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is binding for contract c∗

Λ1
t
(·|St).

Formally:

VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) = VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (32)

Note that by Claim 2, the continuation contract c∗
Λ1
t |λt+1

(·|St) is itself the optimal contract

c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. By Remark 5, (32) implies that this St+1 = −σ; i.e., that

c∗Λ1
t |λt+1

(·|St) = c∗〈Λ1
t ,λt+1〉(·| − σ), (33)

which implies that

ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)

= ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ)

)
. (34)

Next, note that the immediate consumption c∗
Λ1
t
(Λ1

t |St) in contract c∗
Λ1
t
(·|St) must satisfy

ψt

(
c∗Λ1

t
(Λ1

t |St)
)
≤ ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
, (35)

for otherwise an ε-transfer from the immediate consumption at history Λ1
t to history 〈Λ1

t , λt+1〉
would strictly improve the contract c∗

Λ1
t
(·|St) from the perspective of the consumer, without

changing the expected profit. This transfer would also satisfy no-lapsation, given that it

weakly increases the consumption given by c∗
Λ1
t
(·|St) at any history that happens strictly

after time t. Thus, (31) holds at all period-(t+ 1) histories at which lapsation binds.

Case 2. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is not binding for contract

c∗
Λ1
t
(·|St). That is,
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VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) > VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (36)

As in the previous case, given Claim 2, the continuation contract c∗
Λ1
t |λt+1

(·|St) is itself

the optimal contract c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. By Remark 5, inequality (36) implies

that:

c∗Λ1
t |λt+1

(
〈
Λ1
t , λt+1

〉
|St) > c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ). (37)

or, equivalently, that

ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
> ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ)

)
(38)

We now claim that

ψt

(
c∗Λ1

t
(Λ1

t |St)
)

= ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
. (39)

To see this, note that if ψt

(
c∗

Λ1
t
(Λ1

t |St)
)
< ψt+1(c∗

Λ1
t
(〈Λ1

t , λt+1〉 |St)), then an ε-transfer from

the history (Λ1
t , λt+1) to the immediate history Λ1

t will increase the consumer’s expected

utility, will not change the expected profit from the contracts, and will preserve no-lapsation

if ε is small enough, given (36). This contradicts the assumption that c∗
Λ1
t
(·|St) is the optimal

contract. Conversely, if ψt

(
c∗

Λ1
t
(Λ1

t |St)
)
> ψt+1(c∗

Λ1
t
(〈Λ1

t , λt+1〉 |St)), the reverse ε-transfer will

strictly increase the consumer’s expected utility and preserve the insurer’s expected profit.

It also preserves no-lapsation since it weakly increases consumption at any history strictly

after Λ1
t . Conditions (38) and (39) imply that (31) also holds at all period-(t + 1) histories

at which lapsation does not bind.

To sum up, cases 1 and 2 show that for any history λt+1, no matter whether no-lapsation

is binding or not, (31) holds. Next, we combine (31) with the induction assumption to extend

the argument, which currently applies only to period-(t+ 1) histories 〈Λ1
t , λt+1〉, also to any

history
〈
Λ1
t ,Λ

t+1
t′

〉
with t′ > t+ 1. By Claim 2, we know that for some appropriate St+1, and

any (Λ1
t , λt+1,Λ

t+2
t′ ), we have:

c∗Λ1
t
(
〈
Λ1
t , λt+1

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1) (40)

and

c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1) (41)

By induction, we know that
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ψt′
(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1)

)
=

max{ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1)

)
, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)

)
} (42)

Replacing into equation (42) from (40) and (41), we get:

ψt′
(
c∗Λ1

t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St)
)

=

max{ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)

)
} (43)

Now, substituting for c∗
Λ1
t
(〈Λ1

t , λt+1〉 |St) from (31), we get:

ψt′
(
c∗Λ1

t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St)
)

(44)

= max{max{ψt
(
c∗Λ1

t
(Λ1

t |St)
)
, ψt+1

(
c∗(Λ1

t ,λt+1)(
〈
Λ1
t , λt+1

〉
|−σ)

)
}, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−σ)

)
}

= max{ψt
(
c∗Λ1

t
(Λ1

t |St)
)
,max{ψt+1

(
c∗(Λ1

t ,λt+1)(
〈
Λ1
t , λt+1

〉
|−σ)

)
, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−σ)

)
}}

But by our induction assumption, the inner maximum equals ψt′
(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−

σ)
)

; substituting this into (44) tells us that (30) holds for contracts signed in period t. Ap-

plying induction establishes the lemma.�

Applying Lemma 7 to the special case of St = 0, we get that for any Λ1
t and Λt+1

t′ such

that f(Λt+1
t′ |Λ1

t ) > 0, we have

ψt′
(
c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
t′

〉
)
)

= max{ψt
(
c∗Λ1

t
(Λ1

t )
)
, ψt′

(
c∗Λ1

t+1
(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)

)
}

Since Lemma 7 holds for c∗
Λ1
t+1

(·| − σ) as well, we can expand c∗
Λ1
t+1

(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ) in

the same way as above, substituting into (3

ψt′
(
c∗Λ1

t+1
(
〈
Λ1
t ,Λ

t+1
t′

〉
|−σ)

)
= max{ψt+1(c∗Λ1

t+1
(Λ1

t+1|−σ)), ψt′
(
c∗Λ1

t+2
(
〈
Λ1
t ,Λ

t+1
t′

〉
|−σ)

)
}. (45)
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Then we can do this again and again, until we get that for all t′ > t and Λt
t′ such that

f(Λt
t′|Λ1

t ) > 0,

ψt′
(
c∗Λ1

t
(Λ1

t′)
)

= max{ψt′
(
c∗Λ1

t
(Λ1

t )
)
, max
τ∈{t+1,...,t′}

ψτ

(
c∗Λ1

τ
(Λ1

τ )| − σ)
)
}, (46)

which is exactly the statement made in the proposition.�

4 Appendix D: PKH premiums and Cochrane con-

tracts

In this appendix we discuss further PKH guaranteed renewable contracts, and also Cochrane

(1995)’s premuium insurance scheme. We end by discussing the empirical difference in initial

premia and welfare between these contracts and our optimal contracts.

To begin, we first derive a general formula (for arbitrary T ) for the premia in a PKH

guaranteed renewable contract. We show that, in the context of our model, these policies

provide a consumer who starts at age 25 in the healthiest possible state with the guaranteed

consumption path {yt − pt}Tt=1, where the period t premium pt is (in anticipation of our

empirical analysis where the health process is second-order Markov, we denote by Λt =

(λt−1, λt) = (1, 1) the healthiest possible state in period t):10

pt = E[mt|Λt = (1, 1)] +
∑
τ>t

δτ−t{E[mτ |Λt = (1, 1)]− E[mτ |Λt+1 = (1, 1)]} for t = 1, ..., T

(47)

To this end, consider one-period contracts signed in each period t in return for the

premium pt(Λt) paid at signing that does the following:

• fully insures period t health expenses

• if t < T , pays in addition the amount pt+1(Λt+1) − pt+1(1, 1) [where pt+1(1, 1) is the

period t+ 1 premium for the healthiest period t+ 1 health state, Λt+1 = (1, 1), at the

start of the next period t+ 1].

These contracts pay an amount that guarantees that the insured’s outlays for the next

period contract (net of the insurance payout from the previous period) always equal the

amount that the healthiest type would pay.

The premiums for these contracts will in equilibrium be:

pT (ΛT ) = E[mT |ΛT ]

10PKH focus on the case in which the consumer starts in the healthiest possible state.
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and for t < T ,

pt(Λt) = E[mt|Λt] + δE{pt+1(Λt+1)− pt+1(1, 1)|Λt}

Lemma 8 For all t, pt(Λt) = E[mt|Λt]+
∑

τ>t δ
τ−t{E[mτ (Λτ )|Λt]−E[mτ (Λτ )|Λt+1 = (1, 1)]}

Proof. Clearly true in period T . Suppose it is true for all periods τ > t. To see it is

true in period t , we substitute and use the Law of Iterated Expectations:

pt(Λt) = E[mt|Λt] + δ{E[pt+1(Λt+1)|Λt]− pt+1(1, 1)}
= E[mt|Λt] + δE{E[mt+1|Λt+1] +

∑
τ>t+1

δτ−(t+1){E[mτ (Λτ )|Λt+1]− E[mτ (Λτ )|Λt+2 = (1, 1)]|Λt}

−δ{E[mt+1|Λt+1 = (1, 1)] +
∑
τ>t+1

δτ−(t+1){E[mτ (Λτ )|Λt+1 = (1, 1)]− E[mτ (Λτ )|Λt+2 = (1, 1)]}

= E[mt|Λt] + δ{E[mt+1|Λt] +
∑
τ>t+1

δτ−(t+1)E[mτ (Λτ )|Λt]

−δ{E[mt+1|Λt+1 = (1, 1)] +
∑
τ>t+1

δτ−(t+1){E[mτ (Λτ )|Λt+1 = (1, 1)]}

= E[mt|Λt] +
∑
τ>t

δτ−t{E[mτ (Λτ )|Λt]− E[mτ (Λτ )|Λt+1 = (1, 1)]}

Cochrane (1995) proposes a different scheme to protect consumers from reclassification

risk: premium insurance purchased in each period t that pays the consumer the change in the

present discounted value of his future medical expenses at the start of the following period,

equal to ∑
τ>t

δτ−(t+1){E[mτ |Λt+1]− E[mτ |Λt]},

which can potentially yield first-best insurance. In principle, in this manner, first-best

insurance could be provided to the consumer. As Cochrane notes, however, this policy

has the problem that the consumer would have to pay the insurer when the evolution of

his expected future health expenses is better than expected, which may be impossible to

enforce. Cochrane (1995) proposes to solve this problem via health savings accounts that

can be used to receive and make these premium insurance payments. Unfortunately, such

an account can hit a zero balance because a consumer who starts healthy (Λ25 = (1, 1)) and

remains healthy (Λt = (1, 1) for all t > 1) would need to make payments in every period.

(That is, remaining healthy is a better than expected outcome that requires the consumer to

pay the insurance company.)

An alternative approach that one might consider to avoid the need for consumer end-

of-period repayments in the premium insurance scheme would have the consumer pre-pay
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the maximal possible repayment at the start of the period as part of his premium. That

is, in each period t, the consumer would pay a total premium, including for both medical

insurance and premium insurance, equal to

E[mt|Λt] +
∑
τ>t

δτ−t{E[mτ |Λt]− E[mτ |Λt+1 = (1, 1)]} (48)

and, in addition to coverage of period t medical claims, in each period t+ 1 (for t < T ) the

insurer would pay the consumer the non-negative amount

Payment =
∑
τ>t

δτ−(t+1){E[mτ |Λt+1]− E[mτ |Λt]}+
∑
τ>t

δτ−(t+1){E[mτ |Λt]− E[mτ |Λt+1 = (1, 1)]}

=
∑
τ>t

δτ−(t+1){E[mτ |Λt+1]− E[mτ |Λt+1 = (1, 1)]} ≥ 0, (49)

equal to the change in expected medical expenses plus the repayment (with interest) of the

second term in (48). Subtracting the period t payment [given by expression (49) modified

to be for period t rather than t + 1] from the period t premium (48), we see that the net

premium payment in each period t for a consumer who begins with Λ25 = (1, 1) is exactly

the PKH premium (47). Thus, this approach to premium insurance is exactly equivalent to

a PKH guaranteed renewable contract, and hence would give the insured lower discounted

expected utility than our optimal dynamic contract.

4.1 Empirical Comparison of PKH and Optimal Dynamic Con-

tracts

Using formula (47), we calculate that for our Utah male sample the initial PKH premium

paid by a healthy 25 year old [i.e., a consumer with Λ25 = (1, 1)] is about 3.2% higher than

the initial premium paid by a healthy 25 year old individual with flat net income in the

optimal dynamic contract.11 For a consumer who arrives at age 25 in the healthiest state

and who has a flat net income profile, the excessively low initial consumption required to

eliminate all reclassification risk translates into a lower welfare: CEPKH = $54, 834, which

is 0.4% lower than the certainty equivalent that this consumer would have with an optimal

dynamic contract. As a result, the PKH contract eliminates 97.2% of the welfare loss from

reclassification, compared to the 99.4% from an optimal dynamic contract. The welfare loss

from the PKH contract relative to an optimal contract increases with rising income profiles:

11At age 25 the value of the second term in equation (47), representing the premium pre-payment that
is required in the PKH contract, is $1,530. This amount divided by δ (= 0.975) is also the end-of-period
amount that the consumer would need to pay out in the event that she remained healthy (with Λ26 = (1, 1))
to achieve the first best in the reclassification-risk insurance scheme proposed by Cochrane (1995).
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For example, for a healthy 25 year old downscaled manager we find that CEPKH = $37, 819,

resulting in a loss of 2.4% compared to an optimal dynamic contract; the PKH contract

therefore eliminates only 84.2% of the welfare loss due to reclassification risk, compared

to the 94.3% from an optimal dynamic contract. For a non-manager CEPKH = $47, 525,

which represents a 1.5% welfare loss and an elimination of 80.1% of the welfare loss from

reclassifcation risk, compared to 95.1% from an optimal contract.12

5 Appendix E: Extending the model to capture partial

access to credit markets

Our original submission focused on the benchmark with no external borrowing (outside of

the dynamic insurance contract). This appendix adds a framework that allows partial access

to credit markets to allow for the realistic scenario where consumers can have some limited

independent borrowing. This allows them to smooth income over time under increasing

income paths and, in turn, may unlock the benefits of dynamic contracts by allowing for

increased front-loading and, thus, increased insurance of reclassification risk.

5.1 Theory

We extend the model in the following way to capture the possibility of borrowing: In the

beginning of each period history Λ1
t , the customer makes two simultaneous decisions. First,

whether to stay with her current insurance contracts or lapse to a new one offered by the

market; second, how much to borrow. To formalize the borrowing decisions, we provide two

more definitions.

Definition 6 We denote a “borrowing portfolio” by a function b(·), from the set of all

possible pairs histories Λ1
t and future periods t′ > t to the set of non-negative numbers.

Therefore, b(Λ1
t , t
′) is the amount the individual decides to borrow in the beginning of health

history Λ1
t , which she returns with interest to the lending institution at the beginning of period

t′ > t. That is, she returns
b(Λ1

t ,t
′)

δt′−t

Definition 7 The “Maximum available borrowing portfolio” is denoted by b̄(·). For each

(Λ1
t , t
′) with t′ > t, the value b̄(Λ1

t , t
′) is the highest possible value for b(Λ1

t , t
′).

This latter definition allows us to capture the idea that access to credit markets is “lim-

ited.”
12While the PKH contract assumes that the consumer arrives at age 25 in the healthiest state, as we have

seen, not all consumers manage to do so. We expect that the excessive front-loading involved in contracts
that would eliminate al reclassification risk would be more costly for such consumers.
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The main question here is whether the simultaneity and interplay between the “insur-

ance problem” and the “borrowing problem” from the perspective of the consumer leads to

complications that would lead our optimal contract results to not hold anymore. The result

below says the answer is no.

Proposition 5 There is at least one optimal solution to the dual insurance-borrowing dy-

namic problem in which the consumer solves the two problems separately. Specifically:

1. She borrows according to portfolio b∗(·) = b̄(·). That is she borrows as much as she

can.

2. Then she signs up for a different optimal contract cθ,b̄∗
Λ1

1
(·) based on her borrowing port-

folio, rather than cθ∗
Λ1

1
(·).

Multiple optimal solutions may exist but they all lead to the same consumption in each

history Λ1
t that happens with positive probability.

Remark 6 In the special case where b̄(Λ1
t , t
′) can only depend on t and t′ (that is, when bor-

rowing restrictions are health-independent), the optimal borrowing strategy by the consumer

simply leads to a different income profile ȳ. Therefore, in the second step in Proposition 5,

we can write cθ,b̄∗
Λ1

1
(·) = cθ̄∗

Λ1
1
(·) where θ̄ = (ȳ, u). This means from a computational perspec-

tive, we have two steps to compute the equilibrium: first compute ȳ, second use our existing

algorithm to compute the equilibrium for the new state θ̄

Proof Idea for Proposition 5. We skip a formal proof of this proposition but it will

be available upon request. On an intuitive level, the customer borrows as much as she

can because she can always “send the borrowed money back to the future through the

dynamic contract” by front-loading all of the borrowed money. Doing so can never harm

the customer’s welfare and is in fact likely to be strictly preferable to not borrowing. This

is because when borrowing, the customer transfers money from all health states of her

t′ self to time t. But when front-loading the money and sending it back to period t′ as

a consumption guarantee, the healthier t′ selves of the customer receive less than what

was borrowed from them whereas the less healthy ones receive more (by the definition of

consumption guarantees). As such, the customer will optimally combine borrowing and long

term insurance in order to smooth out her period t′ consumption across health states (note

that the customer does not always front-load all of the borrowed amount, especially if her

income profile is steep).
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Borrowing and First-Year Equilibrium Contract Terms: Manager Income

γ
0 0.1 0.2 0.3 0.4 0.5 0.6

Premium 1.072 1.340 1.435 1.496 1.524 1.562 1.591
First-Year Costs 0.837 0.837 0.837 0.837 0.837 0.837 0.837
Front-Loading 0.235 0.503 0.597 0.659 0.687 0.725 0.754
Consumption 49.942 53.644 55.802 57.539 58.928 60.309 61.518

Table 11: First-year contract terms in the equilibrium long-run contract for men with a
manager income path, showing first-year premiums, expected costs, the extent of front-
loading, and consumption levels (thousands of dollars). This table is for health status λ24 =
λ25 = 1 and covers range of credit market access parameter γ from 0 to 0.6.

5.2 Empirical Analysis.

Although our theoretical analysis allows for a much more general model of credit availability,

in our empirical analysis we focus on a more specific model. We assume that “access to credit

markets” is governed by only one parameter γ. Consider an individual with income profile y.

We assume that at the beginning of each year t, the individual can take out a loan as much

as γ × yt, which is to be returned one year after (i.e., in the beginning of year t + 1) with

the interest rate 1
δ
− 1. That is, the individual will have to return γyt

δ
to the lender. As can

be seen from this formulation γ indeed is a measure of access to credit markets. According

to our theoretical result, the individual would always borrow the whole feasible amount of

γyt, effectively constructing a different income path ȳ. She then signs the contract that is

optimal for her “new” type (θ, ȳ).

Table 11 shows what happens to the first year terms of the optimal contract as we move

parameter γ. The better access the customer has to credit markets (i.e., the higher the γ),

the more she consumes and frontloads in the first period. That is, she borrows more and uses

some of the borrowed amount to purchase dynamic contracts that provide better insurance

against reclassification risk.

While Table 11 described the response of the contract terms to γ, Figure 6 presents the

welfare results. As this figure shows, the performance of one-sided commitment contracts,

compared to two-sided commitment ones, improves as γ increases.13 As γ increases and con-

sumers can borrow more, dynamic contracts become closer in performance to the first-best

13Note that in figure 6, welfare under one sided commitment contracts CED is NOT compared to the no-
saving-no-borrowing welfare CENBNS . It is, rather, compared to “limited saving and borrowing” CELBS .
This latter measure allows the individual under two-sided commitment contracts to save as much as he would
like to and combine it with the same borrowing scheme that the one-sided commitment customer is exposed
to. This was done to ensure a fair comparison between one- and two-sided commitment systems.
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Figure 6: The gap between the performances of one-sided and two-sided commitment con-
tracts lowers as access to credit market (measured by γ) increases. This is the case both in
both absolute and relative terms as shown by panels a and b respectively.

contracts with two-sided commitment. The intuition is as follows: borrowing improves the

welfare under two-sided commitment contracts only through aiding inter-temporal consump-

tion smoothing. But it does so with one-sided commitment contracts through helping both

with inter-temporal smoothing and with frontloading. These results give a quantitative sense

of the extent to which borrowing can ease the costs of front-loading and enable more efficient

contracting and improved insurance against reclassification risk with dynamic contracts with

one-sided commitment.

6 Appendix F: Precautionary Savings

So far we have not allowed for savings in our welfare calculations. From Proposition 1

we know that this is without loss of generality for the case of optimal contracts with one-

sided commitment. Consumers also would not want to engage in savings in the first best.

However, with spot contracting consumers may want to engage in precautionary savings to

lower the costs of reclassification risk. Individuals can save in good states to weather periods

of bad health.

To study the impact of precautionary savings we solve a finite-horizon savings problem,

with the same underlying fundamentals as in our main analysis, namely, the same income

profiles, risk preferences, and transition matrices. We find optimal savings starting at age

25 given an income profile and the actuarially fair health insurance premiums associated
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(1) (2) (3) (4) (5) (6) (7)

Income profile C∗NBNS CESPOT CESPOTwS CED
C∗
NBNS−CESPOTwS

C∗
NBNS

CESPOTwS−CESPOT
C∗
NBNS

−CESPOT

CED−CESPOTwS
C∗
NBNS

−CESPOTwS

Flat net 54.50 44.18 46.98 48.66 0.138 0.271 0.223
Non-mngr 47.37 36.96 37.64 38.08 0.205 0.065 0.046
Manager 55.67 45.44 45.71 45.91 0.179 0.026 0.020
Downs Mngr 37.68 27.35 27.83 28.13 0.262 0.046 0.031

Table 12: Long-run welfare of Utah men allowing for precautionary savings under spot
contracts, with a constant absolute risk aversion coefficient of 0.0004. Welfare measures
in columns (1)–(4) are reported in thousands of dollars. The certainty equivalent of spot
contracting with precautionary savings is denoted by CESPOTwS.

with the different health states.14 Once we find optimal savings for each age and state, we

compute the certainty equivalent, which we denote by CESPOTwS (SPOTwS = “Spot with

Savings”).

Table 12 shows the welfare effect of precautionary savings in the Utah male sample. As

the spot contracting with precautionary savings outcome is feasible in our dynamic problem

with one-sided commitment, CESPOTwS naturally lies between CESPOT and CED. Savings

enable the consumer to transfer resources to future periods, to be consumed in periods of

high marginal utility from consumption. While these precautionary savings reduce the losses

from reclassification risk, these losses remain very high, ranging between 13.8% and 26.2%

of lifetime certainty equivalent (see column (5)). Optimal dynamic contracts do better than

precautionary savings, as they allow for state-specific savings. By charging state-contingent

premiums the optimal contract enables equating consumption across all states in which the

lapsation does not bind.

Column (6) shows that precautionary savings closes a relatively small share – between

2.6% and 27.1% – of the welfare gap between spot contracts without savings and the no-

borrowing/no-saving benchmark. Column (7) shows the fraction of the welfare gap between

the no-borrowing/no-saving constrained first-best outcome and the spot contracting with

precautionary savings outcome that is closed by optimal dynamic contracts; this ranges

from 22.3% for flat net income profiles to 2.0% for managers.

14For each income profile, we solve a finite-horizon dynamic programming problem, from ages 25 to 65.
Starting at age 64, for a grid of saving values entering that period, the individual finds the optimal saving level
going into the last period that maximizes the sum of current utility from consumption and the discounted
value of the expected utility in the last period, where the expectation is taken for each state given the
transition matrices. Once we obtain the value function at age 64 for each possible health state and incoming
saving level, we proceed backwards all the way to age 25, where we obtain the discounted expected utility
starting in each possible health state. The ex-ante certainty equivalent is the certain consumption level that
makes the consumer indifferent to the expected utility of entering the dynamic problem before observing the
health realization at age 25.
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λt+1

λt−1 λt 1 2 3 4 5 6 7
1 1 0.66 0.15 0.09 0.04 0.02 0.02 0.01
7 1 0.59 0.18 0.23 0 0 0 0
1 7 0.28 0.13 0.16 0.11 0.09 0.10 0.13
7 7 0.01 0.01 0.02 0.04 0.05 0.13 0.74

Health status Ages
(age 44 and 45) 45 46-50 51-55 56-64

1 0.84 2.27 4.07 5.35
4 3.05 4.51 5.19 5.70
7 20.51 13.05 7.90 6.38

Table 13: The top panel gives an example of empirical health status transitions from one year
to the next, for 40-45 year old men. The bottom panel reports, for various age ranges, the
constant annual medical expenses (in thousands of dollars) such that the present discounted
value of these constant annual expenses equals the expected present discounted value of
expenses over the age range in question for a Utah man in various age-40 health states.

7 Appendix G: Additional Tables and Figures

This appendix provides additional tables and figures to complement some of the analyses in

the main text of the paper.

7.1 Health Transition Probabilities and Persistence

Table 3 in the main text depicted some health status transition probabilities for individuals

between 30 and 35 years old. Table 13 provides the same information for those between ages

of 40 and 45. As can be seen from comparing the two tables, ceteris paribus, the probability

of transitioning to sicker future health states is higher for older individuals.

7.2 Second-Year Consumption Analysis for Flat Net Income Path

Table 14 shows period two consumption levels for consumers with flat net income paths

under our baseline model. This table is the analog to the period two continent premium

analysis presented in the text in Table 5.
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Second-Year Equilibrium Consumptions: Flat Net Income First-Year

λ26 Consumption
λ24 = λ25 1 2 3 4 5 6 7

1 54.791 54.765 54.765 54.765 54.765 54.765 54.765 54.765
4 54.724 54.13 52.739 51.189 50.803 50.803 50.803 50.803
7 54.809 54.724 54.544 52.219 41.384 42.396 36.683 36.548

Table 14: First- and second-year consumptions in the equilibrium long-run contract for men
with a flat net income path, as a function of the period 1 health state and period 2 health
status (thousands of dollars).

Second-Year Equilibrium Premiums: Downscaled Managers First-Year

λ26 Premium
λ24 = λ25 1 2 3 4 5 6 7

1 1.160 1.873 2.605 3.012 3.012 3.012 3.012 1.165
4 0.884 1.405 2.548 3.490 5.334 5.334 5.334 3.487
7 0.843 1.375 1.973 3.054 11.895 11.851 20.511 20.511

Table 15: First- and second-year premiums in the equilibrium long-run contract for men with
a downscaled manager income path, as a function of the period 1 health state and period 2
health status (thousands of dollars).

7.3 Second-year Premium and Consumption Analysis for the Down-

scaled Manager Income Path

Tables 15 and 16 show second-year (age-26) premiums and consumption levels for downscaled

managers as a function of different health histories. Though front-loading is much more

limited, the age-26 health states in which the lapsation constraint binds, conditional on

the initial age-25 health state, are quite similar to those of consumers with flat net income

profiles.

Second-Year Equilibrium Consumption: Downscaled Managers First-Year

λ26 Consumption
λ24 = λ25 1 2 3 4 5 6 7

1 34.372 33.659 32.927 32.520 32.520 32.520 32.520 32.520
4 34.648 34.127 32.984 32.042 30.199 30.199 30.199 30.199
7 34.689 34.158 33.559 32.478 23.637 23.681 15.021 13.175

Table 16: First- and second-year consumptions in the equilibrium long-run contract for men
with a downscaled manager income path, as a function of the period 1 health state and
period 2 health status (thousands of dollars).
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Init health (1) (2) (3) (4) (5) (6) (7) (8)

λ24 = λ25 C∗ C∗NBNS CESPOT CESS CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

1 55.14 48.68 41.39 43.78 48.26 0.150 0.943 0.500
2 54.96 48.11 39.78 42.74 47.41 0.173 0.915 0.502
3 54.84 47.64 39.31 42.62 46.84 0.175 0.903 0.485
4 54.36 46.77 40.23 42.39 45.42 0.140 0.794 0.367
5 52.86 43.63 34.91 36.77 40.41 0.200 0.631 0.307
6 51.51 40.21 33.42 35.33 37.69 0.169 0.629 0.236
7 49.33 30.71 29.78 29.85 29.88 0.030 0.105 0.005

Table 17: Long-run welfare results showing the certainty equivalent annual consumption of
different insurance institutions under various initial health states, the non-manager income
profile, a discount factor of 0.975, and constant absolute risk aversion equal to 0.0004. Units
in columns (1)-(4) are 1000s of dollars.

Init health (1) (2) (3) (4) (5) (6) (7) (8)

λ24 = λ25 C∗ C∗NBNS CESPOT CESS CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

1 85.47 57.12 51.81 53.19 56.87 0.093 0.954 0.150
2 85.28 56.51 49.60 51.85 55.97 0.122 0.922 0.179
3 85.17 55.95 48.96 51.35 55.36 0.125 0.917 0.177
4 84.68 55.04 52.53 53.54 54.54 0.046 0.801 0.063
5 83.18 52.68 44.97 46.68 50.05 0.146 0.658 0.133
6 81.83 49.40 43.21 45.03 47.10 0.125 0.629 0.101
7 79.66 38.16 37.75 37.76 37.77 0.011 0.051 0.001

Table 18: Long-run welfare results showing the certainty equivalent annual consumption
of different insurance institutions under various initial health states, the manager income
profile, a discount factor of 0.975, and constant absolute risk aversion equal to 0.0004. Units
in columns (1)-(4) are 1000s of dollars.

7.4 Additional Welfare Results Conditional on a Consumer’s Age-

25 Health State

7.5 First and Second-period Equilibrium Consumption Levels un-

der Switching Costs

Table 19 shows first and second-year consumption levels for a flat net income profile and

switching costs of $1,000 in the Utah male data. Comparing to Table 5, it is interesting to

note that for all second-year states without a binding lapsation constraint consumption is

higher with a higher switching cost, while consumption is lower for second-year states with a

binding lapsation constraint. Namely, conditional on a history, higher switching costs enable

transferring resources from the good to the bad states.
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Second-year consumption
λ26 First-year

λ24 λ25 1 2 3 4 5 6 7 consumption
1 1 54.816 54.816 54.816 54.816 54.816 54.816 54.816 54.816
4 4 54.698 54.105 52.714 51.214 51.214 51.214 51.214 51.214
7 7 54.783 54.699 54.519 52.194 41.359 42.371 36.996 36.996

Table 19: First and second-year consumptions (in $1,000s) for Utah men with switching
costs of $1,000, flat net income, and a constant absolute risk aversion coefficient equal to
0.0004.

8 Appendix H: Lapsation to Uninsurance

Our analysis in the main text of the paper considered only for lapsation into competing

long-term health insurance contracts, as gains from trade would always exist from continuing

insurance coverage. In reality, however, lapsation into uninsurance also takes place in the

market (Konetzka and Luo, 2010). Here we discuss an extension of our model that takes

this possibility into account. Lapsation to uninsurance may happen for reasons ranging

from consumer inattention to the need to renew to negative income shocks that restrict the

consumer’s liquidity. In this appendix, however, we model such lapsations as an exogenous

phenomenon most closely resembling lapsation due to inattention.

Formally, we examine an extension of our model in which at each period, there is a

chance of γ that the consumer lapses to uninsurance. In case this lapsation takes place, the

consumer will not return to the insurance market. We assume this lapsation chance is not

a function of what period t the consumer is at or of her health status λt at that period.

We analyze what the equilibrium contract will look like under this extension of our model.

Proposition 6 below provides the answer.

Proposition 6 If consumers lapse with an exogenous probability γ in each period, the op-

timal contract takes the same form as that described in Proposition 1 except that in the

calculations, the common discount factor δ should be replaced with δ′ ≡ δ × (1− γ).

Sketch of Proof for Proposition 6. We omit the details for the proof and confine

ourselves to providing two remarks based on which the proof is built.

Remark 7 Consider two contracts c1
Λ1
t
(·) and c2

Λ1
t
(·) offered to the consumer at the beginning

of period t. If the consumer does not lapse from either (except for the exogenous lapsation

into uninsurance), then the difference between the net present values of his expected utilities

from the two contracts will be given by:
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τ |Λ1
t )
)]

This remark simply describes how the consumer takes into account possible future lap-

sations into uninsurance as he compares different insurance contracts against one another.

It follows because the consumer’s continuation utility after an exogenous lapsation is the

same regardless of the contract he is lapsing from. The remark states that in making such

comparisons, the consumer behaves as if he will not be lapsing but instead has a discount

factor of δ̂ = δ × (1− γ).

Remark 8 Consider contract cΛ1
t
(·) offered to the consumer at the beginning of period t.

If the consumer does not lapse from this contract (except for the exogenous lapsation into

uninsurance) then the insurer’s expected profit from the contract is given by:

π = ΣT
τ=tδ̂

τ−tE
[
yτ −mτ − cΛ1

t
(Λt

τ |Λ1
t )
]

This remark simply states that under an exogenous probability γ of lapsation into unin-

surance, the insurer’s expected profit from a contract is the same as what it would be if

there was no lapsation to uninsurance but instead the insurer discounted future profits at

the rate of δ̂ = δ× (1− γ). It follows because the insurer earns zero following any exogenous

lapsation, regardless of the contract lapsation is occuring from.

With these two remarks, it should not be surprising that the statement of Proposition

6 holds. Of course it should be noted that the (common) discount factor does have a role

in determining the consumption guarantee levels. As a result, even though the formulas for

computing the equilibrium remain the same as those in Proposition 1, the eventual numbers

will indeed be different. The larger the lapsation probability δ, the closer the equilibrium

contract will be to the static equilibrium. �

Having analyzed the consequences of lapsation into uninsurance for the shape of the

equilibrium contracts, we close this appendix with a discussion of the ways in which such

lapsation impacts welfare. There are two channels through which welfare is impacted:

First, lapsation into uninsurance will directly impact welfare by depriving the consumer

of insurance at histories when such lapsation takes place (and onward). We do not quantify

this direct effect here as one should expect it under all possible insurance regimes, not just

long-term contracts.

The second channel through which lapsation into uninsurance changes welfare is through

its impact on the shape of the equilibrium contracts as theoretically characterized by Propo-

sition 6. We do not empirically quantify this channel either but we emphasize that a lower

bound for the welfare from long-term contracts with a γ chance of lapsation into uninsurance
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would be the welfare resulting from myopia with β = δ× (1−γ). This is the case because in

the case of such myopia it is only the consumer’s discount factor that decreases by a factor of

1− γ; whereas in the case of exogenous lapsation, the insurer’s discount factor decreases as

well, which makes future protection cheaper for the consumer by requiring less frontloading.

Given this lower bound and given that our analysis in the main text suggests long-term con-

tracts provide non-trivial protection against reclassification risk even under severe myopia,

we expect them to also have non-trivial performance under lapsation into uninsurance.

We close this appendix by noting that in the above analysis, the fact that the exogenous

lapsation was into uninsurance does not have a critical role. Proposition 6 would also apply

if exogenous lapsations were into employer-sponsored insurance instead of uninsurance.

9 Appendix I: Income Uncertainty

Our analysis in the main text does not require insurers to know the income profile of each

consumer. Our self-selection analysis shows that for the main result to hold, it would suffice

that the consumer know about his income profile. We did not, however, discuss the case

where the consumer himself faces uncertainty about his income profile. This appendix pro-

vides a discussion of the issue. More specifically, we consider two cases. First, we examine

cases where income realizations, like health, can be observed by both the insurer and the

consumer and can be contracted upon. In other words, this would be a case where health

insurers can also provide a form of income insurance. Second, we briefly discuss the case

where income-uncertainty exists but income contingencies cannot be contracted upon as part

of a long-term health insurance plan.

9.1 Income uncertainty under contractible income

If income is contractible, then risk in income can be treated in the same way as risk in health-

care expenses. In other words, most of our characterizations of the equilibrium contracts

will survive an extension of the model to income uncertainty. This includes the main re-

sult introducing consumption guarantees, the computation method, and the extensions and

myopia and inertia. This does not, however, include the self-selection result as we are now

assuming income is contractible. It is worth noting a key feature of our characterizations

which makes them robust to inclusion of income uncertainty. That feature is the flexibility

in the evolution of uncertainty over time. As mentioned in the proofs, we do not impose

any restriction on how health status stochastically evolves over time. If we had any strong

restriction (e.g., if it had to be a 1st order Markov process) then it would not be possible to

readily extend the results to income uncertainty.
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In terms of practical implementability, a combined health-and-income insurance program

may seem far fetched. That said, we believe “coarse” versions of such dual insurance are

not unimaginable. For instance, the consumer may frontload some amount of money in

the initial periods and, in exchange for that, purchase future protection against increased

premiums due to large health shocks under one condition: he will be entitled to the purchased

protection in those future periods only if he will be able to provide proof of belonging to a

certain low-income bracket.

9.2 Income uncertainty under non-contractible income

If income uncertainties on the part of the consumer exist but their realizations are not

contractible with the insurer, then our characterization of equilibrium contracts may no

longer hold. We leave developing such a characterization to future research and confine to

an informal discussion of our conjectured implications of our current characterization for

environments with uncertain but non-contractible income.

We expect contracts of the consumption-guarantees form we have characterized to provide

non-trivial protection against reclassification risk even in environments with non-contractible

income uncertainty (where they are no longer theoretically optimal). Suppose the insurer is

offering a set of long-term contracts, each optimal for a certain income profile if the consumer

is certain he will have that exact profile. Intuitively, a consumer uncertain about his future

income may still benefit from signing the optimal contract for one of the possible future

income profiles he can have. Which of the offered contracts (or, equivalently, “representative”

income-profile) he will go with would depend on the likelihood of each possible income profile

for that specific consumer as well as the amount of protection he would need under each such

profile.

As one instance, a consumer who is uncertain whether he will have a flat income or an

income path that will increase $2K/year may choose to purchase a long-term contract that is

optimal for a consumer who is certain his income will grow by $xK per year where x ∈ (0, 2).

We would expect x to be closer to 0 than to 2 because the flat-income future self of this

consumer will, by the concavity of the utility function, get a higher weight in the consumer’s

decision making.

Though we do not provide any quantitative implementation of the above idea, it is worth

noting that the analysis in Atal et al (2020) is in line with our reasoning here. They examine

a setting in which only the optimal contracts for flat-income consumers are offered; while

in their setting, there are two types of income paths both having a non-trivial increase over

time. They show that the flat-income based contracts do well to protect those consumers

against reclassification risk.
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(1) (2) (3) (4) (5) (6) (7)

Income profile C∗ C∗NBNS CESPOT CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

Flat net 54.22 54.22 44.14 50.38 0.186 0.619 0.619
Non-mngr 54.22 47.33 37.10 38.76 0.220 0.162 0.097
Manager 84.73 55.65 45.49 46.16 0.183 0.066 0.017
Downs Mngr 54.22 37.65 27.45 28.59 0.271 0.112 0.043

Table 20: Replacating our baseline welfare results using a first-order Markov model for
estimating transition probabilities.

10 Appendix J: The Role of Health Status Transition

Matrix

In this appendix, we study how important it is to accurately estimate the health status transi-

tions. In particular, we ask whether we would get similar welfare results if we approximated

the health status transitions using a first-order Markov process instead of a second-order

one. To this end, we produce an equivalent of our baseline welfare table (Table 7) but this

time using first-order Markov estimates for the transition matrices. That is, we estimate

new transition probabilities that assume the probability distribution over health status λt+1

should only be conditioned on the realized value for λt, rather than on both λt and λt−1.

This limits the ability of the model to capture the extent to which health status persists

over time. We then use these estimates to simulate new equilibria and assess welfare. These

welfare results are shown in Table 20.

As can be seen by examining columns 6 and 7 from this table, the welfare results under

a first-order Markov assumption for transition probabilities are, in the case of all income

paths, higher than their counterparts from our baseline results in Table 7 by about 50%.15

This comparison shows that it is indeed important to estimate the health status transition

process more accurately.

The direction of the comparison between the two sets of welfare results is also worth

analyzing. We argue that the reason behind this comparison is that our estimated second-

order Markov process exhibit more persistence in the health status relative to the first-order

Markov estimates.16 The equivalent of the bottom panel of Table 3 under first-order Markov

transitions is shown in Table 21 verifies that these new transitions indeed lead to substantially

15Note that columns 1, 2, 3, and 5 are also slightly different between the two tables. That there is some
difference here should not be surprising given that transition matrices impact these columns as well. But
these differences are not economically meaningful and are substantially smaller than the difference between
the two tables in columns 4, 6, and 7.

16Note that both first- and second-order transitions are capable of capturing full persistence (i.e., λt+1 = λt
with probability 1) and no persistence at all (i.e., λt+1 and λt being independent random variables). As
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Health status Ages
(age 29 and 30) 30 31-35 36-40 41-64

1 0.84 2.43 3.08 4.64
4 3.05 3.5 3.18 4.65
7 20.51 6.68 3.32 4.65

Table 21: This table is similar to the bottom panel of Table 3 except that it is based on the
less persistent, first-order Markov transitions. It reports, for various age ranges, the constant
annual medical expenses (in thousands of dollars) such that the present discounted value of
these constant annual expenses equals the expected present discounted value of expenses
over the age range in question for a Utah man in various age-30 health states.

less persistent health states. Under more persistence, insuring against reclassfication risk

using long-term contracts is more difficult. This is because, intuitively, long-term contracts

work by allowing young and healthy individuals to “send money to their future sick selves”

by frontloading. When there is more persistence, those who need to do so are more likely to

be currently sick, lowering their incentive to frontload.

a result, we are not making a general claim that second-order Markov transitions are more persistent.
Nevertheless, they seem to be in our context.
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