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Abstract

Rich behavioral biases, mistakes and limits on rational decision-making are often thought to
make equilibrium analysis much more intractable. We establish that this is not the case in the
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two parts: the direct response at the given (pre-tax) prices, and the equilibrium response which
plays out as prices change. Our main result demonstrates that under weak regularity condi-
tions, regardless of the details of behavioral preferences, mistakes and constraints on decision-
making, the long-run equilibrium will involve a greater capital-labor ratio if and only if the
direct response (from the corresponding consumption-saving model) involves an increase in
aggregate savings. One implication of this result is that, from a qualitative point of view, be-
havioral biases matter for long-run equilibrium if and only if they change the direction of the
direct response. We provide detailed illustrations of how this result can be applied and gener-
ates new insights using models of misperceptions, self-control and temptation, and naı̈ve and
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1 Introduction

Most standard macro and growth models rely on very restrictive behavioral assumptions about

households — infinitely lived, often representative, agents that are capable of solving complex

maximization problems without any behavioral biases or limitations, and of implementing the

optimal decisions without any inconsistencies or mistakes. It is an uncomfortable stage of intro-

ductory graduate courses when these assumptions are introduced and students rightfully ask

whether everything depends on them. A natural conjecture is that these assumptions do mat-

ter and any degree of behavioral richness would render any general conclusions impossible.

Not only do general equilibrium effects become notoriously complicated and the set of indirect

effects correspondingly rich; we would also expect the specific departure from full rationality

— e.g., systematic mistakes, ambiguous beliefs, overoptimism or dynamic inconsistency — to

have a first-order impact on the direction in which the economy responds to changes in policy

or technology.

In this paper, we study one-sector growth models and establish that while it is true that

at the individual level outcomes depend critically on the exact behavioral specification, robust

predictions of long-run responses to changes in environment (policy, preferences or technology)

can nonetheless be obtained in the presence of general behavioral preferences. Specifically, we

identify conditions that are sufficient — and when the steady-state equilibrium is unique or

when changes are small, also necessary — for changes in environment to lead to comparative

statics in line with the predictions of the baseline neoclassical growth models. These condi-

tions depend only on the direction of the direct response to a change in environment, defined as

the (partial equilibrium) impact on aggregate savings, computed from the consumption-saving

problem of households, holding the pre-tax prices fixed at their initial steady-state values. Put

simply, if the direct response to a change in environment is an increase in aggregate savings,

then no matter how complex the general equilibrium interactions that will play out dynami-

cally (as prices change), the long-run impact on the capital stock and output per capita will be

positive. Conversely, if the direct response is a decrease in aggregate savings, then the long-run

impact on the capital stock and output per capita will be negative.

Before we elaborate on this result and provide an intuition, let us explain it in the context of

a specific policy change — a reduction in the capital income tax rate. In baseline “neoclassical”

settings, including the Ramsey-Cass-Koopmans model or the Bewley-Aiyagari model, the direct

response is simply the “partial equilibrium” change in aggregate savings, holding prices at their

initial steady-state values. This direct response is positive under standard assumptions, and in

this case, so is the long-run response: lower capital income taxes lead to higher capital-output
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ratio and output per capita in the long run. Taking this as a benchmark, our results can then be

read as saying that any set of rich and more realistic behavioral preferences that do not reverse

the direction of the partial-equilibrium response leave the qualitative comparative statics of the

steady-state equilibrium unchanged — the capital-labor ratio and output per capita will increase

following a reduction in capital income taxes.1 These results apply with minimal assumptions

and allow households to have different behavioral preferences and make various systematic

mistakes.

Conversely, our results also delineate robust conditions for behavioral preferences and sys-

tematic mistakes to reverse the direction of long-run comparative statics: When the direct re-

sponse to a change in environment goes in the opposite direction of the direct response in

benchmark neoclassical models, long-run (general equilibrium) comparative statics will also

go in the opposite direction of the conventional comparative statics. So if lower capital taxes re-

duce aggregate savings upon impact, they will lead to lower capital stock and output per capita

in the long run.

Figure 1 presents these results diagrammatically. All four panels of the figure depict a key

object in our analysis, “the market correspondence”, which summarizes the aggregate savings re-

sponses at different levels of the capital-labor ratio (see Section 2.5). Our main theorem amounts

to saying that, for long-run comparative statics, it is sufficient to look at how the market corre-

spondence shifts at the capital-labor ratio of the initial steady-state equilibrium. Panel A illus-

trates this point. Even though the market correspondence that applies for a new environment

is not everywhere above the initial market correspondence, it is strictly above it at the original

capital-labor ratio, and this is sufficient for us to establish that the change in environment will

lead to a higher capital-labor ratio.

Panel B provides a complementary configuration. While in Panel A general equilibrium

interactions reinforced the direct response, in this case they dampen it. In general, it is very

difficult to determine, without explicit computations, whether Panel A or Panel B will apply

— because general equilibrium interactions are difficult to characterize. Crucially, however, the

direction of long-run comparative statics can be determined without this knowledge.

Panel C depicts the converse case. Now the direct response is a reduction in aggregate sav-

ings. As a result, the figure shows that the long-run and output per capita will decline. Hence,

if we think of Panel A as corresponding to the benchmark neoclassical growth model, Panel C

represents the case where behavioral preferences reverse the direction of the direct response,

and thus lead to the complete opposite of the neoclassical long-run comparative statics. Finally,

1Naturally, different distribution of preferences and mistakes across households will have quantitative implica-
tions. These are of course important for many applications, even though they are not our focus in the current paper.
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Panel A: Equilibrium adjustment reinforces the
direct response

Panel B: Equilibrium adjustment partially re-
verses the direct response

Panel C: Reversal of the direct response implies
reversal of the long-run outcome

Panel D: Equilibrium adjustment reverses di-
rect response (note the “downwards jumps”)

Figure 1: Panel A shows an instance in which general equilibrium effects amplify the direct re-
sponse, while in Panel B they dampen it. In Panel C the direct response is a decline in aggregate
savings, so the long-run impact incorporating general equilibrium effects is also negative. The
scenario in Panel D, where the direct response is positive and the long-run impact is negative,
is impossible in the one-sector behavioral growth model because individual saving functions
cannot “jump down” (equivalently, consumption functions cannot “jump up”). To overturn the
(long-run) comparative statics in Panels A-B, the direct response must be negative as in Panel
C.

Panel D depicts the case ruled out by our theorems. The configuration in this last panel illus-

trates that, in principle, there is nothing automatic about our results (in fact, this is particularly

the case once we are in the case with more than a single aggregate). Nevertheless, we will show

that this configuration cannot arise when there are no downward jumps in the market corre-

spondence, which can be guaranteed under fairly weak assumptions in the one-sector model.

To build intuition for our results, let us first revisit the standard Bewley-Aiyagari model with

fully-rational heterogeneous agents. In such an economy, the equilibrium adjustment following

the direct response involves random/stochastic changes in the distribution of assets, as well as

prices and the aggregate capital stock as the economy settles into a new steady-state equilib-

rium. Even with fully-rational agents, this adjustment is complex: because of income effects,

some households may change their savings in the opposite direction of the aggregate change as

their income and the prices they face evolve. With behavioral preferences or biases, it is poten-
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tially even more so, since we have to take into account not just the conventional income effects

and price changes, but also any systematic mistakes in optimization or expectations, more com-

plex intertemporal trade-offs and issues related to dynamic inconsistency. Nonetheless, our

main theorems show that, even in such settings and exactly at the same level of generality as in

the baseline Bewley-Aiyagari economy, we can establish qualitative long-run comparative stat-

ics. Our analysis also establishes that although fairly general results about aggregate changes

can be derived, there is a type of “indeterminacy” at the individual level — nothing much can

be said about how individuals will behave and which individuals will go in the opposite di-

rection of the aggregate economy. This observation further clarifies that our results are not a

consequence of some (implicit) monotonicity assumption that ensures all households move in

the same direction. On the contrary, our results are about aggregate outcomes, without any

knowledge or implications on how any given household will adjust.

We can now present the intuition for these results at two complementary levels. The first

is economic in nature and it is related to an idea that already appears in Becker (1962) that

“aggregation” disciplines economic behavior. Though we cannot say anything about individual

behavior, we can determine the behavior of market-level variables (that is, aggregates such as

the capital stock and income per capita). This is because even if many households respond in

the opposite direction of the direct response, in equilibrium enough households have to move

in the same direction as the direct response.

The second intuition for our result is more mathematical. Suppose that the steady-state

equilibrium is unique, and focus on a policy change that increases aggregate savings at the

initial capital-labor ratio. Then the only way the new steady-state equilibrium could have lower

capital stock is when the equilibrium response goes in the opposite direction and more than

offsets the initial increase in aggregate savings. This in turn can only be true if a higher capital

stock induces lower savings. But even if this were the case, the equilibrium response could

not possibly overturn the direct response. This is because the economic force leading to lower

savings would not be present if the new steady-state equilibrium ended up with a lower capital

stock, and thus the indirect equilibrium response could not overturn the initial (positive) direct

response. When there are multiple steady-state equilibria, this reasoning would not apply to

all of them, but we develop a similar argument for extremal (greatest and least) steady-state

equilibria.

In Section 4, we use several popular behavioral models to further illustrate our theorems and

show how they can be applied fairly straightforwardly, yielding new insights. We start with a

model of persistent misperceptions and establish how the form of misperceptions matters and

leads to different types of results, and also demonstrate how they can sometimes reverse stan-
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dard comparative statics (e.g., lower taxes on capital income reducing the long-run capital-labor

ratio). We then show how our main theorems lead to new comparative statics in the context of

macro models incorporating self-control and temptation problems as in Gul and Pesendorfer

(2004). Finally, we discuss naı̈ve and sophisticated versions of quasi-hyperbolic preferences in-

troduced and analyzed in Strotz (1956), Phelps and Pollak (1968), Laibson (1997) and Harris and

Laibson (2001). In this context, we also show how our theoretical results can be blended with

simple numerical analysis.

Our paper is related to several literatures. The first, already mentioned, is Becker’s seminal

paper which argues that market demand curves will be downward sloping even if households

are not rational because their budget constraints will put pressure for even random behavior

to lead to lower demand for goods that have become more expensive. Machina (1982) makes a

related observation about the independence axiom in expected utility theory. Though related to

and inspired by these contributions, our main result is very different. While Becker’s argument

is about whether an increase in price will lead to a (partial equilibrium) change in aggregate be-

havior consistent with “rational behavior”, our focus is about taking the initial change in behav-

ior, whether or not it is rational, as given and then establishing that, under general conditions

on the objectives and behavioral biases and constraints of households, the (general) equilibrium

responses will not reverse this direct response.

The second literature we build on is robust comparative statics (e.g., Topkis (1978), Vives

(1990), Milgrom and Shannon (1994), Milgrom and Roberts (1994), Milgrom (1994), Quah

(2007)). Not only do we share these papers’ focus on obtaining robust qualitative compara-

tive static results, but we also use similar tools, in particular a version of the “curve-shifting”

arguments of Milgrom and Roberts (1994) (see also Acemoglu and Jensen (2015)) which allow

us to derive robust results in non-monotone economies.2 Nevertheless, our main theorem is not

an application of any result we are aware of. Rather, it significantly extends and strengthens

the approach used in the robust comparative statics literature (we provide a detailed technical

discussion of the relationship with previous literature in Appendix B). Most significantly, in

contrast to other approaches in the literature, our comparative static results only rely on “local

information” — on behavior at a specific capital-labor ratio (or vector of prices) rather than the

much stronger notions requiring that behavior increases or decreases savings for all prices.3 As

2See p.590 in Acemoglu and Jensen (2015) for additional discussion of such non-monotone equilibrium compar-
ative statics results.

3See for example Lemma 1 (and Figures 1-3) in Milgrom and Roberts (1994) or Definition 5 in Acemoglu and
Jensen (2015). Milgrom and Roberts (1994) also use local assumptions, but just to derive local comparative statics
results (see Figure 7 and the surrounding discussion); this is different from our results, which are global despite
being based on local assumptions.
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a result, we are able to establish economically and mathematically stronger results: whenever

the sum of the initial savings responses of all agents is positive at the initial capital-labor ratio,

the full general equilibrium will involve an increase in the capital-labor ratio.

In this context, it is also useful to compare our results to those of our earlier paper, Acemoglu

and Jensen (2015), where we analyzed a related setup, but with three crucial differences. First,

and most importantly, there we focused on rational households, thus eschewing any analysis

of behavioral biases and their impacts on equilibrium responses. Second, and as a result of the

first difference, we did not have to deal with the more general problem considered here, which

requires a different mathematical approach. Third and also crucially, we imposed considerably

stronger assumptions to ensure that the direct response of all households went in the same

direction at all prices, which we do not do in the current paper.4

Finally, our paper is related to several recent works that incorporate rich behavioral bi-

ases and constraints into macro models. In addition to those already mentioned, these include

Krusell and Smith (2003), Krusell, Kuruscu and Smith (2010), and Cao and Werning (2018) who

study the dynamic and equilibrium implications of hyperbolic discounting;5 temptation and

self-control preferences as in Gul and Pesendorfer (2001, 2004) and Fudenberg and Levine (2006,

2012); non-separable preferences in dynamic macro models as in Koopmans (1960), Epstein and

Hynes (1983), Kreps and Porteus (1978), Epstein and Zin (1989, 1991), and Backus, Routledge

and Zin (2004); models of ambiguity and multiple priors as in Gilboa (1987) and Gilboa and

Schmeidler (1995); and models of sparse optimization as in Gabaix (2014, 2017).

The rest of the paper is organized as follows. Section 2 describes the model and introduces

the “market correspondence” (which is key to our analysis). Section 3 contains the main results

and applications. Section 4 shows how our results can be applied in the presence of systematic

misperceptions, self-control and temptation preferences, and quasi-hyperbolic households. Sec-

tion 5 concludes, Appendixes A and B contain the proofs of most of the results stated in the text

and additional results, with the remaining proofs presented in the online Appendix C.

4An alternative and complementary approach is based on mean-field games. Particularly noteworthy is Light
and Weintraub (2021), who investigate comparative statics in mean-field games, but once again focusing on uniform
and global changes (see, for example, their Theorem 4). Ahn, Kaplan, Moll, Winberry and Wolf (2018) and Achdou,
Han, Lasry, Lions and Moll (2021) apply mean-field game techniques to the Bewley-Aiyagari model.

5Barro (1999) shows that, with logarithmic utility and a representative household, hyperbolic discounting leads
to similar insights to the standard one-sector growth models. His results do not extend beyond the logarithmic case
and representative household models, and are not related to our general approach.
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2 Behavioral One-Sector Growth Models

This section introduces our general setup, which blends a standard growth model with various

behavioral preferences.

2.1 Production and Markets

The production side is the same as the canonical neoclassical growth model (e.g., Acemoglu

(2009)) augmented with general distortions.

Labor is in fixed supply and normalized to unity so we can use capital, capital-labor ratio

and capital-per-worker interchangeably and denote it by k. Markets clear at all times, and pro-

duction is described by a profit maximizing aggregate constant returns firm with a smooth (per

capita) production technology y = f(k) that satisfies f(0) = 0, f ′ > 0, and f ′′ < 0. We also

impose that there exists k̄ > 0 such that f(k) < k all k ≥ k̄, which ensures compactness. This

condition is implied by the standard Inada conditions when these are imposed. The rate of

depreciation is ∆ ∈ [0, 1].

We allow for taxes and distortions ω(k) and τ(k) on labor and capital. Throughout, “market

prices” refer to pre-tax factor prices, ŵ(kt) ≡ f(kt) − f ′(kt)kt and R̂(kt) ≡ f ′(kt). Hence, the

after-tax (and after-distortion) wage and rate of return facing the households are

wt = w(kt) ≡ (1− ω(kt))(f(kt)− f ′(kt)kt) , (1)

and

Rt = R(kt) ≡ (1− τ(kt))f
′(kt)−∆ . (2)

The simplest example of such distortions are proportional taxes on capital and labor in-

come, τ(kt) = τ and ω(kt) = ω. Other examples include distortions from contracting frictions

or markups due to imperfect competition. When τ(k) = ω(k) = 0 for all k, we recover the

benchmark case with no distortions.

We allow proceeds from these distortions to be partially rebated to households (which will

be the case when they represent taxes and some of the tax revenues are redistributed the house-

holds or when they result from markups that generate profits).

The total amount of resources that is not rebated to households — that is, either consumed

by the government, invested in public goods or wasted, in all cases in a way that does not affect

marginal utilities — is denoted by G(kt). If nothing is rebated, then G(kt) = ω(kt)(f(kt) −
f ′(kt)kt) + τ(kt)f

′(kt). On the other hand, if the only source of distortions is taxes because the

government rebates everything back to consumers (e.g., in the form of lump-sum transfers),

then G(kt) = 0.
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2.2 Households and Capital Markets

There is a continuum of households [0, 1] with a typical household denoted by i ∈ [0, 1]. As

in Aiyagari (1994), households are subject to borrowing constraints and can save either by in-

vesting in a riskless government bond that is in zero net supply or in the capital stock of the

economy, kt. Throughout, we assume that any randomness is such that there is no aggregate

uncertainty, which ensures that capital kt is deterministic and factor prices are given by (1) and

(2) at all times.6

At date t each household i is subject to a labor endowment shock denoted by lit ∈
[limin, l

i
max] ⊂ R++ and a preference shock εit ∈ Ei ⊆ R (where we take Ei to be compact). We

assume that (lit, ε
i
t)
∞
t=0 follows a Markov process with invariant distribution µi. It is convenient

to set eit = (lit, ε
i
t, wt, Rt, T

i
t ), where T it denotes the transfers/rebates that household i receives at

time t.

Household i’s objective is to maximize utility conditional on its beliefs (or expectations)

about the future variables (eiτ )∞τ=t+1 as well as its anticipated future savings behavior. Let us de-

note the “true model” by θM . This includes a complete description of all of this section’s contents,

including current and future taxes, the stochastic process governing (lit, ε
i
t)i∈[0,1], equilibrium

conditions, and so forth.

Household i ∈ [0, 1] forms beliefs at date t on the basis of the true model θM and its ob-

servations of economic variables summarized in eit. We suppress the dependence on the true

model θM throughout to reduce notation, and summarize the belief process with the mapping

P it : eit 7→ P it (·; eit), which defines a probability measure on future outcomes given the cur-

rent vector of variables et. That is, for any (Borel) measurable set of future observations B, the

household believes that (eiτ )∞τ=t+1 will lie in B with probability P it (B; eit) ∈ [0, 1].7 Rational ex-

pectations is the special case of this formulation, where the marginal distribution of exogenous

parameters coincides with objective probabilities implied by the Markov process (lit, ε
i
t)
∞
τ=t+1,

and the household uses the true model θM to correctly predict future prices. A simple and

familiar example is the Bewley-Aiyagari model (Aiyagari (1994)) with i.i.d. labor endowment

shocks li ∼ µi. Because in this case agents have rational expectations, beliefs about future prices

coincide with actual (equilibrium) prices and beliefs about the future realizations of the labor

6Like in Aiyagari, a riskless arbitrage condition ensures that households are indifferent between investing in gov-
ernment bonds and the capital stock. If government bonds are in positive net supply as in Aiyagari and McGrattan
(1998), then the analysis needs to be modified along the lines of Aiyagari and McGrattan (1998), pp.452-453, but their
arguments establish that this is still a one-sector economy and thus all of our results apply.

7Formally, P it (·; et) is a regular Borel (probability) measure on the set of future observations, which can be taken to
be the space of bounded infinite sequences with the supremum norm. For technical reasons, we restrict attention to
measures whose conditional probability of lit+1 lying in a measurable subset of R+ has continuous Radon-Nikodym
derivative with respect to the Lebesgue measure on R+.
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endowment shock coincides with the objective probability measure, µi. For this reason, as in

models with rational expectations more generally, beliefs can be suppressed/ignored altogether.

Other belief formation processes may completely ignore the true model and specify “dog-

matic” misperceptions that are not revised (even when they contradict the data repeatedly),

or generate beliefs on the basis of other variables summarized in eit, which may involve some

Bayesian or non-Bayesian updating. In particular, unlike in models based on rational expecta-

tions and common knowledge, households’ beliefs may be in contradiction with each other and

with actual outcomes. Note also that since wτ and Rτ are the after-tax/after-distortion wage

and rate of return, P it implicitly incorporates (potentially incorrect) beliefs about future taxes

and distortions.

If at date t, household i consumes cit and its future consumption is (cit+1, c
i
t+2, . . .), then it

gets utility

uε
i
t(cit) + V i,εi,t+1

(cit+1, c
i
t+2, . . .) . (3)

Here uε
i
t and V i,εi,t+1

are the current and future utility functions, respectively, and (εit, ε
i,t+1) =

(εit, ε
i
t+1, ε

i
t+2, . . .) is a sequence of parameters that directly impact utility. These parameters

could reflect discount factors or idiosyncratic tastes or biases as in McFadden (1974) (p.108).8

If uε
i
t,i = ui and

V i,εi,t+1
(cit+1, c

i
t+2, . . .) =

∞∑
τ=t+1

βδτ−tui(ciτ ) , δ < 1 , β > 0

we get the time-separable, geometrically discounted benchmark case when β = 1, and the quasi-

hyperbolic model when β 6= 1. A third example is when the household has a finite time-horizon,

V i,εi,t+1
(cit+1, c

i
t+2, . . .) =

∑t+T
τ=t+1 δ

τ−tui(ciτ ). This may be interpreted as a simple version of

“sparsity” in the sense of Gabaix (2014, 2017).9

We denote household i’s assets by ait and its borrowing constraint by ai ≤ 0 (which is as-

sumed to be above the solvency constraint; see e.g. Aiyagari (1994), p.666). We also impose an

upper bound ai > ai, but this comes with no loss of generality under compactness in production

(Section 2.1) as ai may be chosen so that it never binds in equilibrium, P it -almost everywhere

and for almost every household i.

If at date t, the household chooses (gross) savings sit = ait+1 ∈ [ai, ai], its current consumption

8Models such as Gul and Pesendorfer (2004) where utility also depends on asset holdings (Section 4.3) are nested
in this formulation, since asset levels are a function of past consumption choices given initial asset holdings and
factor prices.

9In the working paper version, we also studied the recursive utility specification of Epstein and Zin (1989), which
relaxes additivity in (3), and we further extend what follows to non-additive beliefs and Choquet expected utility
(ambiguity aversion).
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will be

cit = (1 +Rt)a
i
t + wtl

i
t + T it − ait+1 , (4)

and, conditioning on (eiτ )∞τ=t+1, its future consumption will be

cit+1 = (1 +Rt+1)a
i
t+1 + wt+1l

i
t+1 + T it+1 − s̃it+1(a

i
t+1; e

i
t+1)

cit+2 = (1 +Rt+2)s̃
i
t+1(a

i
t+1; e

i
t+1) + wt+2l

i
t+2 + T it+2 − s̃it+2(s̃

i
t+1(a

i
t+1; e

i
t+1); e

i
t+2) (5)

... =
...

where siτ (aiτ ; eiτ ) denotes anticipated savings of a “future self” at date τ > t conditioned on

future asset aiτ and variables eiτ . In this formulation, we are taking future saving functions, siτ for

τ > t, as given. When the household is dynamically consistent and fully rational, she chooses

them as her policy functions. In general, they may be given by the choices of future selves with

only imperfectly aligned interests, and/or misperceived. Note also an important convention:

Throughout we assume that the functions siτ for τ > t are always correctly perceived, and any

misperceptions about the behavior of future selves is represented via the utility parameter ετ .10

At date t, a (gross) savings level ai,∗t+1 is optimal given current assets ait, current observations

eit, the (measurable) anticipated future saving functions siτ , τ > t and the beliefs P it (·; eit) about

future variables (eiτ )∞τ=t+1 if it maximizes the expected value of (3) subject to (4) and (5). De-

noting a sequence of future variables by ẽ and substituting for consumption, we can write this

compactly as

ai,∗t+1 ∈ arg max
a′∈[ai,min{yit,ai}]

ui,ε
i
t(yit − a′) +

∫
W i(a′, ẽ; (siτ )∞τ=t+1)P

i
t (dẽ; e

i
t) , (6)

where yit = (1 + Rt)a
i
t + wtl

i
t + T it is wealth and the continuation utility W i is a measurable

function given as

W i(a′, (eiτ )∞τ=t+1; (siτ )∞τ=t+1) = V i,εi,t+1
((1 +Rt+1)a

′ + wt+1l
i
t+1 + T it+1 − sit+1(a

′; eit+1),

(1 +Rt+2)s
i
t+1(a

′; eit+1) + wt+2l
i
t+2 + T it+2 − sit+2(s

i
t+1(a

′; eit+1); e
i
t+2), . . .).

Observe that the benchmark Bewley-Aiyagari model is a special case of this formulation.

In this case, P it coincides with the true marginal distribution of exogenous parameters and

places probability 1 on the actual values of future endogenous variables ((wt, Rt)∞τ=t+1), given

the Markov process for (lit)
∞
τ=t+1; sit is directly determined from the households’ dynamic pro-

gramming problem; and the continuation utility W i can be obtained from standard dynamic

programming. More generally, however, (6) nests various behavioral biases or dynamic incon-

sistencies such as when households have misperceptions about the future (Section 4.2), or when

10One could derive from P it (·; eit) an induced probability measure over the space of saving functions, but working
directly with P it (·; eit) is notational and conceptually simpler.
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discounting is hyperbolic (Section 4.4).

In what follows, we assume that utility functions and beliefs are continuous. Because the

set of feasible assets is uniformly bounded, this is sufficient to ensure a uniformly bounded

objective function in (6). All sequence spaces are equipped with the supremum norm and the

Borel σ-algebra, and the topology on probability measures is the weak convergence topology

(e.g., see Epstein and Zin (1989), p.940).

Assumption 1 ui is a continuous, strictly increasing and strictly concave function, V i is a con-

tinuous and strictly increasing function, and P it (·; ei) is continuous in ei.

2.3 Time-Stationary Saving Correspondences

We say that beliefs for household i are time-invariant if for all t = 1, 2, 3, . . ., we have

P it = P i for all t = 0, 1, 2, . . . . (7)

The next definition imposes time-invariant belief processes and also requires that current

selves expect future selves to adopt the same saving function.

Definition 1 (Time-Stationary Saving Functions and Correspondences) si is a time-stationary

saving function (TSSF) if for all initial levels of assets ai ∈ [ai, āi], all (w,R, T i), and almost all zi:

si(ai; ei) ∈ arg max
a′∈[ai,min{yi,ai}]

ui,ε
i
0(yi − a′) +

∫
W i(a′, e′; si)P i(de′; ei) , (8)

where ei = (zi, w,R, T i), yi = (1 + R)ai + wli + T i, W i(a′, e′; si) = W i(a′, e′; (si)∞τ=t+1) and

e′ = (ei0, e
i
1, . . .). The union of all time-stationary saving functions is called the time-stationary

saving correspondence, Si(ai; ei) = {si(ai; ei) : si is a TSSF}.

We emphasize that because Definition 1 allows beliefs to be incorrect, it nests both the case

in which households are “sophisticated” (e.g., Strotz (1956), Laibson (1997), Harris and Laibson

(2001)), and cases where agents are “naı̈ve” (in the sense of Strotz (1956)) and expectations are

misaligned with future behavior. It also nests recursive models such as Bewley-Aiyagari where

si can be computed by standard dynamic programming.11

A correspondence is measurable if the inverse image of any open set is Borel-measurable

(Aubin and Frankowska (1990), p.307). The proof of the next lemma is presented in Appendix

A.

11When beliefs are correct and discounting geometric, δ−1W i coincides with the standard value function obtained
from dynamic programming.
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Lemma 1 (Basic Properties of Saving Correspondences) Let Assumption 1 hold and suppose

that each household’s belief formation process is time-invariant. Then for each i ∈ [0, 1], the

(time-stationary) saving correspondence Si(ai; ei) exists, is measurable in (li, εi), upper hemi-

continuous in ai, w, R, and T i, and its least and greatest selections are (weakly) increasing

functions of assets ai.

They key observation is that under the general assumptions of the one-sector behavioral

growth model summarized above, saving correspondences are “ascending” in the standard

sense of robust comparative statics (e.g., Topkis (1978), Vives (1990), Milgrom and Roberts

(1994)). This in particular means that the least and greatest selections (implied saving functions)

from the saving correspondence are nondecreasing in assets. This is what rules out downward

jumps in Figure 1 in the Introduction. An increasing saving correspondence implies that the as-

sociated least and greatest consumption functions increase less than one-for-one with assets. As

a result, any consumption discontinuities must take the form of downward jumps — otherwise,

there will be more than a one-for-one increase in consumption. Allowing for such discontinu-

ities is important since these are common in the presence of dynamic inconsistencies (see e.g.

Harris and Laibson (2001), p.937), as we will see explicitly in Section 4.5.

It is worth reiterating that by imposing time-invariance and focusing on time-stationary

saving correspondences, we are greatly simplifying the description of the environment. First,

time-invariance imposes time-stationary utility, so that households obtain the same continua-

tion utility from the same consumption sequence starting from different points in time. Sec-

ond, it ensures that the belief formation processes are time-invariant.One justification for time-

invariance is that the environment may have already converged to a limit starting from some

initial condition.

Time-invariance enables us to focus on the comparative statics of steady states, but is not

without cost; our results have to be applied with care in settings that are not time-invariant.12

2.4 Steady-State Equilibrium

As a shorthand, we from now on define an “environment”, denoted by θ = (θM , (P i)i∈[0,1]), to

summarize the true model θM and the beliefs (P i)i∈[0,1]. Consider stationary market prices w

andR and an environment θ (including stationary transfers T i). Given these, λi is then an invari-

ant distribution for household i if λi(A×B) =
∫
qi(B; li, εi)1A(si(ai; li, εi, w,R, T i))λi(dai, d(li, εi))

12For example, a policy change may create an initial period of belief confusion or mistaken perception, which
becomes dissipated over time, inducing a specific type of time-dependence (Gabaix (2017)). If this is reversed in
the course of the next T < ∞ periods, our steady-state analysis still applies in principle, but with some important
caveats. This is because the relevant concept is no longer the “direct response” that takes place with the temporary
beliefs, but the “hypothetical direct response” that would have obtained with the time-stationary beliefs (that apply
after T periods) at the initial capital-labor ratio k∗.
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where qi(B; li, εit) is the true model’s probability that (lit+1, ε
i
t+1) lies in B given (lit, ε

i
t), and si is

a measurable selection from the time-stationary saving correspondence (here A and B are Borel

subsets of [ai, ai] and [limin, l
i
max] × Ei, respectively).13 The average (stationary) asset holding is

then E[âi] =
∫
aiλi(dai, d(li, εi)) where âi is the household’s stationary assets given w, R and θ

(formally, âi is the random variable on [ai, ai] with distribution given by λi’s marginal distri-

bution of assets). In the Bewley-Aiyagari model, E[âi] is also the households’ aggregate asset

holdings.

Recall from (1)-(2) that w andR are the after-tax/distortions wage and rate of return, respec-

tively. Hence they generally depend on the environment θ. Whenever this may cause confusion,

we emphasize it by writing the market prices with the environment as a superscript. We define

steady-state equilibria directly in terms of the corresponding capital-labor ratio, and also condi-

tion factor prices on the environment θ when this is necessary for emphasis or clarity.

Definition 2 (Equilibrium) The capital-labor ratio k∗ ∈ R+ represents a (steady-state) equilibrium

given the environment θ, if equilibrium prices w∗ = wθ(k∗) and R∗ = Rθ(k∗) are given by (1)

and (2), household i’s stationary asset distribution is â∗,i given w∗, R∗ and θ for almost every

i ∈ [0, 1], and the capital market clears, that is, k∗ =
∫
â∗,i di.

Note that in this definition we are implicitly assuming that the households’ aggregate as-

set holdings
∫
â∗,i di is well-defined by some version of the law of large numbers.14 On the

other hand, individual asset holdings will not be constant, though they will have a stationary

distribution, which we denote by â∗,i.

2.5 The Market Correspondence

We are now ready to formally define the key theoretical innovation of this paper, namely the

market correspondence. We will see that steady states in our model correspond to intersections

of the market correspondence with the 45◦ line (Lemma 2) and increases in (aggregate) savings

translate into shifts in the market correspondence (Section 3).

13Since the least and greatest selections are increasing in assets (Lemma 1), there will exist an invariant distribution
by Acemoglu and Jensen (2015), Theorem B1 and B3.

14There is a large literature on laws of large numbers and their applications in continuum economies (e.g., Al-
Najjar (2004), Uhlig (1996), Sun (2006)). Here and everywhere else in this paper we remain agnostic about precisely
which formulation of the law of large numbers has been applied in the background. This “agnostic” approach is also
the one taken in Acemoglu and Jensen (2015) where

∫
âi(k) di is simply assumed to equal (or be one-to-one) with

a real number. This approach has the advantage of not committing to a specific interpretation and therefore comes
with maximum generality. On the downside, we must be careful to not push the generality of the setting too far:
In the Aiyagari model, for example, any sensible application of a law of large numbers will require that the labor
endowments’ conditional distributions are at least pairwise independent conditioned on k. For further details and
references, see Acemoglu and Jensen (2010, 2015).
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Let S = (Si)i∈[0,1] summarize the households’ time-consistent savings correspondences.

For a family of selections s = (si)i∈[0,1] ∈ S, write (λi(k; s))i∈[0,1] if for almost every i,

λi(k; s) = λi is an invariant distribution when assets are scaled by k/(
∫
âi(k; s) di), i.e.,

λi(A × B) =
∫
A×li,εi q

i(B; li, εi)1A(si(ai k∫
âi di

; li, εi, w,R, T i))λi(dai, d(li, εi)), where
∫
âi(k; s) di

is the households’ mean asset holdings. The implied distribution of consumption is denoted by

ĉi(k; s).15 We then have:

Definition 3 (The Market Correspondence) The market correspondenceMθ : R→ 2R is:16

Mθ(k) = {f(k) + (1−∆)k −G(k)} − {
∫
ĉi(k; s) di ∈ R+ : s ∈ S}. (9)

The right-hand side of the market correspondence (9) subtracts government and private sec-

tor consumption from total output plus unappreciated capital and thus gives the value of next

period’s capital stock. This motivates why, as in standard one-sector growth models, steady-

state equilibria will be its fixed points.

The next lemma establishes that we can work directly with the market correspondence with-

out specifying underlying equilibrium asset distribution. It also confirms that fixed points of the

market correspondence will be steady-state equilibria. The proof of this lemma uses the fixed

point comparative statics theorem of Acemoglu and Jensen (2015) (Theorem 4, p.601), which

itself builds on Smithson’s generalized fixed point theorem as well as Richter’s theorem (Au-

mann (1965)). However, the most critical component of the proof is the observation that for a

given k, Mθ(k) equals the set of fixed points of a convex valued correspondence whose least

and greatest selections are decreasing, and therefore it is itself convex-valued.

Lemma 2 (Properties of the Market Correspondence) Suppose that all households satisfy the

assumptions in Lemma 1. Then the market correspondence Mθ is a compact- and convex-

valued upper hemi-continuous correspondence that begins above and ends below the 45◦ line.

Furthermore, k ∈Mθ(k) if and only if k is a steady-state equilibrium.

The market correspondence being convex-valued is an important and non-trivial property.

This property does not follow from a convexification argument as in Aumann (1965), but de-

pends critically on the fact that saving correspondences are increasing in the sense of Lemma

15Precisely, âi(k; s) has distribution equal to the marginal distribution of assets implied by λi(k; s). ĉi(k; s) has
distribution λi(k, s)({(ai, li, εi) : (1 + R)ai k∫

âi di
+ wli + T i − si(a k∫

âi di
; li, εi, w,R, T i) ∈ A}, where A is a Borel

subset of the consumption set R+. âi(k; s) and ĉi(k; s) are well-defined under the assumptions of Lemma 1 (see the
proof of Lemma 2).

16This definition requires that the integral
∫
ĉi(k; s) di has a degenerate distribution, and equation (9) refers to its

(unit) mass point. Since ĉi = (1 +R(k))âi +w(k)l̂i + T i − b̂i, where b̂i is the distribution of the next period’s assets,
this integral is well-defined whenever a law of large numbers applies (see footnote 14).
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1 and so, in particular, on the fact that they have no jumps down. If, in fact, Si were to have

jumps down for a subset of agents of positive measure, then the correspondence
∫
Aθ,ik (·) di

in the proof would have jumps down as well. In that case, the market correspondence would

not necessarily be convex-valued and this paper’s main result that the average direct response

determines the long-run outcome would become invalid.

3 Main Results

This section contains our main results. Generalizations are provided in Appendix B and these

results are applied in the context of specific behavioral models in Section 4.

Recall that θM denotes the “true model”, (P i)i∈[0,1] denotes the households’ beliefs, and

that the environment θ = (θM , (P i)i∈[0,1]) therefore contains all of the exogenous variables,

parameters and policy variables of the model as well as specifications of how beliefs about

exogenous or endogenous objects are formed. This section studies changes in the environment

and the set of possible environments Θ is taken to be an ordered set to facilitate this perspective.

For a given environment, θ∗ ∈ Θ, say, we know from Lemma 2 that steady-state equilibria

(Definition 2) correspond to points where the market correspondence intersects with the 45◦-

line, i.e., k∗ is a steady state if and only if k∗ ∈ Mθ∗(k∗). This was illustrated in Figure 1 in the

Introduction in the case where the market correspondence is single-valued (or we consider an

appropriate selection from it).

We are now ready to define (individual and aggregate) direct responses discussed in the

Introduction. In what follows, when this is necessary for emphasis, we condition the saving

correspondence, as well as factor prices, on the environment θ.

Definition 4 (Individual Direct Responses) Let k∗ be an equilibrium given the environment

θ∗ ∈ Θ, and denote by λ∗,i household i’s associated invariant distribution. Let θ∗∗ ∈ Θ be a

different environment. Then we say that household i’s direct response is positive at k∗ if its asset

holdings increase at k∗ when the environment changes from θ∗ to θ∗∗, i.e., if

Sθ
∗∗,i(ai; e∗∗,i) ≥ Sθ∗,i(ai; e∗,i) , a.e. (ai, li, εi) ∈ Support(λ∗,i), (10)

where e∗,i = (li, εi, wθ
∗
(k∗), Rθ

∗
(k∗), T ∗,i) and e∗∗,i = (li, εi, wθ

∗∗
(k∗), Rθ

∗∗
(k∗), T ∗∗,i). If the

inequality is reversed, then household i’s direct response is instead negative.

A couple of comments on notation are useful here. First, we condition the saving corre-

spondences on the environment θ to emphasize its potential shifts in response to changes in

this environment. Second, notice that in e∗,i and e∗∗,i, factor prices and transfers are allowed
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to change because the environment changes, but are evaluated at the same capital-labor ratio,

k∗, highlighting the partial equilibrium nature of the exercise here—hence the emphasis on “di-

rect”. Finally, if the saving correspondence is not single-valued, then the inequality in (10) refers

to the strong set order, that is, the least and greatest optimal savings levels must increase. This

convention is adopted throughout the rest of the paper.

Definition 5 (Direct Responses) Let k∗ be an equilibrium given the environment θ∗ ∈ Θ and

consider a different environment θ∗∗ ∈ Θ. We say that the direct response is positive if the mean

asset holdings of households increase at k∗ when the environment changes from θ∗ to θ∗∗, i.e.,

if
∫
âθ
∗∗,i(k∗) di ≥

∫
âθ
∗,i(k∗) di. If the inequality is reversed so that the mean asset holdings

decrease at k∗ when the environment changes from θ∗ to θ∗∗, the direct response is negative.

The definition is intuitive: We average over the asset holdings (or gross savings) of house-

holds in the old and new environments holding the capital-labor ratio k∗ (hence prices) fixed,

and trace the direction of change. As we illustrate in Section 4, the definition makes direct refer-

ence to the associated consumption-savings model. In particular, for given k∗, the relevant asset

holdings can be computed without any knowledge of (general) equilibrium changes in prices

or quantities that follow from the change in environment. Clearly, if individual direct responses

in Definition 4 are uniformly positive, the (aggregate) direct response in Definition 5 is positive.

Note that in both Definitions 4 and 5, (pre-tax) market prices are fixed at their initial steady-

state values. For example, if the only change in environment is a change in the capital tax rate

(θ = τ ), then we have wθ
∗∗

(k∗) = wθ
∗
(k∗) = f(k∗)− f ′(k∗)k∗, and Rθ

∗
(k∗) = (1− τ∗)f ′(k∗)−∆

and Rθ
∗∗

(k∗) = (1 − τ∗∗)f ′(k∗) − ∆. So when investigating whether a change in environment

leads to a positive or negative direct response, it is sufficient to consider the consumption-

savings problem in steady state, with given prices. By comparison, the standard approach in

the robust comparative statics literature — including in our own work, Acemoglu and Jensen

(2015) — is to impose positive direct responses in the sense of Definition 4 uniformly across all

households and for all market prices (all capital-labor ratios).17 In Section 4, we illustrate how

the direction of the direct response can be determined in growth models with quasi-hyperbolic

preferences, self-control and temptation utilities and systematic misperceptions, and in all of

these cases such results are made possible by the fact that we only need to determine the di-

rection of the direct response, without taking into account any general equilibrium changes in

17For example, in the Bewley-Aiyagari model, one can use the results in Light (2020) who establishes that house-
holds will increase their savings if preferences are CRRA, the coefficient of relative risk aversion is less than one,
and the rate of return increases (see his Theorem 1). In contrast, we will not impose such uniform positive or neg-
ative direct responses. Rather, our approach relies on just the sign of the direct response at the (initial) steady-state
capital-labor ratio k∗, the direct response is positive (or negative).
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prices.

We can now state the simplest version of our main result, which establishes that the long-run

equilibrium outcome is pinned down by the direct response.

Theorem 1 (Main Theorem, Unique Steady State) Assume that households satisfy the assump-

tions in Lemma 1. For environments θ∗, θ∗∗ ∈ Θ let k∗ and k∗∗ denote associated non-trivial

steady-state equilibria and assume that these are unique. Then k∗∗ ≥ k∗ if and only if the direct

response is positive when the environment changes from θ∗ to θ∗∗. Similarly, k∗∗ ≤ k∗ if and

only if the direct response is negative when the environment changes from θ∗ to θ∗∗.

Although uniqueness is a special case, the theorem captures this paper’s main message: In

one-sector growth models, long-run outcomes are entirely pinned down by the average of the

direct responses. Misperceptions, biases and other departures from standard, fully-rational and

time-separable preferences thus impact long-run outcomes in so far as they influence household

decisions at given prices. This result also implies that such departures can easily lead to “para-

doxical” comparative statics (which reverse those of the standard neoclassical growth model)

provided that they change the sign of the direct response. Conversely, when they do not do

so, despite the very rich and potentially complex general equilibrium interactions that these be-

havioral preferences may spawn, they will not affect the qualitative properties of the long-run

equilibrium. In the next section, we use this theorem in economies with quasi-hyperbolic pref-

erences, self-control and temptation utilities and systematic misperceptions to investigate the

direction of comparative statics (how our results can be applied with other classes of behavioral

preferences and biases is discussed in Appendix C).

The remainder of this subsection generalizes Theorem 1 to situations with multiple equi-

libria and extends the discussion of the intuition and the mathematical arguments from the

introductory section.

We next show that both necessity and sufficiency in our main result remain valid when there

are multiple equilibria provided that we focus on the least or the greatest steady state and the

exogenous changes we are considering are “small” (meaning that we can choose them to be

small enough in the usual implicit function theorem sense).

Theorem 2 (Greatest and Least Steady States under Multiplicity I) Assume that households

satisfy the assumptions in Lemma 1 and let k∗− = inf{k : k ∈ Mθ∗(k)} denote the least steady

state and k∗+ = sup{k : k ∈ Mθ∗(k)} the greatest steady state when the environment is θ∗ ∈ Θ,

and analogously k∗∗− and k∗∗+ when the environment is θ∗∗ ∈ Θ. Assume in addition thatMθ is
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upper hemi-continuous in θ ∈ Θ (where now Θ is a topological space). Consider an infinitesimal

change in the environment to θ∗∗. Then, k∗∗− ≥ k∗− if and only if the direct response is positive at

k∗− when the environment changes from θ∗ to θ∗∗, and k∗∗+ ≥ k∗+ if and only if the direct response

is positive at k∗+ when the environment changes from θ∗ to θ∗∗.

If there are multiple equilibria and the change in environment is not “small” (or we are

unwilling or unable to place a topology on the set of possible environments Θ), the sufficiency

part of our main result will still hold for the greatest equilibrium when the direct response is

positive (and for the least equilibrium when the direct response is negative):

Theorem 3 (Greatest and Least Steady State under Multiplicity II) Assume that households

satisfy the assumptions in Lemma 1 and consider k∗ = sup{k : k ∈ Mθ∗(k)} (the greatest

steady state) of the environment θ∗ ∈ Θ. Then if the direct response is positive at k∗ when the

environment changes from θ∗ to a new environment θ∗∗ ∈ Θ, the economy’s greatest steady

state increases, i.e., sup{k : k ∈ Mθ∗∗(k)} ≥ k∗. Analogously, consider k∗ = inf{k : k ∈ Mθ∗(k)}
(the least steady state) of the environment θ∗ ∈ Θ. Then if the direct response is negative at k∗

when the environment changes from θ∗ to the new environment θ∗∗ ∈ Θ, the economy’s least

steady state decreases, i.e., inf{k : k ∈Mθ∗∗(k)} ≤ k∗.

Appendix B contains additional results along the lines of the previous two theorems. Al-

though important for theoretical applications, the details are less central to our substantive

results, hence their relegation to the Appendix. In addition, we also provide there a detailed

comparison with the related equilibrium comparative statics results in Milgrom and Roberts

(1994) and Acemoglu and Jensen (2013).

Figure 2: A positive direct response shifts the market correspondence up at k∗+ (shown by the
move from the dot to the box) and leads to a higher steady-state capital-labor ratio (shown by
the triangle). The figure depicts a case in which there are multiple steady states both before and
after the change in environment.
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The intuition for the results presented in this section was already discussed in the Introduc-

tion. Here we had elaborate their mathematical and conceptual underpinnings. Most impor-

tantly, our approach enables us to represent any model that falls within the general one-sector

behavioral growth model with a market correspondenceMθ. From Lemmas 1 and 2, saving corre-

spondences have no jumps down which, which implies that the market correspondence will be

compact- and convex-valued, upper hemi-continuous and begin above and end below the 45◦

line. Crucially, a positive direct response will raise (or “shift up”) the market correspondence at

the initial capital-labor ratio k∗ as illustrated in Figure 2 (this is proved in the key Lemma 4 in

the Appendix). As this figure also illustrates, the new equilibrium k∗∗ must then be above k∗,

regardless of whether the market correspondence shifts up or down at other capital-labor ratios

k 6= k∗. This result implies that the direct response of aggregate savings at k∗ pins down the

direction of change for the steady-state.18

4 Applications

In this section, we provide a number of applications of our general framework. Throughout

our emphasis will be on two aspects. First, we show that applying our results is often quite

straightforward. Second, we establish that even simple applications of these methods lead to a

number of new results relative to the existing literature. To ease interpretation, we work with

models that have a lot of commonality. Specifically, in all cases we start from Bewley-Aiyagari-

style models with incomplete markets, in which households receive shocks to their labor income

or endowments.

The next subsection presents a lemma that characterizes how solutions of (generalized) Eu-

ler equations change in response to variation in environment. This result will be used in some

of our applications and is of independent interest. We then provide theoretical results for three

classes of models. The first are those that contain “systematic misperceptions” about future vari-

ables, such as interest rates or labor income. We show that our methods can be applied readily

in this class of models. Second, we turn to models of self-control and temptation utility, as de-

veloped in Gul and Pesendorfer (2004), and explain how our results lead to a number of new

results in this context. Third, we discuss models of quasi-hyperbolic discounting as in Phelps

and Pollak (1968), Laibson (1997), Harris and Laibson (2001) and Laibson, Maxted and Moll

(2020). In the last part of this section, we show how our results can be blended with numerical

methods in order to obtain additional insights. Throughout this section, the emphasis is on the

18The figure illustrates the “general” case, in the sense that there are multiple steady states both before and after
the change in the environment, and we focus on the largest ones corresponding to k∗+ and k∗∗+ in Theorems 2 and 3.
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direct response of an economy to changes in environment — how equilibrium objects change

holding constant market prices. With such a characterization at hand, our main theorems can

be invoked to establish general comparative static results.

4.1 A Useful Lemma: Shifts of Solutions to Euler Equations

Our main results in this paper rely on characterizing direct responses in the sense of Defini-

tion 5. In deterministic environments with appropriate smoothness and boundary conditions,

these direct responses can be obtained from (steady-state) Euler equations. In stochastic envi-

ronments, there is typically no such simple Euler equation. Nevertheless, our main result in this

subsection, Lemma 3, shows how various changes in the environment shift the set of solutions

to stochastic (and potentially generalized) Euler equations. These shifts can then be combined

with Theorems 1-3 to derive equilibrium comparative statics in some of the applications we

consider.

To illustrate our approach, let us start with the benchmark Bewley-Aiyagari model and,

as we will do throughout this section, let us suppress dependence on factor prices and trans-

fers, assume differentiability, and write the time-stationarity saving function as s(a, l, ε). In the

Bewley-Aiyagari model, households are only uncertain about their future labor endowments

so there is no loss of generality in omitting ε and writing the time-stationary savings function

s(a, l). Then the next period’s assets choice a′ = s(a, l) solves a “Deaton-type” Euler equation:19

for a.e. (a, l) ∈ [a, a]× [lmin, lmax],

L(a′, (a, l), s, ρ) = −u′((1 +R)a+ wl − a′) + max{δ(1 +R)

∫
u′((1 +R)a′ + wl′ − s(a′, l′))µ(dl′),

u′((1 +R)a+ wl − a)} = 0

Here ρ summarizes all of the fixed parameters on the right-hand side (the prices R and w, and

the environment θ ∈ Θ including the borrowing constraint a). As we explain in the rest of this

section, stochastic Euler equations in several other behavioral consumption-savings models can

be written in a similar form. In this spirit, let us define a time-stationary saving function for

household i ∈ [0, 1] in the general behavioral growth model as a solution a′,i = si(ai, li, εi) to

the (steady-state) Euler equation:

Li(a′,i, (ai, li, εi), si, ρi) = 0 for a.e. (ai, li, εi) ∈ [ai, ai]× [limin, l
i
max]× Ei. (11)

It is clear that the Bewley-Aiyagari model is a special case. In general, (11) can easily have

multiple solutions, and if so, we say that a solution is the least (resp., greatest) solution if the

level of savings is weakly below (resp., weakly above) the level of savings of any other solution

19See Deaton (1991) and Li and Stachurski (2014).
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to (11) for all (ai, li, εi) ∈ [ai, ai]× [limin, l
i
max]× Ei

From now on, we fix a specific household i ∈ [0, 1] and omit the index i.

Assumption 2 1. Continuity: L(a′, (a, l, ε), s, ρ) is continuous in a′ ∈ [ai, ai] and (a, l, ε) ∈
[a, a]× [lmin, lmax]× E.

2. Boundary conditions: Given s and ρ, L(a, (a, l, ε), s, ρ) ≥ 0 and L(a, (a, l, ε), s, ρ) < 0 for all

(a, l, ε) ∈ [a, a]× [lmin, lmax]× E.

3. Monotonicity in future savings: Given ρ, L(a′, (a, l, ε), s, ρ) ≤ L(a′, (a, l, ε), s̃, ρ) if

s̃(a, l, ε) ≤ s(a, l, ε) for all (a, l, ε) ∈ [a, a]× [lmin, lmax]× E.

The first two parts of the assumption impose weak regularity conditions and are satisfied

in all of our applications. In particular, the boundary conditions hold in all of our applications

under an (upper) Inada condition on utility.20 The third part is the key monotonicity condition,

which is a restriction on underlying parameters and functional forms. This third part is also

satisfied in the benchmark Bewley-Aiyagari model and holds in our applications, except in the

“sophisticated” quasi-hyperbolic model, where we will not use this approach (see Section 4.4).

The next lemma shows how least and greatest solutions change as we modify the environ-

ment.

Lemma 3 Suppose that Assumption 2 holds. Then (11) has least and greatest solutions. Fur-

thermore:

• If s∗ is the unique solution to (11) when ρ = ρ∗, s∗∗ is the unique solution to (11) when

ρ = ρ∗∗, and L(s∗(a, l, ε), (a, l, ε), s∗, ρ∗∗) ≥ L(s∗(a, l, ε), (a, l, ε), s∗, ρ∗) for a.e. (a, l, ε) in the

support of λs∗ , then s∗∗(a, l, ε) ≥ s∗(a, l, ε) for all (a, l, ε).

• The statement remains valid for the least and greatest solutions, even when there are mul-

tiple solutions, provided that the change from ρ∗ to ρ∗∗ is infinitesimal andL is continuous.

• The statement also remains valid for the greatest solutions s∗ and s∗∗, even when there are

multiple solutions.

This lemma shows that we can determine whether a change in the environment leads to

a positive direct response without imposing the usual conditions for monotone comparative

20In the benchmark Bewley-Aiyagari model, if u′(c)→ 0 as c→∞, we can always find an upper bound on assets
such that if a′ is above this bound then L < 0. Moreover, we have L ≥ 0 if a′ = a, since otherwise u′(Ra+wl− a) >
δR

∫
u′(Ra+ wl′ − s(a, l′))µ(dl′) > u′(Ra+ wl − a), which is impossible.
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statics, and also without having to compute the saving function in the new environment, which

can be challenging in many economies with shocks and behavioral biases. Crucially, the key

condition in Lemma 3 only needs to hold given ρ∗ and s∗ — that is, at the initial solution to

the generalized Euler equation, s∗, given the initial parameters and steady-state prices w and R

and the initial invariant distribution λs∗ . The lemma thus allows for local (partial equilibrium)

analysis, as required for our main results.

As a final remark, we note that the lemma is stated analogously to Theorems 1-3, distin-

guishing cases with a unique solution from those with multiple solution with or without small

shocks. In principle, all of the results in this section should be stated in this manner. However,

with an abuse of mathematical precision, in what follows, we simplify the statements of our

results by writing simply “a change from ρ∗ to ρ∗∗ increases the saving function”. Throughout,

this should be interpreted as either applying under conditions of uniqueness or for the least

and the greatest steady-state equilibria under the appropriate conditions as in Theorems 1-3 or

Lemma 3.

4.2 Systematic Misperceptions

Our first application is to economies with systematic misperceptions, where agents may not

use the “true model” or may make other systematic mistakes in forming their expectations. In

our general formulation, household decisions depend on beliefs about both future (exogenous)

variables and about future prices, which then shape expectations about future selves’ savings.

In this subsection, we allow for misperceptions on all three dimensions: (i) agents may persis-

tently overestimate their future level of patience (the discount factor), in which case they will

systematically overestimate their future savings; (ii) they may persistently overestimate their

future labor income (which will directly impact savings decisions today); and (iii) they may,

alternately, believe that some policies, such as changes in the capital income tax rate, will affect

their labor income in ways that are not consistent with the underlying model. In all of these

cases, there is a natural dynamic inconsistency: consumption and saving plans made with in-

correct beliefs will have to be revised once households are confronted with actual realizations.

As noted above, we consider as benchmark a Bewley-Aiyagari model with ex-ante identi-

cal households, subject to i.i.d. labor endowment shocks, given by lt ∼ µ(·) over a bounded

support [lmin, lmax] ⊆ R++. We maintain the same assumptions on borrowing limits as in the

previous subsection. All households have time-separable and neoclassical (continuous, increas-

ing, strictly concave, satisfying Inada conditions) utility given by u, and geometrically discount

the future with discount factor δ < 1. We assume that a fraction 1 − α ∈ [0, 1] of households
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are “rational”: they know the true distribution of lt and form correct beliefs about all future

variables. The remaining fraction α are “behavioral” and may hold persistently wrong beliefs.

The first set of incorrect beliefs we consider relate to future patience/discount factors. Specif-

ically, while the true discount factor is always δ, behavioral households overestimate (underes-

timate) their future patience if they believe that future selves will base their decision on the

discount factor δ̂ > δ (δ̂ < δ).21 These beliefs are assumed to be time-invariant and hence dog-

matic, in the sense that a behavioral individual does not change her beliefs even after realizing

that her expectations so far have not been realized.22 Denoting individual i’s beliefs about the

marginal distribution of her future selves’ discount factor δi by P̂ it , we write P̂ it (δi = δ̂|eit) = 1 for

all t, for all i ∈ [0, 1] and for all eit, where eit summarizes factor prices, policies and endowments

(see the proof in the Appendix for details).

Proposition 1 Suppose that a fraction α ∈ [0, 1] of households systematically overestimate

(resp., underestimate) their future patience. Then, the steady-state capital-labor ratio increases

(decreases) when α increases.

Several points are worth emphasizing. First, as noted above, with an abuse of mathematical

precision, the statement refers to the steady-state capital-labor ratio increasing or decreasing.

This should be read as either applying under uniqueness,23 or applying for small changes (in

arbitrarily small increase in α), or as referring to the greatest steady-state capital-labor ratio.

Second, this proposition heavily relies on Lemma 3. The proof first applies this lemma

to show that behavioral households that overestimate future patience save more than fully-

rational households. Once this result is established, Theorems 1-3 yield the desired conclusions.

This structure of argument also shows that our methods are in fact quite straightforward to

apply in this class of environments.

Third, this proposition also determines the effects of misperceptions relative to the neoclas-

sical benchmark: with households that systematically overestimate their patience, steady-state

capital-labor ratio is higher than in the fully rational benchmark (which corresponds to the spe-

cial case where α = 0).

Fourth, this result is, at some level, intuitive. When a household overestimates their future

patience, they think they will have higher savings and thus lower consumption in the next
21Formally, the parameter εi introduced in Section 2.2 now parameterizes beliefs about future discount factors:

εi = δi.
22Such dogmatic beliefs are important, since otherwise Bayesian updating would lead to changes in beliefs after a

sufficiently long sequence of realized labor incomes. For a discussion of how these types of beliefs may survive long
sequences of contradictory information, see Benjamin, Rabin and Raymond (2015).

23In this case, it is possible to place stronger conditions to guarantee uniqueness. For example, see Light (2020) and
Light and Weintraub (2021) (Section 5), whose conditions are sufficient to ensure uniqueness in our model, despite
the systemic misperceptions of some households.
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period. This implies, from the concavity of u, that they will overestimate the marginal utility of

future consumption, encouraging them to save more. While there are indirect effects on their

saving behavior, for example, coming from the implications of the life-time stochastic budget

constraint, this marginal utility channel is strong enough to ensure that an economy with more

behavioral households has more savings and thus a higher steady-state capital-labor ratio.

Fifth, although it follows from a direct application of our methods, to the best of our knowl-

edge there are no analogues of this type of result in the literature. In fact, there are several com-

peting equilibrium effects, which make the impact of such a change on the steady state quite

complex. To understand this point, note that an increase in α raises savings, as described in

the previous paragraph, and consequently reduces the interest rate and increases wages. These

price changes will have ambiguous implications for both the behavioral and rational house-

holds. Depending on the income and substitution effects, the equilibrium response to price

changes may be a further increase or a reduction in savings. As a result, there is no reason to ex-

pect that the full general equilibrium effect will go in the same direction as the direct effect. The

finding that it does so under general conditions is an original result of our framework, which

highlights the critical role of the one-sector structure (see the discussion in the Introduction as

well).

Sixth, the proposition says nothing about individual-level behavior. In fact, we will see at

the end of this subsection that there is generally a type of individual-level “indeterminacy” (see

Proposition 4): because of equilibrium responses to changes in prices, some households will end

up increasing their savings while others will reduce theirs, and it is very difficult to pin down

how a given household will behave, without knowing the exact changes in equilibrium prices

(which of course depends on how each household behaves at the end). This indeterminacy

and the resulting richness of individual behavior sharply distinguish our approach from those

that use monotone comparative static methods that require all households to move in the same

direction.

Finally, this proposition, like all others in this section, is stated for the case of ex ante ho-

mogeneity in terms of utility functions and labor endowment sequences (but of course not in

terms of rationality/behavioral biases). This homogeneity is adopted for simplicity and can be

easily relaxed. We could allow, as in our main analysis, different types of households, with each

group having different utility functions and different fractions of behavioral and fully-rational

agents. In that case, an analogue of Proposition 1 follows, provided that we consider a change in

the environment that still induces a positive direct response as required in Definition 5. In fact,

using similar steps, one can also combine different types of behavioral biases within the same

model, and if the change in environment induces a positive direct response, our main results
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can be readily applied.

The results in Proposition 1 critically depend on the fact that we are considering mispercep-

tions about future discounting. If, instead, there are misperceptions about labor income, the

results are very different. To illustrate this possibility, let us now suppose that a fraction α of the

households believe that their labor income has a distribution given by wt′ lt′ ∼ µmW (·|wt′) where

µmW may differ from the true distribution of labor income, µW (A|wt′) = µ{l ∈ [lmin, lmax] : wt′ l ∈
A} (here A is a Borel measurable subset of R+). In what follows, we say that behavioral house-

holds “overestimate (resp., underestimate) their future labor income” given the market wage

w, if, given w, µmW (·|w) first-order stochastically dominates (resp., is first-order stochastically

dominated by) µW (·|w). Once again, these beliefs are dogmatic.

Proposition 2 Suppose that a fraction α ∈ [0, 1] of households systematically overestimate

(resp., underestimate) their future labor income at the initial steady-state wage level w(k∗)

where k∗ is initial steady-state capital-labor ratio. Then, the steady-state capital-labor ratio de-

creases (increases) when α increases.

To save space, the proofs of this and the remaining results in the paper are presented in the

online Appendix C.

Although households are again overestimating future savings, the conclusions are the op-

posite of Proposition 1: behavioral biases now reduce savings and capital accumulation. This is

because incorrect beliefs about labor income have very different implications than those about

future discount rates, as they encourage households to consume more under the mistaken be-

lief that they are richer than they truly are. As a result, greater overestimation of future labor

income leads to lower savings, and the behavioral model has, analogously, lower capital-labor

ratio than the fully rational benchmark (which again corresponds to the case where α = 0).

We would like to reiterate that, despite the apparent simplicity of this result, we are not

aware of similar findings in the literature. In fact, an approach that focuses on aggregate be-

havior is key for deriving this result, since typically some individuals will increase their savings

while others reduce theirs.

Our next result shows that simple misperceptions can also change the direction of standard

neoclassical comparative statics. We illustrate this possibility focusing on one of the more robust

comparative statics in fully rational models: the positive impact of a reduction in the capital

income tax rate on capital accumulation.

Suppose now that capital income is taxed at the rate τ ∈ [0, 1), there is no tax on labor in-

come, capital depreciates fully after use, and tax revenues are spent on a non-productive public

good (and thus do not impact the marginal utility of consumption). In terms of our general
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formulation, this implies G(kt) = τf ′(kt)kt and T i = 0 for all i, and equilibrium prices are given

by (1)-(2) where ω(kt) = 0, τ(kt) = τ and ∆ = 1. For illustration purposes, let us focus on

CRRA utility and further assume that the intertemporal elasticity of substitution χ is greater

than some threshold χ ∈ (0, 1), which ensures that the substitution effect is not overwhelmed

by the income effect and thus households’ asset supply is increasing in the rate of interest (see

Aiyagari (1994), pp. 667-668). These assumptions are sufficient to ensure that a reduction in the

capital income tax rate increases the (unique) steady-state capital-labor ratio in the benchmark

Bewley-Aiyagari model.

The only difference between the rational and behavioral households is that the behavioral

households incorrectly believe that capital income taxes directly impact their future labor in-

comes (rather than just indirectly via capital accumulation). In other words, they believe:

wt′ lt′ ∼ µmW (·|wt′ , τ), t′ > t. We say that a reduction in capital income taxes “causes opti-

mism (resp., pessimism)” if µmW (·|wt′ , τ̃) first-order stochastically dominates (resp., is first-order

stochastically dominated by) µmW (·|wt′ , τ) whenever τ̃ < τ . For example, a reduction in capi-

tal income taxes can cause optimism if some agents believe that such a reduction increases the

efficiency of the economy beyond its impact on saving incentives.

Proposition 3 Suppose that all households have CRRA utility with intertemporal elasticity of

substitution χ ∈ (χ,∞) and a fraction α ∈ (0, 1] of households systematically misperceive the

effect of capital income taxes on their future labor income. If a reduction in capital income tax

causes pessimism among behavioral households, then it increases the steady-state capital-labor

ratio. If it instead causes optimism among behavioral households, then for any α there exists

χa ∈ (χ,∞) such that for all χ ≤ χα, the lower capital income tax reduces the steady-state

capital labor ratio.

The proof of this result relies on Lemma 3 as well as Theorem 1 in Light (2020).

When the capital income tax is reduced, rational households always (for any choice of

χ ∈ (χ,∞)) increase their savings starting from the initial steady state. If the capital income

tax reduction causes pessimism among behavioral households, their reaction will amplify the

response relative to the benchmark with rational households (this is because behavioral house-

holds feel poorer and thus increase their savings by even more than the rational agents). The

aggregate direct response of Definition 5 is positive, and the standard comparative statics hold

by Theorem 1 (we can invoke this theorem because we have uniqueness in this case).

However, if the capital income tax reduction causes optimism among behavioral house-

holds, their response at the initial prices can be negative. In fact, when χ is sufficiently low,

because their response to the change in the net interest rate is very small, the optimism channel
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wins out and they respond negatively to the cut in the capital income tax rate. Hence, in this

case the direct responses of rational and behavioral households are going in opposite directions,

and the balance between the two will depend on their quantitative magnitudes. When χ is low,

rational households’ response is quantitatively small, and thus the negative reaction from be-

havioral households wins out and we obtain the second part of the proposition, which shows

the reversal of the neoclassical comparative statics in response to capital tax rates. Notably, even

a small fraction of behavioral agents that mistakenly become more optimistic about their future

labor income is sufficient for such a reversal.

This proposition illustrates how fine details of behavioral biases are necessary to under-

stand whether standard comparative statics will continue to apply. It also reiterates why

monotonicity-based tools would not have been useful in the setup (different households are

moving in different directions).

Our final result takes this one step further and establishes individual-level indeterminacy, as

already anticipated above. Let η(·) denote the Lebesgue measure on the set of households [0, 1]

so that η(J) is the mass of a (measurable) subset of households J ⊆ [0, 1].

Proposition 4 Suppose that each household has CRRA utility with intertemporal elasticity of

substitution χi ∈ (1,∞) and consider a reduction in the capital income tax that causes pes-

simism among the behavioral subset of households. Then there exists B > 0 such that the

following holds: For any (measurable) subset J ⊆ [0, 1] of households with η(J) ≤ B, there

exists a production function and a profile of misperceptions and intertemporal elasticities of

substitution for the remaining set of households, [0, 1]\J , such that the lower capital income tax

will lead to lower aggregate stationary savings for all households in J , while the steady-state

capital-labor ratio and aggregate savings will increase.

For the same production function, there also exists a profile of misperceptions and intertem-

poral elasticities of substitution for the remaining set of households, [0, 1]\J , such that the lower

capital income tax leads to higher aggregate stationary savings for all households in J .

Focusing on the comparative statics with respect to the capital tax rate, Proposition 4 shows

that, while aggregate savings increase, there is not much that can be said about individual be-

havior. In particular, any small subset J of households will increase or reduce their savings

depending on the exact misperceptions and elasticities of substitutions of other agents.24 The

intuition for this result is that for any level of the interest rate elasticity of households in the

24An analogous result holds when aggregate savings decrease following the decline of the capital income tax rate.
Here, for simplicity, we focus on the more standard case in which aggregate savings and the capital-labor ratio
increase.
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subset J , the remaining households’ saving levels could be even more elastic. This would make

the increase in the after-tax interest rate small relative to the rise in the wage rate, and the re-

sulting large income effect induces households in J to reduce their savings. This indeterminacy

result reiterates that our main results are not driven by some hidden monotonicity assumptions

— they are a consequence of the discipline that this class of models imposes on aggregate vari-

ables despite, despite behavioral preferences, while placing little or no restrictions on individual

behavior.

4.3 Self-Control and Temptation

We next present similar comparative static results for self-control and temptation preferences

introduced and studied in Gul and Pesendorfer (2004). The benchmark is as before; a Bewley-

Aiyagari model with ex ante identical households subject to i.i.d. labor endowment shocks, given

by lt ∼ µ(·) over support [lmin, lmax] ⊆ R++. The main difference is that now, in addition to a

standard neoclassical utility function u and discount factor δ < 1, households have a temptation

cost given by φv where the parameter φ ∈ [0, 1] represents their “temptation intensity”. As

φ → 0, we approach the standard neoclassical benchmark without self-control and temptation

problems. We continue to assume a borrowing limit of a ≤ 0, and to start with, there are no

misperceptions. In this case, we assume, again for simplicity, that all households have self-

control and temptation preferences, rather than doing so only for a fraction α of households.

We also suppress ε in what follows to pare down the notation.

This model satisfies the assumptions in Lemma 1, provided that overall utility, u(c) + φv(c),

is concave, increasing and continuous. To simplify the exposition, we will additionally assume

that u is strictly concave and that u and v are at least four times continuously differentiable

on R+. In addition, we assume that v is either strictly convex everywhere, or strictly concave

everywhere with positive third derivative.

The advantage of this formulation of self-control and temptation, as introduced in Gul and

Pesendorfer (2004), is that when prices are constant, then consumption-saving decisions are

given by a standard dynamic programming problem. In particular, households’ time-stationary

saving function s(a, l) is uniquely determined, and in the rest of the section, we simplify the no-

tation further by dropping the conditioning on factor prices. In this case, the following dynamic

programming recursion determines the saving function s(a, l):

s(a, l) = arg max
a≤a′≤y

u(y − a′) + φv(y − a′) + δ

∫
W ((1 +R)a′ + wl′)µ(dl′)− φv(y − a) , (12)

where y = (1 + R)at + wlt denotes current total wealth (or cash-at-hand) and W is the value

function.
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Figure 3: Temptation vs Benchmark Case

Our first result shows the effects of changing the temptation intensity φ or the borrowing

limit a.

Proposition 5 Suppose that the steady-state saving function in this economy s(a, l), and assume

that

δ(1 +R)

∫
v′((1 +R)s(a, l) + wl′ − s(s(a, l)), l′)− v′((1 +R)s(a, l) + wl′ − a)

v′((1 +R)a+ wl − s(a, l))
µ(dl′) ≤ 1 . (13)

Then the steady-state capital-labor ratio is decreasing in the temptation intensity φ. If, on the

other hand, this inequality is reversed, then the steady-state capital-labor ratio is increasing in

the temptation intensity φ.

Suppose φ > 0. Then, a looser borrowing constraint (a reduction in a) will reduce the steady-

state capital-labor ratio if v is convex; and it will increase the steady-state capital-labor ratio if v

is concave and no household is initially borrowing constrained.

Once again, we are not aware of any results in the literature that are similar to this propo-

sition, which illustrates how our general approach can be applied to yield simple but powerful

new insights. Although far from obvious, these results are intuitive. Condition (13) implies

that costly self-control does not raise the (expected) marginal utility of future consumption by

“too much” in comparison with the benchmark case. In particular, this is true in the case Gul

and Pesendorfer (2004) focus on, since a convex temptation cost function v ensures that self-

control reduces the marginal utility of future consumption when φ increases. As this will induce

households to shift consumption towards the present, savings decline as φ increases. Our main

theorems then imply that a higher φ leads to a greater steady-state capital-labor ratio, as illus-

trated in Figure 3. If, on the other hand, costly self-control increases the marginal utility of
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future consumption (v concave), and this impact is sufficiently powerful (v is “sufficiently con-

cave”), then the impact of the higher φ on savings and, by our main theorems, the new steady

state is reversed.25 It then follows immediately that self-control and temptation preferences can

increase or reduce steady-state capital-labor ratios relative to the neoclassical benchmark (with

φ = 0), depending on whether condition (13) is satisfied.

The second part of the proposition might at first appear even more surprising. Recall that

temptation costs reduce the marginal utility of future consumption when v is convex because

the marginal cost of giving in to temptation increases with the household’s wealth level. With a

similar reasoning, looser borrowing constraints that allow the household to go into debt increase

temptation costs when v is convex. This reduces the marginal utility of future consumption and

encourages lower savings. In this case, the comparative statics are thus similar to the standard

ones (Aiyagari (1994), p.672), but working through a distinct temptation channel. In contrast,

when v is concave, households will become better at resisting temptation with a looser borrow-

ing constraint, because temptation increases less than proportionately with household wealth.26

In this case, paradoxically, a looser borrowing constraint can increase aggregate savings, in par-

ticular for households that are not actually borrowing constrained.27

We next study the effects of tax policy in the presence of self-control and temptation. We

now set φ = 1 to economize on notation. The only additional feature is that, as in the previous

subsection, there is a linear capital income tax rate at the rate τ , the proceeds of which are spent

on a non-productive public good. We also assume full depreciation, so that 1 + R = (1 − τ)R̂

where R̂ = f ′(k∗) is the (pre-tax) market price. To shorten expressions we further use the

notation [u′ + v′](c) = u′(c) + v′(c) and similarly the second derivatives.

Proposition 6 Denote the initial rate of capital income tax by τ∗ ∈ (0, 1), let s(a, l) denote the

initial saving function and c(a, l) = (1 +R)a+ wl − s(a, l) the consumption function. If

δ(1− τ∗)R̂s(a, l)
∫

[u′′ + v′′](c(s(a, l), l′)− v′′(θ(1− τ∗)R̂s(a, l) + wl′ − a))µ(dl′)∫
[u′ + v′](c(s(a, l), l′)− v′((1− τ∗)R̂s(a, l) + wl′ − a)µ(dl′)

≥ [u′′ + v′′](c((a, l))a∫
[u′ + v′](c(s(a, l), l′)− v′((1− τ∗)R̂s(a, l) + wl′ − a)µ(dl′)

− δ (14)

for all (a, l) in the support of the invariant distribution given s, then a higher capital income

tax τ∗∗ > τ∗ reduces the steady-state capital-labor ratio. If (14) holds in reverse, then a higher
25We can also note that convex temptation costs reduce the “over-saving” problem in the benchmark Bewley-

Aiyagari model, while concave temptation costs exacerbate it.
26Loosely speaking, we can think of this as the case in which the marginal temptation to eat a (whole) cake is

getting weaker with the size of the cake due to diminishing returns.
27Going against this is the fact that households that are borrowing constrained will increase their consumption

(see for example Aiyagari (1994), p.672). For this reason, this part of the proposition is stated for the case in which
no household is initially borrowing constrained.
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capital income tax increases the steady-state capital-labor ratio.

Like the previous result, Proposition 6 relies on Lemma 3 to sign the direct response follow-

ing an increase in the capital income tax rate on savings, and then exploits our main results,

Theorems 1-3. We emphasize once more that this proposition is a fairly direct application of

our methods, but the economics is both interesting and non-trivial. In particular, there is (and

can be) no prediction about the saving behavior of all households, some of which can and often

will go against the aggregate. Additionally, (14) is a local condition and applies only at current

prices given the initial capital tax τ∗. Hence, our approach, eschewing strong monotonicity re-

quirements and focusing on aggregate behavior and local conditions, is critical for this result.28

The proposition shows how under a simple condition (summarized in equation (14)), we

can make sure that standard neoclassical comparative statics hold in the presence of self-control

and temptation considerations. At the same time, as in Proposition 3 for the systematic misper-

ceptions case, this result also highlights that when the relevant condition is reversed, standard

neoclassical comparative statics can be easily overturned. Such reverse comparative statics do

not require extreme parameters and can hold under reasonable economic conditions.29

We next explain the logic of condition (14), further clarifying when the reverse comparative

static result holds. First, condition (14) does not have any direct or distributive effects, because

tax proceeds are not transferred back to households and do not affect the marginal utility of

consumption (though it is easy to generalize this condition to the case in which there are such

rebates). Second, the intuition should be understood in terms of the effects of capital income

taxes on the marginal utility of consumption and marginal temptation costs. To explain this in

the clearest possible way, let us ignore uncertainty (assuming that l takes a single value) and

again assume full depreciation. Let us also define the shorthand R̂ = (1 + R)/(1 − τ) = f ′(k∗)

28The statement and proof of the proposition also exploit the fact that all households have positive assets. This
follows from Proposition 5.

29For example, suppose v has a positive third derivative, which implies that v′′(c(s(a, l), l′))−v′′(θRs(a, l)+wl′−
a) < 0 in the numerator on the left-hand side of (14). If u′, v′ and u′′ are all uniformly bounded from below, and v′′′

is bounded from below by a large enough positive constant, then the reverse comparative static will hold (recall that
l has bounded support so that the propensity to save out of assets, s(a, l)/a, is uniformly bounded from above).
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to denote the (pre-tax) market price of capital. In this case, (14) becomes:30

(1− τ∗)R̂v
′′(y∗)

v′(y∗)
≥
(

(1− τ∗)R̂− 1
) u′′(c∗) + v′′(c∗)

u′(c∗) + v′(c∗)
, (15)

where c∗ is steady-state consumption and y∗ is steady-state wealth. Since (1 − τ∗)R̂ > (1 −
τ∗)θR̂ > 1 and u+v is strictly concave, this condition immediately implies that when temptation

utility is convex, (15) always holds and thus neoclassical comparative statics generalize readily

to models with self-control and temptation. Conversely, however, reverse comparative statics

apply when v is strictly concave. For example, when v = u, constant or increasing absolute rate

of risk aversion is sufficient to reverse (15) and thus the standard comparative statics.

The economic intuition for comparative static reversals is also interesting. As opposed to

the standard utility function u, the temptation utility v can be concave or convex, even though

Gul and Pesendorfer (2004) focus on the case where v is convex. Concavity in this case would

imply that households have an incentive to smooth their wealth, since a smoother wealth profile

lowers temptation costs. If this wealth smoothing motive is sufficiently strong — in particular,

stronger than the consumption smoothing motive — a lower capital income tax rate encourages

lower savings in order to achieve a smoother wealth profile.

Finally, we will use the self-control and temptation preferences to show how our methods

can be applied for deriving new distributional comparative statics (see Jensen (2018) for more

on distributional comparative statics). To do this in the simplest possible way, we combine

these preferences with misperceptions about future labor endowments, which helps us isolate

the effects of self-control considerations (abstracting from other effects of changes in labor en-

dowments).31

Specifically, all households believe future endowments are given by distribution µ∗, and

without loss of any generality, we suppose that initially µ∗ = µ, where µ denotes the true dis-

tribution of labor endowments. We then consider a mean-preserving spread of µ∗ to µ∗∗. The

30In deterministic models, direct responses are always determined because one can apply the implicit function
theorem (IFT) to (steady-state) Euler equations. In the steady state of a representative household economy, k∗ = a∗ =

s(a∗;w,R). When Tt = τR̂kt, steady-state consumption and wealth are thus c∗ = ((1− τ)R̂ − 1)a∗ + wl + τR̂k∗ =

(R̂− 1)a∗ + wl and y∗ = (1− τ)R̂a∗ + wl + τR̂k∗ = R̂a∗ + wl. The (steady-state) Euler equation is therefore

(1− 1

δ(1− τ)R̂
) · {u′((R̂− 1)a∗ + wl) + v′((R̂− 1)a∗ + wl)} − v′(R̂a∗ + wl) = 0 .

Applying the IFT to determine da∗/dτ , and using that the Euler equation must hold, one obtains da∗/dτ ≥ 0⇔ (15).
31We also note that such misperceptions may be quite natural in general, because estimating future distributions

is difficult for many households.
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generalized Euler equation for this case is

−u′((1 +R)a+ wl − s(a, l))− v′((1 +R)a+ wl − s(a, l))+
max{δ(1 +R)

∫
u′((1 +R)s(a, l) + wl′ − s(s(a, l), l′))+v′((1 +R)s(a, l) + wl′ − s(s(a, l), l′))

−v′((1 +R)s(a, l) + wl′ − a)µ(dl′), u′((1 +R)a+ wl−a) + v′((1 +R)a+ wl − a)} = 0

Although determining the effects of such distributional shifts is in general challenging, by

Lemma 3 comparative statics simply turn on whether the integrand in the GEE is convex or

concave as a function of l′. Denoting the initial wealth distribution and consumption function

by µ∗y and c, respectively, convexity therefore holds when

u′′′(c(y)) + v′′′(c(y))− v′′′(y − a) ≥ 0 for y ∈ Supp(µ∗y). (16)

Proposition 7 A mean-preserving spread of perceived future labor endowments increases the

steady-state capital-labor ratio when (16) holds, and reduces the steady-state capital-labor ratio

when this inequality is reversed.

We are once again unaware of any similar results in the literature. Nevertheless, this propo-

sition is intuitive. Consider first the benchmark case with no temptation costs (v = 0). In this

case, (16) reduces to the well-known “prudence” condition for precautionary savings, and the

mean-preserving spread increases savings when consumers are prudent and find it optimal to

raise their precautionary savings.

In the presence of temptation utility, there are additional effects. First, if v has a negative

fourth derivative, we obtain a prudence effect working through temptation costs, reinforcing the

precautionary savings effect (when v has a negative fourth derivative, v′′′(c(y))−v′′′(y−a) ≥ 0 in

(16)). In contrast, when v has a positive fourth derivative, then temptation considerations work

against precautionary savings. The economic intuition is again related to wealth smoothing:

a smoother consumption profile implies a more varied wealth profile. When there are strong

wealth smoothing motives, soaring consumption becomes costly and discourages precaution-

ary savings, potentially reversing standard comparative statics.

Like in Propositions 3 and 6, the current result shows how local conditions on the quan-

titative balance between competing effects determine whether a given change in environment

leads to higher or lower steady-state capital-labor ratio. In this case, intuitively, wealth smooth-

ing motives can easily reverse prudence effects when the latter are bounded. For example, when

u′′′(c) ≤ A for some A > 0 and for all c, and v′′′′(c) ≥ B > 0, the following condition is suffi-

cient to reverse (16): B > −A/awhere a < 0 is the borrowing limit.32 This condition crystallizes

32Since y ≥ c(y) and v has a positive fourth derivative, u′′′(c(y)) + v′′′(c(y))− v′′′(y−a) ≤ u′′′(c(y)) + v′′′(c(y))−
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the intuition that distributional comparative statics with self-control and temptation preferences

depend on whether consumption smoothing or wealth smoothing is more important.

4.4 Quasi-Hyperbolic Preferences

We now study the applications of our methods to quasi-hyperbolic preferences, studied among

others by Phelps and Pollak (1968), Laibson (1997), Barro (1999), Harris and Laibson (2001),

Krusell, Kuruscu and Smith (2002), Balbus, Reffett and Wozny (2015), and Laibson, Maxted and

Moll (2020). Despite the popularity and the broad range of applications of these preferences,

comparative static analysis is even more challenging in this case, because of dynamic inconsis-

tency.33 The literature distinguishes between the naı̈ve and sophisticated versions of hyperbolic

discounting. In the former, households do not recognize that they will change their plans in

the future, while in the latter they do and thus understand that they are playing a game with

their future selves (and savings are determined by the time-stationary Markovian equilibria of

this dynamic game). Both cases can be studied with the approaches proposed in this paper and

satisfy the assumptions in Lemma 1. In the sophisticated case, the household saving decisions

in (8) solve:

s(a, l) ∈ arg max
y∈B((1+R)a+wl)

u((1 +R)a+ wl − y) + βδ

∫
W (y, l′) µ(dl′) ,

where B((1 +R)a+ wl) = {y ∈ [a, a] : y ≤ (1 +R)a+ wl}, and the continuation utility is given

as

W (y, l) = u((1 +R)y + wl − s(y, l;w,R)) + δ

∫
W (s(y, l), l′) µ(dl′) . (17)

In the naı̈ve case, on the other hand, current selves believe, incorrectly, that future selves will

discount geometrically with the “long-run” discount factor δ.34 Here, the correctly anticipated

future saving function s(y, l) in (17) is replaced with a misperceived saving function sf (y, l)

determined as in the benchmark neoclassical consumption-savings problem:

sf (a, l) ∈ arg max
q
u((1 +R)y + wl − q) + δ

∫
V (q, l′) µ(dl′),

where V (y, l) = maxq u((1 +R)y+wl− q) + δ
∫
V (q, l′) µ(dl′). The naivety in this formulation is

v′′′(c(y)− a) = u′′′(c(y)) +
∫ c(y)
c(y)−a v

′′′′(τ)dτ ≤ A+ aB < 0.
This channel can be referred to as “temperance”, capturing the aversion to fluctuations in wealth. (16) illustrates

the tension between consumption smoothing working through v(c(y)) vs. wealth smoothing encapsulated in−v(y−
a). We can also note that a positive fourth derivative is necessary and sufficient for the latter effect to dampen
precautionary savings (put differently, v′′′(c(y)) < v′′′(y − a) if and only if v has a positive fourth derivative).

33The exception is for the deterministic logarithmic utility case, which is observationally equivalent to the
dynamically-consistent and fully rational benchmark, as noted in Barro (1999) and Krusell, Kuruscu and Smith
(2002).

34This is similar to the misperception about future discount factors in Section 4.2. See also the proof of Proposition
8.
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rooted in the fact that anticipated future savings will persistently differ from actual future sav-

ings. The next proposition establishes comparative static results for the naı̈ve quasi-hyperbolic

model that parallels the results in Section 4.2.

Proposition 8 Assume that a fraction α ∈ [0, 1] of households are naı̈ve quasi-hyperbolic with

β < 1 and long-run discount factor δ < 1, and the remaining fraction 1 − α of households are

rational with discount factor δ < 1. Then an increase in α or a decrease in either β or δ reduces

the steady-state capital-labor ratio.

An immediate implication of the proposition is that the steady-state capital-labor ratio will

be lower in an economy with naı̈ve quasi-hyperbolic households than in the benchmark neo-

classical model (assuming the same long-run discount factor). As all of our previous results,

this result naturally generalizes to the more realistic situation where (measurable) subsets of

households may have different discount factors and/or utility functions. This proposition once

again exploits Lemma 3 and then applies our main theorems, and the proof in Appendix C clar-

ifies that the mathematical arguments are analogous to the ones in Section 4.2 and the effects of

capital income taxes with naı̈ve quasi-hyperbolic preferences can be studied in the same way.

We omit these results to avoid repetition.

Comparative statics in the sophisticated case are more challenging, however, because of the

strategic interactions between different selves. This can be seen from the generalized Euler

equation in terms of time-stationary savings, s(a, l) = y (where we are again assuming full

depreciation and ignoring the borrowing limit):

−u′((1 +R)a+ wl − y)+

δ(1 +R)

∫
u′((1 +R)y + wl′ − s(y, l′))µ(dl′)︸ ︷︷ ︸

“Standard Impact”

− δ(1− β)

∫
∂u((1 +R)y + wl′ − s(y, l′)))

∂y
µ(dl′)︸ ︷︷ ︸

“Future Selves Adjustment”

= 0.

If we define L as in Lemma 3 and impose Assumption 2, we can establish similar results

to those for the naı̈ve model. However, inspection of the previous equation reveals that part

3 of Assumption 2 (“Monotonicity in future savings”) might not hold due to the impact of the

“Future Selves Adjustment”, especially when β is “low” and consequently the conflict between

current and future selves is severe.

In this case, the comparative statics with sophisticated quasi-hyperbolic households is more

complex and potentially more interesting. In the next subsection, we show how numerical anal-

ysis can be blended with our methods to make progress in this case. Here, as a final result, we

provide a basic intuition for the types of results that arise in this case by focusing on the spe-

cial case where uncertainty about endowments is very small, which leads to approximately no
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precautionary savings. First, let us follow Harris and Laibson (2001) and write the Generalized

Euler Equation in terms of consumption C as:

u′(C(yt)) = (1− τ)R̂δ

∫ (
1 + (β − 1)C ′(yt+1)

)
u′(C(yt+1))µ(dlt+1), (18)

where τ ∈ [0, 1) is the capital income tax, R̂ = (1 +R)/(1− τ) is again the (pre-tax) market price

of capital, yt = (1− τ)R̂at +wlt +Tt is current wealth, yt+1 = (1− τ)R̂[yt−C(yt)] +wlt+1 +Tt+1

is next period’s wealth, and C ′(y) denotes the derivative of the consumption function with

respect to current wealth, y. Next assuming CRRA utility with rate of risk-aversion γ, we show

in Appendix C that as uncertainty about future labor endowments vanishes, the Generalized

Euler equation converges to

((1− C ′(y))R̂)γ = (1− τ)R̂δ
(
1 + (β − 1)C ′(y)

)
, (19)

where y is the steady-state level of wealth in the limit economy with no labor endowment un-

certainty. Even though we cannot apply Lemma 3, we can use the implicit function theorem to

conclude that a lower capital income tax will increase savings if and only if (see Appendix C for

details):

(1− C ′(y))−1 >
1− β
β

1− γ
γ

. (20)

Conversely, when this condition is reversed, comparative statics of capital income taxes are also

reversed.

A couple of additional observations are useful. First, when β → 1, there is limited conflict

between current and future selves and standard comparative statics apply. Similarly, these com-

parative static results also hold when γ ≥ 1 (including the logarithmic utility case). In contrast,

when β → 0 and γ < 1, the right-hand side diverges and this condition is violated (the left-hand

side is bounded above by 1 + β−1(((1 − τ)δ)−1 − 1), and thus γ < (1 − τ)(1 − β)δ is sufficient

to ensure the reverse inequality). Condition (20) and this discussion also provide an intuition

about why lower capital taxes can reduce long-run capital-labor ratio: as (18) shows, a higher

marginal utility in the future will be associated with a higher marginal utility today, which im-

plies that more savings in the future will go together with more savings today. This linkage will

be particularly strong when γ is low (high intertemporal elasticity) and when β is low (which

in turn implies that (1− τ)δ(1− β) is large). These strategic interactions between selves makes

current consumption very sensitive to future savings, and consequently, greater future savings

induced by lower taxes will lead to even more savings today. Because this cannot be sustained

in steady state, the steady state level of savings will have to decrease.
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4.5 Numerical Analysis for Robust Comparative Statics

In this subsection, we show how our general methods can be combined with numerical analysis

to obtain additional results and insights. We establish, in particular, that it is possible to blend

our Theorems 1-3 with numerical analysis of how aggregate savings respond to changes in the

environment at given prices. This will enable us to establish how steady-state equilibria of

economies with complex behavioral biases respond to changes in environment, without having

to compute a new general equilibrium and the associated asset distributions. Moreover, we

will see that this theoretical-cum-numerical analysis can sometimes be conducted without even

having to compute the initial steady-state distributions.

For concreteness, we focus on the sophisticated version of the quasi-hyperbolic model intro-

duced in the previous subsection (where a fraction α are sophisticated quasi-hyperbolic and the

rest are fully rational). Let us first consider the effects of an increase in α starting from the fully-

rational benchmark with α = 0 to complete the implications of sophisticated quasi-hyperbolic

discounting on steady-state equilibria and illustrate how numerical analysis can be used in the

context of our approach.

Panel A: Saving Functions of Neoclassical and
Sophisticated Quasi-Hyperbolic Households

Panel B: Introducing Quasi-hyperbolic House-
holds Reduces Aggregate Savings

Figure 4: Change in Aggregate Savings and Equilibrium Adjustment to the Introduction of
Sophisticated Quasi-Hyperbolic Households

Panel A: Benchmark simulation: k∗ = 5.3, R∗ = R(k∗) = 0.04, w∗ = w(k∗) = 1.36. a = −1, δ = 0.947, u(c) = c0.5,
lmin = 0.1, lmax = 1.9, pmin = pmax = 0.5, f(k) = 1.163k0.36, ∆ = 0.1. Behavioral households: As in benchmark
simulation except β = 0.96. Vertical segments in the saving functions represent discontinuities. Panel B: Aggregate
savings in the benchmark steady-state simulation is 5.3. Average savings of behavioral households given R∗ and
w∗ is 1.4. With a fraction α ∈ (0, 1) of behavioral households, the direct effect is thus 1.4α + 5.3(1 − α) − 5.3 < 0.
Computational Notes: Benchmark model computed with the IID Aiyagari EGP algorithm of Kaplan (2017). Quasi-
hyperbolic case computed with Ego Loss algorithm of Jensen (2022).

The steady-state equilibrium and asset distribution are straightforward to compute numeri-

cally in the benchmark Bewley-Aiyagari model with time-separable preferences, geometric dis-

counting, random labor endowments and borrowing limits. We continue to focus on i.i.d. labor
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endowments and specialize the economy to the case where the labor endowment can take either

a “low” or a “high” value (see the notes to Figure 4 for further details).

In our baseline numerical exercise, we follow Krueger, Mitman and Perri (2016) and choose

k∗ = 5.3 (which is approximately the average non-housing wealth of US households in 2006,

excluding the top 1%) and a capital share of 0.36. We then calibrate A in the usual way by

targeting the capital-output ratio (see Krueger, Mitman and Perri (2016), p.865). This leads to

steady-state factor prices of R∗ = R(k∗) = 0.04 and w∗ = w(k∗) = 1.36. We can then compute

numerically the partial-equilibrium response of households to a reduction in β, which is equiva-

lent to comparing the neoclassical benchmark economy to an economy where a subset α ∈ (0, 1)

of households have “sophisticated” quasi-hyperbolic preferences. Note that we cannot apply

Lemma 3 to determine the partial-equilibrium response in this case, because the Euler equation

does not provide a global characterization of savings behavior. In fact, as shown by the vertical

segments in the figure, the time-stationary saving function is discontinuous.

Once this numerical analysis determines whether aggregate savings at these prices increase

or decrease, we can apply Theorems 1-3 and derive the direction of change for the new steady

state. Figure 4 summarizes the main idea: all we need to do is to numerically compute the

shift of the aggregate savings schedule, and the rest of the work is done by our main theo-

rems. Specifically, Panel A of this figure shows the saving functions of rational and sophisti-

cated quasi-hyperbolic households for the best and the worst realizations of labor endowments.

We can see the jumps in consumption in the quasi-hyperbolic case, which accord with the re-

sults in Harris and Laibson (2001). Once we know the saving functions, we can compute the

steady-state asset distributions and the aggregate savings levels depicted in Panel B. The solid

curve depicts the neoclassical benchmark, while the dashed curve shows the same economy

when a fraction α ∈ (0, 1) of households have sophisticated quasi-hyperbolic preferences. The

figure demonstrates that there is a negative direct response at k∗ = 5.3 from the introduction

of quasi-hyperbolic households. The figure also confirms that there are no downward jumps as

guaranteed by Lemma 1 and, consequently, the post-tax steady-state capital-labor ratio must be

at a point like k∗∗.

When, as in Figure 4, the counterfactual experiment introduces behavioral biases in an oth-

erwise neoclassical economy, our numerical analysis can be further simplified by skipping the

computation of the initial steady-state distributions entirely, because it only uses information on

steady-state factor prices. In the most common approach to quantitative analysis, the researcher

targets some aggregate quantities (such as the aggregate capital-labor ratio, the capital-output

ratio or the interest rate), which then pin down steady-state prices. For our computational step,

38



all we need are these steady-state prices, and once these are determined, we can readily move

to the partial-equilibrium step of determining whether aggregate savings following the change

in environment increase at these prices.

Panel A: Savings Functions With and Without
Capital Income Taxes (δ = 0.9, β = 0.94)

Panel B: Higher Capital Income Tax Reduces
Aggregate Savings

Panel C: Savings Functions With and Without
Capital Income Taxes (δ = 0.9, β = 0.5)

Panel D: Higher Capital Income Tax Increases
Aggregate Savings

Figure 5: Comparative Statics in the “Sophisticated” Quasi-Hyperbolic Model

Panel A: k∗ = 5.3, R∗ = 0.19 (pre-tax), w∗ = 2.30, τ = 0, 0.02. a = −1, δ = 0.9, β = 0.94, u(c) = c0.1, lmin = 1,
lmax = 3, pmin = pmax = 0.5, f(k) = 1.97k0.4, ∆ = 0.1, T = τk (the capital share is from Kaplan). Panel B:
Aggregate savings in the steady-state simulation with τ = 0 is 5.3. Aggregate savings when τ = 2% is 4.9. Direct
Response is 4.9 − 5.3 < 0. Panel C: k∗ = 4.5, R∗ = 0.84 (pre-tax), w∗ = 6.36, τ = 0, 0.02. a = −1, δ = 0.9, β = 0.5,
u(c) = c0.5, lmin = 1, lmax = 3, pmin = pmax = 0.5, f(k) = 5.81k0.4, ∆ = 0.1, T = τk. Panel D: Aggregate
savings in the steady-state simulation with τ = 0 is 4.5. Aggregate savings when τ = 2% is 4.8. Direct Response
is 4.8 − 4.5 > 0. No Transfers in Panel D: If T = 0, aggregate savings when τ = 2% is 4.77, hence direct response
is positive whether or not taxes are transferred to households. Computational Notes: Computed with the Ego Loss
algorithm of Jensen (2022).

Our next application is more involved. In this case, we start from the steady state of a

sophisticated quasi-hyperbolic economy with β < 1. We then consider an increase in the capital

income tax rate τ and numerically study its (direct) impact on aggregate savings. Once this

direct response is obtained, we again apply Theorems 1-3.

In this exercise, we distinguish two cases, both depicted in Figure 5. In the first (Panels
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A and B), we choose a “high” short-run discount factor, β = 0.94. In the second (Panels C

and D), we choose a “low” discount factor, β = 0.5, which generates a strong conflict between

current and future selves. Since this low discount factor makes households much less willing to

save, we can no longer achieve the same aggregate capital-labor ratio target with the parameter

choices described previously. In this application, therefore, we depart from our baseline in two

ways. First, we relax the capital-labor ratio target to 4.5. Though this number is different from

our benchmark and the baseline of Krueger, Mitman and Perri (2016), it is in the ballpark of the

recent US-wealth-to-GDP numbers (e.g., FRED (2023)). Second, we follow Kaplan (2017) and set

the capital share in the production function to 0.4 (instead of the 0.36 used in Figure 4).35

Panels B and D of Figure 5 show that in these two cases, aggregate savings move in opposite

directions (in Panel B the initial solid curve is above the after-tax dashed curve, while in Panel

D it is the other way around). In particular, in the first case, higher capital income taxes reduce

aggregate savings at given factor prices (as in the neoclassical benchmark). Then Theorems

1-3 ensure that the steady-state capital-labor ratio decreases (Panel B). In contrast, the second

case illustrates how this standard comparative statics result can be reversed in the sophisticated

quasi-hyperbolic model. Specifically, in Panel D the direction of the direct response is reversed

and the higher capital income tax raises aggregate savings at given prices. Then from Theorems

1-3, the new steady state must have higher capital-labor ratio. This discussion also reveals how

the same combination of numerical analysis and our theorems can be applied in other settings.

5 Concluding Remarks and Future Directions

A common conjecture is that equilibrium analysis becomes excessively challenging in the pres-

ence of behavioral preferences and biases, thus implicitly justifying a focus on models with

time-additive, dynamically consistent preferences and rational expectations. In this paper, we

demonstrated that, in the context of one-sector behavioral growth models, this conjecture is

not necessarily correct. Results concerning the direction of change in the long run (or “robust

comparative statics” for the steady-state equilibrium) can be obtained for a wide range of be-

havioral preferences and rich heterogeneity. Put simply, our main results state the following: for

any change in policy or underlying production or preference parameters of the model, we first

determine whether at the initial capital-labor ratio (or at the initial pre-tax/distortion vector of

prices) aggregate savings increases or decreases; this step involves no equilibrium analysis, but
35The case in Panels C and D has some parallel to the illustrative result we presented in the previous section when

Condition (20) is violated (for an economy where uncertainty about endowments becomes very small). Crucially,
however, in the current case endowment uncertainty is not “small” and as in the previous application, the Euler
equation does not provide a global characterization of savings behavior (so, again, Lemma 3 cannot be used).
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only the determination of what the average of individual optimization decisions given prices

is. Critically, this needs to be done only at a single vector of prices (or at a single capital-labor

ratio), because our condition is completely “local”. Then under fairly mild regularity conditions

(satisfied for all behavioral preferences we have discussed in this paper), no matter how com-

plex the equilibrium responses are, they will not overturn the direction of the initial change and

thus the steady-state equilibrium will involve a greater capital-labor ratio (and the changes in

prices that this brings). Conversely, if the initial change is a decline in aggregate savings at the

initial capital-labor ratio, the long-run capital-labor ratio will decline.

At the root of this result is a simple and intuitive observation: in the one-sector model,

the only way the direction of the initial impetus can be reversed is by having the equilibrium

response to this initial shock to go strongly in the opposite direction. For example, savings

could decline strongly in response to a higher capital-labor ratio. But either such an equilibrium

response would still not overturn the initial increase in aggregate savings, in which case the

conclusion about the steady-state equilibrium applies. Or it would overturn it and reduce the

long-run capital-labor ratio, but in this case the perverse effect would go in the direction of

strengthening, not reversing, the initial increase in savings (since it was the higher capital-labor

ratio that induced the decline and aggregate savings).

We illustrated these comparative statics by working through one-sector growth models em-

bedding three different types of behavioral considerations: (1) systematic misperceptions; (2)

self-control and temptation preferences; and (3) naı̈ve and sophisticated quasi-hyperbolic dis-

counting. In all three cases, we showed that our approach can be applied relatively straightfor-

wardly and leads to results that are, to the best of our knowledge, new in the literature. We also

identified conditions under which these behavioral biases reverse standard neoclassical com-

parative static results (for example, with respect to declines in capital income taxes). In each

case, this reversal takes place along the lines of our main result: behavioral preferences change

the direction of the direct response and this initial impetus then leads to a change in the same

direction in the long-run equilibrium.

We further showed how our key results can be blended with numerical analysis. In partic-

ular, in the context of sophisticated quasi-hyperbolic model, we showed how simple numerical

analysis can be used to sign the direction of (partial equilibrium) responses, which can then be

used to determine the full general equilibrium comparative statics. We believe this combination

of new theory and numerical analysis can be used in other settings as well.

Our analysis has several limitations, which point to interesting areas for future research. As

already implied by our discussion, there are several important cases in which our results do
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not apply. First, with more general preferences than those considered in this paper, the upper

hemicontinuity of the saving correspondence established in Lemma 1 may no longer apply and

we cannot rule out the case in Panel D of Figure 1. Second, non-stationary belief formation pro-

cesses, whereby partial-equilibrium and long-run responses are driven by very different beliefs,

would also render our theorems inapplicable. Finally and most importantly, our results do not

apply when there are multiple aggregate state variables rather than the single state variable as

in our (one-sector) behavioral growth model. In such cases, as is well known from other com-

parative static settings, even shifts that lead to positive responses for each dimension can induce

negative overall effects because of cross-dimension dependencies (or because of failure of neg-

ative semi-definiteness of local Jacobians even when they have negative diagonal elements).

With multiple aggregates, similar results would necessitate at least some supermodularity con-

ditions for the set of state variables. Acemoglu and Jensen (2015) provide some conditions for

comparative statics in neoclassical economies with two aggregates, and developing such results

in the richer setting we consider here is one future direction for research.

Another evident limitation of our approach bears repeating at this point: our focus has been

on comparative statics, and thus on qualitative rather than quantitative results. Many questions

in modern macroeconomics necessitate quantitative analysis, and the quantitative impact of a

policy change may critically depend on behavioral biases and the exact structure of preferences

even if the direction of long-run change does not. An obvious but challenging area for future

research is to investigate when certain quantitative conclusions may not depend on certain types

of behavioral biases or heterogeneity (for example, in the sense that as behavioral assumptions

are modified, quantitative change in some key variables remains near changes implied by a

benchmark model).

Perhaps the most important area for future research is to extend the analysis to non-steady-

state environments. Behavioral considerations may matter greatly for the response of an econ-

omy to recessionary shocks, and overoptimism and other misperceptions may be important

during temporary periods of rapid expansion. In principle, one could study whether different

behavioral biases change the direction of response to various macroeconomic changes, such as

interest rate cuts, but this is challenging because these biases will also alter the future evolution

of state variables. One approach may be to leverage the fact that, in some cases, the impact on

future variables will be small relative to current effects, though there may also be other fruitful

approaches, and we leave the exploration of these issues to future work.
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Appendix A: Proofs

Proof of Lemma 1. Throughout, the household index i is omitted to simplify notation. Fixing

e and the future saving function on the right-hand side of (8), we can write the current self’s

decision problem as

s(y; e) ∈ arg max
a′∈[a,max{a,y}]

uε(y − a′) +M(a′) ,

where M is a function that does not depend on current assets a. Note that we here ex-

press savings as a function of wealth y = (1 + R)a + wl + T (that this is possible can

be seen from (8)). The constraint correspondence and the first term in the objective func-

tion are clearly continuous in y, the latter because uε(·) is continuous by assumption. To

see that M is continuous in a′ independently of e and the future savings function used to

define M , write it out in full: M(a′) =
∫
V ε1(y − s̃(y; e1), (1 + R2)s̃(y; e1) + w2l2 + T2−

s̃((1 + R2)s̃(y; e1) + w2l2 + T2; e2), . . .)P (de′|e), where s̃ ∈ S and S is the space of uni-

formly bounded measurable functions with the weak∗ topology.36 Then rewrite as fol-

lows: (M(a′)=)
∫ ∫

V ε1(y − s̃(y; e1), (1 + R2)s̃(y; e1) + w2l2 + T2−s̃((1 + R2)s̃(y; e1) + w2l2 +

T2; e2), . . .)Q(dl1|e, e′\{l1})P (d(e′\{l1}|e) =
∫ ∫

V ε1(y − s̃(y; e1), (1 + R2)s̃(y; e1) + w2l2 + T2−
s̃((1 +R2)s̃(y; e1) +w2l2 +T2; e2), . . .)f(l1|e, e′\{l1})dl1P (d(e′\{l1}|e) =

∫ ∫
V ε1(y− s̃(y; e1), (1 +

R2)s̃(y; e1)+w2l2 +T2− s̃((1+R2)s̃(y; e1)+w2l2 +T2; e2), . . .)η(d(y, l1)|e, e′\{l1}))P (d(e′\{l1}|e)
where Q and P is a disintegration family of measures for the projection e′ 7→ l1

(e.g., see Chang and Pollard (1997)), f is the (continuous) Radon-Nikodym derivative of

Q(·|e, e′\{l1}) with respect to the Lebesgue measure on R+, and η(A × B|e, e′\{l1}) =∫ ∫
1l1(A)1(1+R1)a′+w1l1+T1(B)f(dl1|e, e′\{l1})dl1 (which is continuous in a′). Note that the dis-

integration exists because P is a Radon measure.37 Because there is no loss of generality in

assuming that V is bounded by an integrable function (see the discussion immediately prior to

Assumption 1), it follows by the dominated convergence theorem that M(a′; e) is continuous

in a′. We remark that this argument is essentially the “change of variable” argument used in

Harris and Laibson (2001)’s proof of existence and continuous dependence on the short-run dis-

count factor in the quasi-hyperbolic model (see e.g. Lemma 5 in that paper), except we consider

a more general measure space. Because V is continuous, it is also clear that if s̃n → s in S , then

M(a′; e, s̃n)→ M(a′; e, s̃). Finally, we also have continuity in e (because e, unlike a′ and s̃, does

not directly enter the integrand, P (·|e) is continuous in e by assumption, and the integrand is

36The original topology is the essential supremum norm topology. The weak-∗ topology σ(X ′, X) on the set of
savings functions is then defined for the dual pair (X,X ′), where X ′ is the topological dual of X .

37The set of bounded sequences with the supremum norm is a separable metric space, hence any Borel probability
measure is a Radon measure.
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bounded). By the theorem of the maximum, the arg max, F (y; e, s̃) = arg maxuε(y−a′)+M(a′),

is non-empty and upper hemi-continuous in y, e and s̃. Because the objective function is contin-

uous in y, and has strictly increasing differences in (y, a′) if and only if uε(·) is strictly concave,

it follows from Topkis’ theorem that any solution s(y; e) must be increasing in y (see Topkis

(1978)). This is true, inter alia, if s̃ = s, that is, if the future savings function we fix to begin with

is equal to s. Since y = (1 +R)a+ wl + T , we conclude that any TSSF must be increasing in as-

sets. Therefore, if the time-stationary savings correspondence S(a; e) has well-defined compact

values, the least and greatest selections must be increasing in assets.

Next, note that when we fix s̃, the set of selections from G(s̃) = F (·; ·, s̃) is a singleton in

any (quotient) space of measurable functions s : (y, e) 7→ s(y, e) under almost everywhere equal

equivalence. This is because for any fixed e, as we have just proved, any selection must be

increasing — hence any two selections can differ only at points where both are discontinuous

(which implies they are equal at all but an at most countable number of points given any e).38

Because G is upper hemi-continuous on S, it is also continuous on S. Since S is convex, and

compact by the Banach-Alaoglu theorem, existence of a fixed point (a TSSF) now follows from

the Schauder–Tychonoff fixed point theorem. The time-stationary savings correspondence is

the set of fixed points, hence compactness of S(a, e) and its upper hemi-continuous dependence

on a and e now follow from a standard argument (e.g., see the last paragraph of the next proof).

Proof of Lemma 2. To shorten expressions we set zi = (li, εi) ∈ Zi = [limin, l
i
max] × Ei.

We first show that k ∈ Mθ(k) if and only if k is a steady-state equilibrium. Consider

m(k) ∈Mθ(k). Using that ci(ai; zi, w,R, T i) = (1 +R)ai +wli + T i− si(ai; zi, w,R, T i) and that

R(k) = (1−τ(k))f ′(k)−∆, w(k) = (1−ω(k))(f(k)−f ′(k)k), τ(k)f ′(k)k+ω(k)(f(k)−f ′(k)k) =∫
T idi + G(k), and

∫
l̂i di = 1 we have m(k) = f(k) + (1 − ∆)k − G(k) − (1 + (1 −

τ(k))f ′(kt)−∆)k − (1− ω(k))(f(k)− f ′(k)k)−
∫
T i di +

∫
si( âi(k)∫

âi(k) di
k, ẑi, w(k), R(k), T i) di =∫

si( âi(k)∫
âi(k) di

k, ẑi, w(k), R(k), T i) di, where for all i, si is some selection from Si. Because

si(âi(k)/(
∫
âi(k) di)k, ẑi, w(k), R(k), T i) has the image measure of (âi(k), ẑi(k)) under (ai, zi) 7→

si(ai/(
∫
âi(k) di)k, zi, w(k), R(k), T i), it has distribution λi(·, Zi) where λi = λi(k; s) was de-

fined just prior to Definition 3.39 Hence m(k) =
∫
âi(k; s) di. It follows that if m(k) = k, then

k =
∫
âi(k; s) di, that is, the capital market must clear. Further, λi(k; s) must then be an in-

38Let A be the set of discontinuities. Then the (Lebesgue) measure is
∫ ∫

1y(Ae)dyµ(de) where µ is the (product)
Lebesgue measure on R5 and Ae = {y : s(·, e) is discontinuous at y}. Clearly

∫
1y(Ae)da = 0 if Ae is at most

countable.
39Prob(si(âi(k)/(

∫
âi(k) di)k, ẑi, w(k), R(k), T i) ∈ A) =

∫
1si(ai(k)/(

∫
âi(k) di)k,zi,w(k),R(k),T i)(A)λi(dai, dzi) =

λi(A,Zi).
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variant distribution for (a.e.) i. Because prices satisfy (1) and (2) by construction, we thus have

k = m(k) ∈ Mθ(k) whenever k is a steady-state equilibrium. Conversely, if k is a steady-state

equilibrium, then there exist invariant distributions λi and λi(k; s) = λi where k =
∫
âi(k; s) di,

hence k = m(k) ∈Mθ(k) when m(k) corresponds to the family of selections s.

Next, we show that Mθ has convex values. Here, we use the definition that a corre-

spondence F : A → 2B is type I (type II) monotone if a � ã and b ∈ F (a) (b̃ ∈ F (ã))

implies the existence of b̃ ∈ F (ã) (b ∈ F (a)) such that b̃ � b. For a selection si ∈ Si

write λi(k,K; s) if λi(A × B) =
∫
A×li,εi q

i(B, li, εi)1A(si(ai kK ; li, εi, w,R, T i))λi(dai, dli, εi) (for

all Borel sets). Note that the right-hand side defines an adjoint Markov operator ri
si,k,K

in

the usual way, and the savings correspondence Si thus defines an adjoint Markov corre-

spondence which we denote by T ik,K = {ri
si,k,K

: si ∈ Si and is measurable}. Also, let

Aik(K) ≡ {âi ∼ λi(·, Zi) ∈ P([ai, ai]) : λi ∈ T ik,Kλ
i} denote stationary assets. If λi ∈ T ik,Kλ

i,

then λi ∈ Ω(µz) = Ω(µz) = {λi ∈ P([ai, ai] × Zi) : λi([ai, ai], B) = µz(B)} since λ([ai, ai], B) =∫
q(zi, B)[

∫
[ai,ai] λ(dai|zi)]µz(dzi) =

∫
q(zi, B)µz(dz

i) = µz(B). By our Lemma 1 and Theorem

B1 in Acemoglu and Jensen (2015), T ik,K : Ω(µz) → Ω(µz) is (weak-∗) upper hemi-continuous

in ai and K, and Type I and Type II monotone in the order �A−FOD defined by λ �A−FOD λ̃

⇔ [λ(·, B) �FOD λ̃(·, B) for all B ∈ B(Z)]. It is also increasing in that order in any parame-

ter for which si((ai/K)k, zi, w(k), R(k), T i) is increasing. By Theorem 3 in that paper and our

Lemma 1, the set of fixed points is type I and II monotone in K−1. Moreover, by Theorem

B3 in Acemoglu and Jensen (2015), it is non-empty and upper hemi-continuous in K. By the

definition of �A−FOD it follows that Aik(K) is non-empty and decreasing in K. By Richter’s

theorem (see Aumann (1965)),
∫
Aik(·) di is convex-valued, and by Theoresupposed tom 4 in

Acemoglu and Jensen (2015), it has decreasing least and greatest selections. A convex and real-

valued correspondence whose least and greatest selections are decreasing must have a convex

set of fixed points (this statement is straight-forwardly verified graphically). We conclude that

Mθ(k) = {K : K ∈
∫
Aθ,ik (K) di} is convex.

To see that the market correspondence Mθ(k) = {K : K ∈
∫
Aθ,ik (K) di} is upper

hemi-continuous, note that its graph is {(k,K) : (K, k,K) ∈ Graph[
∫
Aθ,ik (K) di]} where

Graph[
∫
Aθ,ik (K) di] = {(K, k, Z) : Z ∈

∫
Aθ,ik (K) di} is a closed set since

∫
Aθ,ik (K) di is upper

hemi-continuous in k and K. ThatMθ(k) is compact follows now from boundedness (savings

correspondences have compact ranges). Finally,Mθ(k) begins above the 45 ◦ line and ends be-

low it. The former is obvious since f(0) = 0 and therefore Mθ(0) = {0}. The latter is true

since consumption is non-negative, henceMθ(k) ≤ f(k), and for sufficiently large k, f(k) ≤ k

because the production technology is effectively compact.
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Proof of Theorem 1. The proof relies on the following lemma (whose proof is similar to Lemma

2 and relegated to Appendix C).

Lemma 4 (Mean Asset Holdings and Shifts in the Market Correspondence) Assume that house-

holds satisfy the conditions of Lemma 1, and let k∗ ∈ Mθ∗(k∗) be either the least steady state

inf{k : k ∈ Mθ∗(k)} or the greatest steady state sup{k : k ∈ Mθ∗(k)} given an environment

θ∗ ∈ Θ. Consider a different environment θ∗∗ ∈ Θ. Then the population’s mean asset holdings

increase (decrease) at k∗ when the environment changes from θ∗ to θ∗∗ if and only if the market

correspondence “shifts up” (“shifts down”) at k∗, i.e., provided there exists k̃ ∈ Mθ∗∗(k∗) with

k̃ ≥ k∗ (k̃ ≤ k∗).

We provide the proof for the case in which the market correspondence shifts up (the down

case is analogous).

Sufficiency: By Lemma 4, there exists k̃ ∈Mθ∗∗(k∗) with k̃ ≥ k∗. SinceMθ∗∗ ends below the

45◦ (Lemma 2), it must begin above and end below the 45◦ line on the interval [k∗,+∞). Mθ∗∗

is also upper hemi-continuous and convex valued (Lemma 2, again), hence it intersects the 45◦

line at some k∗∗ ∈ [k∗,+∞). This yields a steady-state equilibrium k∗∗ ≥ k∗ given environment

θ∗∗, and by assumption, this is the unique steady-state equilibrium.40

Necessity: Assume that k∗∗ ≥ k∗ and that the change from θ∗ to θ∗∗ does not increase the

households’ mean asset holdings. By Lemma 4, the market correspondence then does not shift

up at k∗. So supMθ∗∗(k∗) < k∗ since the market correspondence is closed. But then since

the market correspondence ends below the 45◦ line and is upper hemi-continuous and convex

valued, Mθ∗∗ must then intersect with the 45◦ at least twice on the interval [k∗,+∞). This

contradicts that the economy has a unique non-trivial steady state given θ∗∗.

Proof of Theorem 2. Since the market correspondence is compact-valued, a sufficiently small

change in the environment can lead to existing equilibria disappearing but not to the creation

of new equilibria. In particular, no new equilibrium can be created below the least equilib-

rium which must therefore increase by the argument used to prove Theorem 1. This argument

obviously also applies to the greatest equilibrium; and in both cases necessity follows by the

argument from Theorem 1 as well.

Proof of Theorem 3. Let k∗ denote the greatest steady state. Repeating the argument used to

prove the “sufficiency” part of Theorem 1,Mθ∗∗ must have a fixed point on [k∗,+∞). The result

for the least steady-state is proved analogously.
40The same conclusion follows by instead considering a single-valued market correspondence that is continuous

but for jumps up (see Appendix B).
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Proof of Proposition 1. We suppress the transfers T i to simplify notation. Throughout, prices

are fixed at the levels determined by the initial capital-labor ratio k∗. Both rational and be-

havioral households use current discount factor δ and correctly anticipate the saving function

of future selves, s(a; l, ε), where ε encapsulates beliefs about future discount factors. The only

difference between the two types of households is that rational ones believe (correctly) that

P̂ (ετ = δ) = 1 for all τ > t, where P̂ is ετ ’s marginal belief distribution, while behavioral ones

believe (incorrectly) that P̂ (ετ = δ̂) = 1 for all τ > t. We focus here on the case where δ̂ > δ.

For both rational and behavioral households, (8) implies the Euler equation−u′((1 +R)a+wl−
yt)+max{ε(1+R)

∫
u′((1+R)yt+wl′−s(yt; l′, ε′))µ(dl′)P̂ (dε′), u′((1+R)a+wl− ā)} = 0, where

(a, l, ε) ∈ [a, a]× [lmin, lmax]×{δ, δ̂}, and yt = s(a; l, ε) is the solution (s(yt; l′, ε′) is time-stationary

savings of a “future self” with labor endowment l′ and discount factor ε′). Since rational house-

holds have ε = δ and P̂ (ε′ = δ) = 1, the Euler equation reduces in this case to the benchmark

Euler equation−u′((1+R)a+wl−yt)+max{δR
∫
u′((1+R)yt+wl

′−sNeocl.(yt; l, δ))µ(dl′), u′((1+

R)a + wl − ā)} = 0 where sNeocl.(a; l, δ) = yt denotes the rational households’ saving function

conditioned on ε = δ (since rational households place zero probability on ε 6= δ, we do not need

to specify savings when ε 6= δ in this case).

Next, let sBeh.(·; l, δ̂) denote the solution to the Euler equation when ε = δ̂ and P̂ (ε′ = δ̂) = 1.

Clearly sBeh.(·; l, δ̂) = sNeocl.(·; l, δ̂); that is, sBeh.(·; l, δ̂) solves the benchmark Euler equation with

δ̂ in place of δ. Since this equation has a unique solution and its the left-hand side is increasing

in δ, it follows immediately from Lemma 3 that sBeh.(a; l, δ̂) ≥ sNeocl.(a; l, δ) for all l and a, that

is, behavioral households anticipate greater savings in the future than rational households (for

all a and l). The behavioral households’ time-stationary saving function given ε = δ is the solu-

tion to the Euler equation with ε = δ and P̂ (ε′ = δ̂) = 1. Equivalently, sBeh.(a; l, δ) = yt where yt

must solve−u′((1+R)a+wl−yt)+max{δ(1+R)
∫
u′((1+R)yt+wl

′−sBeh.(yt; l
′, δ̂))µ(dl′), u′((1+

R)a + wl − ā)} = 0. Comparing with the benchmark Euler equation above and using (i) that

sBeh.(yt; l
′, δ̂) ≥ sNeocl.(yt; l, δ) for all l′ and yt, and (ii) that u′ is decreasing, it follows from a sec-

ond application of Lemma 3 that sBeh.(a; l, δ) ≥ sNeocl.(a; l, δ) for all a and l. Since consumption

at date t is ct = Ra + wl − sBeh.(a; l, δ), the budget constraint necessarily holds (the dynamic

inconsistency is embedded in the beliefs).

Since behavioral households (just like rational households) will always “observe” ε = δ at

the current date, sBeh.(a; l, δ) is the TSSF which the behavioral households will actually adopt

at every date. As mentioned before, sNeocl.(a; l, δ) is the TSSF which rational households will

adopt at every date. Thus at every date, behavioral households will save more than rational

households (on average). Taking as environment the fraction of behavioral households in the
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population, θ := α ∈ [0, 1] = Θ, raising α therefore entails a positive direct response for the

subset of rational households that is interchanged with behavioral households. Since the saving

function of the remaining (rational) households is not impacted by such an increase in α, the

(average) direct response of Definition 5 is positive. The conclusion of the proposition now

follows from one of Theorems 1-3. The proof for the case where δ̂ < δ is analogous and may

be omitted (in this case, sBeh.(a; l, δ) ≤ sNeocl.(a; l, δ) for all a and l above and we proceed as a

moment ago except that the direct response will now be negative).

Appendix B: Changes in the Environment: A Topological Approach,

Discussion of Related Literature

Since this section’s observations may be of independent interest and apply not only to market

correspondences, we are going to view the market correspondenceM : K × Θ → 2R, K ⊆ R,

more abstractly and impose any necessary assumptions directly. Denote by mθ
S(k) = infMθ(k)

and mθ
L(k) = supMθ(k) the least and greatest selections, and by kθS = inf{k ∈ K : k ∈ Mθ(k)}

and kθL = sup{k ∈ K : k ∈ Mθ(k)} the least and greatest fixed points (when they exist, which

of course they do ifM is a market correspondence). Now equip Θ with an order as well as a

topology (in the simplest situation where we consider a change in just a single parameter, Θ

may be taken to be a subset of R, and these would therefore be the usual/Euclidean order and

topology, respectively). We also introduce some additional terminology: A function m : Θ→ R

is (i) increasing if θ ≤ θ̂ ⇒ m(θ) ≤ m(θ̂) for all θ, θ̂ ∈ Θ, and (ii) locally increasing at θ∗ ∈ Θ if

θ ≤ θ̂⇒m(θ) ≤ m(θ̂) for all θ, θ̂ in an open neighborhood of θ∗. Finally,M begins above and ends

below the 45◦ line if m∗(inf K, θ) ≥ inf K and m∗(supK, θ) ≤ supK. The following is proved in

Appendix C where we also present a corollary that directly addresses one-sector growth models

from the topological perspective .

Theorem 4 (Abstract Shifts in Fixed Point Correspondences) Consider an upper hemi-continuous

and convex valued correspondence M : K × Θ → 2R where K is a compact subset of R and Θ is a

compact subset of an ordered topological space. Suppose that the graph begins above and ends below the

45◦ line for all θ ∈ Θ. Then the least and greatest fixed points kθS and kθL are increasing in θ if for all

θ∗ ∈ Θ, mθ
L(kθ

∗
L ) and mθ

S(kθ
∗
S ) are locally increasing in θ at θ∗.

Note that in all cases, “curve shifting theorems” such as Theorem 4 can be used in our setting

because (i) Lemma 2 has established the requisite properties of the market correspondence; and

(ii) Lemma 4 allows us to relate increases in mean savings/assets with “shifts up” in the market
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correspondence.

Most of the results in the literature are similar to Corollary 2 in Milgrom and Roberts (1994)

which shows that when the equivalent of our market correspondenceM is “continuous but for

jumps up” and its graph shifts up (meaning that mθ
L(k) and mθ

S(k) are increasing in θ for all k),

then the least and the greatest fixed points increase.41 Let us refer to this well-known result as

the “for all k curve shifting theorem”. The key thing to note is that since the “curve” must shift

up for all k (for all capital-labor ratios in our setting), it requires information not only about

how savings change for the prices determined in the original steady state; it requires that we

have such information for (all) capital-labor ratios/prices. Both Acemoglu and Jensen (2015)

and Light and Weintraub (2021) define “local positive shocks” as changes in parameters that in-

crease savings for all capital-labor ratios.42 In conventional settings with rational expectations,

such requirements can be imposed, even if they are quite demanding. When the economic prob-

lems involve rich and variegated behavioral preferences and biases, they become essentially

untenable. It is against this background that Theorem 4 should be evaluated. It shows that ifM
is upper hemi-continuous in (k, θ) (rather than just in k, cfr. footnote 41), the same conclusion

requires only that the correspondence shifts up at the least and the greatest fixed points, kθS and

kθL. The results presented in Section 3 similarly require only local shifts in steady states. That

we only need to verify thatM shifts up locally, in particular, at the steady states, enables us to

separate direct responses (or the “all-else-equal” behavior) from equilibrium responses.

To explain a little further, let us consider a particularly simple case where a dynamic econ-

omy can be reduced to a fundamental equation of the form

G(kt, kt−1, θ) = 0 , (21)

where θ ∈ R is an exogenous parameter, kt ∈ R is capital, or the capital-labor ratio, at date t and

G : R3 → R a smooth function. In this case, the market correspondence can be defined as

Mθ(k) = {k̂ : G(k̂, k, θ) = 0} . (22)

In the Ramsey-Cass-Koopmans model, for example, G(kt, kt−1, θ) = 0 ⇔ kt = g(kt−1, θ), and

then Mθ(k) = g(k, θ). Clearly, k∗ is a steady state given θ if and only if k∗ ∈ Mθ(k∗). Note,

however, that (21) — even in the more general form 0 ∈ G(kt, kt−1, θ) where G is a correspon-

dence — is not general enough to nest our one-sector behavioral growth model (because we

41M is continuous but for jumps up if it has convex values, lim supxn↑xm
∗(xn, t) ≤ mθ

L(k), and
lim infxn↓xm∗(x

n, t) ≥ mθ
S(k).

Acemoglu and Jensen (2013) proves that if M is upper hemi-continuous in k and has convex values, then it is
continuous but for jumps up.

42Note that (ii) above integrates seamlessly with the approach in Light and Weintraub (2021), hence both our main
results and curve shifting arguments are easily integrated with the mean-field games literature.
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also need to condition on the distribution of assets). Nevertheless, (21) is useful to provide the

technical intuition for our main results since both in the case of (22) and our Definition 3, the

market correspondence is constructed by conditioning on the information that the capital-labor

ratio in question, k, has to be consistent with a steady-state equilibrium. In particular, the fact

that, with the conditioning on the steady state k∗, (22) a one-dimensional fixed point problem

allows us to use “curve shifting” arguments without imposing any type of monotonicity on the

dynamical system defined by (21) (see also Acemoglu and Jensen (2015) for a related discussion

of non-monotone methods). GivenMθ(k) and this construction, Theorem 4 and the results pre-

sented in Section 3 enable us to predict how the greatest and the least steady states vary with θ

whenMθ(k) shifts up locally starting at these steady states (and provided thatM satisfies the

relevant theorem’s regularity conditions).

The added generality and flexibility is considerable. In many applications, including the

problem of equilibrium analysis in the behavioral growth model we focus on in this paper, the

conditions for the “for all k curve shifting theorem” will not hold even if (21) applies. This is for

both substantive and technical reasons. Substantively, as already mentioned, in economies such

as the one-sector behavioral growth model the possible heterogeneity in the responses of agents

to changes in the environment would often preclude such uniform shifts. To see the technical

problem, suppose that we were checking these conditions using the implicit function theorem.

That would amount to verifying that dk
dθ > 0 for all k̃ while G(k, k̃, θ) = 0 holds. But since the

implicit function theorem requires as a minimum that DkG(k, k̃, θ) 6= 0, and “running through

all k̃’s” will almost invariably violate this condition for some k̃, this method will generally fail

(order theoretic methods are of no help here either; and of course, it is not enough to show

that dk
dθ > 0 for almost every k̃ because any point we fail to check may precisely be a point

where the market correspondence “jumps”). When we only need to check local conditions,

these difficulties are bypassed.
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