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Abstract

Environmental externalities – uncompensated damages imposed on others – lie at the
root of climate change, pollution, deforestation and biodiversity loss. Empirical evi-
dence is limited, however, as to how externalities drive private decision making. We
study one such behavior, illegal tropical forest fires, using 15 years of daily satellite
data covering over 107,000 fires across Indonesia. Weather-induced variation in fire
spread risk and variation in who owns surrounding land allow us to identify how far
externalities influence the decision to use fire. Relative to when all spread risks are
internalized, we find that firms overuse fire when surrounded by unleased government
lands where property rights are weak. In contrast, and consistent with Coase, firms
treat risks to nearby private concessions similarly to risks to their own land. Govern-
ment sanctions, concentrated on fires spreading to populated areas, also deter fires,
consistent with Pigouvian deterrence.

Keywords: externalities, Indonesia, forest fires, wildfires, deforestation, environ-
ment, conservation, remote sensing, climate change

∗Balboni: MIT Department of Economics, Cambridge, MA 02142, cbalboni@mit.edu. Burgess: LSE
Department of Economics, London WC2A 2AE, United Kingdom, r.burgess@lse.ac.uk. Olken: MIT Depart-
ment of Economics, Cambridge, MA 02142, bolken@mit.edu. We thank Michael Greenstone, Bard Harstad,
Kelsey Jack, Matthew Kotchen, Mushfiq Mobarak, Joe Shapiro, Reed Walker and numerous seminar partici-
pants for helpful comments. We thank Menna Bishop, Helen Gu, Anton Heil, Shofwan Hidayat, Amri Ilmma,
David Laszlo, Alyssa Lawther, Thuy (Peter) Le, Rishabh Malhotra, Jonathan Old, Victor Quintas-Martinez,
Donata Schilling and Sam Solomon for outstanding research assistance. Burgess thanks European Research
Council Advanced Grant 743278 and Balboni thanks Conservation International’s Seligmann Innovation
Fund for financial support.

1



1 Introduction

Environmental economics is rooted in the study of externalities. Early forerunners of the

modern field (e.g., Marshall 1890, Pareto 1909, and Pigou 1920) highlighted the failure

of market economies to properly account for the environmental consequences of economic

activity. These ideas were then developed theoretically, with a focus on developing a con-

sistent framework to analyze market failures as well as to design corrective policies. For

example, Pigou (1920)’s discussion of corrective taxes and subsidies was succeeded by the-

oretical contributions relating to tradable permits (Dales 1968) and the possibility that an

efficient solution to externalities may, under certain circumstances, be achieved by private

negotiations (Coase 1960) or decentralized self-regulation (Ostrom 1990).

Empirical evidence is limited, however, on how externalities drive private decision mak-

ing. Understanding the degree to which individuals and firms actually change their actions

depending on whether the environmental damages they cause represent an externality – and

what approaches are most effective in mitigating these externalities – is important as this

will affect how climate change, pollution, deforestation and biodiversity loss unfold.1

To look at this, we study one type of such behavior – tropical forest fires used for land

clearance – using 15 years of daily satellite data covering over 107,000 fires across Indonesia.

Fires are used in many tropical countries, including Indonesia, as a cheap – though illegal –

means of land clearance by firms but pose the risk that, once set, they burn out of control and

damage nearby land. Firms, in effect, face the choice between a cheap but risky technology

(fire) and a safer but more expensive technology (mechanical clearance) when readying land

to grow plantation crops such as oil palm or wood fiber.2

Fires are most prevalent in forests located in low income parts of the globe (Appendix

Figure A.1). Understanding why tropical forest fires start and how they might be controlled

is important in its own right, as they represent a significant source of local, national and

global externalities. Indonesian fires are an important contributor to this phenomenon, with

tens of thousands of square kilometers of forest burned in recent years. While we focus on

local externalities due to fire spread, more broadly, the externalities generated by these fires

are manifold, including significant health impacts (Frankenberg et al. 2005, Jayachandran

1Important empirical contributions in this area include the literature on the political economy drivers of
environmental externalities (Burgess et al. 2012, Kahn et al. 2015, Lipscomb and Mobarak 2017, Dipoppa
and Gulzar 2022). Other work has explored the degree to which external actors can alter private decision
making through payments for ecosystem services (e.g., Jayachandran et al. 2017) and improved auditing
(e.g., Duflo et al. 2013), but does not study changes in the degree to which the behavior in question is, in
itself, an externality.

2Mechanical clearance using bulldozers and other heavy equipment is estimated to cost 44-70% more
than using fire (Simorangkir 2007). This trade-off between private benefit and the extent of the externality
also lies at the core of other environmental phenomena, such as illegal fishing and release of effluents.

2



2009, Kim et al. 2017), ecosystem loss (Yule 2010) and global warming (Page et al. 2002).

For example, the major 2015 Indonesian fires alone released about 400 megatons of CO2

equivalent (Van Der Werf et al. 2017), at their peak emitting more daily greenhouse gases

than all US economic activity, and are estimated to have caused over 100,000 excess deaths

across Indonesia, Malaysia and Singapore (Koplitz et al. 2016).

To understand what affects the decision to set fires, we created a novel fire dataset on

fire ignitions and spread. We begin with 15 years of daily hotspot data from the Moderate

Resolution Imaging Spectroradiometer (MODIS) satellites, which record – for every one

square kilometer pixel, each day – whether there is a fire in that pixel or not. We merge this

data across time and space to trace the likely path of each fire. This allows us to determine

the most likely location where each fire started and the area over which it ultimately spread.

This procedure yields over 107,000 unique fires in our data that were started in Indonesia’s

forest estate for the period October 2000 to January 2016. We merge these data with

detailed geospatial data on boundaries for the Indonesian national forest estate, protected

forest areas, and every logging, wood fiber and palm oil concession in the Indonesian national

forest system. Any uncompensated burning of land outside of a concession is an externality,

but we are also interested in whether fire setters take into account the type of land that fires

may spread to when making the ignition decision as these likely carry different social costs.

These data confirm that fire spread is a tail risk event – and that these risks entail an

important local externality. The vast majority of fires burn for a single day (87% of all fires

in the forest estate) and do not spread beyond their initial ignition area (89%), defined in

our data as the pixels that are alight on the fire’s first day. But fires that do spread can

become enormous: the largest fire in our data spread to cover 466 times its initial area, and

the largest single fire in our data burned 764 square kilometers. A substantial part of fire

spread damage is borne by others – across all multi-day fires started in concessions, 28% of

land burned outside the initial ignition area is outside the concession where the fire began.

The data reveal that fires do not occur randomly but rather are associated with human

activity and appear to be used systematically as part of the clearing process by firms, con-

sistent with the qualitative evidence (e.g., Cossar-Gilbert and Sam 2015; Mahomed 2019;

Mellen 2019). We show that fires are eight times more likely (per square kilometer) to oc-

cur in oil palm or wood fiber concessions – for which land is cleared completely and then

replanted – compared to logging concessions, which are selectively logged rather than clear-

cut. Since we focus on firms’ incentives to start fires as a cheap means of land clearance

for conversion to industrial plantations, we concentrate our analysis of externalities and the

control of forest fires on the 39,189 fires started inside wood fiber and palm oil concessions

in the forest estate on the main forested islands of Indonesia across the study period. We
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investigate the links between land clearing and fires further by combining our fires data with

annual satellite data on deforestation from Hansen et al. (2013). We find that fires are vastly

more likely to occur immediately following recent deforestation: increasing the share of a

pixel deforested from 0 to 100 percent leads to a 285 percent increase in the probability of

fire in that pixel in the subsequent year.

Having documented the human origins of many of these fires, we then turn to the central

question of how externalities play into the decision to use fire. To do so, for each of the more

than 220,000 1km2 pixels inside palm oil and wood fiber concessions in our data, we calculate

what share of the nearby land – i.e. of all pixels within a 6km radius – are part of the same

forest concession as that pixel. For those outside the concession, we further categorize the

surrounding areas into four key types of land: other private concessions, protected areas

(i.e. national parks and watershed protected areas), areas outside the national forest system

(i.e. normal private land, which contains the vast bulk of the population), and unleased

productive forest (i.e. areas that could be assigned as future concessions but have not been

assigned to date). We also calculate the average population density in the surrounding area.

We examine how surrounding land composition affects the decision to use fire and find

two main results. First, compared to pixels surrounded entirely by land controlled by the

same owner, fires are used much more when the spread risk is to unleased, government-owned

productive forest. This unleased land tends to be largely unprotected by the government (or

anyone else) and therefore enjoys the weakest property rights. Second, fires are much less

likely to be used when the surrounding land is outside the forest estate (i.e. inhabited private

land). But of course, the areas surrounded by others’ lands may be different in ways beyond

those we can control for directly. To isolate the extent of the externality per se, we use the

fact that weather – wind speed, precipitation, and temperature – influences the likelihood

that fires spread, and that the degree to which the costs of a spreading fire are borne by

others depends on how much surrounding land is part of the owner’s parcel or belongs to

someone else. We first show empirically that all three of these weather variables do indeed

predict the degree of fire spread. We then compare how fire ignitions change on particularly

risky days (i.e., windy, dry and hot days when fires are especially likely to spread) depending

on what kinds of land are nearby.

Combining variation in weather-induced spread risk over time and space with the cross-

sectional variation in who owns surrounding land, we show that externalities do influence

fire-setting behavior, similar to the results in the cross-section. Specifically, we find that

fires are substantially less likely to be started on days when the weather is conducive to fire

spread in areas where the fire would be more likely to spread inside the same concession

compared to when it would spread to unleased, government-owned land. Conversely, fires
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are even less likely to be started on risky days when the spread risk is to private land outside

the forest estate where the population lives. Our estimates imply that the magnitude of the

externality is substantial: if firms treated all surrounding land the way they do land outside

the forest estate – the category of land they appear to be most concerned about – ignitions

would decline by 55-58 percent.

Our analysis then enables us to look at whether private and public solutions can limit

these externalities. Coase (1960) famously argued that, in the presence of externalities but

in the absence of transaction costs, two private parties can bargain to the efficient outcome.

To test this, we focus on cases where there are only two private parties – i.e. the area

surrounding the pixel of interest consists either of land in the concession itself or land on

a single, privately managed other concession. We find no evidence of an externality in this

case: the risk of fire spread onto one’s own land is treated identically to the risk of spread

onto a neighbor’s concession. Moreover, when we subdivide land based on whether it has

been recently deforested or not, we find the same patterns. Firms make particular efforts to

avoid fires that risk spreading to valuable, non-deforested land – but they do so identically

regardless of whether this non-deforested land is in their own concession or their neighbor’s.

This is suggestive evidence for Coasian arrangements among private firms, with firms treating

risks to nearby private concessions similarly to risks to their own land.

We find weaker evidence for the effectiveness of other private solutions to limit exter-

nalities. First, we explore the effect of reputations by looking at whether larger firms –

measured either by the number of concessions or concession size – are less likely to exhibit

externality-inducing behavior. We find that larger firms, while they do use fires less on aver-

age, are just as likely to discount the risk of spread onto unleased productive forest – where

we saw externalities were most prevalent – as smaller firms. Second, we explore the impact

of international certification by studying what happens when palm oil concessions become

members of the Roundtable for Sustainable Palm Oil (RSPO), the leading international cer-

tification organization. Consistent with other research (Cattau et al. 2016; Carlson et al.

2018), we find weak evidence that RSPO membership reduces fires overall and, to the extent

it does, that it may reduce fires primarily on low spread risk days. We then show that RSPO

membership does not reduce the spread externality associated with fires: RSPO members

are just as likely to discount the spread risk to unleased public lands as non-members.

On the public front, Pigou (1920) suggested that the government should levy taxes or

other penalties to correct externalities. And indeed, fires for land clearing were illegal in

Indonesia during the period we study, with substantial penalties including up to 15 years

in jail and fines up to IDR 10 billion (about USD 1 million), although these are not always

enforced. To quantify differential enforcement of penalties – and hence firms’ potential
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expectations about the relative risks of being punished – we analyze data from large-scale

government investigations into private firms for causing the devastating forest fires in 2015.

The government published the initials of each firm they investigated, which we matched

to firm names in our concession data to ask what types of fires were most likely to lead

to government investigation. We find that the government is substantially more likely to

investigate firms whose fires ended up burning land in protected areas and areas with high

population density, which lines up with the types of land that firms avoid in their decisions

of whether or not to use fire. This suggests that firms do behave as if they are responding to

Pigouvian-style (1920) incentives. Even if the level of fire use is still excessive compared to

the social optimum (given the regional and global externalities it creates), firms internalize

which types of fires are relatively more costly.

Other public approaches have less of an impact. We show that public enforcement via

government punishment of potentially corrupt local forest officials does not reduce fires. We

also examine direct government ownership by identifying all concessions that are part of

state-owned enterprises and find that, though these firms are, on average, 40 percent less

likely than private firms to have fires start in their concessions, they do not differentially

limit spread risk to unleased forest estate relative to their own land.

Firms are therefore strategic in that 1) they overuse fire relative to what they would do if

all spread risks were internalized, 2) they can potentially bargain with other private firms to

internalize private risks à la Coase, and 3) they do take into account the risks of government

punishment à la Pigou.

The remainder of this paper is organized as follows. Section 2 describes the institutional

setting and the datasets we use to study when and why forest fires are started. Section 3

describes the patterns of forest fires and examines their relationship with spatial land use and

land clearance. Section 4 tests for and quantifies the externalities in fire-setting behavior.

Section 5 tests for private solutions to externalities, and Section 6 tests for public solutions.

Section 7 looks at robustness of results. Section 8 concludes.

2 Setting and Data

2.1 The forest sector

The Indonesian national forest system – known as the ‘forest estate’ (kawasan hutan) – is

a vast system of national forest, covering over 1.3 million square kilometers, equivalent to

about three quarters of the size of Western Europe. This comprises about 70% of Indonesia’s

total land area and is about double the size of the whole US Forest System.
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While technically owned by the Indonesian central government, much of this land, in

the so-called ‘production’ forest, has been leased out through long-term concessions for both

logging and plantations. These two types of concession entail very different land-use patterns,

which, as we will see below, lead to very different uses of fire. Logging concessions are required

to sustainably manage the forest through selective logging. Plantations, by contrast, are

typically clear-cut (harvesting the valuable timber and clearing the rest) and, after having

been cleared, are planted either with fast-growing species used for paper pulp (wood fiber

plantations) or for oil palm. These plantation sectors are vast. For example, pulping from

two of Indonesia’s largest firms is estimated to have been responsible for the deforestation of

over 25 thousand square kilometers.3 Indonesia is also the world’s largest producer of palm

oil (Hsiao 2022), the world’s most commonly used vegetable oil. Oil palm plantations have

grown fourfold since 2000 and now occupy 7% of Indonesia’s land area (Edwards 2019).

The remaining national forest land falls into two categories. The Indonesian government

has designated 43% of the national forest as ‘protected’ forest estate for watershed and

biodiversity protection, including national parks, with logging and other extractive activities

prohibited.4 The remaining unleased production forest we refer to as a ‘no man’s land’, with

unclear ownership and extraction rights. Thus although all the land in the forest estate is

owned by the central government, there is a continuum of areas, from those leased out for

commercial exploitation by private companies to areas strictly protected by the government.

Other than some scattered squatter settlements, human populations live largely outside

the forest estate on privately owned land. The history of land zoning in Indonesia thus

means there is a patchwork of property right regimes across space that may carry different

costs of fires spreading into them. We can exploit this variation to see whether firms take

into account the externalities they might impose on others in their fire-starting decisions.

2.2 Use of fire for land clearing

Although illegal, fire is often used as a means of land clearance. After valuable timber has

been harvested, land is burned to clear away the remaining debris prior to planting plantation

crops. Fire is attractive to concession holders because it is cheap: for example, estimates

from Riau province in 2000 suggest that alternative clearance methods (e.g. bulldozers) are

44% more expensive than burning primary forest for oil palm plantations, and 70% more

expensive for wood fiber and timber plantations (Simorangkir 2007). Other benefits of fires

3See discussion by WWF at https://wwf.panda.org/our work/our focus/forests practice/ for-
est sector transformation updated/app april updated/deforestation updated/.

4Despite the existence of legislation regarding forest clearing and zoning, adherence to these laws is
imperfect (see, for example, Resosudarmo et al. 2006 and Casson 2001). Incomplete documentation of land
ownership also renders the legitimacy of some land-clearing activities unclear.
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for concession holders in this context have also been documented, including rapid nutrient

release and inhibiting the spread of plant diseases.

2.3 Policies to prevent forest fires

Policies to control fires in Indonesia center on two main branches: zoning and penalties

for using fires as a means of clearing land.5 On zoning, the 1967 Basic Forestry Law gave

the national government the exclusive right of forest exploitation in the forest estate (ROI

1967). This law centralized government control over the forest, with the zoning of land into

protection and production forest in part designed to protect sections of the forest estate from

deforestation and hence also from the use of fire in the conversion process. The 1999 Forestry

Law, which updated the 1967 Law, has become the main legal instrument against forest fires

by setting out principles for forest management and prohibiting the burning of any part of

the forest estate.6 Controls on the conversion of land have also been used, including a 2011

temporary moratorium on new concessions in primary natural forest and peatland areas

(Murdiyarso et al. 2011).

Zoning policies have been supplemented by policies that impose penalties on those that set

fires to clear forested land. In the aftermath of the enormous 1997 fires, the 1999 Forestry

Law increased anti-fire efforts, stipulating fines and imprisonment for up to 15 years for

burning forests, as well as requiring individuals and businesses in fire-prone areas to prevent

environmental degradation and pollution caused by wildfires. This regulation was used, most

notably, for a string of prosecutions against oil palm and timber companies for their role in

the 2015 fires. Some of these prosecutions resulted in high-profile court decisions mandating

hundred-billion Rupiah fines. However, around three trillion rupiahs (220 million USD) in

fines from ten companies had still not been paid by 2019 (Greenpeace Indonesia 2019).

Indonesia’s forest fire policies are characterized by two main challenges. First, political

decentralization at the end of the 1990s created a complex relationship between central and

district-level policymaking, which created political incentives for increasing deforestation

and lax implementation of existing regulations (Burgess et al. 2012). Second, enforcement

of policies aiming to control forest fires is often weak, from regulations granting concession

rights through to punishment for offenders.7

5Detailed sources relating to all policies described in this section are described in Appendix K.
6All burning of forests was prohibited without exception in 1999, pursuant to Article 50, Law No.

41/1999. The 2009 Environmental Protection and Management Law (No. 32/2009) allows the burning of 20
thousand square meters of land per family head for the planting of local varieties; this excludes oil palm and
timber and should not affect fires in the large-scale concessions we study here. It also reduced the maximum
punishment for burning forests.

7Licenses being granted often contradict official forest area designations, such as when mining concessions
are granted in protected forest areas (Enrici and Hubacek 2016). Oil palm companies charged with setting
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2.4 Data

2.4.1 Identifying fire ignition and spread from fire hotspots

To create data on fires, we begin with data on fire hotspots. We use the MODIS Terra daily

Level 3 fire product, a 1km gridded composite of fire pixels detected in each grid cell over

each 24-hour period (Giglio and Justice 2015) from October 2000 to January 2016. This

is derived from NASA’s MODIS satellites, which collectively take 4 images of virtually the

entire planet each day. MODIS routinely detects flaming and smoldering fires with a size of

1000m2 and, under optimal observation conditions, can detect fires as small as 50m2 (Giglio

et al. 2015).

We link daily MODIS observations over time in order to track the ignition and spread of

individual fires. We create a ‘fire’ observation using an iterative procedure. This starts with

an initial fire, denoted AX , comprising a given pixel, or set of contiguous pixels, that is on

fire on day X. A 1-pixel buffer is then created on each side of AX , and if any pixel within

this buffer is on fire on day X +1, we call this a continuation of fire AX . If a contiguous set

of pixels is on fire on day X + 1, but only some of them intersect the buffer, all of them are

classified as a continuation of fire AX . A 1-pixel buffer is, in turn, created around the fire

on day X + 1, and this process is iterated forward over time. If a pixel is covered by clouds

on a given day, the next day’s observation is used instead.

An example of this procedure is shown in Figure 1. In the Figure, pixels outlined in

black had a fire on Day 1 according to that day’s MODIS hotspot data, and pixels colored

red had a fire on Day 2 and subsequent consecutive days. The blue boxes A, B, C and D

denote four fires that we classify as single fires, with ignition area as the black area and total

spread extent as the union of the black and red areas.

This procedure yields a total of 176,855 fires across Indonesia from October 2000 to Jan-

uary 2016, with the strongest density of fires across the sample concentrated in Sumatra

and Kalimantan as shown in Figure 2c. Restricting attention to Indonesia’s major forested

islands (excluding Java and the Lesser Sunda Islands) and to pixels inside the forest estate

yields a total of 107,334 fires. Table 1 presents descriptive statistics for the 44,454 of these

fires that are inside concessions. The focus of our study is a quantitative analysis of firms’

incentives to start fires as a relatively cheap means of land clearance for conversion to indus-

trial plantations. The majority of the paper’s analysis therefore concentrates on the 39,189

fires started inside wood fiber and palm oil concessions across the study period, although we

present robustness checks for alternative sample restrictions including logging concessions as

fires in 2015 have used lengthy court appeals and a lack of policy harmonization across different layers of
government to avoid handing over fines (Greenpeace 2019).
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well in Appendix H.

2.4.2 Land classification and concessions

We overlay the fire data with data on land classifications and forest concessions. First, land

is divided into areas within and outside the forest estate. Second, within the forest estate,

land is demarcated into conservation and protection zones (hereafter ‘protected forest’) or

forest in which production can take place (hereafter ‘productive forest’). The map of these

zones across Indonesia, obtained from Global Forest Watch, is shown in Figure 2a.

We overlay these broad categorizations with concession boundaries of logging concessions

(for the selective logging of natural forests), palm oil concessions (allocated for industrial-

scale palm oil production) and wood fiber plantation concessions (allocated for the establish-

ment of fast-growing tree plantations to produce timber and wood pulp for paper and paper

products). The data are compiled by Global Forest Watch from government, NGO and other

sources and include georeferenced shapefiles demarcating the extent of each concession as

well as information on firm – and, in some cases, firm group – name. The data are imperfect

but provide the best available data on concession boundaries in Indonesia during our study

period. The data on concession boundaries are static and as such do not reflect any changes

in concession status that may have occurred over time during our sample period. Figure

2b shows the distribution of concessions by concession type in our dataset. The majority

of concession holdings are within the forest estate but outside protected forest. Summary

statistics pertaining to these concessions are included in Table 1.

These classifications yield four land categories of interest for the analysis: protected

forest, productive forest inside concessions, unleased productive forest (productive forest not

inside concessions) and areas outside the forest estate.8

2.4.3 Deforestation data

We augment this data with data on deforestation. Annual deforestation data from 2001-2014

across Indonesia was extracted from the dataset described originally in Hansen et al. (2013)

at a resolution of 1 arc-second (approximately 30m per pixel at the equator).9 We calculate

the area of each of the pixels used in our analysis that was deforested in a given year.

8There are two additional land categories which are not of interest for the analysis and which are therefore
suppressed in the results. These are protected forest inside concessions (these areas comprise only 2% of the
total land area and are likely due to mapping inaccuracies) and concession areas that fall outside the forest
estate (5% of total land area).

9The updated data can be downloaded at https://glad.earthengine.app/view/global-forest-change.
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2.4.4 Weather conditions data

Data on the vector components of daily wind at 297 grid points across Indonesia over our

study period was downloaded from the National Oceanic and Atmospheric Administration’s

NCEP-DOE Reanalysis 2 Gaussian Grid.10 This was used to calculate daily wind speed,

from which monthly averages were calculated, at each of these 297 points. The inverse

distance weighted interpolation tool in ArcGIS was used to interpolate this data in order to

assign a wind speed to each of the 1km2 pixels used in our analysis. Data on monthly total

precipitation comes from GloH20’s gauge-corrected reanalysis product, MSWEP V2.8, which

captures precipitation on an approximately 11km2 resolution grid. We mapped these values

onto our 1km2 grid by calculating, for each 1km2 pixel, the area-weighted average value from

the 11km2 resolution pixels with which it overlaps. Data on monthly average temperature

is based on the Climatic Research Unit gridded Time Series V4.06 data set. This is an

approximately 60 km2 resolution gridded database constructed by interpolating data from

a network of weather stations using angular distance weighting. Temperature values were

assigned to each of the 1km2 pixels used in our analysis using the same interpolation tools

as for the precipitation data. Summary statistics for all weather variables are in Table 1.

2.4.5 Data on public and private regulation

In late 2015, lists of firms investigated and sanctioned by the Indonesian government for

starting forest fires throughout Sumatra and Kalimantan islands were released by the Min-

istry of Forestry and the Environment.11 This followed a comprehensive investigation after

the devastating fires of 2015. All firms identified in the initial list were investigated for

possible administrative sanctions, including requiring firms to rehabilitate land, license sus-

pensions, requirements of public apologies, and the possibility of having their concessions

revoked. By the end of 2015, 56 firms had received sanctions of some form, including 23 firms

whose licenses were revoked, suspended, or otherwise referred for government sanctions.

10https://esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
11The list of investigated firms was released in September 2015

(http://www.mongabay.co.id/2015/09/18/inilah-ratusan-perusahaan-dengan-lahan-terbakar-
yang-bakal-kena-sanksi/) and the list of sanctioned firms in December 2015
(http://www.mongabay.co.id/2015/12/22/baru-23-perusahaan-terindikasi-bakar-lahan-kena-sanksi-
administrasi/). As described above, these lists include only the initials of investigated and sanctioned firms,
not complete firm names.
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3 The Origins of Forest Fires

We begin in Section 3.1 by describing the patterns of forest fires and their relationship with

spatial land use throughout Indonesia. Section 3.2 examines the relationship between fire

and land clearing by merging fire data with data on deforestation.

3.1 Descriptive statistics: fire and land-use

To illustrate the relationship between fires and land use, Figure 3 zooms in on the province

of Riau in central Sumatra, an area of substantial forest activity, to show the distribution of

fire ignitions in our data overlaid with the land classification and concessions data, at a fine

geographic scale. Each 1km2 red box represents a grid cell in which we detect at least one

ignition. Concessions are outlined (yellow for wood fiber, orange for oil palm). Protected

forest zones are shown in dark green, regular forest estate areas in light green, and areas

outside the forest estate in white. Note that a substantial portion of the forest estate belongs

to the unleased productive forest, or ‘no man’s land’, category.

Several patterns are worth noting. First, there are a vast number of fires. The area shown

in the map covers approximately 7,700 square kilometers, and has over 3,400 separate fire

ignitions during the period of our study. Second, the spatial patterns of land use appear to

be related to ignition patterns. A ‘natural’ rate of fire ignition across space would suggest

that the shares of land area and fire ignitions by each forest zone should be approximately

equivalent. Yet in this relatively high fire area, we observe almost no fires started in the

preservation area (Zamrud National Park) shown in the middle-right of the map or in the

area outside of the forest estate in the bottom left, which is a small town. Similar patterns

emerge when we consider the entire dataset. Appendix Figure A.2(a) compares the share of

Indonesia’s land area by land use zone with the share of ignitions in each zone and shows

that ignitions are disproportionately less likely to occur in protected areas and more likely

to occur in areas zoned for productive use.

The pattern is even more striking when we look across different concession types. Figure

2b displays the distribution of different concession types across Indonesia. Comparing this

to the distribution of fires across the study period in Figure 2c, fires appear to be most

strongly concentrated in areas in and surrounding the types of concessions associated with

land clearing. Indeed Appendix Figure A.2(b) shows that, among all fires started within

concessions, 46% of fires are started in oil palm concessions – which drain and clear existing

forest before planting oil palm – even though they comprise just 28% of total concession land

area. Similarly, 42% of fires are started in wood fiber plantations – which clear land after
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wood is harvested before replanting – even though these comprise just 22% of land area. By

contrast, logging concessions, which practice selective logging rather than clear cutting, have

a much lower share of ignitions – just 12% of fires, even though they comprise 51% of total

concession areas. This is consistent with evidence that fires are the most profitable form of

land clearance in the ‘first rotation’ when clearing vegetation and converting forests to oil

palm and wood fiber (Simorangkir 2007).

3.2 Fire as part of the land-clearing process

To establish this link between land clearing and fire setting more precisely, we can move to

the pixel level and look at the relationship between deforestation and subsequent fires.

To do so, we use the Hansen et al. (2013) global deforestation dataset. Since this dataset is

based on Landsat, it has a resolution of approximately 30m per pixel at the equator, which

is much finer than the 1km resolution of the MODIS-based hotspot data. We therefore

calculate, for each of the 1km pixels in our MODIS-based fire hotspot data, the share of that

pixel that was deforested in year t based on the Hansen et al. (2013) data.

To illustrate these patterns, Figure 4 shows part of the same area of Riau province as

Figure 3, zoomed in further given the high spatial resolution of the deforestation data. The

map marks areas where ignitions were detected in 2013 with 1km boxes (the resolution of

the MODIS fire data), while areas that were deforested in 2012 are marked with orange. It

illustrates that, at least in this area, almost all of the ignitions took place in areas that had

experienced deforestation the previous year. Across the sample, 25% of year-month-pixel ob-

servations have some forest loss unconditionally, while 46% of year-month-pixel observations

in which fires were recorded had some forest loss in the preceding year.

To analyze this more formally across our entire data, we estimate a fixed effects Poisson

panel regression of the form:

E[Ignitionsimt] = γi exp(β1Forestlossit−1 + β2Forestlossit−2

+β3Forestlossit−3 + δm + δt)
(1)

where an observation is a MODIS-sized 1km pixel in a given month m and year t. In

this specification, γi is a pixel fixed effect, δm are month fixed effects and δt are year fixed

effects. Note that this is a count model since multiple fires can start in the same pixel within

the same month, since fires are measured daily.12 Robust standard errors (i.e. robust to

arbitrary variance of the error term, as long as the expectation in (1) is correctly specified;

see Wooldridge 1999), clustered using 50km x 50km grid cells, are shown in parentheses.

12We obtain very similar results when aggregating the data to the pixel-year level.
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Two important aspects of this specification are worth noting. First, pixel fixed effects

are important because they capture fixed differences in land use and characteristics over

time. This nets out fixed differences that may lead some areas to be more vulnerable to

fire than others. Second, time fixed effects capture the fact that some years are more likely

to experience fires (due to drought, for example), which may happen to be correlated with

previous deforestation patterns.

The results are shown in Table 2, focusing in on wood fiber and palm oil concessions.

We find that fire ignition is more likely in recently deforested areas.13 The magnitudes are

substantial: a 1km pixel that was completely deforested is expected to have 285% percent

more ignitions than it would have otherwise. Interestingly, subsequent lags of the deforesta-

tion variable are negative. This suggests that the timing between deforestation and fire use

is quite tight, consistent with the use of fires as part of the land-clearing process, rather than

recent deforestation simply making the land more flammable by natural causes (in which

case one would expect subsequent lags to also be positive). The negative further lags may

reflect the fact that, several years after deforestation, the land has perhaps been replanted

for oil palm and other uses, and hence it is no longer desirable to burn it. Combined, these

results suggest a clear picture: many of the fires we observe appear to be a systematic part

of the land clearance process.

4 Externalities and fire setting

The evidence in Section 3 points to forest fires in Indonesia being driven by human activity.

This section examines whether firms take the externalities from fire setting into account in

their decision of whether to burn forest or not. Understanding this is critical to understanding

whether and how forest fires might be controlled.

13Much of the fire setting that follows deforestation may occur within the same year as the forest clearing.
Unfortunately, we are unable to observe within-year variation in deforestation as the forest loss data is only
available at annual frequency. We exclude deforestation in the current year from this regression because
including contemporaneous deforestation would confound fires that follow deforestation (our effect of interest)
and recorded deforestation caused by the fires themselves. Appendix Table B.1 shows the results including
forest loss in the same year as the ignition: this continues to show that fire ignition is more likely in
recently deforested areas, but is more difficult to interpret than the central specification in Table 2 given the
reverse causality concerns described here. Appendix Table B.2 shows a similar pattern when controlling for
whether the pixel has been burnt previously. In these cases, the results continue to show that fire ignition is
significantly more likely in recently deforested areas, though here subsequent lags are smaller in magnitude
than the first lagged term but not negative.
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4.1 Ignitions, weather conditions, and fire spread risks

4.1.1 The risk of fire spread

A key risk from using fire for land clearance is that the fire may spread beyond the initial

ignition area. To quantify this risk, we use our processing of the MODIS hotspot data,

which allows us to separate pixels of initial ignition and areas to which the fire subsequently

spreads. Note that this procedure may underestimate spread – since we classify all adjacent

pixels that have a hotspot on the same day as a single ‘ignition’, this procedure will define

the area of fire spread to be those adjacent pixels that are alight on subsequent days, rather

than capturing spread within a single day.

Our data reveal that there are tail risks associated with fire-setting behavior. Eighty-

seven percent of the 107,334 fires in our sample burn for only one day, and 89% do not spread

beyond their original ignition area. However, the long tails of these distributions reveal that

there is a small chance that fires burn for much longer than this (up to a maximum of 36

days) and spread to cover an area much greater than their ignition area (up to a maximum of

466 times the ignition area) and very large areas in absolute terms (up to a maximum of 764

1km2 pixels). The risk of fire spread also imposes a risk of externalities: across all multi-day

fires started inside concessions, 28% of the total land burned is outside the concession in

which the fire was ignited.

4.1.2 Is spread risk predictable?

The risks of fire spread may vary over time depending on weather conditions such as wind,

precipitation and temperature. Greater winds can increase fire spread for several reasons:

increased winds supply more oxygen, which increases the intensity of the fires and can exert

pressure on the fire to move, igniting new areas.14 Periods of low precipitation will result in

lower moisture content of the air, fuel and soil and therefore support fire development and

spread. Higher temperatures can influence fire intensity and spread risk through heating fuel

and changing the moisture content of the air. To the extent fire spread risk is predictable,

potential fire setters should be more concerned about external risks from fire spread during

14While we explore the impact of wind speed on fire spread, we do not use variation in wind direction,
given that wind direction at the point of the fire is a complex function influenced by winds generated by the
fire itself as well as local topography and prevailing local winds (e.g. Benson et al. 2008). As a result, it is
difficult to predict tropical fire spread accurately based on average meteorological wind direction, especially
when aggregated temporally as here (Shmuel and Heifetz 2022). Consistent with this, we do not find that
monthly average wind direction predicts the average direction of fire spread in our sample. This is in contrast
to the use of wind direction data in other contexts to study the direction of smoke spread from fires, which
occurs at much higher altitudes and is hence influenced to a greater extent by prevailing higher-altitude wind
directions (e.g. Rangel and Vogl 2019).
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these particularly risky periods.

To investigate the predictability of fire spread in our data, we merge our fire data with

data on monthly average prevailing wind speeds, temperature and total precipitation. To

isolate the effect of weather conditions from other factors that may influence fire spread, we

implement a fixed effects Poisson specification of the form:

E[FireSpreadimt] = γiexp(β1Windspeedimt + β2Precipitationimt

+β3Temperatureimt + β4Ignitionsimt + δm + δt)
(2)

where FireSpreadimt is a count of the average number of pixels of fire spread area (burned

area minus ignition area) of all fires started in pixel i during month-year mt, Windspeedimt

is the average wind speed in pixel i during month-year mt, Precipitationimt is the total

precipitation in pixel i during month-year mt, Temperatureimt is the average temperature

in pixel i during month-year mt, Ignitionsimt is the number of ignitions in pixel i during

month-year mt, γi are pixel fixed effects and δm and δt are month and year fixed effects. As

above, we use robust standard errors to allow for arbitrary distributions of the error term.

The results are shown in Table 3 and demonstrate that an ignited fire is more likely

to spread to a larger area when prevailing winds are strong, temperatures are higher, or

precipitation is lower. Pixel fixed effects are included to capture fixed differences in spread

risks across different soil types and other fixed land characteristics. The results suggest not

only that fire is risky due to the risk that it spreads, but that this risk is predictable based

on local weather conditions.15 The time-varying but predictable risk of fire spread forms the

basis of our empirical test for externalities in the next section.

4.2 Externalities in fire spread

The use of fire entails a risk of spread, but the degree to which spread risk is costly depends

on what type of land it could spread to. One could imagine, for example, that a fire spreading

into unoccupied forest land, where no one is likely to object, may be of less concern to a

landowner than a fire that spreads into a city, town or protected national park, which may

15Local news reporting suggests that land owners are aware of the importance of weather
conditions as a risk factor for fire spread and take this into account in their burning deci-
sions. For instance, police reporting of burning suspected to have been undertaken profession-
ally for land clearance in Pelalawan Regency referred to the perpetrators having taken wind condi-
tions into account (https://www.liputan6.com/regional/read/2531132/tutupi-jejak-perusahaan-pembakar-
lahan-catut-nama-kelompok-tani); media reporting refers to farmers in South Lampung taking rain-
fall and temperature into account in burning decisions (https://www.cendananews.com/2020/10/petani-
di-lamsel-pertahankan-bersihkan-lahan-sistem-tebas-bakar.html); and recommendations relating to the
use of fire for forest clearance among the Serawai people include consideration of wind strength
(https://www.viva.co.id/berita/nasional/706170-belajar-dari-mereka-yang-membakar-hutan).
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provoke a substantial backlash.

We examine the evidence for such deterrent effects of surrounding land types in two ways.

First, we consider the impact of different types of land surrounding each pixel on ignitions in

that pixel. Second, to further improve identification, we use the interaction of time-varying

riskiness of fire spread, which is a function of recent weather conditions (as shown in the

previous section), with the surrounding land type. This second specification uses the product

of two factors which together create riskiness of starting a particular fire, which varies across

both time and locations. This allows for more robust identification of the degree to which

potential fire users are deterred by the externalities they may cause, because we can control

flexibly for fixed attributes of a given pixel that make fire use more or less likely.

4.2.1 Cross-sectional variation in neighboring land-type

To examine the impact of surrounding land type on pixel-level ignitions, we use the following

specification:

E[Ignitionsimt] = exp(
∑

j β
j
1NeighborLandTypeji+

+β2Xi + δm + δt)
(3)

where NeighborLandTypeji is the share of land in the 6km radius buffer surrounding pixel i

that is in land type j16; Xi are controls for island, concession type, the total size of the conces-

sion, baseline forest cover, and average population density in the 6km radius buffer surround-

ing pixel i17; and δm and δt are month and year fixed effects. We divide NeighborLandTypeji
according to land type classifications that distinguish private land owned by the same

concession-holder as the central pixel; private land owned by other concession-holders; na-

tional parks and conservation areas, which are explicitly protected by the government; land

outside the national forest system, which is typically comprised of villages and smallholders;

and unleased productive forest outside concession boundaries (as well as suppressed cate-

gories in the sea or neighboring countries). The variable NeighborLandTypeji is constant

over time but varies across pixels in our dataset and yields within-concession variation in the

share of land surrounding each pixel in different land types. An example of the construction

of this variable is shown in Figure 5.

We benchmark the degree to which property owners avoid damaging other types of land

to the way they behave vis-a-vis their own land by assigning the share of buffer pixels in

16A radius of 6km was chosen to estimate the area at risk of fire spread. This is the 90th percentile of the
distribution of the maximum distance between fire ignition centroids and the boundary of extents burned
for multi-day fires.

17This is calculated by (i) assigning a population density to each 1km grid cell based on the population
density of the desa in which the grid cell centroid lies; and (ii) finding the average population density of the
grid cell centroid points that lie within each pixel’s 6km buffer.
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the same concession as the central pixel to be the omitted category. The coefficients thus

capture whether you are more or less likely to start fires when they might spread into your

own land versus that of others; that is, whether or not you take into account the externality

you might impose on others.

The results, shown in Table 4, panel (A), reveal that ignitions are more likely in areas

neighboring unleased productive forest (i.e. “productive forest outside concessions”) - rela-

tive to those neighboring the central concession holder’s own land. This is the land where

there is no one with a strong vested interest in protecting it - it is (largely) uninhabited,

no one has a formal claim to be able to use its proceeds, and it is not a priority for forest

protection by the government.

Conversely, ignitions are less likely in areas neighbouring land outside the forest estate

relative to own concession land. Because the 1966 Forest Law banned human settlement

within the forest estate, it is land outside that is most populated and hence where damages

from fire spread will be particularly high. Fire setters seem to take this into account in their

decisions of whether or not to use fire.

Neighboring land of all other types – other concession holders’ land and protected forest

– also appear to have a deterrent effect on fire setting relative to own concession land, though

these results are not always significant. Taken together, these results suggest that fire setters

are taking into account where fires might spread to and the costs of the damages they might

cause.

4.2.2 Identifying externalities using time-varying fire spread risk

One potential concern with the previous specification is that there may be differences across

areas in their propensity to use fires that may be correlated with the classification of neigh-

boring land. To further pin down whether externalities affect the decision to use fire, we

refine our analysis using both temporal and spatial variation.

To do so, we consider how fire-setting behavior is influenced by the interaction of local

variation in the cost of fire spread (driven by the types of land surrounding each pixel) with

spatial and temporal variation in the probability of fire spread (driven by the weather). The

risk of fire spread is constructed as:

̂WeatherSpreadRiskimt = β̂wind.Windspeedimt + β̂precip.P recipitationimt

+β̂temp.T emperatureimt

(4)

where the estimated β̂ coefficients are those obtained in Table 3 estimated on the sample
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in all concessions.18 The expected external cost of starting a fire in a particular pixel in a

particular month depends on the product of these two factors – the weather-induced spread

risk in that pixel in that month and the composition of the types of land that surround the

pixel.

We use the following specification to investigate whether external costs influence the

decision to use fire:

E[Ignitionsimt] = γi exp(β1
̂WeatherSpreadRiskimt+∑

j β
j
2NeighborLandTypeji × ̂WeatherSpreadRiskimt

+β3Xi × ̂WeatherSpreadRiskimt + δm + δt)

(5)

Here the coefficients on the interaction terms, β2, capture whether potential fire setters

differentially use fires depending on the magnitude of their expected externality. In addition

to time fixed effects (δm, δt) which absorb common time shocks, equation (5) includes pixel

fixed effects (γi), which absorb fixed pixel characteristics and therefore rule out effects driven

by, for instance, differential flammability on different land types. We also include interactions

of the weather index with island, concession type, the total size of the concession (to account

for the fact that in larger concessions, more pixels will mechanically have smaller shares of

pixels outside the concession), baseline forest cover, and average population density in the

6km radius buffer. The identification thus rests on comparing areas surrounded by different

land types on days when the weather makes fire spread more versus less likely.19

The results of this exercise are shown in panel (B) of Table 4. The results are broadly

consistent with the cross-sectional results shown in panel (A).

Several results stand out. First, there is a clear externality with respect to unleased pro-

ductive forest. To see this, note the positive coefficient on the interaction of ̂WeatherSpreadRisk

with productive forest outside concession. This implies that concession owners are much less

attentive to avoiding fires that would spread to unleased productive forest relative to fires

that would spread to their own land.

Second, there is a notable contrast between the way forest owners treat neighboring

unleased land and the way they treat land owned by other private concession owners. Indeed,

the coefficients on land owned by other private concession owners are substantially smaller,

18This measure is normalized using the standard deviation calculated across the full set of pixel-month-
year observations in our analysis sample (i.e. pixels in concession land inside the forest estate, excluding
Java and the Lesser Sunda Islands).

19This identification strategy abstracts from inter-temporal substitution of ignitions in light of positive
though imperfect serial correlation of the fire spread weather index across months (month-to-month serial
correlation in the index is 0.26; see Appendix Table C.1). Given this, it is likely that the costs of waiting
for a period when weather conditions are less conducive to spread to start a fire for land clearing may be
non-trivial (at least a few months) once the land is ready to be cleared for planting.
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and once we include the full set of controls (column (6)), the results suggest that in fact

concession owners treat land owned by other private firms similarly to their own land. We

explore this in more detail in Section 5 below.

Third, and conversely, there is some land that concession owners seem to clearly avoid

burning: populated land outside the forest estate. Specifically, concession owners make

more of an effort on days when the weather is conducive to fire spread to avoid starting fires

that risk spreading into land outside the forest estate, i.e. to populated areas, even relative

to their own lands. This can be seen from the negative coefficient on the interaction of

̂WeatherSpreadRisk with the number of pixels in the buffer area outside the forest estate.20

The evidence in Table 4 thus shows that potential fire setters are sophisticated in their

choice to use fire – they are much less worried about the use of fire when the spread risk is

to unleased productive forest than to their own land – but also avoid starting fires on windy

days in locations where they could spread to population centers. On risky days and relative

to their own land, the proximity of low-cost, unregulated land encourages fire use, whereas

the proximity of high-cost, populated land discourages it.21

4.2.3 Quantifying the magnitude of the externality

To help quantify the magnitude of the externalities identified in the previous section, we

consider how far ignitions would be reduced if agents treated all surrounding land (within

the 6km radius we consider empirically) as if it were land outside the forest estate – the

surrounding land type that has the strongest deterrent effect on fire setting as shown in Table

4. We estimate this by taking the estimated coefficients from Table 4 and simulating the

value of the dependent variable in equations (3) and (5) under counterfactual scenarios that

set NeighborLandTypei to be entirely outside the forest estate, keeping all other covariates

unchanged.

We do these calculations in two ways – first considering the cross-sectional estimates of

the effect of nearby land type from panel (A) of Table 4, and then separately using the

20The positive direct effect of the weather-based spread risk index does not detract from this negative
interaction; this positive main effect is driven by the fact that natural ignitions are more likely under windier,
drier and warmer conditions, which increase the probability that a spark results in a fire that is detectable
in our data.

21In addition to studying the impacts on fire ignitions, in Appendix D.1, we also investigate whether,
conditional on a fire starting, it is differentially likely to spread depending on neighboring land types. Efforts
to reduce fire spread may reflect actions taken either prior to a fire starting (such as building in fire breaks),
or actions taken after the fire starts (i.e. firefighting effort), or a combination thereof. Importantly, actions to
reduce fire spread once a fire has started might be undertaken by the government or other private actors, so
that externality-containing (or inducing) behavior is more difficult to attribute to the owner of the concession
in which the fire starts in this case. The results of these specifications suggest that, conditional on a fire
starting, it is less likely to spread if surrounded by areas of higher population density.
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interactions with spread risk in panel (B). To start, we use the panel (A) estimates and

simulate the total number of ignitions when NeighborLandTypei in equation (3) is set to be

entirely outside the forest estate. Using this approach, we find that the number of ignitions

inside wood fiber and palm oil concessions within the forest estate would decline by 55% if

concession-holders treated all land in each buffer as if it were outside the forest estate. We

perform a similar exercise using the estimates in panel (B) of Table 4, which estimate the

externality by using the interaction of weather-induced spread risk with surrounding land

type. We find a similar result: on net, we conclude that there would be a 58% reduction in

the number of ignitions if concession owners treated the risk of any spread in the same way

as they currently treat the risk of spread to land outside the forest estate.

Our key finding therefore is that externalities affect private decision making. This, in

turn, opens up the space to think about how both private and public approaches which alter

the costs of fire spread may be effective in reducing the uncompensated damages caused by

forest fires. These two approaches are covered in Sections 5 and 6 respectively.

5 Private approaches to reducing externalities

In this and the subsequent section, we consider two alternative approaches to reducing

externalities. First, in Section 5, we consider private market solutions - Coasian solutions

among private firms, reputation effects, and voluntary organizations that certify firms as

complying with environmental rules. Second, in Section 6, we consider public sector solutions

– punishments for violations and direct government ownership of firms. We conclude that

the problem is challenging but that the patterns we saw in Section 4 are consistent with

elements of both approaches reducing externalities to some degree.

5.1 Private firms and the Coase Theorem

Coase (1960) famously argued that, in the presence of externalities but in the absence of

transaction costs, two private parties can bargain to the efficient outcome. Can this work to

prevent externalities in the context of fire setting?

To take this to the data, we need to narrow down our analysis to some degree. Specifically,

we need to focus on cases where there are relatively clear property rights on both sides -

that is, where the neighboring land is owned by a private party who could engage in Coasian

bargaining. Furthermore, to approximate the Coase theorem’s requirement that transaction

costs are not too large, we focus on cases when there are at most two parties involved - that

is, the entire 6km buffer consists either of your own land or of land controlled by at most
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one other private concession.

We also need to be precise about what the ‘efficient’ outcome looks like in our setting.

Coase argued that the right solution to externalities is not necessarily the absence of the

offending activity, but rather that the risk of damage is internalized. Put another way, firm

boundaries should not matter – the damage done should be the same as if firm boundaries

did not exist. We argue that, in our setting, the ‘efficient’ outcome would mean that firms

would treat their neighbor’s land the same as they treat their own land.

We examine this in the data in two ways. First, we re-estimate equations (3) and (5)

focusing just on the cases where bargaining could most easily take place: when the sur-

rounding land is controlled by at most one other concession. The results are presented in

Table 5. Echoing the results in Table 4 above, the results here show that, once all controls

are included, one’s own land is treated no differently than others’ land on risky days. This

holds whether we use uninteracted surrounding land ownership (as per equation (3)) or its

interaction with weather-derived fire spread risk (as per equation (5)).

But we can go further. To test this even more precisely, we separate out land that has

been recently deforested from land that has not. Land that has recently been deforested is

less valuable to protect – as shown in Table 2, this is the land that is typically cleared by

fire – whereas land that has not been recently deforested is more valuable to protect, either

because it has virgin timber or because it contains plantations or other crops. We therefore

augment equation (5) by separately examining the effects of your own deforested and non-

deforested pixels and neighboring concessions’ own deforested and non-deforested pixels. In

this case, we revert to using the full sample (rather than cases where the surrounding land

is controlled by at most one other private firm) and use unleased productive forest as the

omitted category in order to demonstrate clearly the effects of recent deforestation in both

nearby land on your own concession and on that owned by others.

The results are presented in Table 6. The results suggest that firms try particularly hard

to avoid setting fires that risk spreading to areas of either their own or others’ concessions

that have not recently been deforested. Most notably, they seem to avoid nearby land that

has not recently been deforested in almost exactly the same way regardless of whether the

land is elsewhere on your own concession or on someone else’s concession – suggesting that

own valuable land is treated the same as others’ valuable land. Likewise, firms do not seem

particularly perturbed about fire spreading to recently deforested land, treating this the

same as unleased productive forest – but again, they do so similarly for land in their own

concession and for land in neighboring concessions.

Taken together, these results suggest the possibility put forth by Coase: when there are

a small number of private owners who can potentially bargain with one another, we do not
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detect externalities in fire-setting behavior.

5.2 Reputation effects

A second ‘private’ mechanism that could help limit externalities is reputations – firms with

valuable reputations may be less likely to engage in damaging behavior. This could happen

if, for example, a firm’s brand name was sullied by its association with destructive forest

practices. While we do not observe reputation directly, we can examine several proxies for

this to see if firms that are likely to care more about these types of effects are less likely to

engage in risky fire-setting behavior.

5.2.1 Firm size

The first characteristic we consider is the number of concessions owned by a firm, given

the likelihood that firms with more concessions may be more concerned about reputational

damage from their behavior in one concession affecting their other concessions. The sec-

ond examines heterogeneity of the results according to the area of firm concessions, based

on similar intuition that reputation concerns may loom largest for firms managing larger

concession areas.22

The results are presented in Table 7. Columns (1) and (2) explore connections between

fire setting and the number of concessions owned by the firm; columns (3) and (4) explore

connections between fire setting and concession size. We focus on two specifications: columns

(1) and (3) present results without controls (equivalent to column (1) in Table 4); columns

(2) and (4) present results with the full set of controls (equivalent to column (6) in Table 4).

We begin in panel (A) by examining the cross-sectional relationship between firm size

(i.e. number of concessions owned and concession size) and the overall number of ignitions.

We find negative effects of both – larger firms, measured both in terms of the number of

concessions owned and concession size, are significantly less likely to use fire.

We next turn to whether these larger firms engage in less risky fire-setting behavior.

Specifically, in panel (B), we interact the risk index – i.e. ̂WeatherSpreadRisk – with a

firm having more concessions or a concession having a larger size. We find no indication

that firms with more separate concessions are differentially likely to use fire on risky days

(columns (1) and (2)). We do, however, find that larger concessions are less likely to use

fire on risky days, which is consistent with reputation concerns playing a role. This latter

effect may, however, partially capture the effects of firms trying to minimize fire spread onto

22Qualitatively similar though weaker results are obtained when considering the total area of all conces-
sions owned by a given firm, rather than concession area.
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unintended areas of one’s own concession (i.e. the effects explored in Table 4).

Third, we test whether these larger firms are less prone to lighting fires when the exter-

nality from doing so is high. To provide the cleanest test of this, we restrict attention to

those cases where the concession is surrounded by unleased productive forest. This is the

area identified in Table 4 as the area where the externality from fire setting is greatest. To

confirm that indeed there is a strong externality present in this sample, Table 8 re-estimates

equations (3) and (5) on this sample, considering only those pixel buffers that contain only

own concession land or land in unleased productive forest. Table 8 confirms strong evidence

for the externality in this sample of areas bordering unleased productive forest.

To test whether larger firms are less prone to using fires when there is a stronger external-

ity, in panel (C) of Table 7, we restrict attention to this sample and augment our test for the

externality in equation (5) by asking whether the externality-producing behavior – setting

fires on risky days when surrounded by land outside your concession – is less pronounced for

larger firms. That is, we estimate:

E[Ignitionsimt] = γi exp(β1
̂WeatherSpreadRiskimt+

β2LandInsideConcessioni × ̂WeatherSpreadRiskimt+

β3LargeF irmi × ̂WeatherSpreadRiskimt+

β4LargeF irmi × LandInsideConcessioni × ̂WeatherSpreadRiskimt+

+β5Xi × ̂WeatherSpreadRiskimt + δm + δt)

(6)

where the key coefficient of interest is β4, the coefficient on the triple interaction LargeF irmi×
LandInsideConcessioni × ̂WeatherSpreadRiskimt. This coefficient captures whether large

firms are differentially less likely to exhibit the externality-inducing behavior we identified

in Section 4.2.2, i.e. refraining from using fire on risky days more when the spread risk is to

their own land versus when the risk is to unleased productive forest.

We find that they are not. Focusing on the specifications with controls (columns (2)

and (4)), we find that while we see evidence of the externality – the coefficient β2 on

LandInsideConcessioni × ̂WeatherSpreadRiskimt is negative, indicating the presence of

the externality – the triple interaction β4 is small and statistically indistinguishable from

zero using both measures of firm size.

Summing up, we find that, using both measures of firm size, large firms are less likely to

use fire overall (panel (A)). There is some evidence that when spread risk is higher, firms

with larger concession areas use fires less (panel (B)), but we find no evidence that larger

firms internalize the spread risk to external land any more than small firms (panel (C)).
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5.2.2 International certification: the Roundtable on Sustainable Palm Oil

One specific mechanism for enhancing a firm’s reputation is through international certifi-

cation of good behavior. By signing up with international certification organizations, firms

can signal to buyers that their production processes do not involve illegal practices that

damage others. Certification is now used in a wide variety of contexts as a private means of

regulating practices such as illegal deforestation and burning, illegal fishing and the use of

child labor.

In the context we study, the flagship certification policy is private regulation via mem-

bership of the Roundtable on Sustainable Palm Oil (RSPO). This is a multi-stakeholder

not-for-profit organization founded in 2004 that encourages the production and trade of cer-

tified sustainable palm oil and, as part of this, promotes a zero-burning policy. Existing

studies find muted evidence for reduced incidence of fires in RSPO-certified concessions:

Carlson et al. (2018) find that RSPO certification reduced deforestation but not fire or

peatland clearance, and Cattau et al. (2016) find that the prevalence of fires in Sumatra

and Kalimantan from 2012-2015 was lower in RSPO-certified concessions only in areas and

under climatic conditions when the likelihood of fire is relatively low.

We use our data to consider the impact of RSPO membership on overall ignitions, as

well as on the externality-inducing behavior identified in Section 4.23 We identify RSPO

members in our concessions data, and their date of accession to the RSPO, by classifying a

concession as an RSPO member if the concession name, or the company group to which the

concession belongs, appears in the list of RSPO members published by the RSPO together

with the date on which each member acceded to the RSPO.24 Over our study period, 23%

of company groups, owning 12% of palm oil concessions, became RSPO members.

It is worth noting that, on average, we find that the zero-burning policy promoted by

the RSPO among its members was imperfectly enforced over the study period: fires started

inside concessions owned by RSPO members at the time of ignition burned a total of 1648

km2 , accounting for 2.1% of the total area burned by fires inside palm oil concessions.

We examine the impact of RSPO membership systematically in columns (5) and (6) of

Table 7. The table shows that there is weak and statistically insignificant evidence that

palm oil concessions owned by RSPO members may be associated with fewer ignitions - the

point estimates do suggest a reduction of about 20 percent in ignitions when a firm joins the

23RSPO membership is the first step towards RSPO certification. While not an explicit pledge of zero
burning, RSPO membership requires firms to work towards certification - which explicitly prohibits burning
- and to provide annual progress reports and acknowledgment of the RSPO Statutes and Principle and
Criteria. RSPO certification itself cannot be mapped directly to our concessions data since the unit of
certification is an oil palm mill and its surrounding supply base.

24https://www.rspo.org/members/all
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RSPO, but this is not statistically significant. But this masks important heterogeneity. Panel

(B), columns (5) and (6), suggests that when the risk of spread is low, RSPO membership

does reduce ignitions. But there is a positive interaction between ̂WeatherSpreadRisk and

FirminRSPO, suggesting that this reduction in fire use goes away when spread risk is high.

This result echoes the findings of Cattau et al. (2016), which find reductions of fires in RSPO

areas in wetter times (low risk) but not in dry times (high risk).

In panel (C), we then estimate whether RSPO membership is associated with a reduction

in the externality associated with fire use by re-estimating equation (6) with RSPO member-

ship as the interaction variable. We find that RSPO membership does not significantly affect

the degree to which concession owners internalize the cost of fires on neighboring unleased

productive forest.

These results together suggest that RSPO membership had limited success in reducing

ignitions overall and was still more ineffective in reducing fires that impose particularly

significant externalities, either those that occur at riskier times or those that are most likely

to spread to unleased productive forest – the part of the forest estate where property rights

are weakest.

The picture that emerges from this section is that private incentives clearly influence the

use of fire. Firms are less likely to use fire if the adjoining land is either their own concession

land or that of another firm. This is true in the cross-section but also when the risk of fire

spread is higher. Interestingly firms also consider whether or not their own concession land

or that of their neighbor is still forested or recently deforested. Our central result here –

that treatment of own concession land, whether forested or not, is symmetric with adjoining

concession land – suggests that strong private property rights can help limit but not eradicate

the use of fire. Reputation concerns captured by firm size or private regulation via RSPO,

in contrast, have much more muted effects. Taken together, these results suggest private

approaches to limiting forest fire externalities can, at best, only be partially successful.

6 Public sector approaches to reducing externalities

The other, perhaps more conventional, approach to managing externalities is through gov-

ernment action. Pigou (1920), for example, argues that when the private and social benefits

from an action differ, the solution is to levy a tax on the externality-generating activity so

that the marginal benefits and costs are equated. Does that work in this context? Or would

it be preferable if the government itself simply took over the production process? We explore

these issues in this section.
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6.1 Government sanctions

6.1.1 Penalties a la Pigou

Intentionally burning areas of the wood fiber and palm oil forest concessions we study was

illegal throughout our study period, with substantial maximum penalties specified by law –

up to 15 years imprisonment, fines up to IDR 10 billion (about USD 1 million during much

of this period), and for corporate entities, a variety of financial penalties, sealing and loss

of use of the concession, or even total guardianship of the company for up to three years

(DLHK Provinsi Baten 2020).

But these are theoretical maximum penalties and, even if they are enforced, they may

not be enforced uniformly. Indeed, the government may implicitly place different sanctions

on different types of fires depending on what types of land are damaged and the amount

of damage done. From the perspective of a firm considering using fire to clear land, what

matters is the expectation about how different types of fire damage will result in different

expected penalties (Becker 1968).

We cannot measure firms’ expectations directly. But we can look at a period when the

government of Indonesia initiated a large number of enforcement actions and estimate which

types of fires are most likely to lead to crackdowns. To test whether firms are responding to

these expected Pigouvian sanctions, we can then compare whether firms avoid the types of

fires (i.e. from the estimates in Table 4) that the government is most likely to punish.

To look at what the government punishment function looks like, we can back out the gov-

ernment’s implicit weights on different types of fire damage using data on firms investigated

by the Indonesian government for forest fire violations following the devastating 2015 fires

(see Section 2.4). Because the government released the province and firm initials of each firm

being investigated, we can match investigations to specific firms in our concession data. We

then use our data to investigate the relationship between the fires we detect that originated

in each firm’s concession and the associated risk of a subsequent government investigation.

Specifically, to estimate the government’s decision rule, we estimate the following equa-

tion at the level of concessions c:

Pr(Punishedc) = F (
∑

j ̸=o βjBurnedAreajc + γTotalBurnedAreac

+δPopnBurnedAreac + ηXc)
(7)

where F (·) is the CDF of logistic distribution; Punishedc is a dummy equal to 1 if con-

cession c is owned by a firm that appeared on the list of investigated firms and in the

province in which the firm was investigated; BurnedAreajc is the number of pixels in land

type j (excluding omitted category o) burned by fires started in concession c in the 12
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months prior to the release of the investigated firm lists (September 2014 to August 2015);

TotalBurnedAreac is the total area burned by fires started in concession c during that time;

and PopnBurnedAreac is the population in areas burned by fires started in concession c

during that time. The control variables X control for concession type and area; 2000 forest

cover at the concession level; and island fixed effects.25 Standard errors are clustered at the

level of firm groups, defined according to firm group name where this is available and firm

name otherwise. Note that the omitted category in equation (7) is pixels in the concession

itself; so coefficients on other land types j are interpretable as the effect of burning land type

j over and above the effect of burning land on your own concession.

The results are shown in Table 9. Focusing on the results with controls in column (2), a

few patterns emerge. First, larger fires are clearly more likely to be punished. Second, the

government is substantially more likely to punish those firms owning concessions whose fires

spread into populated areas. Third, the government is also likely to target those firms owning

concessions whose fires spread into protected zones. Pixels in unleased productive forest are

treated no differently than land in the concession itself. On balance, the government therefore

seems to care most about fires that burn in populated areas, and - among the lands owned

by the government (unleased lands in the national forest) - it cares more about protected

forest than it does about unleased productive forest.

These patterns are broadly similar to the patterns of avoidance behavior we saw in Table

4 – where concession owners appear to avoid risky fires that could spread into populated

areas, and among government lands, they appear to care least about unleased productive

forest. This suggests that firms do behave as if they are responding to Pigouvian (1920)

style incentives, at least qualitatively – that is, they are avoiding fires that affect the types

of lands that the government is most likely to investigate. These patterns, of course, do not

speak to the magnitude of the Pigouvian response – and indeed, given that in many cases

these investigations did not actually result in punishment or fines, there is reason to think

that the magnitude is less than the Pigouvian optimum. But the fact that the patterns are

broadly similar suggests the possibility that if the government were to increase the fines it

levies, private actors would follow suit and reduce burning activity accordingly.

6.1.2 Criminal sanctions for collaborating government officials

Given that using fires for forest clearing is illegal, getting away with doing so may be easier if

there are corrupt local officials who can be co-opted to look the other way. During the period

we study, Indonesia’s independent anti-corruption commission, the Komisi Pemberantasan

25The estimation sample includes only concessions in those provinces for which firm investigation lists
were published and in which at least one fire was started between September 2014 and August 2015.
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Korupsi (known as KPK), made investigations of corruption related to the forest sector a

priority. Several provincial governors and district heads, as well as a number of officials in

the district forest offices, were charged with and convicted of corruption related to the forest

sector, and many were sentenced to jail.

We ask whether removing these corrupt officials from office affected the incidence of forest

fires. To do so, we compiled information on all corruption cases related to forest fires that

involved national, regional or local government officials and were sentenced by the courts

over our study period. The primary source used for this was the annual reports of KPK26 and

the Indonesian Court System database27, as well as supporting data from media reporting.

This yielded data on 26 prosecutions over the study period across six distinct provinces and

seven distinct regencies.

We examine the effects of prosecutions on subsequent fire-setting activity by marking

pixels in regencies (provinces) in which regency-level (province-level) officials were prosecuted

as treated after the announcement of the earliest prosecution in the sample. The specification

used to test this is:

E[Ignitionsimt] = γi exp(βProsecutedimt + δqmt) (8)

where Prosecutedimt is an indicator equal to one if pixel i is in a region where a prosecution

has been announced prior to month-year mt; γi are pixel fixed effects; and δqmt are island-

month-year fixed effects. Standard errors are clustered at the level of provinces.

This specification tests whether the prosecution of a local official reduces fire setting.

The results, shown in column (1) of Table 10, suggest that on average prosecutions do not

lead to lower levels of ignitions in the sample in subsequent periods. We next supplement

the specification with weather conditions interactions to test whether prosecutions induce

landowners to be more attentive to spread risk in their fire-setting behavior. The results

in column (2) of Table 10 suggest that this is not the case: ignitions during times when

the risk of spread is high do not fall differentially in regions where local officials have been

prosecuted; if anything, the converse appears to be the case. Finally, we add interactions

with the share of the pixel buffer that is in the same concession as the central pixel, in

order to test whether local prosecutions ameliorate firms’ propensity to impose externalities

on their neighbors (i.e. to set fires differentially on riskier days when they are surrounded

by more land owned by others). The results are shown in columns (3) (in the full sample)

and (4) (restricting attention to those pixels whose buffers contain only own concession land

and unleased productive forest, where externalities are highest as shown in Table 4; i.e. the

26These were accessed via the KPK’s online archives at https://acch.kpk.go.id/id/berkas/penindakan/inkracht.
27https://putusan3.mahkamahagung.go.id/
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sample used in Table 8) of Table 10 and suggest that local prosecutions are also ineffective

in attenuating concession holders’ externality-inducing behavior.

Taken together, these results suggest that prosecutions of officials for forestry corruption

offences – which may be helpful for reducing corruption in the forest sector in other ways –

appear to be ineffective at reducing fire setting overall, risky fire setting, or fire setting that

imposes externalities on property owners’ neighbors.

6.2 Government ownership

An alternative public approach to combating externalities is direct government ownership.

In Indonesia, a substantial number of forest firms are, in fact, state-owned enterprises. Are

these firms, owned by the government, better at internalizing externalities? To examine this,

we identify concession names associated with the large state-owned plantation companies or

which we could otherwise identify as government-owned28, and examine whether government-

owned concessions behave differently from privately-owned concessions.

The results are presented in Table 11. We find that, indeed, state-owned enterprises are

substantially less likely to use forest fires than private concessions. Even with a robust series

of controls – for concession type, concession area, baseline forest cover, and island dummies

– government-owned concessions have about 40 percent (-0.49 log points) fewer fires than

comparable privately-owned concessions. So at the broad level, government ownership is

associated with being less likely to use fire than private ownership.

That said, panels (B) and (C) of Table 11 show no evidence that fire in government

concessions is differentially sensitive to externalities than in private concessions. Panel (B)

shows that there is no difference in the degree to which fire occurs on risky versus less-risky

days in government versus private concessions. And panel (C) shows that, in both cases

(government and private ownership), fire in concessions adjacent to unleased productive

forest is less likely on risky days when more of the area that would be burned is in the own

concession. So while we find that government ownership substantially reduces the use of fire

overall, and hence the externality, it does not make it less sensitive to external risks.

28Specifically, we flagged two large state-owned plantation companies, Perhutani and Inhutani, and their
subsidiaries; all companies who were explicitly identified as being state-owned enterprises in the name (either
with a name including ‘Persero’ or ‘PTP’, which means state-owned enterprise); companies which were
associated with a government department (‘Ditjen’), or companies which included the name ‘Perkebunan’,
which generically means plantation but in practice referred almost exclusively to another large state-owned
plantation company (PT Perkebunan Nusantara).
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7 Robustness and alternative explanations

7.1 Results using variation in other weather variables

As shown in Section 4.1, fire spread risk is predictable based on wind strength, precipitation

and temperature. Appendix E presents the results of equivalent specifications where the

combination of these three variables is replaced by each of them individually. These re-

sults demonstrate that spread risk may alternatively be predicted by individual components

of local weather (Tables E.1 to E.3). This provides a useful opportunity to test whether

concession-holders react in a similar way to variation in spread risk induced by different

weather variables.

The results of our central specification (5), where the spread risk weather index is replaced

by monthly average wind speed, total monthly precipitation, or monthly average tempera-

ture, are shown in Tables E.4 to E.6. These results show a very consistent pattern using

variation in wind speed or precipitation alone: ignitions are intuitively higher in windier

(Table E.4) or drier conditions (Table E.5), and concession-holders are less attentive to the

weather-induced risk of fire spread when surrounded by unleased productive forest relative

to being surrounded by their own land. The results using wind speed also demonstrate a

somewhat stronger deterrent effect of surrounding land outside the forest estate, consistent

with the main results. The more muted effects using variation in temperature alone (Ta-

ble E.6) are unsurprising given that Indonesia is equatorial and as such experiences only

modest variations in temperature. The consistency of the results across these specifications

strengthens the interpretation of the results as being driven by concession holders’ response

to the externalities they may cause by starting a fire.

Our central specifications consider monthly average weather conditions given that there

may be low costs to postponing fires to another day if weather is an important concern and

daily weather data is used. Appendix F presents the results of robustness specifications using

daily rather than monthly variation in wind speed and shows that our key results are robust

in this case.

7.2 Results by concession type

The central specifications restrict attention to fires started inside wood fiber or palm oil

concessions. Appendix G presents results separately for these two types of concessions.

These show that the central results are consistent in the two types of concessions, with

some differences in statistical significance given the smaller sample sizes in each regression

but broadly similar qualitative findings when looking separately at palm oil and wood fiber
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concessions. Appendix H presents the results of the main specifications where fires started

inside logging concessions are also included and finds qualitatively similar results.

7.3 Alternative fixed effects and clustering

The central results are robust to alternative clustering or fixed effects to those used in the

baseline specifications. Appendix I presents results where clustering is at the level of 25km x

25km or 100km x 100km grid cells or at the level of concessions rather than 50km x 50km grid

cells. We also find similar results replacing pixel, month and year fixed effects with pixel

and month×year fixed effects or pixel and month×year×island fixed effects, which could

potentially capture year-specific seasonality in addition to overall seasonality; see Appendix

J for details. In an especially demanding specification including the risk index interacted

with concession fixed effects (i.e. estimating separate coefficients on the risk index for every

concession) (Table J.5), ignitions are again found to be more likely on days when weather

conditions make spread more likely in areas where the fire would be more likely to spread to

unleased productive forest compared to where spread would be internal.

8 Conclusions

Firms’ decisions as to whether or not to impose uncompensated damages on others lie at the

root of climate change, pollution, deforestation and biodiversity loss. We study what affects

this decision in the case of forest fires in the tropics.

Novel satellite measurement of the ignition point and spread of over 107,000 fires enables

us to establish that these are largely man-made, follow deforestation and are focused on

clearing land for large-scale oil palm and wood fiber plantations. By combining our daily

fire data with surrounding land zones and wind, temperature and precipitation drivers of

fire spread, we analyze whether externalities influence fire-setting behavior. Across the 2000-

2016 period, we find that this is the case – ignitions are significantly less likely on high spread

risk days in areas where the fire would be more likely to spread inside the same concession

versus cases in which spread would be to unoccupied, government-controlled land.

This analysis then opens up the possibility of looking at whether private and public

solutions can limit these externalities. On the private front, we find that when we focus

on cases where the spread risk would be limited to a single firm, firms treat the risks of

spread to their own and the neighboring concession similarly. This suggests the possibility

that under certain circumstances where transaction costs are limited, firms may be able to

bargain among themselves to internalize these risks, as suggested by Coase.
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On the public front, we investigate empirically which fires the government chooses to

investigate and show that it is precisely these types of fires – particularly those that would

spread into populated areas – that firms seem to avoid. This suggests the possibility of

effective deterrence from government fines or punishment in the spirit of Pigou.

Two central conclusions emerge from our analysis. The first is that the value of making

progress in limiting environmental externalities is enormous. We have only looked at the

local externality of burning others’ land, which abstracts from other externalities including

health and economic costs of smoke and haze, ecosystem loss and global warming induced by

greenhouse gas emissions. Based on the estimated wider impacts of forest fires in Indonesia29,

and assuming that impacts are directly proportional to the area burned, the estimated 55-

58% reduction in fires associated with agents treating all land in each buffer as if it were

outside the forest estate applied across all areas would have implied gains from reducing the

damages from Indonesia’s 2015 forest fires of up to 0.2% of Indonesia’s 2015 GDP, global

carbon emission reductions of up to 0.7 Gigatonnes (7.1% of the global carbon emissions

from fossil fuels) and avoided the premature deaths of up to 14,630 adults and 4,226 children

under three. The large size of these social costs relative to the small size of the benefits

that accrue to private firms brings into sharp focus the large gains that are available from

limiting environmental externalities.

The second conclusion is that we are very much in the infancy of working out how to

limit environmental externalities. Three areas look important for making further progress.

The first is political economy. If private benefits are small relative to social costs, how can

the views of those that are damaged become represented? Our related work on political

cycles in fires following deforestation demonstrates that electoral incentives matter in this

context (Balboni et al. 2021), but we do not yet fully understand how popular dislike of fires

can be better represented in policy making. The second is international policy. Citizens in

many countries outside those where forest fires occur care about stopping them but have

limited means of representing these preferences. There is now growing interest both in how

policy instruments such as conservation-linked trade tariffs (e.g., Harstad 2022, Hsiao 2022)

or REDD payments might fill the void left by weak domestic regulation, but limited evalu-

ation of whether this works. The third is technology. Ultimately fire is a risky technology

29The most extensive literature quantifying the impacts of Indonesia’s forest fires is based on the severe
fires in 1997-1998, which resulted in the burning of over 50 thousand square kilometers of land (Varma 2003)
and the vast spread of haze throughout Southeast Asia. Short-term costs and damages of the 1997-1998
fires for Indonesia and neighboring countries have been conservatively estimated at 4,475 million 1997 USD,
mainly in medical costs, airport closures and tourism, and damages to ecosystems and biodiversity (Glover
and Jessup 1999). Subsequent studies estimated the associated carbon emissions at 0.81–2.57 Gigatonnes
(Page et al. 2002) and resulting premature deaths at 22,000–54,000 adults (Heil 2007) and 15,600 children
under three (Jayachandran 2009).
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for clearing land with many external harms, and there is a need to understand whether

innovations or incentives can make cleaner alternatives more attractive.

This combination of empirical importance, limited evidence on what works and the sheer

diversity of environmental externalities that we face makes this an area of research and policy

where much greater investments will be needed going forward.
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Figures and Tables

Figure 1: Example of Fire Identification Algorithm

Notes: Example showing how we track contiguous “multi-day” fires. Pixels outlined in black are ignition

pixels (has a fire on day 1), and the red pixels are spread areas (has a fire on day 2 onwards). This diagram

shows 4 multi-day fires in blue boxes (starting on different dates). Total spread extent is the union of red

and black-outlined pixels within each box.
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Figure 2: Indonesia Forest Estate, Concessions, and Fires Maps

a Forest estate and protected forest zones

b Concessions (by type)

c Ignition Density (2000-2016)
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Figure 3: Ignitions and concession
areas in Riau province, Sumatra
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Notes: Each 1km2 red grid cell is a pixel

in which at least one ignition was detected

during our sample period. Concessions are

outlined (yellow for wood fiber; orange for

oil palm). Protected forest zones are

shown in dark green; regular forest estate

areas are shown in light green; and areas

outside the forest estate are shown in

white.

Figure 4: 2012 deforestation and
2013 ignitions in Riau
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Notes: Each 1km2 red grid cell is a pixel

in which any ignition was detected in

2013. Deforested areas in 2012 within the

forest estate are shown in orange;

(non-deforested) forest estate areas are

shown in light green.

Figure 5: Illustration of pixel buffer
classification

Legend
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Notes: The central pixel of interest is

shown in red, and its 6km buffer is

outlined in red. Surrounding pixels are

inside the buffer if its centroid (dots) lies

within it. Orange pixels denote areas in

concession and forest estate; blue pixels

denote areas in unleased productive forest;

green pixels denote areas in protected

forest zones.
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Table 1: Summary Statistics

Mean SD Min Max Median
Weather data:
Precipitation (mm) 246 110 0 1,684 243
Wind speed (km/h) 6.1 4.3 .00047 34 4.8
Temperature (Celsius) 26 1.4 18 30 27
Fire data:
Total area burned (1kmx1km pixels) 4.50 11.95 1.00 546.00 2.00
Total days burned 1.29 1.05 1.00 24.00 1.00
Number of ignitions 44,454
Probability of ignition in pixel-month-year .00037
Share of pixels where ignition ever observed .055
Concession data:
Concession area (1kmx1km pixels) 235 482
Cumulative area - all concessions (1kmx1km pixels) 546,225
Cumulative area - wood fiber concessions (1kmx1km pixels) 135,339
Cumulative area - palm oil concessions (1kmx1km pixels) 86,890
Cumulative area - logging concessions (1kmx1km pixels) 323,996
Number of concessions 2,320

Sample is restricted to pixels within all three concession types (logging, palm oil, wood fiber), within the
forest estate, and on major forested islands (excluding Java and Lesser Sunda Islands). Weather variables
summaries are further restricted to pixels where all three weather variables are available.

Table 2: Impact of Deforestation on Ignitions

Dependent variable = Pixel Pixel
Number of fires in pixel*month*year FE Month & Year FE
Forest loss (km2) in year t-1 1.1119*** 1.3472***

(0.1251) (0.1321)
Forest loss (km2) in year t-2 -0.3690*** -0.3081**

(0.1328) (0.1335)
Forest loss (km2) in year t-3 -0.5480*** -0.3492**

(0.1811) (0.1490)
Observations 3,235,680 3,235,680
Mean of Dep. Var. 0.0100 0.0100

Poisson regressions. Robust standard errors clustered at level of 50km2
grid cells. All pixels inside wood fiber and palm oil concessions inside
forest estate in Indonesia excl Java and Lesser Sunda Islands.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 3: Impact of Wind Speed, Temperature and Precipitation on Fire Spread

Dependent variable = Pixel Pixel
Average fire spread area (burned area minus ignition area) FE Month & Year FE
Wind speed in km/h 0.1466*** 0.1510***

(0.04407) (0.04452)
Temperature (Celsius) 0.7767*** 0.5700***

(0.1598) (0.1679)
Precipitation (mm) -0.004932*** -0.006626***

(0.0008665) (0.0008751)
Observations 5,897 5,897
Mean of Dep. Var. 4.608 4.608

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All regres-
sions control for number of ignitions in pixel-month. All pixels inside wood fiber, palm oil, and
logging concessions inside forest estate in Indonesia excl Java and Lesser Sunda Islands.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 4: Impact of Surrounding Land Type and Weather Spread Risk Index on Ignitions

Dependent variable = Number of fires in pixel*month*year M & Y M & Y M & Y M & Y M & Y M & Y
Panel A: Main Effects FEs FEs FEs FEs FEs FEs
Num pixels in 6km buffer in different concession from central pixel -0.0005364 -0.001199 -0.001463 -0.0005091 -0.004285*** -0.003603***

(0.001233) (0.001231) (0.001389) (0.001192) (0.001240) (0.001362)
Num pixels in 6km buffer outside forest estate -0.004221 -0.005263* -0.003636 -0.004795* -0.007181** -0.006287**

(0.002819) (0.002773) (0.002765) (0.002776) (0.002897) (0.002718)
Num pixels in 6km buffer in protected forest -0.003017 -0.002399 -0.003388 -0.002543 -0.006460* -0.003699

(0.003516) (0.003389) (0.003357) (0.003554) (0.003441) (0.003310)
Num pixels in 6km buffer in productive forest outside concession 0.006851*** 0.005740*** 0.005894*** 0.006899*** 0.002998** 0.003119**

(0.001388) (0.001288) (0.001503) (0.001338) (0.001319) (0.001330)
Average population density in 6km buffer -0.0002219 -0.003038*** -0.0005620 -0.001095 -0.001033 -0.004975***

(0.0007267) (0.001139) (0.0007562) (0.0008061) (0.0008162) (0.001236)
Control: Island NO YES NO NO NO YES
Control: Concession Type NO NO YES NO NO YES
Control: Forest Cover 2000 NO NO NO YES NO YES
Control: Concession Area NO NO NO NO YES YES
Observations 39889620 39889620 39889620 39852540 39889620 39852540
Mean of Dep. Var. 0.000972 0.000972 0.000972 0.000972 0.000972 0.000972

Pixel Pixel Pixel Pixel Pixel Pixel
Panel B: With Pixel FE and Risk Index M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Risk index in standard deviation units 1.4919*** 1.5532*** 1.6859*** 1.2089*** 1.7316*** 1.6269***

(0.1000) (0.1313) (0.1062) (0.1324) (0.09203) (0.1488)
Risk index * Num pixels in 6km buffer in different concession from central pixel 0.003237** 0.002154* 0.002042 0.002922** 0.001323 0.0004953

(0.001297) (0.001215) (0.001243) (0.001282) (0.001120) (0.001042)
Risk index * Num pixels in 6km buffer outside forest estate -0.005492*** -0.005403*** -0.005127*** -0.005434*** -0.006830*** -0.005808***

(0.001934) (0.001898) (0.001964) (0.001892) (0.001887) (0.001878)
Risk index * Num pixels in 6km buffer in protected forest 0.0001574 0.0002460 -0.0009392 0.0002413 -0.001484 -0.001045

(0.001915) (0.001670) (0.001734) (0.001858) (0.001823) (0.001590)
Risk index * Num pixels in 6km buffer in productive forest outside concession 0.006644*** 0.006552*** 0.005312*** 0.006436*** 0.004616*** 0.004476***

(0.001549) (0.001586) (0.001507) (0.001500) (0.001321) (0.001282)
Risk index * Average population density in 6km buffer 0.001078 0.0008309 0.0007956 0.001112 0.0004371 0.0004254

(0.001156) (0.001180) (0.001082) (0.001185) (0.001038) (0.001084)
Control: Risk Index × Island NO YES NO NO NO YES
Control: Risk Index × Concession Type NO NO YES NO NO YES
Control: Risk Index × Forest Cover 2000 NO NO NO YES NO YES
Control: Risk Index × Concession Area NO NO NO NO YES YES
Observations 4715100 4715100 4715100 4707360 4715100 4707360
Mean of Dep. Var. 0.00823 0.00823 0.00823 0.00823 0.00823 0.00823

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and
Lesser Sunda Islands. Omitted category: “Num pixels in 6km buffer in same concession as central pixel” and interaction with risk index (panel B). Suppressed categories:
“Num pixels in 6km buffer in sea”, “Num pixels in 6km buffer in Malaysia / PNG” and interactions with risk index (panel B) .
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 5: Impact of Surrounding Land Ownership andWeather Spread Risk Index on Ignitions
- Cases Involving Single Property Border

Dependent variable = Number of fires in pixel*month*year M & Y M & Y M & Y M & Y M & Y M & Y
Panel A: Main Effects FEs FEs FEs FEs FEs FEs
Num pixels in 6km buffer in same concession as central pixel -0.003894 -0.002489 -0.002782 -0.003560 0.001046 -0.0002139

(0.002895) (0.002830) (0.002648) (0.002975) (0.002379) (0.003025)
Control: Island NO YES NO NO NO YES
Control: Concession Type NO NO YES NO NO YES
Control: Forest Cover 2000 NO NO NO YES NO YES
Control: Concession Area NO NO NO NO YES YES
Observations 4869720 4869360 4869720 4867200 4869720 4866840
Mean of Dep. Var. 0.000785 0.000785 0.000785 0.000785 0.000785 0.000785

Pixel Pixel Pixel Pixel Pixel Pixel
Panel B: With Pixel FE and Risk Index M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Risk index in standard deviation units 2.2394*** 1.9435*** 2.5414*** 2.0485*** 2.1897*** 2.0557***

(0.2685) (0.3003) (0.2710) (0.3244) (0.2790) (0.3758)
Risk index * Num pixels in 6km buffer in same concession as central pixel -0.006056*** -0.004520** -0.003581* -0.006308*** -0.002858 -0.001183

(0.002044) (0.002071) (0.001963) (0.001983) (0.002035) (0.002058)
Control: Risk index × Island NO YES NO NO NO YES
Control: Risk index × Concession Type NO NO YES NO NO YES
Control: Risk index × Forest Cover 2000 NO NO NO YES NO YES
Control: Risk index × Concession Area NO NO NO NO YES YES
Observations 478,980 478,980 478,980 478,440 478,980 478,440
Mean of Dep. Var. 0.00798 0.00798 0.00798 0.00798 0.00798 0.00798

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. Sample: Pixels whose buffer contains land in a single or at most two concessions
pixels inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted category: “Num pixels in 6km buffer outside same
concession as central pixel” and interaction with spread risk (Panel B).
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 6: Impact of Weather Spread Risk Index, Surrounding Land Type and Recent Defor-
estation on Ignitions

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Number of fires in pixel*month*year M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Risk index in standard deviation units 2.3950*** 2.4417*** 2.4073*** 2.0974*** 2.3569*** 2.2521***

(0.1558) (0.1471) (0.1560) (0.1783) (0.1455) (0.1664)
Area (km2) in 6km buffer in same concession as central pixel deforested last year 0.01565*** 0.01835*** 0.01525** 0.01725*** 0.01635*** 0.01903***

(0.006074) (0.006083) (0.006152) (0.005997) (0.006105) (0.006082)
Risk index * Area (km2) in 6km buffer in same concession as central pixel deforested last year -0.005190 -0.007564* -0.003453 -0.006402 -0.003971 -0.005997

(0.004772) (0.004550) (0.004833) (0.004628) (0.004695) (0.004570)
Risk index * Area (km2) in 6km buffer in same concession as central pixel not deforested last year -0.006558*** -0.006381*** -0.005171*** -0.006310*** -0.004438*** -0.004069***

(0.001574) (0.001627) (0.001524) (0.001523) (0.001323) (0.001280)
Area (km2) in 6km buffer in different concession as central pixel deforested last year 0.009449 0.008417 0.01010 0.009548 0.009448 0.009454

(0.009939) (0.009995) (0.009926) (0.009961) (0.009941) (0.009963)
Risk index * Area (km2) in 6km buffer in different concession as central pixel deforested last year 0.0001434 -0.00008361 -0.0002695 -0.0001663 0.0003910 -0.0004793

(0.007915) (0.007873) (0.007916) (0.007883) (0.007911) (0.007813)
Risk index * Area (km2) in 6km buffer in different concession as central pixel not deforested last year -0.003348** -0.004227*** -0.003187** -0.003421** -0.003241** -0.003719***

(0.001477) (0.001405) (0.001440) (0.001429) (0.001444) (0.001333)
Area (km2) in central pixel deforested last year 1.4519*** 1.4386*** 1.4597*** 1.4896*** 1.4576*** 1.4758***

(0.1682) (0.1689) (0.1679) (0.1719) (0.1691) (0.1732)
Risk index * Area (km2) in central pixel deforested last year -0.2462** -0.2341** -0.2534** -0.2797** -0.2514** -0.2676**

(0.1194) (0.1194) (0.1184) (0.1215) (0.1195) (0.1218)
Risk index * Num pixels in 6km buffer outside forest estate -0.01200*** -0.01179*** -0.01023*** -0.01178*** -0.01129*** -0.009945***

(0.001747) (0.001730) (0.001928) (0.001718) (0.001744) (0.001915)
Risk index * Num pixels in 6km buffer in protected forest -0.006447*** -0.006202*** -0.006188*** -0.006206*** -0.006059*** -0.005367***

(0.002158) (0.002068) (0.002023) (0.002042) (0.002080) (0.001879)
Risk index * Average population density in 6km buffer 0.001352 0.001114 0.001043 0.001371 0.0006507 0.0006086

(0.001251) (0.001279) (0.001169) (0.001275) (0.001121) (0.001148)
Control: Risk index × Island NO YES NO NO NO YES
Control: Risk index × Concession Type NO NO YES NO NO YES
Control: Risk index × Forest Cover 2000 NO NO NO YES NO YES
Control: Risk index × Concession Area NO NO NO NO YES YES
Observations 4,286,520 4,286,520 4,286,520 4,279,800 4,286,520 4,279,800
Mean of Dep. Var. 0.00877 0.00877 0.00877 0.00877 0.00877 0.00877

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. Sample: All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda
Islands. Omitted category: Area (km2) in 6km buffer in same concession as central pixel not deforested last year, area (km2) in 6km buffer in different concession as central pixel not deforested
last year, interaction of risk index and “Num pixels in 6km buffer in productive forest outside concession”. Suppressed categories: Interactions of risk index and “Num pixels in 6km buffer in sea”,
“Num pixels in 6km buffer in Malaysia / PNG”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 7: Impact of Reputation Concerns on Ignitions and Externalities

Dependent Variable = Number of fires in pixel*month*year (1) (2) (3) (4) (5) (6)
Pixel Pixel

Panel A: Main Effects M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Num concessions owned by firm -0.01071*** -0.008586***

(0.002540) (0.002647)
Concession Area -0.0002418*** -0.0004523*** -0.0002321**

(0.00008805) (0.0001060) (0.00009220)
Firm is RSPO member in month-year -0.2294 -0.2283

(0.2015) (0.2019)
Control: Island NO YES NO YES NO YES
Control: Concession Type NO YES NO YES - -
Control: Forest Cover 2000 NO YES NO YES NO YES
Control: Concession Area NO YES - - NO YES
Observations 39945420 39873060 39910140 39873060 2,063,700 2,048,940
Mean of Dep. Var. 0.000974 0.000971 0.000972 0.000971 0.00842 0.00842

Pixel Pixel Pixel Pixel Pixel Pixel
Panel B: With Risk Index M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Risk index in standard deviation units 1.7439*** 1.7727*** 1.8678*** 1.7742*** 1.8671*** 2.0171***

(0.06157) (0.1076) (0.06176) (0.1041) (0.07219) (0.1322)
Risk Index * Num concessions owned by firm -0.004282 0.0003321

(0.002703) (0.003047)
Risk Index * Concession Area -0.0002395* -0.0003804*** -0.0002412* 0.0003990**

(0.0001393) (0.0001044) (0.0001395) (0.0001824)
Firm is RSPO member in month-year -0.6107*** -0.5955***

(0.2028) (0.2117)
Risk Index * Firm is RSPO member in month-year 0.2792* 0.2707*

(0.1505) (0.1528)
Control: Risk Index × Island NO YES NO YES NO YES
Control: Risk Index × Concession Type NO YES NO YES - -
Control: Risk Index × Forest Cover 2000 NO YES NO YES NO YES
Control: Risk Index × Concession Area NO YES - - NO YES
Observations 4,731,300 4,709,160 4,716,900 4,709,160 2,063,700 2,048,940
Mean of Dep. Var. 0.00822 0.00823 0.00823 0.00823 0.00842 0.00842

Pixel Pixel Pixel Pixel Pixel Pixel
Panel C: With Surrounding Land Ownership, and Risk Index M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Risk index in standard deviation units 3.0736*** 2.4482*** 2.6038*** 2.0499*** 2.1183*** 2.1801***

(0.2816) (0.2723) (0.2336) (0.2997) (0.2530) (0.4087)
Risk Index * Num pixels in 6km buffer in same concession as central pixel -0.01290*** -0.005403*** -0.005759** -0.004346** -0.0004178 -0.001672

(0.002802) (0.001908) (0.002412) (0.002072) (0.002154) (0.002673)
Risk Index * Num concessions owned by firm -0.04900*** -0.001881

(0.01826) (0.01735)
Risk Index * Num pixels in 6km buffer in same concession as central pixel * Num concessions owned by firm 0.0004226*** 0.0001103

(0.0001567) (0.0001601)
Risk Index * Concession Area -0.0004343** -0.0004322 0.0007406** 0.0003806

(0.0001768) (0.0004158) (0.0003323) (0.0002843)
Risk Index * Num pixels in 6km buffer in same concession as central pixel * Concession Area -2.869e-07 9.493e-07

(0.000003662) (0.000002303)
Firm is RSPO member in month-year -1.5524 -0.1864

(1.1198) (2.2531)
Risk Index * Firm is RSPO member in month-year 0.6953 -0.06167

(0.6109) (1.8710)
Risk Index * Num pixels in 6km buffer in same concession as central pixel * Firm is RSPO member in month-year -0.004442 -0.008386

(0.004396) (0.006146)
Control: Risk Index × Island × Num concessions owned by firm NO YES NO YES NO YES
Control: Risk Index × Concession Type × Num concessions owned by firm NO YES NO YES - -
Control: Risk Index × Forest Cover 2000 × Num concessions owned by firm NO YES NO YES NO YES
Control: Risk Index × Concession Area × Num concessions owned by firm NO YES - - NO YES
Observations 752,040 750,420 752,040 750,420 224,460 224,460
Mean of Dep. Var. 0.00824 0.00823 0.00824 0.00823 0.00891 0.00891

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. Panel (A), (B): all pixels inside concessions and forest estate, excl Java and Lesser Sunda Islands. Panel (C): pixels whose
buffers contain only own concession land and unleased productive forest inside concessions and forest estate excl Java and Lesser Sunda Islands. Columns (1) to (4) includes wood fiber and palm oil concesions,
column (5) and (6) restricts to only oil palm concessions. Omitted category for panel (C): “Num pixels in 6km buffer outside same concession as central pixel” and interactions.
* p < 0.1, ** p < 0.05, *** p < 0.01 newline * p < 0.1, ** p < 0.05, *** p < 0.01
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Table 8: Impact of Surrounding Land Ownership andWeather Spread Risk Index on Ignitions
- Cases Where Buffer Contains Only Own Concession Land and Unleased Productive Forest

Dependent variable = Number of fires in pixel*month*year M & Y M & Y M & Y M & Y M & Y M & Y
Panel A: Main Effects FEs FEs FEs FEs FEs FEs
Num pixels in 6km buffer in same concession as central pixel -0.01011*** -0.007907*** -0.008235*** -0.009935*** -0.003228 -0.005075**

(0.002143) (0.001867) (0.002214) (0.002092) (0.002089) (0.002194)
Control: Island NO YES NO NO NO YES
Control: Concession Type NO NO YES NO NO YES
Control: Forest Cover 2000 NO NO NO YES NO YES
Control: Concession Area NO NO NO NO YES YES
Observations 6193620 6193620 6193620 6188760 6193620 6188760
Mean of Dep. Var. 0.00100 0.00100 0.00100 0.000998 0.00100 0.000998

Pixel Pixel Pixel Pixel Pixel Pixel
Panel B: With Pixel FE and Risk Index M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Risk index in standard deviation units 2.7996*** 2.6652*** 2.8292*** 2.3350*** 2.6173*** 2.2344***

(0.2490) (0.2300) (0.2561) (0.3360) (0.2089) (0.2489)
Risk index * Num pixels in 6km buffer in same concession as central pixel -0.01048*** -0.009411*** -0.007624*** -0.009993*** -0.005882*** -0.004393**

(0.002466) (0.002376) (0.002337) (0.002509) (0.001929) (0.001800)
Control: Risk index × Island NO YES NO NO NO YES
Control: Risk index × Concession Type NO NO YES NO NO YES
Control: Risk index × Forest Cover 2000 NO NO NO YES NO YES
Control: Risk index × Concession Area NO NO NO NO YES YES
Observations 752,040 752,040 752,040 750,420 752,040 750,420
Mean of Dep. Var. 0.00824 0.00824 0.00824 0.00823 0.00824 0.00823

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. Sample: Pixels whose buffers contain only own concession land and unleased pro-
ductive forest inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted category: “Num pixels in 6km buffer outside
same concession as central pixel” and interaction with spread risk (Panel B).
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 9: Government Punishment

Dummy = 1 if firm investigated (1) (2)

Pixels in productive forest in others’ concessions burned by fire -0.1255** -0.1611
(0.05849) (0.1011)

Pixels outside forest estate burned by fire -0.1395 -0.1819
(0.09904) (0.1175)

Pixels in unleased productive forest burned by fire -0.09042*** -0.01750
(0.01312) (0.02587)

Pixels in protected forest burned by fire 0.03249 0.1345***
(0.04482) (0.04609)

Total area of fires burned Sep 2014-Aug 2015 0.02951*** 0.01310*
(0.005500) (0.007483)

Population in fire extent 0.0006448*** 0.0007288***
(0.0001572) (0.0001441)

Control: Islands NO YES
Control: Concession Type NO YES
Control: Forest Cover 2000 NO YES
Control: Concession Area NO YES
Observations 600 599
Mean of Dep. Var. 0.157 0.157

Logit regressions. Robust standard errors clustered at level of firm groups. The sample includes
only pixels in wood fiber and palm oil concessions in those provinces for which firm investiga-
tion lists were published and in which at least one fire was started between September 2014 and
August 2015. Omitted category: “Pixels burned in productive forest in own concession burned
by fire” . Suppressed categories “Pixels in Malaysia / PNG burned by fire”, “Pixels in protected
forest in others’ concessions burned by fire”, “Pixels outside forest in others’ concessions burned
by fire”, “Pixels in protected forest in own concession burned by fire”, “Pixels outside forest in
own concession burned by fire”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 10: Impact of Proscecutions on Ignitions and Externalities

Dependent variable = Pixel Pixel Pixel Pixel
Number of fires in pixel*month*year Island x MY FEs Island x MY FEs Island x MY FEs Island x MY FEs
Prosecuted region 0.1387

(0.2045)
Risk index in standard deviation units 1.6378*** 1.6555*** 1.9505***

(0.1216) (0.1381) (0.2796)
Risk index * Prosecuted region 0.2856*** 0.8392*** 1.6715***

(0.06414) (0.1976) (0.1882)
Risk index * Num pixels in 6km buffer in same concession as central pixel -0.0005426 -0.001124

(0.0007773) (0.0009959)
Num pixels in 6km buffer in same concession as central pixel * Prosecuted region 0.003302*** 0.009764***

(0.001264) (0.001043)
Risk index * Num pixels in 6km buffer in same concession as central pixel * Prosecuted region -0.001717** -0.004645***

(0.0007081) (0.001212)
Observations 4,536,857 4,500,388 4,498,648 566,319
Control: Island interactions NO YES YES YES
Control: Concession Type interactions NO YES YES YES
Control: Forest Cover 2000 interactions NO YES YES YES
Control: Concession Area interactions NO YES YES YES
Mean of Dep. Var. 0.00858 0.00861 0.00861 0.0109

Poisson regressions. Robust standard errors clustered at level of provinces. Sample: Columns (1) to (3): All pixels inside wood fiber and palm oil concessions inside forest
estate excl Java and Lesser Sunda Islands. Columns (4): pixels whose buffers contain only own concession land and unleased productive forest inside wood fiber and palm oil
concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted category: Interaction of risk index and “Num pixels in 6km buffer outside same concession as
central pixel”.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 11: Impact of Government Ownership on Ignitions and Externalities

Dependent variable = Number of fires in pixel*month*year M & Y M & Y
Panel A: Main Effects FEs FEs
Government owns concession -0.3440** -0.4911***

(0.1487) (0.1618)
Control: Island NO YES
Control: Concession Type NO YES
Control: Forest Cover 2000 NO YES
Control: Concession Area NO YES
Observations 39945420 39873060
Mean of Dep. Var. 0.000974 0.000971

Pixel Pixel
Panel B: With Pixel FE and Risk Index M & Y FEs M & Y FEs
Risk index in standard deviation units 1.7169*** 1.7749***

(0.05611) (0.1034)
Risk Index * Government owns concession -0.1048 -0.007759

(0.1469) (0.1588)
Control: Risk Index × Island NO YES
Control: Risk Index × Concession Type NO YES
Control: Risk Index × Forest Cover 2000 NO YES
Control: Risk Index × Concession Area NO YES
Observations 4,731,300 4,709,160
Mean of Dep. Var. 0.00822 0.00823

Pixel Pixel
Panel C: With Pixel FE, Surrounding Land Ownership, and Risk Index M & Y FEs M & Y FEs
Risk index in standard deviation units 2.8061*** 2.2143***

(0.2523) (0.2503)
Risk Index * Num pixels in 6km buffer in same concession as central pixel -0.01062*** -0.004289**

(0.002529) (0.001788)
Risk Index * Government owns concession 1.2389 1.1254

(1.4612) (1.3080)
Risk Index * Num pixels in 6km buffer in same concession as central pixel * Government owns concession -0.007579 -0.003272

(0.01228) (0.01102)
Control: Risk Index × Island × Government owns concession NO YES
Control: Risk Index × Concession Type × Government owns concession NO YES
Control: Risk Index × Forest Cover 2000 × Government owns concession NO YES
Control: Risk Index × Concession Area × Government owns concession NO YES
Observations 752,040 750,420
Mean of Dep. Var. 0.00824 0.00823

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. Panel (A), (B): all pixels inside wood fiber and palm
oil concessions inside forest estate excl Java and Lesser Sunda Islands. Panel (C): pixels whose buffers contain only own concession land
and unleased productive forest inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omit-
ted category for panel (C): “Num pixels in 6km buffer outside same concession as central pixel” and interactions.
* p < 0.1, ** p < 0.05, *** p < 0.01
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