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Abstract

The primary motivation behind quantitative modeling in international trade and many

other fields is to shed light on the economic consequences of policy changes. To

help assess and potentially strengthen the credibility of such quantitative predictions

we introduce an IV-based goodness-of-fit measure that provides the basis for testing

causal predictions in arbitrary general-equilibrium environments as well as for esti-

mating the average misspecification in these predictions. As an illustration of how

to use our IV-based goodness-of-fit measure in practice, we revisit the welfare conse-

quences of Trump’s trade war predicted by Fajgelbaum et al. (2020).
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1 Introduction

One of the raisons d’être of quantitative modeling in economics is to provide guidance
about policy choices by producing counterfactual simulations of how economic condi-
tions may change if a given policy were to be implemented. There is little doubt that the
numbers provided by these simulations fill a demand for concrete inputs into important
policy discussions, from the economic consequences of Brexit to those of global carbon
taxation. There is, however, much more debate about the empirical credibility of these
simulations, with standard concerns ranging from unrealistic assumptions to a general
lack of transparency, as discussed in Dawkins et al. (2001).

The goal of this paper is to help assess and potentially strengthen the empirical credi-
bility of the predictions derived from quantitative models in international trade and other
related fields. To do so, we introduce an instrumental variable (IV)-based goodness-of-
fit measure that provides the basis for testing causal predictions in arbitrary general-
equilibrium environments as well as for estimating the average misspecification in these
predictions. Following the aphorism that “all models are wrong, but some are useful,”
this measure is not designed to evaluate whether a quantitative model is “right” or “wrong”
but whether it is “useful” in the sense of accurately answering some counterfactual ques-
tion of interest. As an illustration of how to use our goodness-of-fit measure in practice,
we revisit the welfare consequences of Trump’s trade war predicted by Fajgelbaum, Gold-
berg, Kennedy and Khandelwal (2020) (henceforth FGKK).1

The starting point of our IV-based test is the same as that of pioneering tests of quan-
titative trade models due to Kehoe et al. (1995), Kehoe (2005), and Kehoe et al. (2017).
After a policy change has been implemented, such as the enactment of import tariffs by
the Trump administration, one may wish to test a model’s quantitative predictions by
directly comparing predicted and observed changes for some outcome variables. The
key feature of our IV-based test is to recognize that observed changes reflect two distinct
forces: (i) the causal impact of the policy change of interest; and (ii) the causal impact
of all other shocks that may have occurred contemporaneously. The latter is a nuisance,
whereas the former is the answer to the counterfactual question of interest, such as how
different would the US economy have been absent the Trump administration’s tariffs?

Many existing model fit and validation procedures ignore the previous distinction and
instead simply ask whether the researcher’s model can forecast future outcome variables
or backcast past ones. In so doing such procedures may conclude that a model performs

1Like welfare predictions from other influential quantitative models, FGKK’s results have been dis-
cussed broadly outside academia, e.g. Hiltzik (2019), The Economist (2019), and Council of Economic
Advisers (2020).
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poorly not because the model misspecifies the causal impact of the policy change under
study, but because it misspecifies the causal impact of other shocks or the distribution
of these shocks, which counterfactual predictions of interest are agnostic about. In fact,
recognizing that much of the variation in the data may derive from the causal impact of
other shocks, one may feel compelled to abandon testing altogether and instead to pursue
“theory with numbers” by saturating quantitative models with a large enough number
of free parameters that they exactly match the data at any point in time. This is the view
articulated early on by Shoven and Whalley (1984). It is now the prevalent approach in
the fields of international trade and spatial economics more broadly, see e.g. Costinot and
Rodríguez-Clare (2014) and Redding and Rossi-Hansberg (2017).

Consistent with standard approaches to counterfactual analysis in the aforementioned
fields, the testing procedure that we develop in this paper acknowledges that there may
be other shocks beside the policy change of interest; that the exact distribution of these
other shocks may be left unspecified by the researcher’s model; and that there may be spe-
cific realizations of these other shocks such that the researcher’s model exactly matches
the data. The basic idea is to leverage, in a general equilibrium context, the same type
of exclusion restrictions that empirical researchers have previously used to estimate par-
tial equilibrium elasticities, namely that other shocks are independent of either policy
changes or observable shifters of such changes. More specifically, our procedure uses the
observation that if the causal impact of policy changes in the researcher’s model is cor-
rect, then the difference between observed and predicted changes should be equal to the
causal impact of other shocks. Accordingly, such a difference should be uncorrelated with
any instrumental variable (IV) constructed from exogenous policy shifters alone. These
are the moment restrictions that we will build our test upon.

Section 2 formalizes our IV-based test. It is similar in spirit to what Cameron and
Trivedi (2005) refer to as an M-test, but adapted to our general equilibrium environment.2

We focus on a situation where the causal impact of interest—in our application, the wel-
fare impact of a change in the tariffs covering a variety of products—can itself be ex-
pressed as a linear combination of causal impacts over a subset of outcome variables—in
our application, the impact of this set of tariff changes on import prices, export prices,
and tariff revenues. We define the goodness of fit (or lack thereof) of the researcher’s
predictions, when testing based on any given IV, as the covariance between that IV and
the difference between observed and predicted changes for these outcome variables of
interest. For any IV constructed as a linear combination of exogenous policy shifters, we

2M-tests also encompass many common tests of overidentifying restrictions such as J-tests. We discuss
the relationship between our IV-based test and J-tests in detail in Section 2.5.
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show that the expectation of our goodness-of-fit measure is equal to a weighted sum of
the misspecifications in the policy impact on each of these variables. If there is no such
misspecification, the expectation of our goodness-of-fit measure must be zero.

How can one test such a moment condition? Intuitively, the higher our goodness-of-fit
measure is, the less likely it is that it was generated by a mean-zero distribution, and so
the more likely one should be to reject the null that the researcher’s causal predictions
are correct. To operationalize that idea, however, one must deal with general equilibrium
considerations that create linkages between various economic variables of interest and
are at the core of the quantitative models whose predictions we wish to test. A given
aggregate shock may have heterogeneous effects on the prices and quantities of a large
number of goods. Likewise, a single tax change may not only affect the price and quan-
tity of the good directly subject to that tax, but also the prices and quantities of all other
goods. These considerations rule out a purely reduced-form approach to the estimation
of the overall causal effect of tax changes such as tariffs, as discussed in Goldberg and
Pavcnik (2016), as well as create systematic dependence across variables of interest that
makes off-the-shelf test statistics unavailable. Starting from the structural decomposition
between the causal impact of the policy of interest and other shocks, our second analyti-
cal result shows how to compute the asymptotic distribution of our IV-based test statistic
as the number of policy shifters is taken to infinity by adapting results from Adao et al.
(2019) and Borusyak et al. (2022) about shift-share designs. To make our testing proce-
dure fully compatible with standard empirical practices, we show how to compute the
previous distribution both when exclusion restrictions only hold conditional on a set of
controls and when prior estimation leads to uncertainty in the structural parameters of
the researcher’s model.

How should policy shifters be combined into an IV? While our IV-based test can be
applied to any valid IV, not all potential IV-based tests have the same economic inter-
pretation or the same statistical power. Our final analytical results provide guidance on
how to choose the shares that enter our shift-share IVs. For the purposes of providing
economic interpretation, we derive sufficient conditions on the form of misspecification
in the researcher’s model under which our goodness-of-fit measure, when calculated us-
ing appropriate shares, is an unbiased estimator of the average misspecification in the
researcher’s causal impact of interest. For the purposes of increasing power, we suggest
choosing shares that leverage the full general-equilibrium structure of the researcher’s
model; and whenever estimation occurs prior to testing, we propose to alleviate concerns
of mechanical fit, and hence low power, by choosing shares such that estimation moments
are less informative, in the sense of Andrews et al. (2020), about our testing moments.
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Section 3 explores the properties of IV-based tests through a series of Monte Carlo
simulations in which we control the true data generating process. We take the researcher’s
model to be the quantitative trade model that FGKK developed in order to quantify the
impact of Trump’s trade war on the US economy. For a sequence of model economies, we
randomly draw US import tariffs, foreign import tariffs, as well other structural shocks,
both when FGKK’s model is correctly specified and when it is not. We then study the
causal impact of tariff changes on US welfare, expressed as a linear combination of their
impact on export prices, import prices, and tariff revenues.

We divide our simulations into two parts. First, we use our simulations to compare the
performance of correlation- and IV-based tests. Unlike the former, we show that the rejec-
tion rates of IV-based tests are not affected by the relative importance of non-tariff shocks
when the model is correctly specified; and precisely because correlation-based tests are
sensitive to the relative importance of non-tariff shocks, we show that the correlation be-
tween data and prediction may actually go up when the average welfare misspecification
in the researcher’s model increases. Second, we compare the performance of alternative
IV-based tests. In line with our analytical results, we show that our preferred IV-based
test statistic has both a valid economic interpretation—in that its average value is very
close to the average welfare bias across policy realizations—and higher statistical power
than other “naive” IV-based tests, especially when estimation takes place before testing
and leverages the same exogenous policy shifters, as will be the case in our empirical
application and, we expect, many others.

Section 4 turns to the consequences of Trump’s trade war. We again focus on the
predictions of FGKK’s model for US welfare and show how IV-based tests can be used
as an add-on to their analysis. Instead of generating data for hypothetical shocks, as we
did in our simulations, we now feed into our testing procedure the actual changes in the
three welfare-relevant outcomes—export prices, import prices, and tariff revenues—as
well as the actual changes in US and foreign tariffs over the period 2016-19. In line with
FGKK’s estimation procedure, we assume that actual tariff changes are independent of
other non-tariff shocks and use these changes as the policy shifters that enter our IVs.

Our preferred IV-based test yields a goodness-of-fit value of −0.09 and a p-value of
0.63. The second of these two numbers implies that, under the null that the impact of
Trump’s trade war on all welfare-relevant variables was correct, one cannot reject FGKK’s
prediction that “the aggregate real income loss was $7.2 billion, or 0.04% of GDP” at
standard significance levels. The first of these two numbers further implies that, for the
sources of model misspecification that our preferred IV accommodates, the welfare loss
may be lower on average by 0.09% of GDP, an amount that seems modest in absolute
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terms. We therefore view FGKK’s quantitative model as useful for answering the coun-
terfactual question being posed of it, despite the fact that, as we also document, it can be
rejected for a subset of outcomes.

Related Literature

There is a large empirical literature estimating the effects of trade policy. In their review,
Goldberg and Pavcnik (2016) contrast structural work based on quantitative trade mod-
els whose “estimated effects [...] depend on the assumption of the underlying structural
model and the consistency of the estimated behavioral parameters of demand, supply,
and implied trade elasticities” and reduced-form work exploiting a quasi-experimental
research design, which “depends less on specific functional form assumptions about the
underlying demand, production, and market structure” and can be used “to estimate the
direct causal effect of actual trade policy on the outcomes of interest” but “is not suited to
evaluate welfare implications of actual trade policy changes or the overall effects of trade
policy change, both of which require fully specified structural or quantitative models.”
Examples of reduced-form work estimating the direct causal effect of actual trade policy
includes Attanasio et al. (2004) for Colombia; Topalova (2010) for India; McCaig (2011)
for Vietnam; and Kovak (2013) for Brazil, among many others. We view IV-based tests as
a useful add-on to the existing literature for researchers interested in combining quanti-
tative structural work and reduced-form empirical work. After estimating “direct causal
effects” using quasi-experimental variation and simulating using a quantitative model,
we advocate testing the “overall [causal] effects” that this model predicts by leveraging
the same quasi-experimental variation.3

It is common in many areas of economics to test or “validate” models before undertak-
ing counterfactual and welfare analysis.4 When fully specified, economic models gener-
ate distributions over economic variables. To “validate” a model, one may thus compare
the distribution that it predicts to the one that is observed in practice. A special case
of this general approach consists in selecting and comparing a subset of moments using
both model-generated and true data. The RBC literature offers a famous example (e.g.

3In FGKK, for instance, the authors estimate the direct causal effect of Trump tariffs on US import prices
by comparing, within narrowly defined product categories, the prices of goods from China relative to those
from other countries. The “overall [causal] effect” of the Trump tariffs further includes the indirect effect
of any single US tariff on all products from both China and the rest of the world. These indirect effects are
too high-dimensional to be estimated directly, hence the need for a general-equilibrium model that puts
structure on them, and for testing these general-equilibrium restrictions after estimation.

4As mentioned earlier, that practice is much less frequent in the fields of international trade and spatial
economics, presumably because of the widespread strategy to saturate quantitative models with enough
parameters to exactly match available data.
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Heckman and Hansen, 1996). The tests in Kehoe et al. (1995), Kehoe (2005), and Kehoe
et al. (2017) fit in this tradition. They fully specify all shocks—for example that the only
shocks occurring are the changes in the policy of interest—and then compare observed
changes to predicted changes. By restricting shocks in this way, one bundles together two
conceptually different questions: (i) Is the causal impact of the policy change predicted
by the researcher’s model accurate? and (ii) Is the researcher’s model able to forecast the
changes in economic variables between the pre- and post-policy period?

As discussed earlier, our IV-based test gives center stage to that distinction. We are in-
terested in the first question, not the second. Answers to the first question depend on the
structure of the researcher’s model, but not the distribution of other shocks. Answers to
the second question depend on both. Our test is designed to test the causal impact of the
policy change of interest, while remaining agnostic about other shocks. In contrast, model
validation procedures that focus on the R-squared of a regression of observed changes
on predicted changes, its root mean square error, or the correlation between these two
variables mix up causal analysis and forecasting. That is, their success or failure may
derive as much from misspecification in the causal mechanism of interest as from the
(un)importance of the policy change of interest in driving the variation in the data (see
e.g. Lai and Trefler, 2002, Desmet et al., 2018, Dingel and Tintelnot, 2021).

Among existing validation exercises, our IV-based test is most closely related to papers
that first estimate the direct causal impact of a shock—e.g. a monetary shock in Chris-
tiano et al. (2005), government spending in Nakamura and Steinsson 2014, the Berlin wall
in Ahlfeldt et al. 2015, or foreign shocks in Adao et al. (2020) and Adao et al. (2022)—and
then check whether the model can reproduce the same causal impact.5 This is what Chris-
tiano et al. (1999) refer to as the Lucas (1980) program, who argues that economists “need
to test them (models) as useful imitations of reality by subjecting them to shocks for which
we are fairly certain how actual economies or parts of economies would react. The more
dimensions on which the model mimics the answers actual economies give to simple
questions, the more we trust its answers to harder questions.”6

We view our paper as part of the same broad program outlined by Lucas (1980). The

5Our IV-based test also relates to tests of assumptions about market conduct in IO (e.g. Bresnahan 1982,
Berry and Haile 2014, or more recently, Backus et al. 2021). The logic of such tests is that, given estimates
of demand and assumptions about conduct, one can infer firms’ marginal costs from observed prices by
subtracting the markups that are implied by those demand estimates and conduct assumptions. Provided
that there are demand-side IVs assumed to be orthogonal to marginal cost shocks, one can then test whether
inferred marginal costs are indeed orthogonal to demand-side IVs. Our test follows a similar logic in a
general-equilibrium environment, with the causal impact of the tariff predicted by the researcher’s model
playing the role of the markup and the causal impact of other shocks playing the role of the marginal cost.

6Early expressions of this idea can also be found in urban economics (Wise, 1985) and development
economics (Todd and Wolpin, 2006) when RCTs have been used to test structural models.
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distinctive feature of our analysis is to point out that starting from a causal question of
interest—in our application, what is the welfare impact of Trump’s trade war?—not all
“dimensions on which the model mimics actual economies” are made equal. By design-
ing specific IVs, one may strengthen the credibility of the overall causal effect predicted by
the researcher’s model. Although our application focuses on a trade question, we expect
our approach to model validation to be useful in any general-equilibrium environment
where “answers to harder [causal] questions” cannot be directly estimated from the data.

2 Putting Quantitative Models to the Test

2.1 A Bird’s-Eye View of Quantitative Models

A quantitative model imposes restrictions on the behavior of endogenous variables, typi-
cally prices and quantities, as a function of exogenous variables, typically preference and
productivity shocks as well as various taxes. For ease of exposition, suppose that this
quantitative model is static, as is often the case in the trade literature.7 Then in any given
period t, we can describe it compactly as a mapping f such that

yt = f (τt, ϵt), (1)

where yt ≡ {yn,t} denotes the vector of all endogenous variables, either quantities or
prices; τt ≡ {τk,t} denotes the vector of policies of interest that are imposed at date t,
which in our applications will be import tariffs; and ϵt denotes the vector of all other
time-varying shocks. Different assumptions about preferences, technology, and market
structure lead to different mappings or “reduced-form” f that summarize the general
equilibrium effects of policies and other shocks, τt and ϵt, according to the researcher’s
model.8

To state the obvious, the set of potential mappings f is very large. Even if one is only
interested in the impact of tax changes, general equilibrium linkages imply that a tax im-
posed on any given good may affect the prices and quantities of all other goods. Thus,

7The general points that we make about testing do not depend on this assumption. Focusing on a
static model, however, simplifies notation, and is consistent with our FGKK application. For expositional
purposes, and in line with the rest of our analysis, we also ignore issues related to multiplicity of equilibria
in which the predictions of a quantitative model may be sets rather than points.

8The mapping f is the “reduced-form” of the model in a Cowles Commission sense: it solves for all the
endogenous variables as a function of the exogenous variables τt and ϵt, the same way one can explicitly
solve for price and quantity in partial equilibrium as a function of supply and demand shifters—the coun-
terparts of τt and ϵt—rather than describe them as the implicit solution of supply and demand equations.
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direct estimation of f (·, ϵt) requires time series variation and there is little hope of ever
getting a sufficiently long series to trace it out non-parametrically.9 The typical approach
to obtain knowledge of f is therefore to start from a considerably lower-dimensional,
micro-founded model where consumers maximize utility, typically of the nested CES
form, firms maximize their profits, with production functions also typically of the nested
CES form, and markets clear.10

Since knowledge of f acquired in this way relies at least in part on many a priori
assumptions, it is not clear why a given quantitative model would actually be a good
approximation to the true data-generating process,

yt = f ∗(τt, ϵ∗t ). (2)

The question that we are interested in is whether, despite the fact that f abstracts from
many features of reality and invokes strong functional form assumptions, its predic-
tions about the causal impact of policy changes ∆x ≡ f (τt+1, ϵt+1)− f (τt, ϵt+1) on some
statistic of interest W(∆x) are “close” to the true causal impact of policy changes ∆x∗ ≡
f ∗(τt+1, ϵ∗t+1)− f ∗(τt, ϵ∗t+1) for that same statistic W(∆x∗).11 Throughout our analysis, we
will focus on the case where the statistic of interest W is a linear combination of the causal
impact of policy changes on a subset of outcome variables n ∈ NW ,

W(∆x) ≡ ∑
n∈NW

ωn∆xn,

where the weights ω ≡ {ωn} may be arbitrary functions of data in period t. Our appli-
cation will consider changes in export prices, import prices, and import tariff revenues
and set the associated weights equal to expenditure and revenue shares so that W(∆x) is
equal to the first-order approximation of aggregate welfare in FGKK’s model as well as
in any other model in which tariffs are the only distortion.

9The issue goes beyond estimating flexible non-linear functions. Even if f were assumed to be linear
in τt, e.g., fn(τt, ϵt) ≡ ∑k βτ

nkτk,t + gn(ϵt), general equilibrium linkages imply that one would still need to
estimate as many parameters βτ

nk as there are combinations of outcome variables n and policies of interest
k, a type of curse of dimensionality.

10Having specified the model in this way, the researcher would then obtain knowledge of f by estimating
utility and production functions. For expositional purposes, we first present our test while abstracting from
estimation and come back to the potential interaction between testing and estimation in Section 2.3.

11Instead of defining the causal impact of policy starting from date t + 1’s equilibrium as we do here,
i.e. ∆x∗ ≡ f ∗(τt+1, ϵ∗t+1) − f ∗(τt, ϵ∗t+1), one could define it starting from date t’s equilibrium, i.e. ∆x̃∗ ≡
f ∗(τt+1, ϵ∗t )− f ∗(τt, ϵ∗t ). If the model is additively separable between policies and other shocks, as in the
case of our FGKK application, the two definitions are equivalent. More generally, they are not and the
choice of one definition over the other affects the specific exclusion restrictions that must be invoked for
testing, a point we come back to below.
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2.2 An IV-Based Measure of Goodness of Fit

As discussed earlier, there are many potential ways to “validate” a model. Our approach
to model validation is motivated by the fact that we are ultimately not interested in as-
sessing whether f is “close” to f ∗—in which case one may use any shock and any vari-
able—but instead we are interested in assessing whether the causal impact of the policy
change predicted by the model on a statistic of interest W(∆x) is “close” to W(∆x∗).

Our goodness-of-fit measure uses as its main input the differences between a model’s
predicted causal impact, ∆xn, and the change observed in the data, ∆yn ≡ yn,t+1 − yn,t

for all relevant variables n ∈ NW . The practical problem with using the raw differences,
{∆yn − ∆xn}, as the basis of a goodness-of-fit measure is that even around well-known
episodes of policy change, there may be other non-policy shocks occurring whose mag-
nitude may be large and whose distribution may be unknown. Formally, one can always
structurally decompose changes observed in the data as

∆y = [ f ∗(τt+1, ϵ∗t+1)− f ∗(τt, ϵ∗t+1)] + [ f ∗(τt, ϵ∗t+1)− f ∗(τt, ϵ∗t )] = ∆x∗ + ∆η∗, (3)

where ∆η∗ ≡ f ∗(τt, ϵ∗t+1) − f ∗(τt, ϵ∗t ) denotes the causal impact of all other non-policy
shocks. Hence, the difference ∆y − ∆x = (∆x∗ − ∆x) + ∆η∗ may merely reveal the mag-
nitude of non-policy shocks, ∆η∗ ̸= 0, rather than misspecification in the causal impact of
the policy predicted by the researcher’s model, ∆x∗ ̸= ∆x. This is the perspective at the
core of the “exact hat” approach commonly adopted in the quantitative trade and spatial
literature where observed changes ∆y are implicitly used to identify other shocks from ϵ∗t
to ϵ∗t+1 under the assumption that the researcher’s model is the true model, f = f ∗.

To deal with the challenges posed by the presence of unobserved non-policy shocks,
we propose to use the fact that, even though we may not have strong priors about the
magnitude and distribution of such shocks, we may be confident, depending on the par-
ticular setting, that they are orthogonal to some exogenous shifters of policy changes,
∆τIV . This is the perspective adopted in the empirical literature estimating the “direct
causal effects” of tariffs (Goldberg and Pavcnik, 2016). Depending on the context, the
shifter may be the change in the tariff itself, ∆τIV = ∆τ, as in FGKK. Hence, while we can-
not directly compare ∆x to ∆x∗—since ∆x∗ is unobserved and differs from ∆y—we can
compare the projections of ∆x and ∆x∗ on an instrumental variable (IV) that is built from
exogenous policy shifters z ≡ z̃(∆τIV)—since the latter coincides with the projection of
∆y on the IV z under the assumption that z and ∆η∗ remain orthogonal. If the researcher’s
and the true model’s predictions about relevant variables coincide (i.e., ∆xn = ∆x∗n for all
n ∈ NW), these two projections will be identical, irrespective of how large ∆η∗ is. This
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Figure 1: An IV-Based Measure of Goodness of fit

(a) No misspecification in causal impact

Data : ∆y

of Policy Changes : ∆x∗ = ∆x

Causal Impact

Causal Impact
of Other Shocks : ∆η

∗

Instrumental
V ariable : z

Projz(∆y) = Projz(∆x∗) = Projz(∆x)

(b) Misspecification in causal impact

Data : ∆y

of Policy Changes : ∆x∗
True Causal Impact

Causal Impact
of Other Shocks : ∆η

∗

Instrumental
V ariable : z

Projz(∆y) = Projz(∆x∗) �= Projz(∆x)

Researcher′s Causal Impact
of Policy Changes : ∆x �= ∆x∗

Notes: The figure shows how one can compare the true causal impact of policy changes ∆x∗ to the causal
impact of policy changes in the researcher’s model ∆x by comparing the projection of ∆x on the IV z to the
projection of ∆y on the same IV z. Panel (a) focuses on the situation where the two causal impacts coincide,
∆x∗ = ∆x, so that Projz(∆y) = Projz(∆x∗) = Projz(∆x). Panel (b) focuses on the situation where the two
causal impacts differ, ∆x∗ ̸= ∆x, and Projz(∆y) = Projz(∆x∗) ̸= Projz(∆x).

scenario is depicted in Panel (a) of Figure 1. If instead the two projections differ, then the
researcher’s and the true model’s predictions must be distinct (i.e., ∆xn ̸= ∆x∗n for some
n ∈ NW). This is the scenario depicted in Panel (b) of Figure 1.

These observations motivate the following goodness-of-fit measure.

Definition 1. For any causal prediction ∆x and statistic of interest W, we define the goodness of
fit of the researcher’s prediction along a candidate IV z as

β̂z ≡
1

NW
∑n∈NW

zn(∆yn − ∆xn), (4)

where NW ≡ |NW | denotes the number of observations entering the statistic of interest W.

Throughout the rest of our analysis, we assume that the candidate IV z is a linear
function of a vector of k = 1, ..., K exogenous policy shifters, ∆τIV ≡ {∆τIV,k}, each with
mean zero.12

A1. Conditional on the realization of period t’s policy τt and other shocks ϵ∗t , policy shifters are
mean zero and independent of other shocks in period t + 1: ∆τIV ⊥⊥ ϵ∗t+1|ϵ∗t , τt.

12By the shifters being mean zero, we formally mean that Et[∆τIV,k] = 0 for all k, where Et[·] denotes
expectations conditional on (ϵ∗t , τt). In the case where ∆τIV,k are i.i.d. across k, as we assume below, one
can always guarantee that shifters are mean zero by starting from ∆τIV,k and subtracting the sample mean,
1
K ∑k ∆τIV,k.
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A2. For any n ∈ NW , the instrumental variable takes the form zn = ∑k snk∆τIV,k, where the
vector of “shares” {snk} may be a function of, and only of, the realization of period t’s policy τt

and other shocks ϵ∗t .

Though some of our results hold more generally, as we point out below, we prefer to focus
on shift-share IVs that satisfy A1 and A2 for expositional purposes. These are the IVs that
will be the focus of our applications in Sections 3 and 4.13

2.3 An IV-Based Test

We propose to use our IV-based measure of goodness of fit to test the null that the causal
impact of policy changes predicted by the researcher’s model is correct.

A3. For any n ∈ NW , ∆x∗n = ∆xn.

If A3 does not hold, then there is a subset of relevant variables n ∈ NW and a subset of
shock realizations such that f (τt+1, ϵt+1)− f (τt, ϵt+1) ̸= f ∗(τt+1, ϵ∗t+1)− f ∗(τt, ϵ∗t+1). In
such situations, W(∆x) ̸= W(∆x∗), except for the measure-zero set of welfare weights
{ωn} defined by ∑n∈NW

ωn[ f (τt+1, ϵt+1)− f (τt, ϵt+1)− ( f ∗(τt+1, ϵ∗t+1)− f ∗(τt, ϵ∗t+1))] =

0. Hence A3 is not just sufficient for the researcher’s counterfactual answer to be correct
for all shock realizations, but also almost always necessary.

Moment Restriction. Our first proposition focuses on the expected value of our goodness-
of-fit measure. The formal proof as well as all subsequent proofs can be found in Ap-
pendix A.

Proposition 1. Take any IV z that satisfies A1 and A2. If A3 holds, then Et[β̂z] = 0.

A1 and A2 imply that the IV z is orthogonal to other shocks, Et[∑n∈NW
zn∆η∗

n] = 0.
Starting from Definition 1 and substituting for ∆yn using (3), we can therefore express the
expectation of our goodness-of-fit measure as

Et[β̂z] =
1

NW
Et[∑n∈NW

zn(∆x∗n − ∆xn)], (5)

13As mentioned in footnote 11, we could have considered an alternative structural decomposition of
the changes observed in the data, ∆y = ∆x̃∗ + ∆η̃∗, where ∆x̃∗ ≡ f ∗(τt+1, ϵ∗t ) − f ∗(τt, ϵ∗t ) and ∆η̃∗ ≡
f ∗(τt+1, ϵ∗t+1)− f ∗(τt+1, ϵ∗t ). For this decomposition, our results go through if A1 and A2 are adjusted ac-
cordingly so that they instead relate to the distribution of ∆τIV conditional on (ϵ∗t , τt+1) rather than (ϵ∗t , τt).
Which of the two decompositions to prefer depends on the context in which our test is deployed. In the
case of the Trump tariffs studied by FGKK, tariffs were uniformly low in the pre-Trump period. So we find
restrictions on ∆τIV = ∆τ more plausible conditional on (ϵ∗t , τt) than (ϵ∗t , τt+1). But in the case of India’s
trade liberalization studied by Topalova (2010), for instance, tariffs were uniformly low post-liberalization.
So one may instead invoke restrictions on ∆τIV = −τt conditional on (ϵ∗t , τt+1) rather than (ϵ∗t , τt).
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which is a weighted sum of misspecification, ∆x∗n − ∆xn, along all relevant variables. Un-
der A3, ∆x∗n − ∆xn = 0, so that Et[β̂z] = 0.14 Hence, the expected value of our goodness-
of-fit measure β̂z coincides with the degree of misspecification in the counterfactual an-
swer of interest under A3, i.e. W(∆x)−W(∆x∗) = 0. If instead Et[β̂z] ̸= 0 for an IV z that
satisfies A1 and A2, then A3 must be violated for some n ∈ NW and some shock realiza-
tions, implying that the model misspecifies causal responses of interest and, in turn, that
W(∆x) ̸= W(∆x∗) for almost all weights ω.15

Asymptotic Distribution. For the purposes of testing the null that the causal impact
of policy changes predicted by the researcher’s model is correct, we move beyond the
previous observation and characterize the distribution of β̂z under that hypothesis. We
propose to do so asymptotically, as we let the number of policy shifters K go to infinity.
In the applications of Sections 3 and 4, K will be the total number of products subject to
tariffs, both in the US and the rest of the world, and as K goes to infinity the total number
of relevant outcomes associated with the price and quantities of these products, NW , will
go to infinity as well. Because of general equilibrium linkages, neither the changes in the
variables of interest ∆yn nor the researcher’s prediction ∆xn are i.i.d. across outcomes
n. Rather, they are n-specific functions of the same underlying change in the vector of
taxes and other shocks. This raises non-trivial questions about whether a law of large
numbers can be invoked for the consistency of β̂z and whether a central limit theorem
can be used for computing the null distribution, a critical step for testing. Given the shift-
share structure of our IV, however, we can extend to our setting the results of Adao et al.
(2019) and Borusyak et al. (2022).16 This leads to the following proposition.

Proposition 2. Take any IV z that satisfies A1 and A2. If A3 holds and (i) ∆τIV,k are i.i.d.
across k = 1, ..., K, (ii) 1

N2
W

∑k(Sk)
2 → 0 with Sk ≡ ∑n |snk|, and (iii) Vart[∆τIV,k] and ∆η∗

n

are uniformly bounded, then β̂z →p 0. Furthermore, if (iv) maxk(Sk)
2

∑k S2
k

→ 0, (v) Et[(∆τIV,k)
4] is

14It should be clear that this first result does not rely on the linearity of the IV. More generally, if we
assume non-linear IVs of the form zn = gn(∆τIV)− Et[gn(∆τIV)], as in Borusyak and Hull (2022), then we
still have Et[zn∆η∗

n] = 0 under A1 and A2, leading to Et[β̂z] = 0 under A3, as stated in Proposition 1.
15It should be clear, though, that ∆x ̸= ∆x∗ does not necessarily imply Et[β̂z] ̸= 0. If ∆x − ∆x∗ is

orthogonal to z, then Et[β̂z] = 0 and our test has no statistical power to detect misspecification in the
counterfactual answer of interest. This is true in the special case where the researcher’s model and the true
model happen to differ exactly by the same constant across all outcome variables, i.e., ∆xn = ∆x∗n + constant
for all n ∈ NW , since z is mean zero under A1 and A2.

16Our setting differs from that considered in Borusyak et al. (2022) and Adao et al. (2019) in two ways.
First, the estimator of interest β̂z is the covariance between zn and (∆yn − ∆xn), not the OLS coefficient of
a regression of (∆yn − ∆xn) on zn. Second, we do not restrict the “shares” snk that enter zn = ∑k snk∆τIV,k
to be between 0 and 1. Both departures require minor adjustments to the formal arguments in Adao et al.
(2019) and Borusyak et al. (2022).
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uniformly bounded, and (vi) 1
∑k S2

k
Vart[∑n∈NW

zn∆η∗
n|ϵ∗t+1] →p V̄β > 0 and non-random, then

rβ β̂z →d N (0, V̄β) with rβ ≡ NW/
√

∑k S2
k .

The first part of Proposition 2 implies that β̂z converges towards its expectation, which
is zero under A1-A3 by Proposition 1. Condition (i) implies that while the IV entries zn

are not i.i.d. across n, they can be expressed as (n-specific) linear combinations of i.i.d.
variables ∆τIV,k, which by A1 and A2 are independent of the structural residual ∆η∗

n.
Provided that these linear combinations do not all tend to “load on” the same policy
shifters, as condition (ii) guarantees, and that standard regularity conditions hold, as
stated in condition (iii), the previous assumptions provide the random variation required
to establish a law of large numbers theorem, so that 1

NW
∑n∈NW

zn∆η∗
n →p 0 and, in turn

by A3, β̂z →p Et[β̂z] = 0.
The second part of Proposition 2 states that β̂z, when appropriately scaled, is asymp-

totically normally distributed. The extra conditions (iv) and (v) are required to invoke
the so-called Lyapunov condition. Following Adao et al. (2019), we construct a consis-
tent estimator of the asymptotic variance of β̂z by substituting for the structural residual
∆η∗

n = ∆yn − ∆x∗n with ∆yn − ∆xn, which must be equal to ∆η∗
n under A3, to obtain

V̂[β̂z] = ∑
k
(∆τIV,k)

2[ ∑
n∈NW

snk(∆yn − ∆xn)/NW ]2. (6)

Knowledge of the asymptotic distribution of β̂z under the assumptions of Proposition 2

opens up the possibility of testing. Intuitively, the higher the value of |β̂z|/
√

V̂[β̂z] one
observes, the lower is the probability that it was generated by the mean-zero distribution
implied by A1-A3. For a given significance level, this may then lead to a rejection of the
null that these assumptions hold. We will undertake this test in Sections 3 and 4.

Generalizations. For expositional purposes, we have assumed in A1 that the policy
shifter ∆τIV was independent of ϵ∗t+1. As we formally establish in Appendix A.4, one can
weaken A1 so that the independence of the policy shifters ∆τIV only applies after con-
trolling for linear determinants of the non-policy shocks, ∆η∗

n. Propositions 1 and 2 then
continue to hold, once applied to a shift-share IV (z)res whose shares {(snk)res} have been
residualized with respect to these controls. For the same reasons as in Adao et al. (2019)
and Borusyak et al. (2022), one can also weaken A1 by assuming the mean-independence
of ∆τIV vis-a-vis ϵ∗t+1 (again conditional on τt and ϵ∗t ). Finally, note that we have assumed
in Proposition 2 that ∆τIV,k are i.i.d. across k = 1, ..., K. One can instead allow for cluster-
ing and only require ∆τIV,k to be independent between groups of observations, but not
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within, as in Adao et al. (2019). We will do so in our empirical application in Section 4.

Estimation Uncertainty. We have thus far assumed that f was known. So, conditional
on the realization of period t’s policy and non-policy shocks, τt and ϵ∗t , randomness in
the goodness-of-fit measure β̂z only reflects randomness in the policy shifters ∆τIV and
the period t + 1 shocks, τt+1 and ϵ∗t+1. In practice, knowledge of f may itself derive from
a prior estimation stage leading to another source of uncertainty. Formally, suppose that
the reduced-form of the quantitative model of interest can be decomposed into

f (τt, ϵt) ≡ g(τt, ϵt|θ) ̸= g(τt, ϵt|θ̂),

where θ̂ is the researcher’s estimator of the true structural parameter θ.17 The estima-
tion of θ introduces a distinction between β̂z ≡ 1

NW
∑n∈NW

zn(∆yn − ∆xn), whose asymp-
totic behavior we have characterized in Proposition 2, and β̂z(θ̂) ≡ 1

NW
∑n∈NW

zn(∆yn −
∆xn(θ̂)), which is the goodness-of-fit measure associated with the causal impact of tariffs
in the researcher’s model when evaluated at the estimated parameter θ̂, with ∆xn(θ̂) ≡
g(τt+1, ϵt+1|θ̂)− g(τt, ϵt+1|θ̂). In order to implement our test when the researcher’s model
has been estimated, Appendix A.5 provides extensions of Proposition 2 that characterize
the asymptotic distribution of β̂z(θ̂), both when θ̂ is independent of β̂z(θ) (e.g. when es-
timation has been conducted on a different sample) and when θ̂ is an IV estimator that
might be based on the same policy shifters (which will be the case in our application).
This extra step leverages the randomness of policy shifters to extend standard arguments
used for the derivation of M-test statistics (e.g. Cameron and Trivedi, 2005 pp. 263-264) to
an environment with general equilibrium linkages between outcome variables. We come
back to these results when discussing issues of “mechanical fit” in the next subsection.

2.4 Choice of the IV

Testing can be conducted using any goodness-of-fit statistic β̂z that is based on an IV z sat-
isfying the assumptions of Proposition 2. Even for a fixed set of exogenous policy shifters
∆τIV , many valid IVs may be available in practice via the design of alternative shares
{snk}. This section discusses two considerations for choosing those. The first relates to
the economic interpretation of β̂z and the second to its statistical power.

17The mapping g, in turn, reflects all other assumptions in the model that do not derive from estimation,
for instance that some groups of factors and goods are perfect substitutes, that input-output linkages are
Cobb-Douglas, or that markets are perfectly or monopolistically competitive.
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Economic interpretation. In practice, researchers may not only be interested in whether
they can or cannot reject the null that the causal impact of policy changes predicted by
their model, W(∆x), is correct. They may care, more broadly, about “how far” W(∆x)
is from the true causal impact, W(∆x∗). Motivated by this observation, we now discuss
how, starting from a candidate IV z̃, one may construct an alternative IV z such that β̂z is
an unbiased estimator of Et[W(∆x∗)− W(∆x)].

To do so, we need to relax A3 and take a stand on how the researcher’s model may be
misspecified. As a starting point, we propose the following generalization of A3.

A3’. For any n ∈ NW , ∆x∗n = αn∆xn, with the misspecification parameter αn a function of, and
only of, period t’s shocks, (ϵ∗t , τt).

According to A3’, the researcher’s model and the true model may differ in unrestricted
ways across various outcome variables, via αn, but they both agree on the relative im-
portance of various policy changes. Whether a policy τk or another policy τk′ changes
from period t to period t + 1, the ratio ∆x∗n/∆xn is unchanged. Broadly speaking, A3’
requires that the researcher has correctly specified the general-equilibrium implications
of all policy changes of interest, up to their ultimate incidence on each outcome variable.
In this sense, misspecification remains local to the researcher’s model. In the simulations
of Section 3, we offer a specific example of misspecification that satisfies A3’ based on the
magnitude of the pass-though from statutory to applied tariffs.18

For an arbitrary IV z̃ that satisfies A1 and A2, we know from the proof of Proposition 1
that the expected value of our goodness-of-fit measure β̂z̃ is equal to 1

NW
Et[∑n∈NW

z̃n(∆x∗n −
∆xn)], as displayed in equation (5). The problem is that when ∆x∗n − ∆xn ̸= 0, this
value is in general distinct from the expected welfare difference, Et[W(∆x∗)− W(∆x)] =
Et[∑n∈NW

ωn(∆x∗n − ∆xn)], which is the difference of interest from an economic stand-
point.19 To align our goodness-of-fit measure with the expected welfare difference, we
need to find IVs that continue to satisfy A1 and A2, but are similar, on average, to the
vector of welfare weights ω. Our next proposition demonstrates how to do so.

Proposition 3. Take any IV z̃ that satisfies A1 and A2. If A3’ holds, then one can construct an
adjusted IV z ≡ {ζnz̃n}, with the adjustment ζn ≡ NWωnEt[∆xn]/Et[z̃n∆xn] for all n ∈ NW ,

18One may be concerned more generally that the researcher’s model does not get the general-equilibrium
implications right because it abstracts from specific features that one believes are important. If so, one
could start from an alternative model that does incorporate these features and then impose A3’ around that
alternative model. That is, A3’ is a complement to, not a substitute for, standard sensitivity analyses that
consider alternative primitive assumptions on preferences, technology, or market structure.

19The gap between Et[∑n∈NW
z̃n(∆x∗n − ∆xn)] and Et[∑n∈NW

ωn(∆x∗n − ∆xn)] arises for the same reasons
that IV estimators may uncover what Imbens and Angrist (1994) refer to as a local average treatment effect
rather than the average treatment effect. In our analysis, the misspecification error ∆x∗n − ∆xn = (αn −
1)∆xn plays the role of the heterogeneous treatment effect of interest.
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such that z satisfies A1 and A2 and Et[β̂z] = Et[W(∆x∗)− W(∆x)].

Intuitively, A1 and A2 give us the flexibility to rotate the original IV z̃, while still
satisfying the orthogonality condition between the new IV z and the other shocks. To
be more precise, if z̃ satisfies A1 and A2, then any alternative shift-share instrument z
such that zn = ζnz̃n for some fixed vector ζ ≡ {ζn} must also satisfy A1 and A2 and, in
turn, yield Et[∑n∈NW

zn∆η∗
n] = 0. While the dependence of z on the policy shifters ∆τIV

implies that z cannot be equal to ω for all realizations—an unavoidable feature if z is to
be orthogonal to other shocks ∆η∗—the freedom of choosing ζ allows the projections of
∆y − ∆x on z and ω to be equal on average by setting ζn = NWωnEt[∆xn]/Et[z̃n∆xn].20

Note that the previous adjustment procedure requires that the original IV satisfies
Et[z̃n∆xn] ̸= 0 for all n. We discuss below how to satisfy this requirement. Note also that
the previous adjustment procedure can be generalized to accommodate situations where
the independence of the policy shifters only holds after controlling for linear determi-
nants of the non-tariff shocks, as established in Appendix A.6. Finally, note that different
forms of misspecification, i.e. distinct from A3’, may call for different manipulations of
the original IV in order to provide a goodness-of-fit statistic whose magnitude has an eco-
nomic interpretation. For the interested reader, Appendix A.7 considers a strictly weaker
version of A3’ in which we only restrict the worst-case bias between ∆x∗n and ∆xn. In this
case, we show that, while one can no longer construct z such that β̂z + W(∆x) is an unbi-
ased estimator of Et[W(∆x∗)], as we do in Proposition 3, one can still construct z such that
the worst-case bias of β̂z + W(∆x) is strictly lower than the worst-case bias of W(∆x), as
we formally show in Proposition 4.

Statistical Power. For IV-based tests to be useful, they should have high power, that
is, a high probability of rejecting A3 when the causal impact of policies predicted by
researcher’s model is indeed incorrect. While general statements about a test’s power
require restrictions on the alternative to the null that is being tested—a challenging re-
quirement in the case of model misspecification—we offer three guidelines for improving
the power of IV-based tests.

First, one simple reason that an IV-based test may have low power is because, with-
out further restrictions on the shares {snk}, the candidate IV z may be pure noise. If so,

20Characterizing the asymptotic distribution of our preferred goodness-of-fit measure β̂z is a more chal-
lenging problem under A3’ than A3. Compared to the case presented in Section 2.3, the asymptotic distri-
bution of β̂z under A3’ depends not only on the behavior of ∑n∈NW

zn∆η∗
n—a linear combination of the i.i.d.

policy shifters ∆τIV that enter the IV z—but also on ∑n∈NW
zn(αn − 1)∆xn—a potentially arbitrary function

of such shifters. Provided that the researcher’s causal impact ∆xn is itself a linear function of the policy
vector, however, inference can be conducted in the same way as in the case of heterogeneous treatment
effects in Adao et al. (2019). Conveniently, this linearity restriction is satisfied by our application below.
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Et[zn∆xn] = Et[zn∆yn] = 0, regardless of whether or not ∆xn = ∆x∗n, in which case there
is nothing to be learned from comparing the projections of ∆x and ∆y on the IV. To deal
with this potential lack of power, we propose to anchor our testing procedure around
a candidate IV for which we expect to have a “first-stage,” i.e. Et[zn∆xn] ̸= 0. Specifi-
cally, our preferred IV in Sections 3 and 4 will start from shares {snk} that are equal to
the Jacobian of the researcher’s model with respect to tariffs, snk = ∂ fn/∂τk, evaluated
at (τt, ϵt). This implies that the associated IV zn = ∑k(∂ fn/∂τk)∆τIV,k is equal to the
causal impact of the policy shifter on variable n according to the researcher’s model, up
to a first-order approximation. By design, such a candidate IV combines existing exclu-
sion restrictions from the empirical literature, as reflected in the choice of ∆τIV , with the
general equilibrium structure of the researcher’s model, as summarized by the Jacobian,
Dτ( f ) ≡ {∂ fn/∂τk}.

Second, the power of our test may be low because the confidence interval of β̂z, com-
puted under the null using equation (6), may be large. To deal with precision, our pre-
ferred IV will also residualize the previous shares with respect to a vector of controls. This
is equivalent to computing β̂z after residualizing ∆y−∆x, which mechanically lowers the
variance of our IV-based test statistic, as described in Appendix A.4.

Finally, the power of our test may be low, ceteris paribus, when there has been estima-
tion prior to testing, and the testing moment described in Definition 1 is mechanically
related to moments that have already been set to zero for the purposes of estimation, as
already discussed in Appendix A.5. In the extreme, if testing and estimating moments
were exactly the same, then our test would always pass, and hence would have zero
power. More generally, the more estimation moments are informative about β̂z in the
sense of Andrews et al. (2020)—i.e., the higher the R-squared of a hypothetical regression
of β̂z on the estimation moments—the lower we expect the power of our test to be, as il-
lustrated in Appendix A.8. We will explore the potential importance of favoring IV-based
tests for which estimation moments are relatively less informative through our simula-
tions in Section 3.

2.5 Discussion

One can view our IV-based test as the second step of a general procedure that first uses
a subset of moments for estimation and another subset of untargeted moments to build
confidence in the predictions of the researcher’s model. Many testing or validation pro-
cedures that have been deployed in the literature fit this general description. Here we
describe the alternatives and discuss what we view as the main advantages of our test.
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A moment is a moment? We have proposed the test statistic β̂z as a way to test causal
predictions. It offers a formal answer to the specific question: “can we reject the null that
W(∆x) = W(∆x∗)?” rather than the broader: “can we reject the null that f = f ∗?” A
number of popular approaches to model validation do not draw this distinction. They
implicitly embrace the researcher’s model in its entirety. As a result, such approaches
may reject a model even though its causal answer of interest is correct—because other
shocks in the model are assumed to be absent or misspecified. Or they may fail to reject a
model even though its causal answer is incorrect—because they focus on moments with
little relevance to the causal mechanism of interest.

The preferred testing procedures in Kehoe et al. (1995), Kehoe (2005), and Kehoe et al.
(2017) are subject to the first of these two concerns. They focus on the correlation between
the change in outcomes ∆yn, such as trade flows in each industry n, that occurred around
an episode of trade policy change, such as NAFTA, and the change in outcomes ∆xn

predicted by the researcher’s model in the absence of any other shock. This correlation,
however, depends as much on misspecification in the causal answer of interest, ∆x∗n ̸=
∆xn, as on the existence of other shocks at the time of the policy change, ∆η∗

n ̸= 0. More
specifically, even when ∆x∗n = ∆xn and policy changes are uncorrelated with other shocks,

|corr(∆yn, ∆xn)| =
(

1 +
var(∆η∗

n)

var(∆xn)

)−1/2

.

Despite the causal impact of trade policy predicted by the researcher’s model being cor-
rect, corr(∆yn, ∆xn) therefore differs from one if var(∆η∗

n) ̸= 0 and actually converges
to zero as var(∆η∗

n)/var(∆xn) goes to infinity. The same concern applies to validation
procedures that focus on the R-squared of the OLS regression of ∆yn on ∆xn, since R2 =

|corr(∆yn, ∆xn)|2, or the mean squared error, since MSE = var(∆η∗
n), under the previous

assumptions. By contrast, our proposed test based on β̂z is valid for testing W(∆x) =

W(∆x∗) irrespective of the magnitude of var(∆η∗
n).

Another commonly used strategy for strengthening the credibility of a quantitative
model involves demonstrating that, after targeting a subset of moments of the initial
cross-section for parameter estimation, the researcher’s estimated model can also match
untargeted moments from the same cross-section. Examples from the trade literature in-
clude Edmond et al. (2015), Costinot et al. (2016) and Antras et al. (2017). Such procedures
are subject to the second concern mentioned above: they may fail to reject when the causal
answer of interest is incorrect. For example, while Costinot et al. (2016) report a “reassur-
ing” (p. 229) fit of their model’s equilibrium revenue predictions (using a cross-section of
crops and countries), it is possible that misspecification in such aspects of their model may
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be very different from misspecification in the causal impact of the shock that motivates
the need for their model (designed to predict the causal impact of climate change on agri-
cultural markets). Appendix A.9 describes an extreme example where the ability of the
researcher’s model to match untargeted moments from the cross-section can be arbitrar-
ily good, yet the degree of misspecification in the counterfactual answer of interest can be
arbitrarily large.21 Whenever possible, we suggest to focus instead on a goodness-of-fit
measure β̂z that is deliberately designed around the causal impact of interest.

An IV is an IV? A distinct approach to testing draws instead on the availability of an
instrument z that is believed to be independent of other shocks. As illustrated in Figure
1, armed with such an instrument one can test whether the causal impact of the policy
predicted by the researcher’s model is correctly specified by comparing the projection of
∆y on z with that of ∆x on z. Our test statistic β̂z summarizes exactly such a comparison.

Going back to Lucas’s (1980) call for “subjecting (models) to shocks for which we are
fairly certain how actual economies or parts of economies would react,” this idea has
several antecedents. For example, in their study of the division of Berlin, Ahlfeldt et al.
(2015) present a comparison of the coefficients obtained from two regressions: first, from
regressing the change in block-level floor prices (i.e. ∆yn) on distance to the city’s pre-
War center (i.e. zn); and second, from regressing their model’s predicted causal impact
of division on floor prices (i.e. ∆xn) on zn.22 A number of questions about the specific
implementation of such a test, however, necessarily arise: (i) Is the choice of outcome
and IV consistent with the causal prediction of interest? (ii) How should the test account
for general-equilibrium linkages and prior estimation? (iii) How should the magnitude
of the test statistic be interpreted? And (iv) How should the IV be designed to improve
power and avoid mechanical fit? In this section, we have shown how one may go about

21The same general concern applies to validation procedures using the causal impact of shocks that differ
from the policy of interest, say rainfall when the policy of interest is tariffs. The fit of the researcher’s model
may be arbitrarily good at predicting causal responses to rainfall shocks, yet provide little information
about the difference between ∆x and ∆x∗ that the researcher is ultimately interested in.

22Another closely related test is the “slope test” (see, e.g., Davis and Weinstein, 2001, Kehoe, 2005, or
Kovak, 2013), which estimates an OLS regression of ∆y on ∆x and rejects when the slope coefficient β̂OLS

differs from 1. To compare this to our IV-based procedure, we begin by noting that our test statistic β̂z is
closely related to the coefficient one would obtain from an IV regression of ∆y on ∆x when z is used as the
instrument. The coefficient β̂IV from such a regression is related to β̂z via β̂z = ( 1

NW
∑n∈NW

zn∆xn)(β̂IV − 1),
which shows that, up to the first-stage covariance, a test of β̂IV = 1 is equivalent to that of β̂z = 0. In turn,
a test of β̂OLS = 1 is equivalent to that of β̂∆x = 0, i.e. the special case where the researcher’s prediction is
assumed to be a valid IV z = ∆x. This equivalence notwithstanding, it should be clear that the previous
literature does not provide conditions under which one may characterize the asymptotic distribution of
β̂OLS in the presence of general-equilibrium linkages, a critical input for formal testing that Proposition 2
delivers for our IV-based test.
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answering all these questions.

Why a two-step procedure? Our proposed test statistic β̂z measures the difference be-
tween the moment 1

N ∑n∈NW
zn(∆yn − ∆xn) and zero. Even if one agreed on the impor-

tance of that moment for the counterfactual question of interest, one may still question
why we propose to implement our test as a second step rather than assume that the mo-
ment condition β̂z = 0 holds and “stack” it with the moment conditions already used for
the estimation of the vector of structural parameters θ, at which point one could compute
the optimal GMM estimator of θ and perform a J-test.

This alternative one-step procedure offers the benefit of efficient estimation, in the
sense of minimizing the asymptotic variance of θ̂ under the null that the researcher’s
prediction is correct, as discussed in Hansen (2008). But in regards to testing, we see two
potential advantages of our approach. The first one relates to economic interpretation.
The J statistic is a weighted sum of violations of the stacked vector of moment conditions.
Analogously to the discussion of untargeted moments above, it is not always clear that
a model’s failure to match a given moment is relevant for the model’s ability to make
accurate statements about the causal question of interest. In contrast, Proposition 3 offers
conditions under which β̂z is an unbiased estimator of Et[W(∆x∗)− W(∆x)].

The second issue relates to power. In quantitative trade models, the moments used
for estimation are typically partial equilibrium in nature and fit the data with relatively
low variance. So-called gravity equations are a famous example. By contrast, the extra
moment that we propose for testing is general equilibrium in nature and may therefore
be expected to display relatively high variance. In such a setting, the J-test, which weights
moment violations according to the inverse of their variance, will give greater weight to
partial equilibrium considerations, meaning that the test may lack power to detect gen-
eral equilibrium misspecification. In the extreme where the ratio of the variance of the
estimation moments to our testing moment goes to zero, a J-test would never reject, pro-
vided the parameters θ are just-identified by the estimation moments. Our test instead
focuses on the general equilibrium considerations embodied in β̂z, and so would poten-
tially be able to reject an incorrect causal answer. At the very least, by offering an estimate
of β̂z and its standard error, our two-step procedure provides direct information about the
power (or lack thereof) to reject the researcher’s predictions.

20



3 Monte Carlo Simulations

We now explore the properties of IV-based tests through a series of Monte Carlo sim-
ulations in which we control the true data generating process. The researcher’s model
that we propose to test is the quantitative trade model developed by Fajgelbaum et al.
(2020) (FGKK) to analyze the impact of Trump’s trade war on the US economy. These
simulations serve the dual role of illustrating the main themes of Section 2—relative per-
formance of correlation- and IV-based tests, economic interpretation and statistical power
of alternative IV-based tests, and issues of mechanical fit—as well as exploring the finite-
sample properties of the IV-based tests that we will implement empirically in Section 4.

3.1 Simulation Procedure

The researcher’s model in all our simulations is FGKK’s model. This is a competitive
trade model centered on the US economy. Appendix B.1 describes FGKK’s primitive as-
sumptions about US preferences, US technology, foreign import and export behavior, as
well as the definition of a competitive equilibrium. Like in FGKK, we use a first-order
approximation of the equilibrium conditions in all our simulations.23 The five key struc-
tural parameters of the model are: the inverse elasticity of foreign export supply, ωF;
the elasticity of foreign import demand, σF; and three elasticities of substitution that de-
termine US demand, κ, η, and σ. All other structural parameters are potentially time-
varying Cobb-Douglas shares, preference and productivity shifters, and labor endow-
ments. We let θ ≡ {σ, ωF, σF, η, κ} denote the vector of elasticities and ϵt denote the
vector of other time-varying structural parameters. The policies of interest are US import
tariffs, τH

t ≡ {τH
iv,t}, imposed by the US on one of 10,228 products v imported from one of

71 foreign countries i, and foreign import tariffs, τF
t ≡ {τF

iv,t}, imposed by these foreign
countries on any product exported from the US.

For our first series of simulations, in Sections 3.2 and 3.3, we abstract from estimation
uncertainty and assume that θ and ϵt are both known to the researcher. As further de-
scribed in Appendix B.2, we set θ equal to FGKK’s estimates and set ϵt such that, given
the elasticities θ and the initial tariffs τt ≡ {τH

t , τF
t }, FGKK’s model exactly matches US

23Using the notation of Section 2, the researcher’s model f is therefore formally given by

f (τ, ϵ) = f̃
∣∣
τt ,ϵt

+ Dτ( f̃ )
∣∣
τt ,ϵt

· (τ − τt) + Dϵ( f̃ )
∣∣
τt ,ϵt

· (ϵ − ϵt),

where f̃ is the non-linear model implied by the primitive assumptions in Appendix B.1 and (τt, ϵt) are
the values of the shocks around which we linearize. There is therefore no distinction between ∆x ≡
f (τt+1, ϵt+1)− f (τt, ϵt+1) and ∆x̃ ≡ f (τt+1, ϵt)− f (τt, ϵt). Both are equal to Dτ( f̃ )

∣∣
τt ,ϵt

· (τt+1 − τt).
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trade and production data in 2016. Like in FGKK, we let the initial tariffs τt be equal to
their average statutory values in 2016. We will return to the specific issues associated with
the estimation of θ in Section 3.4.

For each of our simulations, we consider 2,500 counterfactual economies, indexed by
the superscript b = 1, ...., 2500, and subject them to counterfactual tariff changes, (∆τ)b,
as well as counterfactual changes to productivity and preference parameters, (∆ϵ)b.24 All
changes are independently drawn from normal distributions. Tariff changes have mean
µ∆τ = 0.2 and standard deviation σ∆τ = 0.7. All other shocks have mean µϵ = 0 and
standard deviation σϵ = 0.7 unless otherwise specified. To generate counterfactual equi-
librium prices and quantities, we assume that the true model is either FGKK’s model, in
which case f ∗(τ, ϵ) = f (τ, ϵ), or FGKK’s model up to some misspecification to be de-
scribed below, in which case f ∗(τ, ϵ) ̸= f (τ, ϵ). Given knowledge of the true model and
the researcher’s model, we can then compute the counterfactual changes in all equilib-
rium variables, (∆y)b, as well as the causal impact of changes in tariffs in the true model
and the researcher’s model, (∆x∗)b and (∆x)b, respectively.

In line with the main goal of FGKK’s analysis, our statistic of interest W(∆x) is the
causal impact of tariff changes on US welfare. Expressed as a percentage of US GDP in
2016, the change in welfare computed by FGKK is equal to

[W(∆x)]b =∑
i,v
[ωX

iv(∆xX
iv)

b + ωM
iv (−∆xM

iv )
b + ωR

iv(∆xR
iv)

b], (7)

where X, M, R denote outcomes related to exports, imports, and tariff revenues, respec-
tively. Specifically, ∆xX

iv measures changes in the log of US export prices of product v in
country i (pre-foreign tariff), with ωX

iv the associated percentage of export revenues in US
GDP in 2016; ∆xM

iv measures changes in the log of US import prices of product v from
country i (post-US tariff), with ωM

iv the associated percentage of import spending in US
GDP in 2016; and ∆xR

iv measures changes in US tariff revenues on product v from country
i in proportion to initial import spending, with ωR

iv = ωM
iv , as described in Appendix B.3.

Equation (7) is a first-order approximation that follows from a standard application
of the envelope theorem.25 It holds in any model that, like FGKK’s, assumes no distor-
tions in the US economy other than the presence of import tariffs. For example, the fact

24Using the notation of Appendix B.1, the counterfactual changes to (∆ϵ)b that we simulate derive from
changes in foreign preferences for domestic varieties, log aF

iv,t; domestic preferences for foreign varieties,
log aiv,t; and foreign productivity, log zF

iv,t.
25Although we restrict the statistic of interest to be linear throughout our analysis, it should be clear

that one could study higher-order approximations by simply adding terms in the Taylor expansion. For
example, the second-order approximation would extend the summation W(∆x) ≡ ∑n∈NW

ωn∆xn to include
entries of the vector ∆x created from interactions between all price and quantity changes.
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that changes in export quantities do not affect welfare in (7) follows from the high-level
assumption that there are no taxes nor markups on US exporting firms, not from any
specific assumption about technology or preferences. As a result, all models that feature
the same domestic distortions as FGKK will agree that first-order welfare changes follow
equation (7), and agree on how to calculate the weights from data in 2016, even though
they may disagree on the predicted price and tariff revenue changes that follow from
a given set of tariff changes. Within that broad class of models, focusing on W(∆x) is
therefore sufficient to detect welfare misspecification.

As a final remark about dimensionality, we note that, in terms of Section 2’s notation,
each observation n here corresponds to a triplet n = (i, v, o), with o ∈ {X, M, R}, whereas
each tariff line k corresponds to a triplet k = (i, v, c), with c ∈ {H, F}. Thus the total
number of welfare-relevant variables is 71 × 10, 228 × 3 and the total number of tariff
lines and tariff shifters is 71 × 10, 228 × 2. For computational reasons, we focus in our
simulations on the country-product pairs that account for 90% of the value of US exports
and imports. Without risk of confusion, we simply refer to the subset of welfare-relevant
variables that we are left with as NW and to their number as NW = 35, 985. The associated
number of shifters that we are left with is K = 22, 590.

3.2 Correlation- versus IV-Based Tests

Counterfactual analysis is about causal effects, not forecasting. The former holds every-
thing else fixed, whereas the latter takes a stand on how everything else changes. Our
IV-based test is designed to test the causal impact of a policy change predicted by the
researcher’s model, without having to specify how “everything else changes,” above and
beyond the fact that such changes are independent of the IV. For our first series of simu-
lations, we illustrate how our IV-based test compares to a correlation-based test that does
not aim to unbundle the size of the causal effect of interest from that of other shocks.

To implement our IV-based test, we need exogenous tariff shifters and shares that
satisfy A1 and A2. Since tariff changes are independently drawn in our simulations, we
simply use a normalized version of tariff changes as our tariff shifters,

(∆τIV,k)
b =

(∆τk)
b − µ∆τ

σ∆τ
. (8)

To build shares, we follow the discussion of Section 2.4. In order to increase statistical
power, we start from the Jacobian of the researcher’s model with respect to tariffs and
residualize the shares with respect to controls; and in order to provide an economic in-
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terpretation, we adjust the shares to target average welfare misspecification. In matrix
notation, our preferred shares can be described as

{spref
nk } = Pc × Diagζ × Dτ( f ), (9)

where Dτ( f ) ≡ {∂ fn/∂τk} is the Jacobian of the researcher’s model with respect to tariffs;
Diagζ denotes the diagonal matrix associated with the welfare-relevant adjustment ζ ≡
{ζn} from Proposition 3 (with controls); and Pc denotes the residual projection matrix
associated with the vector of controls, as further described in Appendix B.4.26 We let
(zpref

n )b = ∑k spref
nk (∆τIV,k)

b denote our preferred IV.
To test the null that the causal impact of tariffs predicted by the researcher’s model

is correct, we use (β̂zpref)b = 1
NW

∑n∈NW
(zpref

n )b[(∆yn)b − (∆xn)b]. We implement our test
with a 5% significance level using the asymptotic results of Proposition 2—that is, our test

rejects in simulation b when (β̂zpref)b/
√
(V̂[β̂zpref ])b lies either below the 2.5th or above the

97.5th percentile of a standardized normal distribution.
Figure 2a focuses on the case where FGKK’s model is the true model, but the impor-

tance of tariff shocks relative to other shocks changes as we vary the standard deviation
of all other shocks σϵ. Since A3 holds, provided that the other conditions in Proposi-
tion 2 are satisfied, our test should therefore reject in about 5% of the 2,500 hypothetical
economies that we consider, independently of the value of σϵ. Reassuringly, this is indeed
the case. In contrast, Figure 2a shows that the correlation between (∆yn)b and (∆xn)b,
averaged across hypothetical economies, is very sensitive to the value of σϵ, despite the
researcher’s model being true in all these simulations. Not surprisingly, the less the vari-
ation in the data comes from tariff shocks, the lower is the correlation between observed
changes and the causal impact of tariffs predicted by the researcher’s model.

Figure 2b turns to the case where FGKK’s model is misspecified. We focus here on the
incidence of the statutory (i.e. de jure) tariffs. In FGKK’s model, statutory tariffs are equal
to the tariffs that are actually applied. In the true model, we assume that the pass-through
from one to the other occurs at the rate α, so that f ∗(τ, ϵ) = f (ατ, ϵ) ̸= f (τ, ϵ).27 It follows
that A3’ holds, with αn = α for all n ∈ NW , whereas A3 does not unless α = 1. We refer

26Unless otherwise specified, controls include three dummy variables, for whether or not n = (i, v, o)
satisfies o(n) = X, o(n) = M, and o(n) = R, as well as each outcome n’s total exposure to tariff changes,
∑k ∂ fn/∂τk. For the interested reader, Figure B.1 in Appendix B.5 offers the counterpart of Figure 3 below
with different sets of controls. In line with our discussion in Section 2.4, fewer controls imply a higher
variance for our test statistic and less power.

27Besides its simplicity, the assumption that the pass-through rate of statutory tariffs into applied tariffs
may not be equal to one is consistent with the empirical findings of FGKK. Specifically, Table IV in FGKK
shows that the difference between the tariff pass-through rate on import prices excluding tariff duties (in
column 3) and including tariff duties (in column 4) is significantly different from one.
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Figure 2: Correlation- versus IV-based Tests

(a) No misspecification (b) Uniform misspecification

Notes: This figure reports the rejection rate of an IV-based test at a 5% significance level (blue circles) and
the correlation between (∆yn)b and (∆xn)b (red diamonds) across b = 1, ..., 2500 simulated economies. The
shifters and shares entering the IV (zpref

n )b are described in equations (8) and (9). Figure 2a focuses on
the case where the researcher’s model is the true model and varies the standard deviation of other shocks
σϵ used in the simulations. Figure 2b instead assumes that the researcher’s model misspecifies the pass-
through rate of all statutory tariffs into applied tariffs and varies the true pass-through rate used in the
simulations, which results in the corresponding amount of average welfare misspecification Et[W(∆x∗)−
W(∆x)] shown on the x-axis.

to this benchmark case as “uniform misspecification.”
Figure 2b reports the results of simulations that vary the degree of misspecification α.

For ease of interpretation, we display results for which the x-axis is in units of Et[W(∆x∗)−
W(∆x)], the expectation of the difference between the causal impact of tariffs predicted
by the true model and the researcher’s model associated with a given value of α (ex-
pressed as a percentage of US GDP). Reassuringly, Figure 2b shows that the power of our
test—that is, the propensity to reject the predictions of this misspecified model—increases
with the degree of welfare misspecification. As Et[W(∆x∗)− W(∆x)] increases in abso-
lute value, so does the probability of rejecting the null that the welfare effects predicted
by the researcher’s model are correct. Perhaps surprisingly, however, we see that the cor-
relation between (∆yn)b and (∆xn)b instead increases as the degree of misspecification in
the counterfactual answer of interest becomes more and more positive. The reason is that
tariff changes account for a larger share of observed changes as α increases, which raises
the correlation between (∆yn)b and (∆xn)b.
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3.3 Alternative IV-Based Tests

In Section 2.4, we have argued how different dimensions of an IV may help increase the
statistical power of our test as well as offer an economic interpretation for our goodness-
of-fit measure. We now illustrate these issues via the comparison of two different IV-based
tests. The first IV zpref is the same as in the previous simulations, with shifters and shares
described in equations (8) and (9). The second IV znaive, which we will refer to as a “naive”
IV, uses the same shifters, but different shares,

{snaive
nk } = Pc × Diagω × I. (10)

Compared to our preferred shares in equation (9), the naive shares ignore the general-
equilibrium structure of the model and instead only use the policy shifter associated with
the outcome of interest, either the US tariff for import and revenue outcomes or the for-
eign tariff for export outcomes, as reflected in the matrix I instead of the Jacobian Dτ( f ).28

In order to ease comparison, we residualize the naive IV using the same controls as our
preferred IV, hence the same projection matrix Pc, and assume that it incorporates welfare
weights, but does so in an ad-hoc manner, as reflected in Diagω rather than Diagζ .

Figure 3 returns to the same uniform misspecification as in the previous subsection.
We know from Proposition 2 that since both instruments zpref and znaive satisfy A1 and
A2, both IV-based tests that use them should have the correct size (probability of rejecting
equal to stated significance level) when the model is correctly specified. Reassuringly, this
is true in our simulations, as is apparent in Figure 3a, in which the y-axis displays rejection
rates and the x-axis again reports the expectation of the counterfactual welfare mistake
Et[W(∆x∗)− W(∆x)]. However, although both of these IV-based tests reject models that
are misspecified, we see that the test based on our preferred IV zpref has an advantage in
terms of power, since the blue circles are higher than the red diamonds (greater rejection
rate) everywhere but at Et[W(∆x∗)− W(∆x)] = 0.

The difference between the two goodness-of-fit measures in terms of economic inter-
pretation is starker. Figure 3b reports how the average values of (β̂zpref)b and (β̂znaive)b

vary with the degree of misspecification. In line with Proposition 3, the average value of
(β̂zpref)b tracks Et[W(∆x∗)− W(∆x)], since the blue circles follow the 45◦ line. The aver-
age of (β̂znaive)b, on the other hand, is actually negatively related to Et[W(∆x∗)− W(∆x)]
even though one might hope that incorporating welfare weights in znaive would go some

28Formally, I corresponds to the NW × K matrix whose entry (n, k) is a dummy variable that equals one
if, and only if, i(n) = i(k) and v(n) = v(k) (i.e., outcome n and shifter k correspond to the same country-
product pair) as well as either o(n) = X and c(k) = F (i.e., n is an export price and k a foreign tariff shifter)
or o(n) ∈ {M, R} and c(k) = H (i.e., n is an import price or tariff revenue and k a US tariff shifter).
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Figure 3: Alternative IV-based Tests Under Uniform Misspecification

(a) Rejection rate (b) Mean of goodness-of-fit measure

Notes: This figure reports the resuls from b = 1, ..., 2500 simulated economies in which the researcher’s
model misspecifies the pass-through rate of all statutory tariffs into applied tariffs by an amount α that is
uniform across import, export, and tariff revenue outcomes. Simulations differ in terms of the size of the
underlying α to generate the variation in Et[W(∆x∗)− W(∆x)] reported on the x-axes. Figure 3a plots the
rejection rate on the y-axis for IV-based tests using our preferred IV (zpref, blue circles) and a naive IV (znaive,
red diamonds). Figure 3b does the same but with the average value of our goodness-of-fit measure (β̂zpref

and β̂znaive , respectively) on the y-axis.

way towards the economic interpretability of (β̂znaive)b.29

Figure 4 turns to misspecification that only affects a subset of variables. Specifically,
we assume that the degree of misspecification for export outcomes is the same as before
(i.e. (∆xX∗

iv )b = α(∆xX
iv)

b) but we now rule out misspecification in import and revenue
outcomes (i.e. (∆xM∗

iv )b = (∆xM
iv )

b and (∆xR∗
iv )b = (∆xR

iv)
b). Such a form of misspecifica-

tion continues to satisfy A3’, and so it is no surprise to see in Figure 4b that the economic
interpretability of β̂zpref continues to hold true. More interestingly, we see in Figure 4a that
the naive IV-based test using znaive now has much less power to reject the misspecified
model. Intuitively, the naive test does not take into account the fact that in FGKK’s model
there is less variation across export prices than import prices and tariff revenues, which
leads the naive test to underweight misspecification in export outcomes and, in turn, to
under-reject. We return to this distinction between testing export- and import-based out-

29In this example, it is interesting to note that there is a trade-off between economic interpretability and
statistical power. Using the welfare weights for the purposes of economic interpretability comes at the
cost of a less precise test statistic. As can be seen from Figure B.2 in Appendix B.6, using a variant of our
preferred IV that weighs all observations equally—that is, which computes Diagζ under the assumption
that ωn = 1 for all n ∈ NW—implies an average estimate that is less sensitive to Et[W(∆x∗)− W(∆x)], but
the test based on it has a slightly higher rejection rate due to a lower variance.
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Figure 4: Alternative IV-based Tests Under Export Misspecification

(a) Rejection rate (b) Mean of goodness-of-fit measure

Notes: This figure reports the results from b = 1, ..., 2500 simulated economies in which the researcher’s
model misspecifies the response of export outcomes to tariffs by an amount α but the responses of import
and revenue outcomes are correctly specified. Simulations differ in terms of the size of the underlying
α to generate the variation in Et[W(∆x∗) − W(∆x)] reported on the x-axes. Figure 4a plots the rejection
rate on the y-axis for IV-based tests using our preferred IV (zpref, blue circles) and a naive IV (znaive, red
diamonds). Figure 4b does the same but with the average value of our goodness-of-fit measure (β̂zpref and
β̂znaive , respectively) on the y-axis.

comes in Section 4.3.

3.4 Estimation, Informativeness, and Mechanical Fit

Our final set of simulations focuses on the issue of mechanical fit. We do so by contrasting
two potential approaches to counterfactual analysis and testing. In the first one, like in the
previous subsections, we assume that the researcher calibrates her model using estimates
from the literature. In the second one, we assume that the researcher uses moments asso-
ciated with the policy change of interest to estimate structural parameters of her model.
The second approach has the benefit of recognizing that estimates obtained in one context
may not be valid in another, but it raises the issue of mechanically failing to reject incor-
rect predictions because, by design, estimates of structural parameters have already been
selected to match (some) observed responses to the policy change of interest. Intuitively,
the severity of this issue depends on how closely related the moments used for estimation
and testing are. Here, we follow Section 2.4 and use the notion of informativeness intro-
duced by Andrews et al. (2020) as a way to measure the distance between estimation and
testing moments and, in turn, to construct IV-based tests that are less likely to be subject
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to mechanical fit.
In our simulations, we contemplate the possibility of a researcher estimating the US

import demand elasticity, an exercise with a long tradition in the field and one revisited by
FGKK. However, unknown to this researcher, there is misspecification on the import side.
Specifically, we assume that the true model is the one described by FGKK, except for the
response of US import quantities to tariff changes, which is assumed to be α times larger
in the true model than in FGKK’s model; all other responses to tariff changes are assumed
to be the same in the true model and in FGKK’s model.30 When estimation takes place in
simulation b, the researcher infers the value (σ̂)b of the US import demand elasticity via
a linear regression as in FGKK; she regresses changes in log import quantities on changes
in log import prices using the change in US tariff as an IV, controlling for product fixed
effects, and weighing all observations equally. However, because of misspecification in
import quantities, the average value of σ̂ that she obtains is not equal to the true under-
lying preference parameter σ, but rather to α × σ. In line with FGKK’s empirical analysis,
we set the true preference parameter σ = 2.53/α so that the average value of σ̂ is equal to
FGKK’s point estimate. When estimation does not take place, we keep the true value of
σ = 2.53/α unchanged, but assume that the researcher wrongly calibrates it to 4 based on
existing estimates of import demand elasticities available in the literature. Throughout
this last round of simulations, we set α = 10.

To illustrate the potential importance of mechanical fit, our simulations compare tests
based on our preferred IV zpref to those based on a new naive instrument zmech that is
designed to be closer to the IV used in estimation. Namely, it takes a similar form as
znaive, but is residualized with respect to product fixed effects and unweighted. Formally,
the new matrix of shares is equal to

{smech
nk } = Pcmech × Id × I, (11)

where Pcmech denotes the residual projection matrix associated with the product fixed ef-
fects and Id is the identity matrix. When no estimation takes place, the average welfare
misspecification is around 0.2% of GDP and, as Figure 5a shows, both tests reject around
50% of the time. When estimation takes place, the average welfare misspecification re-
mains around 0.2% of GDP, but only our preferred IV-based test continues to reject at
a similar rate, whereas the naive IV-based test now dramatically loses power. Accord-
ingly, a researcher who switches from calibrating σ = 4 to estimating σ̂ = 2.5 and goes

30This particular misspecification is equivalent to assuming that there is a distinction between US import
prices, as observed in the trade data, and the prices ultimately faced by US buyers, with the latter being α
times larger.
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Figure 5: Estimation, Informativeness, and Mechanical Fit

(a) Naive vs. preferred IV (b) Informativeness and power

Notes: This figure reports the resuls from b = 1, ..., 2500 simulated economies in which the researcher’s
model misspecifies the response of import quantities to tariffs by an amount α = 10 but not the responses
of other outcomes. The true US preference parameter is σ = 2.5/α, but the researcher either calibrates it to
4 (in the case without estimation) or estimates it to be on average equal to 2.5 based on a linear regression of
import quantities on import prices intrumented with US tariff changes, controlling for product fixed effects,
and weighing all observations equally (in the case with estimation). Figure 5a plots rejection rates for the
naive IV zmech (in red) and the preferred IV zpref (in blue), both without estimation and with estimation,
as well as informativeness of the estimating moment for β̂zmech (in red) and β̂zpref (in blue). Figure 5b plots
informativeness (black squares) and rejection rates (blue circles) associated with hybrid IVs zλ that are
linear combinations of zpref and zmech with the weight λ on zmech reported on the x-axis.

from failing to passing the naive test may wrongly infer that incorrect calibration was the
problem—instead, her test is mechanically successful when testing follows estimation.

The last two bars in Figure 5a explain why. They plot the informativeness of the esti-
mation moment γ̂ for our two testing moments, β̂zpref and β̂zmech , which we recover from
the covariance matrix of the estimation and testing moments.31 As can be seen from Fig-
ure 5a, the estimation moment is much more informative for β̂znaive than β̂zpref . Thus, when
the estimating moment γ̂ is set to zero for the purposes of obtaining σ̂, we expect β̂znaive

to become much less sensitive to misspecification than β̂zpref , thereby lowering its power.
Figure 5b further illustrates the previous intuition by considering hybrid IVs zλ =

λzmech + (1 − λ)zpref that are linear combinations of the naive and preferred IVs, with

31Formally, for a given counterfactual economy b = 1, ...., 2500, following Andrews et al. (2020) we
compute the informativeness of γ̂ for a testing moment β̂ ∈ {β̂zpref , β̂zmech} as [(V̂βγ)

b]2/[(V̂γ)b(V̂β)
b]. Figure

5a then reports the average across all counterfactual economies. The estimator of the covariance matrix
is the same one used to account for estimation uncertainty in Appendix A.5, as described in equations
(A.25)-(A.27). In the context of our simulations, we can also compute informativeness directly by running
a regression of (β̂)b on (γ̂)b across simulated economies. The R-squared values that we obtain from this
procedure are 0.01 and 0.74, for (β̂)b = (β̂zpref)b and (β̂)b = (β̂zmech)b respectively, which are close to the
average values of 0.01 and 0.83 obtained when using our estimator of the covariance matrices. This is
reassuring since the previous estimator is derived ignoring misspecification in the researcher’s model.

30



λ ∈ [0, 1]. By construction, the informativeness of the estimation moment for the testing
moment β̂zλ tends to increase with the weight λ put on the naive instrument, as illus-
trated in the black curve. And as informativeness increases, the rejection rate of the test
based on the hybrid IV steadily decreases, as illustrated in the blue curve. As a practical
way to strengthen the credibility of a test and alleviate concern of mechanical fit when
estimation occurs prior to testing, we therefore suggest reporting the informativeness of
the estimation moments for the testing moment. We will do so next in our empirical
application.

4 Application to Trump’s Trade War

Section 3 has illustrated the properties of our IV-based test in the context of simulated
policy changes. We now turn to a recent and prominent actual policy change: the Trump
Administration’s 2018 actions that increased US import tariffs on many products and
caused several trading partners to retaliate with tariff increases of their own. FGKK’s
seminal analysis of the 2018 tariff war concluded that “the aggregate real income loss was
$7.2 billion, or 0.04% of GDP.” In this section we show how to use IV-based tests as a way
to explore the empirical credibility of this conclusion.

4.1 From Simulated to Actual Shocks

The researcher’s model is FGKK’s model and the counterfactual question of interest is
the same as in Section 3. To stay as close as possible to FGKK’s original analysis, we
again use the first-order approximation of the model presented in Appendix B.1 as well
as the parameters θ and ϵt described in Appendix B.2. This implies that, like in Section
3, FGKK’s model exactly matches trade and production data from the 2016 US economy,
by construction. We use FGKK’s model to predict changes in three outcome variables: (i)
the log of US export prices of product v in country i (pre-foreign tariff), ∆xX

iv; (ii) the log
of US import prices of product v from country i (post-US tariff), ∆xM

iv ; and (iii) changes in
US tariff revenues on product v from country i in proportion to initial import spending,
∆xT

iv. As discussed in Section 3, changes in these three variables are sufficient to evaluate
changes in US welfare, up to a first-order approximation, provided that import tariffs are
the only source of distortions in the US economy, as assumed by FGKK.

We only depart from the simulations in Section 3 in terms of the shocks fed into the
researcher’s model, which are now taken from the data rather than simulated. Changes
in outcomes ∆yn that enter our testing procedure are the actual changes over the period
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2016-19, with yn,t and yn,t+1 an average of monthly data over all months of 2016 and 2019,
respectively. Predicted changes ∆xn are computed by subjecting the model economy to
actual tariffs in 2016 and 2019 for the US and its trading partners. For each 10-digit HS
code product v and foreign country i, the 2016 tariffs τH

iv,t and τF
iv,t imposed by the US on

country i and by country i on the US, respectively, are equal to the average of monthly
tariffs during that year, whereas the 2019 tariffs τH

iv,t+1 and τF
iv,t+1 are equal to their values

in April 2019, the final month in FGKK’s estimation sample. This set of tariff changes is
what we refer to as Trump’s trade war.

Like in our simulations, we use a normalized version of actual tariff changes as shifters,

∆τIV,k =
∆τk − µ∆τ

σ∆τ
, for any tariff line k = (i, v, c), (12)

where µ∆τ denotes the sample mean of tariff changes and σ∆τ their standard deviation.
To invoke the results of Propositions 1-3 and implement our IV-based test, we therefore
require tariff changes to be independent of other shocks (conditional on controls) as well
as i.i.d. across tariff lines. Both requirements are consistent with the exclusion restrictions
invoked by FGKK to estimate the vector of structural parameters θ entering their model.32

This makes our test a natural add-on to their analysis.

4.2 The Impact of Trump’s Trade War on US Welfare: -0.04% of GDP?

The results of our test are presented in Table 1. To set the stage, column (1) examines a
simple correlation between the model’s prediction ∆xn and what actually happened in
the data ∆yn. We find that the correlation between ∆yn and ∆xn for all welfare-relevant
outcomes is just 0.08—or equivalently, that the R2 from a regression of one on the other
would be less than 0.01. This implies that the variance of the impact of tariff changes in
this setting is orders of magnitude lower than that of other shocks ϵt. But as discussed
above such a finding has no bearing on whether the researcher’s model is successful at its
stated goal of predicting the causal impact of tariff changes on US welfare.

By contrast, the test that we have developed in Section 2 is designed to be applicable
even in settings like these where the variance of other shocks is relatively large. Box 1
summarizes the generic steps required to implement our test. We follow these steps in
parallel for two separate IV-based tests based on the “preferred” and “naive” IVs, zpref

32Although A1 is consistent with FGKK’s exclusion restrictions, it is stronger in that it also requires
shifters to be independent of shocks to labor endowments and various Cobb-Douglas shares. This is be-
cause FGKK’s counterfactual predictions depend on these structural parameters but their estimating equa-
tions do not.
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Table 1: Testing Predictions about the Welfare Impact of Trump’s Trade War

Goodness-of-fit measure: Correlation IV-Based Test
Naive IV Preferred IV

Corr
(
∆yn, ∆xn(θ̂)

)
β̂znaive(θ̂) β̂zpref(θ̂)

(1) (2) (3)
Point estimate 0.08 -0.01 -0.09

Inference ignoring estimation uncertainty
Std. error 0.18 0.15
p-value of H0: β̂ = 0 0.96 0.56

Inference accounting for estimation uncertainty
Std. error 0.24 0.18
p-value of H0: β̂ = 0 0.97 0.63

Notes: All statistics are based on the pooled sample of changes in 25,115 welfare-relevant outcomes between
2016 and 2019, and FGKK’s estimates θ̂, as described in Section 3.1. Column (1) reports the correlation
between actual changes and the predicted impact of Trump’s trade war across all outcomes. Columns (2)
and (3) implement our IV-based test using the naive IV znaive, as defined by equations (10) and (12), and
our preferred IV zpref, as defined by equations (9) and (12). Inference ignoring estimation uncertainty is as
described in Section 2.3. Inference accounting for estimation uncertainty is as described in Appendix C.1.

and znaive, introduced in Section 3. In step 1 we obtain policy shifters for both IVs as
described in equation (12). Step 2 uses the shares described in equations (9) and (10). Both
of these shares adjust for controls to increase power; the preferred IV zpref goes further by
using the model’s Jacobian and applying the adjustment in Proposition 3 (with controls)
to allow for economic interpretability.

We next follow step 3 and compute our IV-based goodness-of-fit measure β̂z(θ̂). This
statistic is reported in the first row of Table 1, with those based on z = zpref and z =

znaive in columns (2) and (3), respectively. The corresponding standard errors
√

V̂[β̂z(θ̂)],
computed via step 4, and p-values as per step 5, are reported next. Like in Section 2.3, we
begin with versions of these for which the asymptotic variance estimate V̂[β̂z(θ̂)] being
used treats θ̂ as a known parameter, as is common in many calibration exercises. With
p-values of 0.96 and 0.56, the test of A3 does not reject when based on either IV.

The last row of Table 1 reports standard errors and p-values for the case, as is relevant
here, in which the parameter vector θ̂ is subject to estimation uncertainty. As described in
Appendix C.1, FGKK obtain θ̂ from an IV estimator that draws on the same tariff changes
underlying our IV-based test. Accordingly, we can use the results in Appendix A.5 to
compute standard errors accounting for the uncertainty in θ̂.33 The adjusted standard

33An idiosyncratic feature of FGKK’s analysis is that estimation is conducted at the monthly level,
whereas counterfactual analysis is conducted at the annual level. Appendix C.1 shows how to deal with
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Box 1: A blueprint for testing the causal predictions of quantitative models

After obtaining an estimate θ̂ of the structural parameters of her model, a researcher
predicts that the causal impact of a policy change on some statistic of interest is

W(∆x(θ̂)) = ∑
n∈NW

ωn∆xn(θ̂),

where ∆xn(θ̂) is the predicted change in any given outcome n and ωn is its weight in the
statistic of interest. The following steps show how to test this causal prediction.

Step 1: Select shifters, {∆τIV,k}. Choose policy shifters that are independent of other
(non-policy) shocks, potentially those have already been used in the estimation of θ.

Step 2: Select shares, {snk}. All else equal, prefer shares that allow for economic in-
terpretability of the test statistic (e.g. by using Proposition 3) and raise statistical power
(e.g. by using the model’s Jacobian, by residualizing with respect to controls, or by using
shares for which estimating moments are less informative of testing moments).

Step 3: Compute IV-based goodness-of-fit measure, β̂z(θ̂). Combine shifters and shares
to build the IV zn = ∑k snk∆τIV,k and compute β̂z(θ̂) ≡ 1

NW
∑n∈NW

zn(∆yn − ∆xn(θ̂)).

Step 4: Compute asymptotic variance of β̂z(θ̂). Calculate V̂[β̂z(θ̂)] treating θ̂ as known
(as in Section 2) or taking into account estimation uncertainty (as in Appendix A.5).

Step 5: Test causal prediction. Compute the p-value under the null that all pre-
dicted changes ∆xn(θ̂) entering W are correct: p-value = 2(1 − Φ−1(|tz|)) with tz ≡
β̂z(θ̂)/

√
V̂[β̂z(θ̂)] and Φ the cdf of a standard normal distribution, by Proposition 2.

Step 6: When possible, discuss economic significance of β̂z(θ̂). If the IV z has been
adjusted along the lines of Proposition 3, for instance, then β̂z(θ̂) is an estimate of the
average bias in the causal prediction of interest.

errors for the test statistics based on zpref and znaive are 20% and 33% larger than those
ignoring estimation uncertainty. As a result, the p-values of our test increase from the
already high values obtained without accounting for estimation uncertainty. Regardless
of whether we use zpref and znaive, the informativeness of the estimation moments for the
testing moments remains very low, 1.2 × 10−4 for znaive and 0.5 × 10−4 for znaive, sug-
gesting that mechanical fit is not a concern in this context.34 Based on these results, we
cannot reject that the true causal response of US real income to Trump’s Trade War was
W(∆x) = −0.04%, as predicted by FGKK’s model.

this issue. In line with the rest of our analysis, our test requires independence across tariff lines, but does
not impose any restriction on the month-to-month variation within a given tariff line.

34This is a consequence of three differences between estimation and testing moments. First, FGKK’s
estimating moments are computed on a different subsample and using different weights. Second, they
entail a larger set of controls. Third, they depend on the realization of a smaller set of structural shocks.
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As a final step, we turn to the economic significance of estimates in Table 1. Doing so
is not an option for the naive IV-based test statistic in column (2). In contrast, since the
goodness-of-fit measure β̂zpref(θ̂) in column (3) leverages Proposition 3, it has economic
interpretability. Under the assumption that misspecification in the researcher’s model sat-
isfies A3’, β̂zpref(θ̂) provides an estimate of the average value of W(∆x∗)− W(∆x) across
realizations of the policy shifters. The value of β̂z(θ̂) = −0.09 reported in column (3)
therefore implies that, under this assumption, the true welfare loss |W(∆x∗)| is on aver-
age higher by 0.09% of US GDP than what FGKK’s model predicts.35

4.3 A Final Diagnosis

We have designed our IV-based test with one goal in mind: to assess and potentially
strengthen the credibility of a quantitative model’s answer to a causal question of inter-
est. We recognize that in practice, researchers may also be interested in understanding
economic mechanisms and exploring further which subsets of their predictions may be
inconsistent with data. As Kehoe and Prescott (1995) note, “shortcomings in [counter-
factual] predictions of a model would then provide motivation for further theoretical
development and further testing.” Motivated by this observation, we conclude with a
more diagnostic approach that applies our IV-based test separately for each of the three
outcomes that have been pooled so far: export prices, import prices, and tariff revenues.

Figure 6 presents bin-scatter plots of the observed changes ∆yn and predicted changes
∆xn against our preferred IV zpref

n , and does so separately for export prices (in Figure 5a),
import prices (in Figure 5b), and tariff revenues (in Figure 5c). Recall that the basic idea
of our IV-based goodness-of-fit measure is to compare the projection of ∆yn on zpref

n to the
projection of ∆xn(θ̂) on zpref

n , as illustrated in Figure 1. Under the null that the researcher’s
model predictions are correct, these two projections should coincide. The lines in Figure
6—which are drawn to have intercepts of zero and slopes equal to 1

|No|∑n∈No zpref
n ∆yn and

1
|No|∑n∈No zpref

n ∆xn(θ̂), respectively, with No the set of observations associated with each
outcome—suggest that that this is approximately the case for export prices, but much less
so for import prices and tariff revenues. Although the instrument is correlated with both
∆yn and ∆xn for all three outcomes, there is a gap between the two projections in the case
of import prices and tariff revenues, suggesting that while one is not able to reject FGKK’s
predictions when they are pooled across all welfare-relevant outcomes, one may be able

35The “on average” qualifier is important. Under the assumptions of Proposition 3, it should be clear
that we cannot estimate the value of W(∆x∗) associated with the actual tariff changes. Thus we cannot
conclude that the true impact on US welfare of Trump’s trade war was a reduction by 0.04 + 0.09 = 0.13%,
only that FGKK tends to under-predict losses across all possible tariff realizations by 0.09% of US GDP.
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Figure 6: Observed versus Predicted Changes

(a) Export Prices (b) Import Prices (c) Tariff Revenues

Notes: The figure plots observed changes ∆yn and predicted changes ∆xn(θ̂) against our preferred IV zpref
n

separately for the three types of outcomes that enter equation (7): export prices (in Figure 5a), import prices
(in Figure 5b), and tariff revenues (in Figure 5c). Each figure displays a binned scatter plot in which the
underlying product-country observations are grouped into 20 bins in terms of zpref

n . The illustrated lines
have slopes equal to 1

|No |∑n∈No zpref
n ∆yn and 1

|No |∑n∈No zpref
n ∆xn(θ̂), respectively, and intercepts of zero, with

No the set of observations associated with each outcome.

to reject them for a subset of such outcomes.36 Table C.1 in Appendix C.2 shows that this
is indeed the case.

Together with the results of Table 1, this finding therefore paints a picture of FGKK’s
quantitative model as “wrong, but useful.” From a statistical standpoint, there are out-
comes, even welfare-relevant ones, along which FGKK’s predictions can be rejected. But
from an economic standpoint, the average bias in the causal prediction of interest can
nevertheless be viewed as modest in absolute terms, of the order of 0.09% of US GDP.

5 Concluding Remarks

Policymakers around the world will continue to face the choice to liberalize trade or not.
They may choose to cut their tariffs unilaterally, like India and Brazil in the 1990s, form
regional trade agreements, like the EU, NAFTA, and Mercosur, or join the World Trade
Organization, like China in 2001. Or they may choose to raise their tariffs, as the Trump
administration did in 2018. To provide guidance about these various policy choices, trade
economists, like economists in many other areas, have developed quantitative models.

36Note that the relevant range of the x-axis in Figure 5a is much smaller than that in Figures 5b and
5c. Even though zpref

n in each case is built from the same tariff shifters, the shares that enter the IV for the
case of export prices in Panel a display much less variation because, in FGKK’s model, tariff changes affect
export prices in the same manner across all products within broad sectors. As such, all else equal, when
examining export prices, one expects the power to detect a statistically significant gap between data-based
and model-based projections to be considerably lower.
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These models produce counterfactual predictions of how a country’s economic conditions
and ultimately welfare may change if, everything else being equal, a given policy were to
be implemented.

To help assess and potentially strengthen the credibility of such quantitative predic-
tions we have developed an IV-based goodness-of-fit measure and shown how it could
be used for testing causal predictions in arbitrary general-equilibrium environments as
well as for estimating the average misspecification in the prediction of interest. Our
testing procedure gives center stage to the distinction between “the researcher’s model
being right or wrong” and “the answer to the counterfactual question of interest being
right or wrong.” It is purposefully designed to shed light on the latter rather than the
former. Compared to a number of existing model validation procedures, our test recog-
nizes that many other shocks, beside the changes in the policy of interest, may be driving
the changes observed in the data and that such shocks may dilute the ability of the re-
searcher’s model to forecast future changes or backcast past ones. Interestingly, while we
document that the correlation between FGKK’s predictions and what actually happened
in the data during Trump trade war’s is low, we cannot reject that the answer of FGKK’s
model to the question being posed of it is correct.

Although we have focused here on a quantitative trade model and its implications
for a well-known change in trade policy, it should be clear that the toolkit developed
in this paper could be applied more broadly. The shock of interest, in particular, need
not be policy-related. The focus may be instead on mergers that simultaneously affect
multiple markets, as in the IO literature, or on productivity shocks that have been in-
directly inferred from the researcher’s model, rather than directly observed in the data,
as in common in quantitative analysis of technological change in the macro and labor
literatures or the analysis of infrastructure projects in the spatial literature. In all these
settings, where the existence of general-equilibrium linkages means that existing quasi-
experimental variation alone is insufficient to evaluate the overall causal effects of inter-
est, we hope that our IV-based test can prove to be a useful add-on to test and ultimately
improve the credibility of quantitative models’ predictions.

37



References

Adao, Rodrigo, Costas Arkolakis, and Federico Esposito, “General equilibrium effects in space:

Theory and measurement,” 2020. NBER Working paper 25544.

, Michal Kolesar, and Eduardo Morales, “Shift-Share Designs: Theory and Inference,” The
Quarterly Journal of Economics, 2019, 134 (4), 1949–2010.

, Paul Carillo, Arnaud Costinot, Dave Donaldson, and Dina Pomeranz, “Imports, Exports,

and Earnings Inequality: Measures of Exposure and Estimates of Incidence,” Quarterly Journal
of Economics, 2022, 137 (3), 1553–1614.

Ahlfeldt, Gabriel M., Stephen J. Redding, Daniel M. Sturm, and Nicolaus Wolf, “The Economics

of Density: Evidence from the Berlin Wall,” Econometrica, November 2015, 83 (6), 2127–2189.

Andrews, Isaiah, Matthew Gentzkow, and Jesse M. Shapiro, “On the Informativeness of De-

scriptive Statistics for Structural Estimates,” Econometrica, 2020, 88 (6), 2231–2258.

Antras, Pol, Teresa C. Fort, and Felix Tintelnot, “The Margins of Global Sourcing: Theory and

Evidence from U.S. Firms,” American Economic Review, 2017, 107 (9), 2514–64.

Attanasio, Orazio, Pinelopi Goldberg, and Nina Pavcnik, “Trade Reforms and Wage Inequality

in Colombia,” Journal of Development Economics, 2004, 74 (2), 331–366.

Backus, Matthew, Christopher Conlon, and Michael Sinkinson, “Common Ownership and

Competition in the Ready-To-Eat Cereal Industry,” 2021. NBER working paper 28350.

Berry, Steven T. and Philip A. Haile, “Identification in differentiated products markets using

market level data,” Econometrica, 2014, 82 (5), 1749–1797.

Billingsley, Patrick, Probability and Measure, third ed., John Wiley and Sons, 1995.

Borusyak, Kirill and Peter Hull, “Non-Random Exposure to Exogenous Shocks,” 2022. NBER

Working Paper 27845.

, , and Xavier Jaravel, “Quasi-experimental shift-share research designs,” Review of Economic
Studies, 2022, 89 (1), 181–213.

Bresnahan, Timothy F., “The Oligopoly Solution Concept is Identified,” Economics Letters, 1982,

10.

Cameron, A. Colin and Pravin K. Trivedi, Microeconometrics Methods and Applications, Cambridge

University Press, 2005.

38



Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans, “Monetary policy shocks:

What have we learned and to what end?,” in John B. Taylor and Michael Woodford, eds., Hand-
book of Macroeconomics, Vol. 1, Part A Elsevier 1999, pp. 65–148.

, , and , “Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy,”

Journal of Political Economy, 2005, 113 (1), 1–45.

Costinot, Arnaud and Andres Rodríguez-Clare, “Trade Theory with Numbers: Quantifying the

Consequences of Globalization,” in Gita Gopinath, Elhanan Helpman, and Kenneth Rogoff,

eds., Handbook of International Economics, Vol. 4, New York: Elsevier, 2014.

, Dave Donaldson, and Cory Smith, “Evolving Comparative Advantage and the Impact of Cli-

mate Change in Agricultural Markets: Evidence from a 1.7 Million Fields Around the World,”

Journal of Political Economy, 2016, 124 (1), 205–248.

Council of Economic Advisers, Economic Report of the President, Council of Economic Advisers,

2020.

Davis, Donald R. and David Weinstein, “An Account of Global Factor Trade,” American Economic
Review, 2001, 91 (5), 1423–1453.

Dawkins, Christina, T.N. Srinivasan, and John Whalley, “Calibration,” in J.J. Heckman and

E. Leamer, eds., Handbook of Econometrics, Vol. 5, Elsevier, 2001, pp. 3653–3703.

Desmet, Klaus, David K. Nagy, and Esteban Rossi-Hansberg, “The Geography of Develop-

ment,” Journal of Political Economy, 2018, 126 (3), 903–983.

Dingel, Jonathan and Felix Tintelnot, “Spatial Economics for Granular Settings,” NBER Working
Paper 27287, 2021.

Edmond, Chris, Virgiliu Midrigan, and Daniel Xu, “Competition, Markups and the Gains from

Trade,” American Economic Review, 2015, 105 (10), 3183–3221.

Fajgelbaum, Pablo D., Pinelopi K. Goldberg, Patrick J Kennedy, and Amit K Khandelwal, “The

Return to Protectionism,” Quarterly Journal of Economics, 2020, 135 (1), 1–55.

Goldberg, Pinelopi K. and Nina Pavcnik, “The Effects of Trade Policy,” in Kyle Bagwell and

Robert W. Staiger, eds., Handbook of Commercial Policy, Vol. 1A, Elsevier, 2016.

Hansen, Lars Peter, “Generalized Method of Moments Estimation,” in Steven N. Durlauf and

Lawrence E. Blume, eds., The New Palgrave Dictionary of Economics, second ed. 2008.

Heckman, James J. and Lars Peter Hansen, “The Empirical Foundations of Calibration,” Journal
of Economic Perspectives, 1996, 10 (1), 87–104.

39



Hiltzik, Michael, “Trump’s trade war is politically motivated, yet hurts consumers and GOP vot-

ers, study shows,” Los Angeles Times, March 4 2019.

Imbens, Guido W. and Johsua D. Angrist, “Identification and Estimation of Local Average Treat-

ment Effects,” Econometrica, 1994, 62 (2), 467–469.

Kehoe, Timothy J., “An Evaluation of the Performance of Applied General Equilibrium Models of

the Impact of NAFTA,” in Timothy J. Kehoe, T.N. Srinivasan, and John Whalley, eds., Frontiers
in Applied General Equilibrium Modeling, New York: Cambridge University Press, 2005, pp. 341–

377.

and Edward C. Prescott, “Introduction to the Symposium: The discipline of applied general

equilibrium,” Economic Theory, 1995, 6, 1–11.

, Clemente Polo, and Ferran Sancho, “An evaluation of the performance of an applied general

equilibrium model of the spanish economy,” Economic Theory, 1995, pp. 115–141.

, Pau S. Pujolas, and Jack Rossbach, “Quantitative Trade Models: Developments and Chal-

lenges,” Annual Review of Economics, 2017, 9, 295–325.

Kovak, Brian K., “Regional Effects of Trade Reform: What Is the Correct Measure of Liberaliza-

tion?,” American Economic Review, 2013, 103 (5), 1960–76.

Lai, Huiwen and Daniel Trefler, “The Gains from Trade with Monopolistic Competition: Specifi-

cation, Estimation, and Mis-Specification,” NBER Working Paper 9169, 2002.

Lucas, Robert E., “Methods and problems in business cycle theory,” Journal of Money, Credit and
Banking, 1980, 12 (4), 696–715.

McCaig, Brian, “Exporting out of poverty: provincial poverty in Vietnam and U.S. market access,”

Journal of Intermational Economics, 2011, 85 (1), 102–113.

Nakamura, Emi and Jon Steinsson, “Fiscal Stimulus in a Monetary Union: Evidence from US

Regions,” American Economic Review, 2014, 104 (3), 753–792.

Redding, Stephen and Esteban Rossi-Hansberg, “Quantitative Spatial Economics,” Annual Re-
view of Economics, 2017, 9, 21–58.

Shoven, John B. and John Whalley, “Applied General-Equilibrium Models of Taxation and Inter-

national Trade: An Introduction and Survey,” Journal of Economic Literature, 1984, 22 (3), 1007–

1051.

The Economist, “So far, Donald Trump’s trade war has not derailed the global economy,” The
Economist, May 9 2019.

40



Todd, Petra E. and Kenneth I. Wolpin, “Assessing the Impact of a School Subsidy Program in

Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling

and Fertility,” American Economic Review, 2006, 96 (5), 1384–1417.

Topalova, Petia, “Factor Immobility and Regional Impacts of Trade Liberalization: Evidence on

Poverty from India,” American Economic Journal: Applied Economics, 2010, 2 (4), 1–41.

Wise, David A., “Behavioral Model versus Experimentation: The Effects of Housing Subsidies on

Rent,” in P. Brucker and R. Pauly, eds., Methods of Operations Research, Vol. 50, Konigstein: Verlag

Anton Hain, 1985, pp. 441–489.

41



A Theoretical Appendix

A.1 Notation

All asymptotic results take the number of shifters K to infinity. We let →d denote convergence in

distribution, →p denote convergence in probability, and → denote point-wise convergence. We

write XK = op(1) if XK →p 0. We say that XK is uniformly bounded if there exists M > 0 such

that |XK| ≤ M for all K. We write XK ⪯ YK if there exists M > 0 such that XK ≤ MYK for all K.

Whenever there is no risk of confusion, we drop the subscript K from the variables we consider.

We also write ∑n as a shorthand for ∑n∈NW
unless otherwise specified.

A.2 Proof of Proposition 1

Proof. By Definition 1, Et[β̂z] =
1

NW
Et[∑nzn(∆yn − ∆xn)]. Substituting for ∆yn using (3), we get

Et[β̂z] =
1

NW
Et[∑nzn(∆x∗n − ∆xn)] +

1
NW

∑nEt[zn∆η∗
n]. (A.1)

A1 and A2 imply Et[zn∆η∗
n] = ∑k snkEt[∆τIV,k]Et[∆η∗

n] = 0. A3 implies Et[∑nzn(∆x∗n − ∆xn)] = 0.

Combining equation (A.1) with the two previous observations, we obtain Et[β̂z] = 0.

A.3 Proof of Proposition 2

We split the proof of Proposition 2 into two lemmas. Lemma 1 focuses on the consistency of β̂z; its

proof follows closely the arguments in Borusyak et al. (2022). Lemma 2 focuses on its asymptotic

distribution; its proof follows closely the arguments in Adao et al. (2019).

Lemma 1 (Consistency). Take any IV z that satisfies A1 and A2. If A3 holds and (i) ∆τIV,k are i.i.d.
across k = 1, ..., K, (ii) 1

N2
W

∑k(Sk)
2 → 0 with Sk ≡ ∑n |snk|, and (iii) Vart[∆τIV,k] and ∆η∗

n are uniformly

bounded, then β̂z →p 0.

Proof. Since z satisfies A1 and A2, the same argument as in the proof of Proposition 1 implies

Et[
1

NW
∑
n

zn∆η∗
n|ϵ∗t+1] = 0. (A.2)

A2 further implies Vart[
1

NW
∑n zn∆η∗

n|ϵ∗t+1] = Vart[
1

NW
∑k(∑n ∆η∗

nsnk)∆τIV,k|ϵ∗t+1]. Since ∆τIV,k are

i.i.d. across k = 1, ..., K, by condition (i), and independent of ϵ∗t+1 conditional on (ϵ∗t , τt), by A1,

we can rearrange the previous expression as

Vart[
1

NW
∑
n

zn∆η∗
n|ϵ∗t+1] =

1
N2

W
× Vart[∆τIV,1]× ∑

k
(∑

n
∆η∗

nsnk)
2 ⪯ 1

N2
W

× ∑
k
(Sk)

2, (A.3)

1



where we have used Sk ≡ ∑n |snk| and the fact that Vart[∆τIV,1] and ∆η∗
n are uniformly bounded,

by condition (iii). Together with inequality (A.3), condition (ii) implies Vart[
1

NW
∑n zn∆η∗

n|ϵ∗t+1] →
0. Combining this observation with equation (A.2), we get Et[(

1
NW

∑n zn∆η∗
n)

2|ϵ∗t+1] → 0 and, in

turn, 1
NW

∑n zn∆η∗
n →p 0. Since A3 implies β̂z =

1
NW

∑n zn∆η∗
n, Lemma 1 follows.

Lemma 2 (Asymptotic Normality). Take any IV z that satisfies A1 and A2. If A3 holds and (i) ∆τIV,k

are i.i.d. across k = 1, ..., K, (ii) Vart[∆τIV,k] and ∆η∗
n are uniformly bounded, (iii) maxk(Sk)

2

∑k S2
k

→ 0, (iv)

Et[(∆τIV,k)
4] is uniformly bounded, and (v) 1

∑k S2
k
Vart[∑n zn∆η∗

n|ϵ∗t+1] →p V̄β > 0 and non-random, then

rβ β̂z →d N
(
0, V̄β

)
with rβ ≡ NW/

√
∑k S2

k .

Proof. Start from the definitions of β̂z and rβ, and use (3), A2, and A3 to write

rβ β̂z = ∑
k

Rk∆τIV,k, (A.4)

Rk ≡
∑n snk∆η∗

n√
∑k S2

k

. (A.5)

Define Yk ≡ Rk∆τIV,k. Since ∆τIV,k are independent of ϵ∗t+1 conditional on (τt, ϵ∗t ) and mean-zero,

by A1, i.i.d. across k, by condition (i), Yk are independent across k conditional on (τt, ϵ∗t ) and

Et[Yk|ϵ∗t+1] = 0, (A.6)

∑
k

Vart[Yk|ϵ∗t+1] = Vart[rβ β̂z|ϵ∗t+1] =
1

∑k S2
k
×Vart[∑

n
zn∆η∗

n|ϵ∗t+1]. (A.7)

Note also that

∑k Et
[
Y4

k |ϵ∗t+1
]

=
∑k(∑n snk∆η∗

n)
4Et[(∆τIV,k)

4]
(∑k S2

k)
2 ⪯ ∑k(∑n snk∆η∗

n)
4

(∑k S2
k)

2 , (A.8)

since Et[(∆τIV,k)
4] is uniformly bounded, by condition (iv), and ∆τIV,k is independent of ϵ∗t+1

conditional on (τt, ϵ∗t , ), by A1. Furthermore, we have

∑k(∑n snk∆η∗
n)

4

(∑k S2
k)

2
=

∑k

(
∑i ∑j sjksik∆η∗

i ∆η∗
j

)2

(∑k S2
k)

2
⪯

∑k

(
∑i ∑j |sjk||sik|

)2

(∑k S2
k)

2
, (A.9)

where the inequality ⪯ derives from the fact that ∆η∗
n is uniformly bounded, by condition (ii). By

definition of Sk, ∑i ∑j |sjk||sik| = (Sk)
2. Combining this observation with inequalities (A.8) and

(A.9), we get

∑
k

Et

[
Y4

k |ϵ∗t+1

]
⪯ ∑k(Sk)

4

(∑k S2
k)

2
≤ maxk(Sk)

2

∑k(Sk)2 .

Together with condition (iii), this implies ∑k Et
[
Y4

k |ϵ∗t+1
]
→ 0. Condition (v) and equation (A.7)

2



further imply ∑k Vart[Yk|ϵ∗t+1] →p V̄β > 0. Combining the two previous limits, we obtain

∑
k

Et

[
Y4

k
(∑k Vart[Yk|ϵ∗t+1])

2 |ϵ
∗
t+1

]
→ 0. (A.10)

We can therefore invoke the Lyapunov Central Limit Theorem (e.g. Billingsley, 1995, Theorem

27.3, p. 362) to conclude that ZK ≡ ∑k Yk/
√

∑k Vart[Yk|ϵ∗t+1] →d N (0, 1). By equations (A.4) and

(A.7), we know that rβ β̂z = ZK

√
Vart[rβ β̂z|ϵ∗t+1]. Since Vart[rβ β̂z|ϵ∗t+1] = ∑k Vart[Yk|ϵ∗t+1] →p V̄β

non-random, Lemma 2 follows.

A.4 Asymptotic Results with Controls

In this appendix we provide generalizations of Propositions 1 and 2 that only require the exogene-

ity of the policy shifters after controls have been included. We also discuss how the introduction

of controls affects the asymptotic variance of our test statistic.

Assumptions. Suppose that non-tariff shocks can be decomposed into a linear combination of

structural shocks, {ν∗j }, and a residual, (∆η∗
n)res,

∆η∗
n = ∑

j
cnjν

∗
j + (∆η∗

n)res, (A.11)

where the controls {cnj} are observable and only depend on (ϵ∗t , τt), and the structural shocks {ν∗j }
are unobserved and functions of ϵ∗t+1. In this environment, one can relax A1 and instead impose

the following exogeneity assumption.

A1controls. Conditional on the realization of period t’s tariffs and other shocks, policy shifters are mean zero
and independent of residualized shocks: ∆τIV ⊥⊥ (∆η∗)res|ϵ∗t , τt.

Note that A1controls allows for the policy shifters ∆τIV to be correlated with the structural

shocks {ν∗j } that enter (A.11) and, in turn, for Et[∆τIV,k∆η∗
n] ̸= 0. However, A1controls requires

that after residualizing non-tariff shocks with respect to the vector of controls {cnj}, we have

Et[∆τIV,k(∆η∗
n)res] = Et[∆τIV,k]Et[(∆η∗

n)res] = 0.

In what follows we let C ≡ {cnj} denote the matrix of controls and Pc ≡ Id − C(CTC)−1CT the

associated residual projection matrix, with the superscript T denoting a transpose matrix. Starting

from a given candidate IV z ≡ Ms∆τIV , where Ms ≡ {snk} denotes the matrix of shares, we can

define the residualized IV (z)res ≡ Pcz = M(s)res
∆τIV , where M(s)res

≡ {(snk)res} = Pc Ms is the

matrix of residualized shares.

Proof of Proposition 1 with Controls.
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Proposition 1 (with controls). Suppose that non-tariff shocks satisfy equation (A.11) and that A1controls

holds. Starting from a candidate IV z ≡ Ms∆τIV , take the residualized IV (z)res = M(s)res ∆τIV , with
M(s)res = Pc Ms the matrix of residualized shares. If A3 holds, then Et[β̂(z)res ] = 0.

Proof. By construction, we have

NW β̂(z)res
= (∆y − ∆x) · (z)res

= (∆x∗ − ∆x)·(z)res + (Cν∗) · (z)res + (∆η∗
n)res · (z)res

=(∆x∗ − ∆x) · (z)res + (∆η∗
n)res · (z)res,

where the second equality follows from (A.11) and the third from (Cν∗) · (z)res = (ν∗)TCTPcz = 0.

The previous equation can be rearranged as

β̂(z)res
=

1
NW

∑
n
(zn)res(∆x∗n − ∆xn) +

1
NW

∑
n
(zn)res(∆η∗

n)res. (A.12)

Under A1controls, we have Et[(zn)res(∆η∗
n)res] = ∑k(snk)resEt[∆τIV,k(∆η∗

n)res] = 0. Taking expecta-

tion of (A.12) we therefore get

Et[β̂(z)res
] =

1
NW

∑
n

Et[(∆x∗n − ∆xn)(zn)res].

If A3 holds, we therefore obtain Et[β̂(z)res
] = 0.

Proof of Proposition 2 with Controls.

Proposition 2 (with controls). Suppose that non-tariff shocks satisfy equation (A.11) and that A1controls

holds. Starting from a candidate IV z ≡ Ms∆τIV , take the residualized IV (z)res = M(s)res ∆τIV , with
M(s)res = Pc Ms the matrix of residualized shares. If A3 holds and (i) ∆τIV,k are i.i.d. across k = 1, ..., K, (ii)

1
N2

W
∑k(Sk)

2
res → 0 with (Sk)res ≡ ∑n |(snk)res|, and (iii) Vart[∆τIV,k] and (∆η∗

n)res are uniformly bounded,

then β̂(z)res →p 0. Furthermore, if (iv) maxk(Sk)
2
res

∑k(Sk)
2
res

→ 0, (v) Et[(∆τIV,k)
4] is uniformly bounded, and (vi)

1
∑k(Sk)

2
res

Vart[∑n(zn)res(∆η∗
n)res|ϵ∗t+1] →p V̄βres > 0 and non-random, then rβres β̂(z)res →d N (0, V̄βres) with

rβres ≡ NW/
√

∑k(Sk)2
res.

Proof. The same argument as in the proof of Proposition 1 implies

Et[
1

NW
∑
n
(zn)res(∆η∗

n)res|ϵ∗t+1] = 0.

Given the regularity conditions (i)-(iii), β̂(z)res
→p 0 follows from the same argument as in the

proof of Lemma 1. Next, starting from equation (A.12) and the definition of rβres , we can use (3),

4



(A.11), (z)res = M(s)res
∆τIV , and A3 to write

rβres β̂(z)res
= ∑

k
(Rk)res∆τIV,k,

(Rk)res ≡
∑n(snk)res(∆η∗

n)res√
∑k(Sk)2

res
.

Given the regularity conditions (i)-(vi), the result that rβres β̂(z)res
→d N (0, V̄βres) then follows from

the same argument as in the proof of Lemma 2.

Asymptotic Variance with Controls. Under the previous assumptions, the estimator V̂[β̂(z)res
]

of the variance of the test using the residualized IV (z)res is, in turn, equal to

V̂[β̂(z)res
] =∑

k
(∆τIV,k)

2[∑
n
(snk)res(∆yn − ∆xn)/NW ]2. (A.13)

Note that

V̂[β̂(z)res
] =∑

k
(∆τIV,k)

2[∑
n
(snk)res∆η∗

n/NW ]2

=∑
k
(∆τIV,k)

2[∑
n

snk(∆η̂∗
n)res/NW ]2

≤∑
k
(∆τIV,k)

2[∑
n

snk(∑
j

cnjν̂
∗
j + (∆η̂∗

n)res)/NW ]2 = V̂[β̂z],

where ν̂∗j and (∆η̂∗
n)res denote the OLS coefficients and fitted residuals, respectively, of a regression

of ∆η∗
n = ∆yn − ∆xn on the vector of controls {cnj}. Thus the asymptotic variance of the residual-

ized IV-based test is lower than that of the non-residualized version V̂[β̂z] displayed in equation

(6).

A.5 Estimation Uncertainty

Suppose that the researcher’s model f is only known up to the estimation of a vector of structural

parameters, f (τt, ϵt) ≡ g(τt, ϵt|θ) ̸= g(τt, ϵt|θ̂), where θ denotes the true value of the structural

parameters and θ̂ denotes its estimator. We let ∆x(θ̂) ≡ g(τt+1, ϵt+1|θ̂)− g(τt, ϵt+1|θ̂) denote the

causal impact of the policy change predicted by the researcher’s model when evaluated at θ̂. In

turn, the counterpart of the goodness-of-fit measure introduced in Definition 1 is

β̂z(θ̂) ≡
1

NW
∑n∈NW

zn(∆yn − ∆xn(θ̂)).

In Proposition 2, we have characterized the asymptotic distribution of β̂z = β̂z(θ). In this ap-

pendix, we characterize the asymptotic distribution of β̂z(θ̂) when θ̂ is itself a random variable.
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Case 1: θ̂ is independent of β̂z(θ). This may occur, for instance, if θ̂ is obtained from a differ-

ent sample than the one used for testing. Formally, we impose the following assumptions.

A4. The estimator θ̂ (i) is independent from β̂z(θ), (ii) satisfies rθ(θ̂ − θ) →d N (0, V̄θ), with (iii) the
rate of convergence rθ such that rβ/rθ →p c non-random.

A5. The gradient D(β̂z(θ)) ≡ {∂β̂z(θ)/∂θj} satisfies D(β̂z(θ)) →p D̄β.

When θ̂ and β̂z(θ) are independent, Proposition 2 extends as follows.

Proposition 2 (with estimation uncertainty, case 1). Suppose that, in addition to the assumptions of
Proposition 2, A4 and A5 hold. Then rβ β̂z(θ̂) →d N

(
0, V̄β + c2D̄βV̄θ D̄T

β

)
.

Proof. A first-order Taylor expansion implies

rβ β̂z(θ̂) = rβ β̂z(θ) + rβ

(
β̂z(θ̂)− β̂z(θ)

)
= rβ β̂z(θ) + rβD(β̂z(θ)) ·

(
θ̂ − θ

)
+ op(1).

Combining this expression with D(β̂z(θ)) →p D̄β, by A5, and using rβ/rθ →p c, by A4 (iii), we

get

rβ β̂z(θ̂) = rβ β̂z(θ) + cD̄β · [rθ(θ̂ − θ)] + op(1). (A.14)

Since rβ β̂z(θ) is asymptotically normally distributed under the assumptions of Proposition 2,

rθ(θ̂ − θ) is asymptotically normally distributed under A4 (ii), and θ̂ and β̂z(θ) are independent,

under A4 (i), we have [
rθ(θ̂ − θ)

rβ β̂z(θ)

]
→d N

(
0,

[
V̄θ 0

0 V̄β

])
. (A.15)

Given (A.14) and (A.15), we can invoke the Multivariate Convergence in Distribution Theorem

(e.g. Rao 1973, p. 128) to conclude that rβ β̂z(θ̂) →d N
(

0, V̄β + c2D̄βV̄θ D̄T
β

)
.

Under the previous assumptions, we can then estimate the asymptotic variance of β̂z(θ̂) as

V̂[β̂z(θ̂)] = V̂β + D̂βV̂θ D̂T
β , (A.16)

V̂β = ∑
k
(∆τIV,k)

2[ ∑
n∈NW

snk(∆yn − ∆xn)/NW ]2, (A.17)

D̂β = D(β̂z(θ̂)), (A.18)

where V̂θ is a consistent estimator of the asymptotic variance of θ̂.

Case 2: θ̂ is an IV estimator. For expositional purposes, we assume that θ is a scalar and that

there is a single estimating moment γ̂(θ) such that

γ̂(θ) =
1

Nθ
∑

n∈Nθ

zθ
nen(w, θ),

6



where Nθ ≡ |Nθ | denotes the number of observations used for estimation; w ≡ (yt, yt+1, τt, τt+1, ∆τIV)

denotes the vector of all observables; en(w, θ) is a structural residual that only depends on the re-

alizations of (ϵ∗t , ϵ∗t+1, τt); and zθ ≡ {zθ
n} is the IV used in the estimation of θ. Like in Section 2, we

express the IV in a shift-share form and assume that it satisfies the two following conditions.37

A1’. Conditional on the realization of period t’s policy τt and other shocks ϵ∗t , policy shifters used in
estimation are mean zero and independent of other shocks in period t + 1: ∆τθ

IV ⊥⊥ ϵ∗t+1|ϵ∗t , τt.

A2’. For any n ∈ Nθ , the instrumental variable used in estimation takes the form zθ
n = ∑k sθ

nk∆τθ
IV,k,

where the vector of “shares” {sθ
nk} may be a function of, and only of, the realization of period t’s tariffs and

other shocks, (ϵ∗t , τt).

A1’ and A2’ imply E[γ̂(θ)] = 0, for the same reasons as in Proposition 1. We assume that θ̂ is

given by the unique solution to its sample analog, γ̂(θ̂) = 0. In line with our previous analysis,

we further impose the following conditions.

A4’. The estimating moment γ̂(θ) is such that: (i) ∆τθ
IV,k are i.i.d. across k = 1, ..., K; (ii) 1

N2
γ

∑k(Sθ
k)

2 →

0 and maxk(Sθ
k)

2

∑k(Sθ
k)

2 → 0, with Sθ
k ≡ ∑n |sθ

nk|; (iii) en and Et[(∆τθ
IV,k)

4] are uniformly bounded; (iv) the rate of

convergence rγ ≡ Nθ/
√

∑k(Sθ
k)

2 satisfies rβ/rγ →p c non-random; and (v) covt[(rγγ̂(θ), rβ β̂z(θ))′|ϵ∗t+1] →p(
V̄γ V̄βγ

V̄βγ V̄β

)
≡ V̄ > 0 and non-random.

A5’. The derivatives D(β̂z(θ)) ≡ dβ̂z(θ)/dθ and D(γ̂(θ)) ≡ dγ̂(θ)/dθ satisfy D(β̂z(θ)) →p D̄β and
D(γ̂(θ)) →p D̄γ ̸= 0.

Under these assumptions, Proposition 2 extends as follows.

Proposition 2 (with estimation uncertainty, case 2). Suppose that, in addition to the assumptions of
Proposition 2, A1’, A2’, A4’ and A5’ hold. Then rβ β̂z(θ̂) →d N

(
0, V̄β + c2D̄2V̄γ + 2cD̄V̄βγ

)
with D̄ ≡

−D̄β/D̄γ.

Proof. First-order Taylor expansions of β̂(θ̂) and γ̂(θ̂) imply

rβ β̂z(θ̂) = rβ β̂z(θ) + rβ

(
β̂z(θ̂)− β̂z(θ)

)
= rβ β̂z(θ) + rβ[D(β̂z(θ))]

(
θ̂ − θ

)
+ op(1)

= rβ β̂z(θ)−
rβ

rγ
[D(β̂z(θ))/D(γ̂(θ))](rγγ̂(θ)) + op(1).

Combining this expression with −D(β̂z(θ))/D(γ̂(θ)) →p D̄, by A5’, and rβ/rγ →p c, by A4’ (iv),
we get

rβ β̂z(θ̂) = rβ β̂z(θ) + cD̄(rγγ̂(θ)) + op(1). (A.19)

37It should be clear that any given IV can always be expressed as the special case of a shift-share IV with
shifters equal to the IV itself {zθ

n} and shares equal to dummy variables {1[n = k]}. This will be the case in
FGKK’s estimation procedure and in our application in Sections 3 and 4.
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Let us now show that rβ β̂z(θ) + cD̄(rγγ̂(θ)) is normally distributed. The steps are the same as in

the proof of Proposition 2. First, rearrange the previous expression as a function of the shifters,

rβ β̂z + cD̄(rγγ̂(θ)) = ∑
k
Yk, Yk ≡ Rβ,k∆τIV,k + λγRγ,k∆τθ

IV,k, (A.20)

with Rβ,k ≡ ∑n snk∆η∗
n/
√

∑k S2
k , Rγ,k ≡ ∑n sθ

nken/
√

∑k(Sθ
k)

2, and λγ ≡ cD̄. Since (∆τIV,k, ∆τθ
IV,k)

are mean-zero and independent of ϵ∗t+1 conditional on (τt, ϵ∗t ), by A1 and A1’, i.i.d. across k, by

Proposition 2’s condition (i) and A4’ (i), Yk must be independent across k conditional on (τt, ϵ∗t )

and satisfy

Et[Yk|ϵ∗t+1] = 0, (A.21)

∑
k

Vart[Yk|ϵ∗t+1] = Vart[rβ β̂z + λγ(rγγ̂(θ))|ϵ∗t+1]. (A.22)

Note also that

∑
k

Et[Y4
k |ϵ∗t+1] = ∑

k
(R4

β,kEt[(∆τIV,k)
4]+λ4

γR4
γ,kEt[(∆τθ

IV,k)
4] + 6λ2

γR2
β,kR2

γ,kEt[(∆τIV,k)
2(∆τθ

IV,k)
2]

+4λγR3
β,kRγ,kEt[(∆τIV,k)

3(∆τθ
IV,k)] + 4λ3

γRβ,kR3
γ,kEt[(∆τIV,k)(∆τθ

IV,k)
3])

⪯ ∑
k
(R4

β,k + λ4
γR4

γ,k+6λ2
γR2

β,kR2
γ,k + 4λγR3

β,kRγ,k + 4λ3
γRβ,kR3

γ,k), (A.23)

since Et[(∆τIV,k)
4] is uniformly bounded, by Proposition 2’s condition (v); Et[(∆τθ

IV,k)
4] is uni-

formly bounded by A4’; Et[(∆τIV,k)
2(∆τθ

IV,k)
2], Et[(∆τIV,k)

3(∆τθ
IV,k)]), and Et[(∆τIV,k)

3(∆τIV,k)] are

uniformly bounded by Hölder’s inequality; and (∆τIV,k, ∆τθ
IV,k) are independent of ϵ∗t+1 condi-

tional on (τt, ϵ∗t , ), by A1 and A1’. Using the same strategy as in Proposition 2, we can then bound

each of the terms on the right-hand side of (A.23),

∑
k

R4
β,k =

∑k(∑n snk∆η∗
n)

4

(∑k S2
k)

2
⪯

∑k

(
∑i ∑j |sjk||sik|

)2

(∑k S2
k)

2
≤ maxk(Sk)

2

∑k(Sk)2 ,

∑
k

R4
γ,k =

∑k(∑n sθ
nken)4

(∑k(Sθ
k)

2)2
⪯

∑k

(
∑i ∑j |sθ

jk||sθ
ik|
)2

(∑k(Sθ
k)

2)2
≤

maxk(Sθ
k)

2

∑k(Sθ
k)

2
,

∑
k

R2
β,kR2

γ,k = ∑
k

(∑n snk∆η∗
n)

2

∑k S2
k

(∑n sθ
nken)2

∑k(Sθ
k)

2
⪯ ∑

k

(∑n |snk|)2

∑k S2
k

(∑n |sθ
nk|)2

∑k(Sθ
k)

2
≤

maxk(Sθ
k)

2

∑k(Sθ
k)

2
,

∑
k

R3
β,kRγ,k = ∑

k

(∑n snk∆η∗
n)

3

(∑k S2
k)

3/2

(∑n sθ
nken)

(∑k(Sθ
k)

2)1/2
⪯ ∑

k

(∑n |snk|)3

(∑k S2
k)

3/2

(∑n |sθ
nk|)

(∑k(Sθ
k)

2)1/2
≤

√
maxk S2

k maxk(Sθ
k)

2

∑k S2
k ∑k(Sθ

k)
2

,

∑
k

Rβ,kR3
γ,k = ∑

k

(∑n snk∆η∗
n)

(∑k S2
k)

1/2

(∑n sθ
nken)3

(∑k(Sθ
k)

2)3/2
⪯ ∑

k

(∑n |snk|)
(∑k S2

k)
1/2

(∑n |sθ
nk|)3

(∑k(Sθ
k)

2)3/2
≤

√
maxk S2

k maxk(Sθ
k)

2

∑k S2
k ∑k(Sθ

k)
2

.
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The first inequality for each of these terms derives from the fact that ∆η∗
n and en are uniformly

bounded, by Proposition 2’s condition (iii) and A4’ (iii). Together with Proposition 2’s condition

(iv) and A4’ (iv), the previous series of inequalities implies ∑k Et
[
Y4

k |ϵ∗t+1
]
→ 0. Together with

A4’ (v), equation (A.22) further implies ∑k Vart[Yk|ϵ∗t+1] →p V̄β + (λγ)2V̄γ + 2λγV̄βγ > 0. This

allows us to invoke the Lyapunov Central Limit Theorem (e.g. Billingsley, 1995, Theorem 27.3,

p. 362) to conclude that ZK ≡ ∑k Yk/
√

∑k Vart[Yk|ϵ∗t+1] →d N (0, 1). Since rβ β̂z + cD̄(rγγ̂(θ)) =

ZK

√
∑k Vart[Yk|ϵ∗t+1], by equation (A.20), and ∑k Vart[Yk|ϵ∗t+1] →p V̄β + (λγ)2V̄γ + 2λγV̄βγ > 0,

Proposition 2 follows.

Under the previous assumptions, we can estimate the asymptotic variance V̂[β̂z(θ̂)] of the

goodness-of-fit measure β̂z(θ̂) as

V̂[β̂z(θ̂)] = V̂β + D̂2V̂γ + 2D̂V̂βγ, (A.24)

V̂β = ∑
k
[(∆τIV,k) ∑

n∈NW

snk(∆yn − ∆xn(θ̂))/NW ]2, (A.25)

V̂γ = ∑
k
[(∆τθ

IV,k) ∑
n∈Nθ

sθ
nken(w; θ̂)/Nθ ]

2, (A.26)

V̂βγ = ∑
k
[(∆τIV,k) ∑

n∈NW

snk(∆yn − ∆xn(θ̂))/NW ][(∆τθ
IV,k) ∑

n∈Nθ

sθ
nken(w; θ̂)/Nθ ], (A.27)

D̂ = −[D(β̂z(θ̂))][D(γ̂(θ̂))]−1. (A.28)

A.6 Proof of Proposition 3

Baseline without controls. We first focus on the case without controls, as described in the

main text of Section 2.4.

Proof. First, note that if z̃ satisfies A1 and A2, then z satisfies A1 and A2 as well, since zn =

∑k snk∆τ IV
k with snk ≡ NWωn s̃nkEt[∆xn]/Et[z̃n∆xn]. Next, note that the same argument as in the

proof of Proposition 1 implies

Et[βz] =
1

NW
Et[∑nzn(∆x∗n − ∆xn)]. (A.29)

Under A3’, we know that ∆x∗n − ∆xn = (αn − 1)∆xn. Combining this observation with (A.29) and

zn = NWωn z̃nEt[∆xn]/Et[z̃n∆xn], we get

Et[βz] = ∑nωn(αn − 1)Et[
Et[∆xn]

Et[z̃n∆xn]
z̃n∆xn] = Et[∑nωn(αn − 1)∆xn] = Et[W(∆x∗)− W(∆x)].

9



Extension with controls. We now show how the proof of Proposition 3 can be adapted to deal

with the case of linear controls. Like in Appendix A.4, we assume that non-tariff shocks satisfy

equation (A.11) and that policy shifters satisfy A1controls.

In order to state our next result, it is useful to introduce the following notation. For any vector

v ≡ {vn}, we let Diagv denote the diagonal matrix with diagonal element vn in row n. And like

in Appendix A.4, we let Pc ≡ Id − C(CTC)−1CT denote the residual projection matrix associated

with the controls C ≡ {cnj}.

Proposition 3 (with controls). Suppose that non-tariff shocks satisfy equation (A.11) and that A1controls

and A3’ hold. Then starting from a candidate IV z̃ ≡ Ms̃∆τIV , one can construct an adjusted IV z ≡
{ζn z̃n}, with the adjustment vector ζ ≡ NW(Et[Diag∆xPcDiagz̃])

−1(DiagωEt[∆x]), and a residualized IV
(z)res ≡ Pcz such that Et[β̂(z)res ] = Et[W(∆x∗)− W(∆x)].

Proof. The same argument as in the proof of Proposition 1 with controls in Appendix A.4 implies

Et[β(z)res
] =

1
NW

Et[∑n(zn)res(∆x∗n − ∆xn)].

Using A3’ and the definition of (z)res and z, this can be rearranged as

Et[β(z)res
] =

1
NW

(α − 1) · Et[Diagδ∆x],

with α− 1 ≡ {αn − 1} and δ ≡ PcDiagζ z̃. Recall that for any two vectors u and v, Diaguv = Diagvu.

The definition of ζ therefore implies

Et[Diagδ∆x] =Et[Diag∆xPcDiagz̃ζ] = NW Et[Diagω∆x].

Combining the two previous expressions implies

Et[β(z)res
] = (α − 1) · Et[Diagω∆x] = Et[∑nωn(αn − 1)∆xn] = Et[W(∆x∗)− W(∆x)].

A.7 Alternative Forms of Misspecification

In Proposition 3 we have shown how to estimate and correct for the expected bias—taken across

all potential realizations of the policy—of the researcher’s causal answer provided that A3’ holds.

In this appendix, we propose to relax A3’ and assume instead that the true causal impact of policy

belongs to some set X such that the following condition holds.

A3”. For any n ∈ NW , sup∆x∗∈X |∆x∗n −∆xn| = bn|∆xn| where the maximum misspecification parameter
bn > 0 may be a function of, and only of, the realization of period t’s shocks, (ϵ∗t , τt).

10



If A3’ holds, then A3” holds as well with bn = |αn − 1|. The converse, however, is not true since

A3” only applies to the worst case scenario for the researcher’s model.

Let Wz(∆x) ≡ W(∆x)+ βz denote the researcher’s welfare prediction adjusted by our goodness-

of-fit measure. Under A3’, we have shown that one can construct z such that Wz(∆x) is an unbi-

ased estimator of Et[W(∆x∗)], i.e. Et[Wz(∆x)] = Et[W(∆x∗)]. Under A3”, the next proposition

shows that one can construct z such that the worst-case expected bias of Wz(∆x), now potentially

non-zero, is less than the worst-case expected bias of W(∆x).

Proposition 4. Take any IV z̃ that satisfies A1 and A2. If A3” holds, then one can construct z, with
zn ≡ NW z̃nωnζn and ζn ≡ argminζ Et[|1 − ζ z̃n||∆xn|] for all n ∈ NW , such that z satisfies A1 and A2
and sup∆x∗∈X |Et[W(∆x∗)− Wz(∆x)]| ≤ sup∆x∗∈X |Et[W(∆x∗)− W(∆x)]|.

Proof. Start from

Et[W(∆x∗)− W(∆x)] = ∑
n

ωnEt[∆x∗n − ∆xn].

A3” implies

sup∆x∗∈X |Et[W(∆x∗)− W(∆x)]|

= ∑
n
|ωn|

ˆ
sup∆x∗∈X |∆x∗n − ∆xn|dFt(τt+1)

= ∑
n
|ωn|

ˆ
bn|∆xn|dFt(τt+1) = ∑

n
bnEt[|ωn||∆xn|] ≡ β̄,

where Ft(τt+1) denotes the cdf of the policy in period t + 1. Next, consider

Et[W(∆x∗)− Wz(∆x)] = ∑
n

Et[(ωn − zn/NW)(∆x∗n − ∆xn)]

= ∑
n

ˆ
(ωn − zn/NW)

ˆ
(∆x∗n − ∆xn)dFt(τt+1|zn)dGt,n(zn),

where Gt,n(zn) denotes the cdf of zn and Ft(τt+1|zn) denotes the cdf of the policy in period t + 1

conditional on zn. A3” further implies

sup∆x∗∈X |Et[W(∆x∗)− Wz(∆x)]| = ∑
n

ˆ
|ωn − zn/NW |

ˆ
sup∆x∗∈X |∆x∗n − ∆xn|dFt(τt+1|zn)dGt,n(zn)

= ∑
n

ˆ
|ωn − zn/NW |bn

ˆ
|∆xn|dFt(τt+1|zn)dGt,n(zn)

= ∑
n

bnEt[|ωn − zn/NW ||∆xn|] ≡ β̄z.

Next for each n ∈ NW , set zn = NW z̃nωnζn with

ζn ≡ argminζ Et[|1 − ζ z̃n||∆xn|].

11



For the same reason as in the proof of Proposition 3, z satisfies A1 and A2. Furthermore, the

definitions of zn and ζn imply

β̄z =∑
n

bnEt[|ωn − z̃nωnζn||∆xn|]

= ∑
n

bn|ωn|minζ Et[|1 − ζ z̃n||∆xn|] ≤ ∑
n

bnEt[|ωn||∆xn|] = β̄.

To apply the results of Proposition 4, one needs to compute ζn ≡ argminζ Et[|1− ζ z̃n||∆xn|] for

each n ∈ NW . This can be done by first rearranging the previous minimization problem as

min
ζ

Et[|1 − ζ z̃n||∆xn|]

= min
ζ

ˆ +∞

−∞
|1
z
− ζ|Et[|z̃n∆xn||z̃n = z]dGt,n(z) = min

ζ

ˆ +∞

−∞
|u − ζ|dHt,n(u),

where the cdf Ht,n(u) is given by

Ht,n(u) =

´ u
−∞ Et[|∆xn||z̃n = 1/v]gt,n(1/v)|v|−3dv´ +∞
−∞ Et[|∆xn||z̃n = 1/v]gt,n(1/v)|v|−3dv

,

and then noting that for a given random variable u with cdf Ht,n, the solution to

min
ζ

ˆ +∞

−∞
|u − ζ|dHt,n(u)

is equal to its median value H−1
t,n (0.5).

A.8 Power and Informativeness

We go back to the environment considered in Case 2 of Appendix A.5. There are two moments,

γ̂(α, θ) and β̂z(α, θ), with the first one used for estimation and the second one used for testing. The

joint distribution of these two moments depends on the true values of two structural parameters,

α and θ. The researcher uses the first moment to estimate θ by setting

γ̂(α, θ̂) = 0. (A.30)

We let θ̂(α) denote the estimator that solves (A.30).

The value of the other structural parameter α is restricted, perhaps wrongly, by the researcher’s

model to be equal to 1. For instance, one can think of misspecification taking the form of A3’ with

α ≡ {αn}. The results in Appendix A.5 characterize the asymptotic distribution Fz of β̂z(α, θ̂(α))

under the null that α = 1. Let s denote the size of our test under the null and let δz,s denote the
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associated critical value, i.e. Fz(δz,s) = 1 − s/2. The probability of rejecting the null that α = 1

under different values of α is equal to

πz(α) = Pr[|β̂z(α, θ̂(α))| ≥ δz,s].

By construction, πz(1) = s under the null. The next example illustrates the idea that, everything

else being equal, power πz(α) under the alternative α ̸= 1 decreases with the informativeness

of the estimation moment γ̂(α, θ) for the testing moment β̂z(α, θ) in the sense of Andrews et al.

(2020), i.e. power decreases with the R-squared of a hypothetical population-level regression of

β̂z(α, θ) on γ̂(α, θ).

Example. Consider two testing moments β̂z(α, θ) and β̂z′(α, θ). Without loss of generality, we

can decompose them into

β̂z(α, θ) = µz(α, θ)γ̂(α, θ) + µ⊥
z (α, θ)γ̂⊥

z (α, θ),

β̂z′(α, θ) = µz′(α, θ)γ̂(α, θ) + µ⊥
z′ (α, θ)γ̂⊥

z′ (α, θ),

where γ̂⊥
z (α, θ) and γ̂⊥

z′ (α, θ) are uncorrelated with the estimation moment. Equation (A.30) im-

plies

β̂z(α, θ̂(α)) = µ⊥
z (α, θ̂(α))γ̂⊥

z (α, θ̂(α)),

β̂z′(α, θ̂(α)) = µ⊥
z′ (α, θ̂(α))γ̂⊥

z′ (α, θ̂(α)).

Now suppose that the two testing moments only differ in terms of how informative the estimation

moment γ̂(α, θ) is. Specifically, suppose that: (i) δz,s = δz′,s ≡ δs; (ii) γ̂⊥
z (α, θ) = γ̂⊥

z′ (α, θ) ≡
γ̂⊥(α, θ); and (iii) 0 ≤ µz(α, θ) < µz′(α, θ) ≤ 1 and µz(α, θ) + µ⊥

z (α, θ) = µz′(α, θ) + µ⊥
z′ (α, θ) = 1.

By conditions (ii) and (iii), the estimation moment γ̂(α, θ) is therefore less informative for the

testing moment β̂z(α, θ) than β̂z′(α, θ). And by conditions (i)-(iii), power after estimation is higher

using β̂z(α, θ) than β̂z′(α, θ):

πz(α) = Pr[|1− µz(α, θ̂(α))||γ̂⊥(α, θ̂(α))| ≥ δs] > Pr[|1− µz′(α, θ̂(α))||γ̂⊥(α, θ̂(α))| ≥ δs] = πz′(α).

A.9 Testing Using Untargeted Cross-Sectional Moments

Suppose that the researcher’s model takes the form,

fn(τt, ϵt) =

gn(τt|θ) + ϵn,t, for n ∈ NT,

hn({ fm(τt, ϵt)}m∈NT ), for n ∈ NU ,
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whereas the true model is

f ∗n (τt, ϵ∗t ) =

g∗n(τt|θ) + ϵ∗n,t, for n ∈ NT,

hn({ f ∗m(τt, ϵ∗t )}m∈NT ), for n ∈ NU .

Whenever gn ̸= g∗n the researcher’s model misspecifies the causal relationship between the vector

of endogenous variables yt and the policy vector τt, but it always correctly specifies the cross-

sectional relationship between the endogenous variables that have been targeted in the estimation

stage (in NT) and those that have not (in NU). Thus if one were to perfectly match {yn}n∈NT via

estimation, then one would also perfectly match {yn,t}n∈NU . Yet this observation would provide

no information about the relationship (or lack thereof) between gn(τt|θ) and g∗n(τt|θ).
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B Simulations Appendix

B.1 FGKK’s Model

FGGK consider a world economy comprising multiple countries, indexed by i ∈ I . The country

of interest is the US (i = H). The US comprises many regions, indexed by r ∈ R, whose firms

can produce in many sectors, indexed by s ∈ S . Time is discrete and indexed by t. Labor is the

only primary factor of production. We let Lrs,t denote the inelastic supply of labor in region r and

sector s at date t and wrs,t denote the associated wage rate.

Preferences. There is a US representative household with nested CES preferences over non-

tradables, produced in sector s = NT, and tradables, produced in different sectors s ∈ ST and

countries,

Ut = (CNT,t)
βNT,t(CT,t)

1−βNT,t , (B.1)

CT,t = ∏
s∈ST

(CTs,t)
βs,t , (B.2)

CTs,t =

[
∑

j=H,F
(Ajs,t)

1
κ (Cjs,t)

κ−1
κ

] κ
κ−1

, for all s ∈ ST, (B.3)

Cjs,t =

[
∑

v∈Ps

(ajv,t)
1
η (cjv,t)

η−1
η

] η
η−1

, for j = H, F and s ∈ ST, (B.4)

cFv,t =

[
∑

i ̸=H
(aiv,t)

1
σ (civ,t)

σ−1
σ

] σ
σ−1

, for all v ∈ Ps and s ∈ ST, (B.5)

where Ps is the set of all products v from a given tradable sector s; βs,t, AHs,t, AFs,t, aHv,t, aFv,t,

and {aiv,t}i ̸=H are exogenous preference shifters; κ ≥ 0 is the elasticity of substitution between

domestic consumption and imports within a given sector s; η ≥ 0 is the elasticity of substitu-

tion between products within each of these two nests; and σ ≥ 0 is the elasticity of substitution

between different foreign sources within a given product.

Technology. In each US region r, firms in the non-tradable sector (s = NT) produce one-to-one

from labor,

QrNT,t = ZrNT,tLrNT,t, for all r ∈ R, (B.6)

whereas firms in any tradable sector s ∈ ST produce according to

Qrs,t = Zrs,t(Mrs,t)
αIs,t(Lrs,t)

αLs,t , for all r ∈ R and s ∈ ST, (B.7)

Mrs,t = ∏
k∈ST

(Mkrs,t)
αks,t , for all r ∈ R and s ∈ ST, (B.8)
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with αIs,t + αLs,t ≤ 1 and ∑k∈ST
αks,t = 1. Tradable intermediates, Mkrs,t, from sector k demanded

by firms in sector s and region r are produced using domestic and foreign products in the same

nested-CES manner as final consumption from that sector, CTk,t, as described by equations (B.3)-

(B.5). For future reference, we let qivrs,t denote the quantity of product v from country i demanded

by firms from region r and sector s. Finally, given total sector-level output, ∑r∈R Qrs,t, the vector

of destination-and-product level output, {qiv,t}v∈Ps,i∈I , satisfies the following resource constraint,

∑
v∈Ps,i∈I

qiv,t/ziv,t = ∑
r∈R

Qrs,t for all s ∈ ST. (B.9)

The productivity shifters, Zrs,t and ziv,t, are exogenous and potentially time-varying.

Prices, Import Tariffs, and Transfers. There are no domestic transportation costs so prices of

tradables are equalized across US regions. For any variety purchased in the US, we let pH
iv,t denote

the price of product v from country i faced by US households and firms. Likewise, for any product

v sold by the US in a country i, we let p̄H
iv,t denote the price received by US firms. Home’s import

tariffs τH
t ≡ {τH

iv,t}v∈Ps,i ̸=H drive a wedge between US import prices pH
t ≡ {pH

iv,t}v∈Ps,i ̸=H and

the prices received by foreigners p̄F
t ≡ { p̄F

iv,t}v∈Ps,i ̸=H, whereas foreign tariffs τF
t ≡ {τF

iv,t}v∈Ps,i ̸=H

drive a wedge between US export prices p̄H
t ≡ { p̄H

iv,t}v∈Ps,i ̸=H and the prices pF
t ≡ {pF

iv,t}v∈Ps,i ̸=H

paid by foreigners,

pH
iv,t = (1 + τH

iv,t) p̄F
iv,t, for all i ̸= H, v ∈ Ps, and s ∈ ST, (B.10)

pF
iv,t = (1 + τF

iv,t) p̄H
iv,t, for all i ̸= H, v ∈ Ps, and s ∈ ST. (B.11)

There are no other taxes. The US government rebates total tariff revenues as well as any foreign

transfer Ft through a lump-sum transfer Tt to the representative household. The US government’s

budget constraint is

Tt = ∑
s∈ST ,v∈Ps,i∈I

τH
iv,t p̄F

iv,t(civ,t + ∑
r∈R,s∈ST

qivrs,t) + Ft. (B.12)

Foreign Import Demand and Export Supply. The rest of the world is modeled as a series

of import demand and export supply curves that determine the quantities cF
iv,t and qF

iv,t of any

product v that a country i ̸= H imports from and exports to Home, respectively,

cF
iv,t = aF

iv,t(pF
iv,t)

−σF , (B.13)

qF
iv,t = (zF

iv,t)
1

ωF ( p̄F
iv,t)

1
ωF , (B.14)

where aF
iv,t and zF

iv,t are exogenous import demand and export supply shifters; σF is the elasticity

of foreign import demand; and ωF is the inverse of the elasticity of foreign export supply.
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Market clearing. Supply equals demand for products from all origins in all destinations,

qiv,t = cF
iv,t, for all i ̸= H, v ∈ Ps, and s ∈ ST, (B.15)

qHv,t = cHv,t + ∑
r∈R,s∈ST

qHvrs,t, for all v ∈ Ps, and s ∈ ST, (B.16)

qF
iv,t = civ,t + ∑

r∈R,s∈ST

qivrs,t, for all i ̸= H, v ∈ Ps, and s ∈ ST, (B.17)

QrNT,t = CrNT,t, for all r ∈ R. (B.18)

Competitive Equilibrium. Given tariffs τt ≡ {τH
t , τF

t }, a competitive equilibrium corresponds

to prices pt ≡ {pH
t , pF

t , p̄H
t , p̄F

t , wrs,t, prNT,t}, quantities qt ≡ {civ,t, cF
iv,t, qivrs,t, qiv,t, qF

iv,t, QrNT,t}, and a

lump-sum lump-sum transfer Tt such that the US representative household maximizes its utility,

as described in (B.1)-(B.5), subject to its budget constraint; price-taking US firms maximize their

profits subject to technological constraints, as described in (B.6)-(B.9); import and export prices

satisfy the non-arbitrage conditions (B.10) and (B.11); the domestic government’s budget is bal-

anced, as described in (B.12); foreigners are on their export supply and import demand curves, as

described in (B.13) and (B.14); and good markets clear, as described in (B.15)-(B.18).

B.2 Calibration of FGKK’s Model

Equilibrium prices and quantities (pt, qt) in FGKK’s model depend on the policy vector τt as well

as a vector of time-invariant elasticities and a vector of time-varying shocks,

θ ≡ {σ, ωF, σF, η, κ},

ϵt ≡ {βs,t, AHs,t, AFs,t, aHv,t, aFv,t, aiv,t, Zrs,t, αIs,t, αLs,t, αks,t, ziv,t, aF
iv,t, zF

iv,t, Ft, Lrs,t}.

Here we describe how we calibrate θ and ϵt for the simulation in Sections 3.2 and 3.3.

Demand and Supply Elasticities (θ). We use the five elasticity estimates obtained by FGKK

when using changes in US tariffs, and foreign retaliatory tariffs, in 2018. The first three such elastic-

ities describe Home households’ and firms’ elasticities of substitution across domestic and foreign

bundles of products within each tradable sector (κ = 1.19), across different products within the

domestic or foreign bundles (η = 1.53), and across different foreign origins within each foreign

product bundle (σ = 2.53). The remaining two elasticities capture foreign firms’ and households’

elasticities of demand for imports sourced from Home (σF = 1.04) and foreign firms’ (inverse)

elasticities of supply for exports to Home (ωF = 0.00).

Time-Varying Shocks (ϵt). We calibrate ϵt such that, given the estimated supply and demand

elasticities θ ≡ (σ, σF, ωF, κ, η) and the initial period tariffs τt, FGKK’s model exactly matches
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trade and production data from the US in 2016. Following FGKK, we let the initial period tariffs

observed in the US and the rest of the world, {τH
t , τF

t }, be equal to their average statutory values in

2016. All other data inputs are also the same as in FGKK and comprise: (i) variety-level quantities

and values for both exports and imports, for 71 foreign countries i and 10, 228 tradable products

v (based on 10-digit HS codes) partitioned into 88 tradable sectors s (based on a 4-digit NAICS

classification); (ii) sector-level revenues and expenditures on both labor and intermediates for each

tradable sector s; and (iii) region-sector employment, with each region r a US county. We obtain

all these variables from FGKK’s replication package.

B.3 Counterfactual Welfare Changes

Consider a counterfactual change in US and foreign tariffs. Since FGKK’s model is perfectly com-

petitive and features a representative agent in the US, a standard envelope argument implies that

the first-order impact of a change in tariffs on US welfare, expressed in dollar units, is

dW = ∑
i ̸=H,v

qiv,tdp̄H
iv,t − ∑

i ̸=H,v
qF

iv,tdp̄F
iv,t + ∑

i ̸=H,v
τH

iv,t p̄F
iv,tdqF

iv,t,

where dp̄H
iv,t, dp̄F

iv,t, and dqF
iv,t are the changes in US export prices (pre-foreign tariff), US import

prices (pre-US tariffs), and US import quantities caused by the tariff changes. Letting Yt denote

US GDP in period t, the previous expression can be rearranged as

dW
Yt

= ∑
i ̸=H,v

p̄H
iv,tqiv,t

Yt
d ln p̄H

iv,t

+ ∑
i ̸=H,v

pH
iv,tq

F
iv,t

Yt

[
−d ln pH

iv,t +
d(τH

iv,t p̄F
iv,tq

F
iv,t)

pH
iv,tq

F
iv,t

]
.

Equation (7) follows with

ωX
iv ≡ 100

p̄H
iv,tqiv,t

Yt
,

ωM
iv ≡ 100

pH
iv,tq

F
iv,t

Yt
,

ωR
iv ≡ 100

pH
iv,tq

F
iv,t

Yt
,

∆xX
iv ≡ d ln p̄H

iv,t,

∆xM
iv ≡ d ln pH

iv,t,

∆xR
iv ≡

d(τH
iv,t p̄F

iv,tq
F
iv,t)

pH
iv,tq

F
iv,t

.
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B.4 Construction of the IVs

All IVs in our simulations use the shifters described in equation (8), but differ in their shares. We

now describe each of them in detail.

Preferred IV zpref. In Sections 3.2-3.4, the shares {spref
nk } of our preferred IV zpref are computed

as

{spref
nk } = Pc × Diagζ × Dτ( f ),

where Dτ( f ) is the Jacobian of the researcher’s model with respect to tariffs; Diagζ denotes the

diagonal matrix associated with the vector of welfare adjustment ζ ≡ {ζn} described in the exten-

sion of Proposition 3 with controls in Appendix A.6,

ζ ≡ NW(Et[Diag∆xPcDiagDτ( f )∆τ])
−1(DiagωEt[∆x]);

and Pc denotes the residual projection matrix associated with the controls C ≡ {cnj},

Pc ≡ Id − C(CTC)−1CT,

where Id denotes the identity matrix. The four controls j = 1, ..., 4 are the three dummy variables

for whether or not n = (i, v, o) satisfies o(n) = X, o(n) = M, and o(n) = R as well as each outcome

n’s total exposure to tariff changes, ∑k ∂ fn/∂τk.

Naive IV znaive. In Section 3.3, the shares {snaive
nk } of our naive IVznaive are computed as

{snaive
nk } = Pc × Diagω × I,

where I is the NW × K matrix whose entry (n, k) is a dummy variable that equals one if and only if

i(n) = i(k) and v(n) = v(k) (i.e., outcome n and shifter k correspond to the same country-product

pair) as well as either o(n) = X and c(k) = F (i.e., n is an export price and k a foreign tariff shifter)

or o(n) ∈ {M, R} and c(k) = H (i.e., n is an import price or tariff revenue and k a US tariff shifter);

Diagω denotes the diagonal matrix associated with the welfare weights ω ≡ {ωn}; and Pc denotes

the same residual projection matrix as before.

Naive IV zmech. In Section 3.4, the shares {smech
nk } of our naive IV zmech are computed as

{smech
nk } = Pcmech × Id × I,

where Pcmech ≡ Id − Cmech((Cmech)TCmech)−1(Cmech)T denotes the residual projection matrix as-

sociated with the controls used in estimation, Cmech, i.e., dummy variables for exported and im-

ported products.
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B.5 IV-based Tests with Alternative Control Sets

Figure B.1: Alternative IV-based Tests with Fewer Controls

(a) Rejection rate (b) Mean of goodness-of-fit measure

Notes: This figure reports the resuls from b = 1, ..., 2500 simulated economies in which the researcher’s
model misspecifies the pass-through rate of all statutory tariffs into applied tariffs by an amount α that is
uniform across import, export, and tariff revenue outcomes. Simulations differ in terms of the size of the
underlying α to generate the variation in Et[W(∆x∗) − W(∆x)] reported on the x-axes. Figure B.1a plots
the rejection rate on the y-axis for IV-based tests using our preferred IV with all controls (blue circles),
with a restricted set of controls that only includes dummy variables for outcome types o ∈ {X, M, R} (red
diamonds), and without controls (turquoise triangles). Figure B.1b does the same but with the average
value of our goodness-of-fit measure β̂z on the y-axis.
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B.6 IV-based Tests without Welfare Weights

Figure B.2: Alternative IV-based Tests without Welfare Weights

(a) Rejection rate (b) Mean of goodness-of-fit measure

Notes: This figure reports the resuls from b = 1, ..., 2500 simulated economies in which the researcher’s
model misspecifies the pass-through rate of all statutory tariffs into applied tariffs by an amount α that is
uniform across import, export, and tariff revenue outcomes. Simulations differ in terms of the size of the
underlying α to generate the variation in Et[W(∆x∗)−W(∆x)] reported on the x-axes. Figure B.2a plots the
rejection rate on the y-axis for IV-based tests using our preferred IV (zpref, blue circles) and an alternative
IV (zalt, red diamonds) defined as our preferred IV but with ζ computed under the assumption of equal
weights (i.e., ωn = 1 for all n). Figure B.2b does the same but with the average value of our goodness-of-fit
measure β̂z on the y-axis.
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C Empirical Application Appendix

C.1 Implementation

This appendix describes how to implement our test while accounting for the uncertainty in FGKK’s

estimates of the structural parameters θ̂ ≡ (σ̂, σ̂F, ω̂F, κ̂, η̂) and allowing for correlation of policy

shifters within clusters. We first follow the approach described in Appendix A.5 and characterize

the estimating and testing moments required to apply Proposition 2 when θ̂ is an IV estimator.

One idiosyncratic feature of FGKK’s analysis is that estimation is conducted at the monthly level,

whereas counterfactual simulations are conducted at the annual level, something that we will for-

mally take into account by allowing outcome variables and policy shifters to vary at the monthly

level as well. Finally, to account for the potential autocorrelation in tariff changes over time, we

use results from Adao et al. (2019) to characterize the estimator of the asymptotic variance of our

test statistic under the assumption that policy shifters are independent between groups of obser-

vations, but not within.

Estimating moments. The estimation strategy of FGKK (presented in Section III.C of their pa-

per) consists of five linear specifications estimated with IVs built from monthly tariff changes. Us-

ing the notation from Appendix A.5, FGKK’s strategy is equivalent to obtaining θ̂ ≡ (σ̂, ω̂F, σ̂F, η̂, κ̂)

from the moment condition γ̂(θ̂) = 0 with the estimating moments such that

γ̂(θ) ≡



1
|Nσ | ∑n∈Nσ

zσ
neσ

n(w, θ)
1

|NωF |
∑n∈NωF

zωF
n eωF

n (w, θ)

1
|NσF |

∑n∈NσF
zσF

n eσF
n (w, θ)

1
|Nη | ∑n∈Nη

zη
neη

n(w, θ)

1
|Nκ | ∑n∈Nκ

zκ
neκ

n(w, θ)


(C.1)

The different terms entering equation (C.1) are as follows. First, the sets of outcome variables n
used in the estimation of each structural parameter are equal to

Nσ ≡ {n = (i, v, m) ∈ I × P ×M},

NωF ≡ {n = (i, v, m) ∈ I × P ×M},

NσF ≡ {n = (i, v, m) ∈ I × P ×M},

Nη ≡ {n = (v, m) ∈ P ×M},

Nκ ≡ {n = (s, m) ∈ ST ×M},

where I denotes the set of foreign countries, P denotes the set of products, ST denotes the set

of tradable sectors, as in Appendix B.1, and M denotes the set of months in FGKK’s estimation

sample, which runs from January 2017 to April 2019.
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Second, the structural residuals are given by

eσ
n(w, θ) = (∆monthly log qF

n)res + σ(∆monthly log pH
n )res, (C.2)

eωF
n (w, θ) = (∆monthly log p̄F

n)res − ωF(∆monthly log qF
n)res, (C.3)

eσF
n (w, θ) = (∆monthly log qn)res + σF(∆monthly log pF

n)res, (C.4)

eη
n(w, θ) = (∆monthly log BH

Fn)res + (η − 1)(∆monthly log PH
Fn(σ))res, (C.5)

eκ
n(w, θ) = (∆monthly log[EH

Fn/EH
Hn])res + (κ − 1)(∆monthly log[P̄H

Fn(σ, η)/P̄Hn])res, (C.6)

where ∆monthly log yn ≡ log yr(n)m(n) − log yr(n)m(n)−1 denotes the month-to-month change in any

outcome n ≡ (r, m), and the subscript “res” is a reminder that all variables have been residualized

from the set of controls specified in each of FGKK’s estimating equations.38 In equations (C.2)-

(C.4), qF
n , pH

n and p̄F
n denote the quantity, the price faced by US households, and the price received

by foreign firms, respectively, of each product imported by the US, and qn and pF
n denote the

quantity and the price faced by foreign households, respectively, for each product exported by the

US, consistent with our notation in Appendix A.5. In equation (C.5), BH
Fn ≡ ∑i∈I pH

inqF
in/EH

Fsm(n)

denotes the share of product v(n) in US expenditure on imports from sector s in month m(n) and

∆monthly log PH
Fn(σ) denotes the month-to-month change in the associated CES price index. FGKK

compute this as

∆monthly log PH
Fn(σ) ≡ 1

1−σ log
(

∑i∈Cn
bine(1−σ)∆ log pH

in+eσ
in(w,θ)

)
− 1

1−σ log
(

Bm(n)(Ccountries,n)

Bm(n)−1(Ccountries,n)

)
,

(C.7)

where bin ≡ pH
inqF

in/ ∑j∈I pH
jnqF

jn is the share of product v(n) from country i among all coun-

tries supplying product v(n) in month m(n) − 1 and Bm(n)(Ccountries,n) is the share of spending

in month m(n) on the set of foreign countries Ccountries,n that are continuing to export product v(n)
between month m(n)− 1 and m(n). Lastly, in equation (C.6), EH

Fn ≡ ∑v∈Ps(n) ∑i∈I pH
ivm(n)q

F
ivm(n) and

EH
Hn ≡ ∑v∈Ps(n)

pH
Hvm(n)qHvm(n) are US spending on imported and domestic products, respectively,

in sector s(n) and month m(n), P̄Hn is the US producer price index in that same sector and month,

and ∆monthly log P̄H
Fn(σ, η) denotes the month-to-month change in the foreign counterpart of that

CES price index, which FGKK compute as

∆ log PH
Fn(σ, η) ≡ 1

1−η log
(

∑v∈Cn
bvne(1−η)∆ log PH

Fvm(n)(σ)+eη

vm(n)(w,θ)
)

− 1
1−η log

(
Bm(n)(Cproducts,n)

Bm(n)−1(Cproducts,n)

) (C.8)

where bvn ≡ ∑i∈I pH
inqF

in/EH
Fn is the share of imports of product v among all products in sector s(n),

v ∈ Ps(n), in month m(n)− 1, and Bm(n)(Cproducts,n) is the share of spending in month m(n) on the

38Specifically, for the estimation of (σ, ωF, σF), the controls are dummy variables for product-month,
country-month, and country-sector; for the estimation of η, the controls are dummy variables for sector-
month. For the estimation of κ, the controls are fixed effects for sectors and months.
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set of products that are continuing to be imported in sector s between months m(n)− 1 and m(n).
Finally, the instrumental variables in FGKK can be written as shift-share IVs equal to

zσ
n = ∑

k∈Kθ

sσ
nk∆monthlyτθ

IV,k, (C.9)

zωF
n = ∑

k∈Kθ

sωF
nk ∆monthlyτθ

IV,k, (C.10)

zσF
n = ∑

k∈Kθ

sσF
nk∆monthlyτθ

IV,k, (C.11)

zη
n = ∑

k∈Kθ

sη
nk∆monthlyτθ

IV,k, (C.12)

zκ
n = ∑

k∈Kθ

sκ
nk∆monthlyτθ

IV,k, (C.13)

where Kθ≡ I ×P×{H, F}×M denotes the set of all tariff line-month combinations k = (i, v, c, m)

used in the estimation of the vector of structural parameters θ; the shifters are equal to the month-

to-month changes in tariffs,

∆monthlyτθ
IV,k ≡ log(1 + τ

c(k)
i(k)v(k)m(k))− log(1 + τ

c(k)
i(k)v(k)m(k)−1), (C.14)

with τc
ivm the tariff imposed by the US on product v from country i in month m, if c = H, and the

tariff imposed by country i on the US, if c = F, as in Appendix B.1; and the shares are equal to

sσ
nk =1[c(k) = H]× 1[i(n) = i(k), v(n) = v(k), m(n) = m(k)], (C.15)

sωF
nk =1[c(k) = H]× 1[i(n) = i(k), v(n) = v(k), m(n) = m(k)], (C.16)

sσF
nk =1[c(k) = F]× 1[i(n) = i(k), v(n) = v(k), m(n) = m(k)], (C.17)

sη
nk =1[c(k) = H]× 1[v(n) = v(k), m(n) = m(k)]× 1[i(k) ∈ Ccountries,n]/|Ccountries,n|, (C.18)

sκ
nk =1[c(k) = H]× 1[m(n) = m(k)]× 1[v(k) ∈ Cproducts,n]1[i(k) ∈ Ccountries,k]/|Cproducts,n|. (C.19)

Testing moment. By Definition 1, our testing moment is equal to

β̂z(θ) =
1

NW
∑

n∈NW

zn(∆yn − ∆xn(θ)), (C.20)

where the set of outcome variables NW is the same as in our simulations and described at the

end of Section 3.1. Consistent with FGKK’s counterfactual question of interest, observed and

predicted changes, ∆yn and ∆xn(θ), are computed as changes between t = 2016 and t + 1 = 2019,

as described in Section 4.1. Likewise, the shift-share IV z is such that

zn = ∑
k∈K

snk∆τIV,k with ∆τIV,k ≡
∆τk − µ∆τ

σ∆τ
, (C.21)
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where ∆τk ≡ τk,t+1 − τk,t is the change in the tariff line k = (i, v, c) ∈ I ×P × {H, F} ≡ K between

t = 2016 and t+ 1 = 2019, as also described in Section 4.1, and µ∆τ and σ∆τ are the average and the

standard deviation, respectively, of ∆τk computed across all k ∈ K. To apply Proposition 2 when

θ̂ is an IV estimator, we need the policy shifters used in estimation and testing, ∆monthlyτθ
IV,k and

∆τIV,k, to be defined over the same ks. At this point, however, the set of shifters used in estimation

varies over k ∈ Kθ = K ×M, whereas the set of shifters used in testing vary over k ∈ K. To

deal with this discrepancy, we simply note that the policy shifter ∆τIV,k used in testing can be

expressed as the cumulative sum of the month-to-month changes,

∆τIV,k = ∑
m∈M

∆monthlyτIV,km with ∆τIV,k ≡
∆monthlyτ

c(k)
i(k)v(k)m

σ∆τ
− 1

|M|
µ∆τ

σ∆τ
, (C.22)

with the convention ∆monthlyτ
c(k)
i(k)v(k)January2017 ≡ τ

c(k)
i(k)v(k)January2017 − τk,2016. Combining equations

(C.21) and (C.22), we can then rewrite the IV used for testing as

zn = ∑
k∈K,m∈M

snk∆monthlyτIV,km = ∑
k∈Kθ

s̄nk∆monthlyτIV,k, (C.23)

with s̄nk ≡ sni(k)v(k)c(k) for any tariff line-month combination k = (i, v, c, m) ∈ Kθ .

Variance estimator. First, consider the case without clustering. Equations (C.9)–(C.19) imply

that the estimating moments in (C.1) can be rearranged as

γ̂(θ) = ∑
k∈Kθ

∆monthlyτθ
IV,k × Rγ,k(θ), (C.24)

with

Rγ,k(θ) ≡



1
|Nσ | ∑n∈Nσ

sσ
nkeσ

n(w, θ)
1

|NωF |
∑n∈NωF

sωF
n eωF

n (w, θ)

1
|NσF |

∑n∈NσF
sσF

n eσF
n (w, θ)

1
|Nη | ∑n∈Nη

sη
neη

n(w, θ)

1
|Nκ | ∑n∈Nκ

sκ
neκ

n(w, θ)


. (C.25)

Likewise, equation (C.23) implies that the testing moment in equation (C.20) can be rearranged as

β̂z(θ) = ∑
k∈Kθ

∆monthlyτIV,k × Rβ,k(θ), (C.26)

with

Rβ,k(θ) ≡
1

NW
∑

n∈NW

s̄nk(∆yn − ∆xn(θ)).

25



Following the approach in Appendix A.5, now applied to the case where θ is a vector, we compute

the asymptotic variance V̂[β̂z(θ̂)] of the goodness-of-fit measure β̂z(θ̂) as

V̂[β̂z(θ̂)] = V̂β + D̂V̂γD̂T + 2D̂V̂βγ, (C.27)

V̂β = ∑
k∈Kθ

[∆monthlyτIV,kRβ,k(θ)]
2, (C.28)

V̂γ = ∑
k∈Kθ

[∆monthlyτθ
IV,kRγ,k(θ)][∆monthlyτθ

IV,kRγ,k(θ)]
T (C.29)

V̂βγ = ∑
k∈Kθ

[∆monthlyτθ
IV,kRγ,k(θ)][∆monthlyτIV,kRβ,k(θ)] (C.30)

D̂ = −[D(β̂z(θ̂))][D(γ̂(θ̂))]−1, (C.31)

where we solve analytically the Jacobian matrix D(γ̂(θ̂)) of the estimating moments in (C.24),

using (C.2)-(C.6), and we evaluate numerically the gradient D(β̂z(θ̂)) of the testing moment in

(C.20) by considering small changes in θ.

Next consider the case with clustering. We group the tariff line-month combinations k =

(i, v, c, m) ∈ Kθ by tariff lines g ≡ (i, v, c) ∈ K. Formally, a tariff line-month combination k belongs

to the group g, which we denote by k ∈ Gg, if and only if i(k) = i(g), v(k) = v(g), and c(k) = c(g).
Following the approach in Adao et al. (2019), we then compute the asymptotic variance estimator

allowing for arbitrary correlation of policy shifters across months within a tariff line g as

V̂[β̂z(θ̂)] = V̂β + D̂V̂γD̂T + 2D̂V̂βγ, (C.32)

V̂β = ∑
g∈K

∑
k,k′∈Gg

[∆monthlyτIV,kRβ,k(θ)][∆monthlyτIV,k′Rβ,k′(θ)], (C.33)

V̂γ = ∑
g∈K

∑
k,k′∈Gg

[∆monthlyτθ
IV,kRγ,k(θ)][∆monthlyτθ

IV,k′Rγ,k′(θ)]
T (C.34)

V̂βγ = ∑
g∈K

∑
k,k′∈Gg

[∆monthlyτθ
IV,kRγ,k(θ)][∆monthlyτIV,k′Rβ,k′(θ)] (C.35)

D̂ = −[D(β̂z(θ̂))][D(γ̂(θ̂))]−1. (C.36)
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C.2 Additional results

Table C.1: Testing Predictions about the Impact of Trump’s Trade War

Outcome: ∆yn ∆xn(θ̂) ∆yn − ∆xn(θ̂)
(1) (2) (3)

Panel A: All outcomes
Point estimate 0.28 0.37 -0.09
Std. error 0.15 0.02 0.18
p-value of H0: β̂ = 0 0.06 0.00 0.63

Panel B: Export prices
Point estimate 1.40 1.23 0.16
Std. error 0.61 0.03 0.73
p-value of H0: β̂ = 0 0.02 0.00 0.82

Panel C: Import prices
Point estimate 0.41 0.23 0.18
Std. error 0.05 0.07 0.07
p-value of H0: β̂ = 0 0.00 0.00 0.01

Panel D: Tariff revenue
Point estimate 0.25 0.40 -0.16
Std. error 0.07 0.06 0.04
p-value of H0: β̂ = 0 0.00 0.00 0.00

Notes: Sample of changes between 2016 and 2019 for 25,115 welfare-relevant outcomes in Panel A, 6,179
exported varieties with data on prices in Panel B, and 9,468 imported varieties with data on prices and
duties in Panels C and D. In the sample N associated with each panel, we use the preferred IV zpref, as
defined by equations (9) and (12), to compute: 1

|N | ∑n∈N zpref
n ∆yn with ∆yn the actual change in outcome n,

in column (1); 1
|N | ∑n∈N zpref

n ∆xn(θ̂) with ∆xn(θ̂) the predicted change in outcome n using FGKK’s estimates

θ̂ described in Section 3.1, in column (2); the IV-based test 1
|N | ∑n∈N zpref

n (∆yn − ∆xn(θ̂)), in column (3).

Inference accounting for the estimation of θ̂ as described in Appendix C.1.
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