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There is broad agreement that technological 
change has been a major engine of economic 
growth and prosperity over the last 250 years.1 
However, not all innovations are created equal, 
and the direction of technology matters greatly as 
well.

Both antibiotics and dietary supplements have 
resulted from new innovations and have led to 
products that have been consumed by billions of 
people around the world. But most would agree 

1 See, for example, Mokyr (1992, 2004) and Koyama and 
Rubin (2022).

that antibiotics constitute a bigger technologi-
cal breakthrough and have been socially more 
beneficial.2 More strikingly, the same advances 
by early  twentieth-century chemists, especially 
Fritz Haber and Carl Bosch, paved the way to 
both synthetic agricultural fertilizers, which mas-
sively boosted crop yields, and the  large-scale 
production of more powerful explosives, which 
led to the death of millions of soldiers and civil-
ians (e.g., Hager 2009). Few people would think 
that these two advances have similar social value. 
Additionally, different technologies often create 
gains and losses for different groups and may 
even influence other major social outcomes, 
including civic participation and democracy.

Economists have long recognized that the 
overall amount of research effort may be insuf-
ficient, and, as a result, government support 
for innovation—for instance, in the form of 
 investments in the research infrastructure or 

2 US annual expenditures are about $10 billion in 
the 2010s for antibiotics and above $30 billion for 
dietary supplements (see https://academic.oup.com/cid/
article/66/2/185/4093915 and https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3952619/). This is despite the fact 
that there are no  well-established studies documenting the 
effectiveness of dietary supplements (see https://pubmed.
ncbi.nlm.nih.gov/32601065/ and https://www.nytimes.
com/2016/11/15/well/eat/studies-show-little-benefit-in-
supplements.html).
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R&D tax credits—is beneficial (see, e.g., Jones 
and Williams 1998; Bloom, Shankerman, and 
Van Reenen 2013; Howell 2017; and Azoulay et 
al. 2019 for evidence). Nevertheless, a common 
perspective is that the market is the best judge of 
how research efforts should be allocated: once 
basic support for research is provided, the gov-
ernment should have a limited role in influenc-
ing the direction of innovation. There are indeed 
myriad examples of failed government attempts 
at “picking winners” (see Pack and Saggi 2006 
and Hufbauer and Jung 2021 for reviews). 
British science writer Ridley (2020) argues that 
the cumulative,  step-by-step process of innova-
tion is inevitably hampered when governments 
try to influence its direction. The opposite point 
of view emphasizes the myriad distortions in the 
equilibrium innovation process.

In this paper, I take an intermediate position. 
I assume that the market (working through com-
petition between corporations and scientists) is 
best placed to experiment with new methods 
and carry out innovations, but the direction 
of technology can be systematically distorted. 
This position distinguishes my approach both 
from  older-style industrial policy, where the 
government is assumed to have some ability to 
judge which sectors are more promising, and 
from more recent arguments claiming that the 
government can be as good as the private sector 
in innovation (e.g., Mazzucato 2015).3

To develop these ideas, I extend the directed 
technological change framework in Acemoglu 
(1998, 2002), focusing on an economy in which 
the private sector spearheads innovation and 
can target either one or both of two alternative, 

3 Existing evidence also suggests that although govern-
ment encouragement to invest in  high-tech sectors can have 
major benefits (e.g., Gruber and Johnson 2019; Moretti, 
Steinwender, and Van Reenen 2019),  top-down research 
often generates extensive distortions. For example, Howell et 
al. (2021) show that traditional Defense Department research 
contracts have become less effective over time, while those 
that provide more  open-ended support for new areas create 
more successful innovations. Similarly, convincing evidence 
of productivity benefits from industrial policy comes from 
settings in which such policy supported broad sectors, such 
as heavy and chemical industries in South Korea and Finland 
(Lane 2021; Mitrunuen 2019). Additionally, Branstetter, Li, 
and Ren (2022) show that recent Chinese industrial policy 
has not been successful in increasing firm productivity, 
while Acemoglu, Yang, and Zhou (2023) provide evidence 
that  top-down Chinese academic incentives have led to sig-
nificant distortions in the direction of research.

imperfectly substitutable technologies. From 
a positive perspective, the framework links the 
direction of technology to relevant market sizes 
(supplies of factors of production working with 
these technologies and consumer demand), the 
price of other inputs into the production pro-
cess (e.g., natural resources used in different 
sectors), markups, and regulations. The impli-
cations of the framework are broadly in line 
with a growing body of empirical work, espe-
cially from sectors such as energy, health care, 
agriculture, modern automation, and traditional 
industrial technologies.

More importantly for my focus here, the 
framework highlights several factors that can 
lead to systematic misalignment between mar-
ket incentives and social objectives. First, some 
technologies generate negative externalities, 
while alternative paradigms aimed at performing 
similar production tasks may avoid these nega-
tive effects or even create positive externalities.4 
The leading current example of this phenome-
non is in the energy and transport sectors, where 
 fossil-fuel-based energy creates carbon emis-
sions and environmental damages, while renew-
ables avoid such emissions. When the market 
does not price these damages, equilibrium inno-
vation will be excessively directed toward  fossil 
fuel technologies. I argue that similar issues 
arise in health care, where some technologies—
for instance, those targeting prevention—may 
have greater social benefits than those aimed 
at  high-tech procedures for  late-stage cures. I 
will also suggest that the direction of technol-
ogy may be distorted toward automation and 
away from  worker-complementary technolo-
gies because labor market imperfections create 
a wedge between the social cost of labor and the 
equilibrium wage.

Second, different sectors often have different 
markups, and I show that equilibrium incentives 
will be excessively biased toward  higher-markup 
sectors and technologies.5 Health care illustrates 

4 These positive externalities may also be on future 
research—for example, with some areas creating more sub-
stantial knowledge gains upon which future innovations can 
build. Another example of negative externalities would be 
“defensive innovations” undertaken by incumbents in order 
to prevent rivals from increasing their market share.

5 High markups encourage more innovation effort but 
also simultaneously reduce the utilization of a technology. 
This latter effect implies that expanding the production level 
of  high-markup technologies is also socially valuable. Yet 
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this phenomenon, for curative technologies 
appear to have higher markups than preventative 
ones.6

Third, a variety of social forces may favor one 
paradigm ahead of alternatives. For example, the 
research community may value certain types of 
breakthroughs more than others because they 
are viewed as the more exciting research area 
or because they are more useful for building a 
scientific reputation. One possible illustration 
may be from modern digital technologies, where 
many researchers believe that the most important 
and coveted advances are those that enable algo-
rithms to reach human parity in a range of tasks. 
This perspective then creates greater incentives 
to work on automation rather than other para-
digms aimed at more  human-complementary 
tools.7

Fourth, when different technologies cre-
ate distinct distributional effects and society 
cares about inequality (for either direct or indi-
rect reasons related to political economy), the 
market will fail to internalize these additional 
considerations.

Fifth, the direction of innovation may be 
distorted because of coordination failures. For 
example, there may be insufficient diversity in 
research investments, or firms and innovators 
may fail to coordinate on more productive alter-
native paradigms, as I discuss briefly below.

While, in practice, all five of these effects 
are likely important, I focus on the first two for 
two related reasons. First, these two channels 
can be, in principle, quantified by measuring 
 markups or social benefits/externalities and are 
thus better candidates for “systematic distor-
tions” in the direction of innovation. In the last 
part of the paper, I make a preliminary attempt 
at this type of quantification. Second, because 

this force is dominated by the former effect, and thus the 
equilibrium involves excessive innovation effort devoted to 
 high-markup technologies.

6 One telling example is emphasized in Howard et al. 
(2015): the melanoma drug Yervoy, approved in 2011, was 
marketed at the price of $120,000 for a  four-dose treatment 
by the pharmaceutical company  Bristol Myers Squibb. It 
extends life by about four months. I provide direct evidence 
on these markup differences in Section IV.

7 See Acemoglu and Restrepo (2020b); Acemoglu, 
Jordan, and Weyl (2021); Brynjolfsson (2022); and 
Acemoglu and Johnson (2023) for the argument that the 
general incentives in the artificial intelligence (AI) commu-
nity and the agenda spearheaded by Alan Turing are creating 
an excessive focus on using AI technologies for automation.

these are quantifiable distortions, correcting 
them does not require government agencies to 
have superior information or an ability to “pick 
winners.” By comparison, it is more difficult to 
objectively determine whether an untried para-
digm would be more successful or whether the 
research community’s enthusiasm for a specific 
topic is a “fad” leading to excessive concentra-
tion of innovative effort.

I reestimate the empirical models from three 
studies in order to obtain some of the key 
parameters of my framework in these three dif-
ferent settings. These studies are Acemoglu and 
Restrepo (2022) for research directed at auto-
mation technologies; Acemoglu et al. (2023) 
for medical research directed toward different 
types of diseases; and Aghion et al. (2016) for 
 fossil-fuel-based and cleaner innovations in the 
automobile industry. In each case, I identify the 
elasticity of substitution between different tech-
nologies and the degree to which past advances 
in one field create a relative advantage for the 
same field in the future. These two parameters 
are critical both for the equilibrium response of 
the direction of innovation to factor supplies, 
prices, and policies and for the divergence of 
equilibrium allocations from  socially optimal 
choices. I combine these numbers with estimates 
of the social costs/benefits of different technol-
ogies and markups to assess how distorted equi-
librium technology choices are, and the welfare 
gains from redirecting innovation. In each case, 
I provide suggestive evidence that innovation 
distortions and their welfare effects are sizable.

Related Literature.—This paper builds on 
and extends the literature on directed techno-
logical change. The first explicit discussion of 
this topic is in Hicks’s (1932) argument that a 
high price for a factor induces technological 
change targeted at economizing on that factor. 
The induced technology literature of the 1960s 
explored whether technological change would 
be  Harrod neutral (purely labor augmenting) 
as typically imposed in neoclassical growth 
models (e.g., Kennedy 1964; Ahmad 1966; 
Samuelson 1965; Drandakis and Phelps 1966). 
But this  literature relied on ad hoc rules  to 
determine the direction of technology, and the 
exact form of these rules had defining effects 
on their results.

An early empirical investigation of these 
issues was Habakkuk’s (1962) seminal study of 
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American technology in the nineteenth century. 
Habakkuk (1962) argued that the direction and 
speed of American technology was shaped by 
a desire to economize on scarce skilled labor 
in the country.  Allen (2009) similarly sug-
gested that Great Britain was the first country 
to industrialize because British labor was more 
expensive than labor in other European econo-
mies and in China.

The more recent literature on the direction 
of technological change has developed models 
with explicit R&D decisions targeted at differ-
ent sectors and monopolistic profits from new 
technologies, shaping the composition of inno-
vation. The first two papers within this area, 
Acemoglu (1998) and Kiley (1999), investi-
gated the reasons why recent industrial tech-
nologies have often been  skill biased and why 
this skill bias may have accelerated starting in 
the 1980s, concurrently with the large increase 
in the supply of educated workers in the United 
States and other industrialized nations.

Acemoglu and Zilibotti (2001) develop a 
model of directed technological change in a 
 multicountry setup, whereby technology choices 
in advanced economies are directed to their 
own needs, creating a form of “inappropriate 
technology”  from the viewpoint of less devel-
oped nations with different factor endowments. 
Broader  cross-country implications of directed 
technological change are studied in Gancia and 
Zilibotti (2005). Acemoglu (2003b) and Thoenig 
and Verdier (2003) explore how trade openness 
impacts the endogenous skill bias of technology. 
Acemoglu (2003a) and Jones (2005) investigate 
why an endogenous direction of technology can 
lead to  Harrod-neutral advances and thus bal-
anced growth as in textbook neoclassical mod-
els. Acemoglu and Linn (2004) and Costinot et 
al. (2019) study how demographic changes that 
alter the future market sizes of different types 
of medical technologies impact the direction of 
innovation, while in Acemoglu (2010) I present 
a formalization of the  Habakkuk-Allen hypoth-
esis, where labor scarcity can be a spur to faster 
economic growth. Bovenberg and Smulders 
(1995); Goulder and Schneider (1999); Di 
Maria and Valente (2008); Grimaud and Rouge 
(2008); Acemoglu et al. (2012); Rodrik (2014); 
Acemoglu, Akcigit, and Kerr (2016); and 
Hémous (2016), among others, discuss the bal-
ance between clean and dirty technologies and 
possible corrective  policies in the presence of 

environmental externalities. Acemoglu and 
Restrepo (2018, 2022) and Hémous and Olsen 
(2022) explore the endogenous choice between 
automation and other types of technologies.

The model I present here generalizes 
Acemoglu (2002) in two important directions. 
First, I extend the baseline framework to per-
form comparative statics with respect to input 
prices, markups, and externalities. Second, to 
the best of my knowledge, I undertake the first 
general analysis of the efficiency of the direction 
of technology within this framework, though 
Acemoglu et al. (2012) provide a characteriza-
tion of optimal policies to restore efficiency in 
a model of endogenous technology and carbon 
emissions.

Also closely related to this paper are a series 
of works that point out why the equilibrium 
direction of technology may be inefficient. 
Acemoglu (2012) shows that equilibrium 
innovation is often insufficiently diverse, 
investing  too much in one of two alternative 
technologies. This innovation pattern then 
leaves the economy vulnerable to shifts in 
underlying conditions or blockages in exist-
ing technological paradigms. Acemoglu et al. 
(2016) propose a model in which the distribu-
tion of innovation between firms of different 
sizes and ages is distorted.

Akcigit, Hanley, and  Serrano-Velarde (2021) 
distinguish between fundamental and applied 
research and argue that the former generates 
more knowledge spillovers. The paper provides 
empirical evidence and a quantitative evaluation 
of this source of inefficiency. Distortions in the 
direction of technology resulting from different 
knowledge spillovers and congestion effects 
are also explored in Dechezleprêtre, Martin, 
and Mohnen (2014); Hopenhayn and Squintani 
(2021); and Martin and Verhoeven (2022), and 
are present in models of international technology 
diffusion as well (e.g., Grossman and Helpman 
1993; Coe and Helpman 1995). Acemoglu, 
Akcigit, and Kerr (2016) show that new ideas 
in some fields matter more for subsequent inno-
vation than others. These differential knowledge 
spillovers are complementary to the distortions 
emphasized in this paper.

Another related literature focuses on the 
choice between different technological para-
digms and the possibility of inefficient  lock-in 
(e.g., Dosi 1982 and Arthur 1989, as well as 
recent work by Acemoglu and Lensman 2023).
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The rest of the paper is organized as fol-
lows. Section  I presents the basic framework 
of directed technological change, first in a 
static and then a dynamic setting, and char-
acterizes equilibrium innovation. Section  II 
compares the equilibrium allocation and the 
types of technologies developed to those that 
are socially optimal. Section III reviews several 
studies that provide evidence on the effects of 
market size, prices, markups, and policies on 
the direction of innovation. Section IV focuses 
on a few of these studies to obtain estimates 
of the key parameters of the framework. It 
then combines these parameters with numbers 
on markups and externalities to present a first 
evaluation of the extent of technology distor-
tions and welfare gains from correcting them. 
Section  V contains concluding comments, 
while the online Appendix presents additional 
derivations, results, and details left out of the 
main text.

I. A Simple Model of Directed Technology

In this section, I provide a simple,  two-sector 
model of directed technology. For simplicity, I 
start with a static setting and then outline the 
dynamic version, which is similar to the setup in 
Acemoglu (2002).

A. Static Environment

The economy is static and inhabited by a rep-
resentative household with preferences given by

(1)  U = ln C + ln E, 

where  C  denotes consumption, while  E  is an 
externality term, specified below. The log func-
tional form is adopted to maximize the sim-
ilarity with the  infinite-horizon version of this 
model. There are three different types of labor 
(two of them working in the two sectors, plus 
scientists). As is standard, I assume that labor 
income from all these types of labor accrues to 
the representative household.

The unique final good is produced with the 
production function

(2)  Y =   [    γ 1    Y  1     
  ε − 1 _ ε    +     γ 2    Y  2     

  ε − 1 _ ε     ]        
  ε _ ε−1  

  , 

where   Y  1    and   Y  2    denote the output levels of the 
two intermediate products, which are  themselves 

produced using two different types of technolo-
gies (clean versus dirty, preventative versus cura-
tive,  worker friendly versus automation, and so 
forth). Their production functions are given by

(3)   Y  j   =  X  j  
α   R  j  

1−α  

for  j ∈  {1, 2}  , where   X  j    denotes a variable 
input aggregate and   R  j    is a resource input, with 
exogenous price   q  j  

R  .
The variable input is in turn produced with the 

following production function:

(4)   X  j   =  ( ∫ 
0
  
 N  j  

    x  j     (ν)    1−β  dν)    L ̃    j   β , 

where    L ̃   j    is a specialized factor  employed 
only in sector  j . For example,    L ̃   2    could corre-
spond to skilled (or  college-educated) labor, 
while    L ̃   1    could be unskilled labor.8 In addi-
tion,   x  j   (ν)   denotes the quantity of the different 
machine varieties used in the production of 
intermediate good  j ∈  {1, 2}   and  β ∈  (0, 1)  . 
In this formulation,   [0,  N  j  ]   denotes the range of 
machines used in the production of  j ∈  {1, 2}   
and captures how advanced the technology for 
intermediate good  j  is. Once invented, each 
machine can be produced at the fixed marginal 
cost  ψ > 0  in terms of the final good.

In what follows, I assume that all labor is 
 supplied inelastically:

    L ̃   j   =  L   j    for j ∈  {1, 2} . 

I model the  innovation possibilities frontier, 
which specifies how new machine varieties are 
invented, by assuming that new ideas (or new 
machine varieties) are created by scientists. 
Specifically, the technology for creating new 
machine varieties is assumed to take the follow-
ing static form:

(5)   N  j   =   η ̃   j   ϕ ( S  j  )   S  j  , 

where    η ̃   j   > 0 ,   S  j    is the number of scientists 
assigned to technology  j , and  ϕ ( S  j  )  =  S  j  

δ/1−δ   
with  δ ∈  [0, 1)  . When  δ > 0 , the innovation 
possibilities frontier features increasing returns 

8 In some applications, these could be the same labor allo-
cated to the two sectors. In that case,   L   1    and   L   2    would be 
endogenous and satisfy a single  market-clearing constraint,   
L  1   +  L   2   ≤  L 

–
  . Equilibrium would then require their earnings 

in the two sectors to be equalized—that is,   w  2   /  w  1   = 1 .
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to scale at the sectoral level. In the dynamic 
model, these increasing returns will take the form 
of path dependence, meaning that past advances 
in the technology of a sector will make further 
advances in the same sector easier. Scientists 
take the behavior of other scientists—and thus 
the value of the  ϕ  function—as given. The case 
of  δ = 0  corresponds to the useful benchmark 
in which there are no increasing returns to scale 
and scientists have a constant productivity in 
each sector.

Scientists that innovate and create varieties of 
machines become the owners of the technology 
monopolists that sell those varieties. This means 
that when a scientist invents a new machine for 
sector  j ∈  {1, 2}  , she will be able to make a 
profit   π j   , which I characterize below.

The total number of scientists is fixed, so mar-
ket clearing for scientists yields9

(6)   S  1   +  S  2   =  S 
–
 . 

To determine the profit levels from new 
machines for the two sectors, I adopt a simple 
market structure where each sector is subject to 
a fringe of competitive firms that can imitate and 
produce every machine but do so less efficiently. 
This forces a limit price in each sector, given by

(7)   q  j   =  (1 +  µ j  ) ψ, 

where   µ j   ∈  (0,   
β _ 

1 − β  ]  . This formulation 

provides a tractable form in which mark-
ups are potentially different between the two  
sectors.

Finally, I assume that the externality term in 
(1) takes a simple form given by

(8)  E =  e   − ∑ j∈ {1,2}   
      τ ̃   j  ln N  j   , 

9 Formally, in online Appendix A, I suppose that each 
scientist has mass  𝔰 > 0  and then consider the limit where  
𝔰 → 0 . This only matters in ensuring that deviations are 
well defined in the presence of externalities. Additionally, 
note that the assumption that scientists take the value of  
 ϕ ( S  j  )   as given does not matter for the results because with 
a fixed supply of scientists and the  iso-elastic form of the  ϕ  
function, the allocation of scientists between the two sectors 
is the same even if scientists form consortia that internal-
ize the positive externalities they create on other scientists 
working in the same field. Finally, it is straightforward to 
make the total supply of scientists endogenous to the income 
that they derive from innovation, but I will not do so in this 
paper.

where    τ ̃   j   ≥ 0  represents a negative external-
ity from technology  j ∈  {1, 2}   (or, if there 
are positive externalities, then    τ ̃   j   < 0 ). The 
assumption that the negative externalities orig-
inate from the level of technology is adopted for 
simplicity. Because these externalities  do not 
impact market prices and are ignored by scien-
tists and firms, they will play no role in the equi-
librium allocation but will have a major impact 
on the efficiency of the equilibrium.10

An equilibrium in this environment is defined 
as an allocation in which both the final good sec-
tor and the two intermediate sectors minimize 
costs, technology monopolists maximize profits 
by setting the limit price given in (7), scientists 
maximize their income by choosing which sec-
tor to innovate in, and all markets clear. I am 
particularly interested in the equilibrium level 
of relative technology, denoted by   n   EQ   (where  
 n ≡  N  2   /  N  1   ).

B. Static Equilibrium

 Cost-minimizing demands for machines and 
resources can be computed from the maximiza-
tion problem

(9)    max  
 { x  j   (ν) , L  j  , R  j  } 

    p  j      ( ∫ 
0
  
 N  j  

    x  j     (ν)    1−β  dν ⋅  L  j  
 β )    

α
   R  j  

1 − α 

 −  ∫ 
0
  
 N  j  

    q  j   (ν)   x  j   (ν) dν −  w  j    L  j   −  q  j  
R   R  j  , 

where   w  j    is the price (wage) of factor  
 j ∈  {1, 2}  . Combining (7) with the expressions 
for machine and resource demands (provided 
in online Appendix A), we obtain technology 
monopolists’ profits as

(10)   π j   (ν)  =  µ j   ψ  x  j   (ν)  

=  µ j   ψ 

⎡

 ⎢ 
⎣
  
(

 p  j     (  
 (1 − β) α
 _ 

 (1 +  µ j  ) ψ  )    

α

    
(

  1 − α _ 
 q  j  

R 
  

)
    
1−α

 
)

    

  1 _ αβ  

   L   j  

⎤

 ⎥ 
⎦
  

≡  π j  , 

10 If, instead, the externalities were from the production 
or consumption levels of the intermediates, technology 
would have additional indirect effects working through 
changes in equilibrium prices. The simplification enables 
me to remove these indirect effects.
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where the  square-bracketed expression in the 
second line is   x  j   (ν)  ≡  x  j    and the last equality 
defines the equilibrium flow profits for the two 
sectors,   π j   , which, as claimed above, is identical 
for all machines used in sector  j = 1, 2 .

Setting the final product as the numeraire, the 
 cost-minimization condition for the final good 
sector implies

(11)   p  j   =  γ j     (  
 Y  j  

 _ 
Y

  )    
−  1 _ ε  

 . 

Combining this expression with (3), (4), and the 
expressions for machine and resource demands 
in online Appendix A, we obtain

(12)  p ≡   
 p  2   _  p  1     =   (  

 γ 2   _  γ 1    )    
  
αβε _ σ  

    (  
1 +  µ 2   _ 
1 +  µ 1  

  )    
  
α (1−β) 

 _ σ  

  

 ×   (  
 q  2  

R 
 _ 

 q  1  
R 
  )    

  1−α _ σ  

    (  
 N  2   _  N  1  

  )    
−  

αβ _ σ  
    (  

 L  2   _  L  1  
  )    

−  
αβ _ σ  

 , 

where  σ ≡ αβε + 1 − αβ  is the derived elas-
ticity of substitution between the two types of 
labor. Intuitively, the relative price of a sector’s 
product is decreasing in the technology  and 
labor supply to the sector, since these tend to 
expand its output. In addition, higher resource 
prices and markups increase a sector’s relative 
price.

The price levels are then obtained by com-
bining this relative price equation with the ideal 
price condition, which uses the fact that the final 
good is the numeraire:

(13)    [ γ  2  
ε    p  2  

1−ε  +  γ  1  
ε    p  1  

1−ε ]    
  1 _ 1−ε    = 1. 

Factor prices are equal to the value of the 
marginal product of the relevant factor:  
  w  j   = αβ  p  j    Y  j   /  L  j    for  j = 1, 2 . Using this 
 equation and (12), the relative wage of the two 
types of labor can be derived as

(14)    
 w  2   _  w  1     =   (  

 γ 2   _  γ 1    )    
  ε _ σ  
    (  

1 +  µ 2   _ 
1 +  µ 1  

  )    
−  

 (1−β)  (σ−1) 
 _ βσ  

  

  ×  (  
 q  2  

R 
 _ 

 q  1  
R 
  )    

−  
 (1−α)  (σ−1) 

 _ αβσ  

    (  
 N  2   _  N  1  

  )    
  σ−1 _ σ  

    (  
 L   2   _  L   1  

  )    
−  1 _ σ  

 . 

This expression confirms that  σ  is indeed 
the  elasticity of substitution between the 
two types of labor. Equation (14) addition-
ally shows that   N  2   /  N  1     plays the role of rela-
tive  factor-augmenting technological change. 
We can see that   (σ − 1)  / σ  also regulates the 
impact of relative technology   N  2   /  N  1   , markups, 
and resource prices, since the net effect of these 
economic quantities depends on whether they 
affect the production level of an intermediate 
good by more or less than its price.

In an interior equilibrium in which research 
is directed to both technologies, scientists 
should make the same profits from improving 
the technology for either sector. Recalling that 
the productivity of a scientist when she works 
on technology  j  is    η ̃   j   ϕ ( S  j  )  =   η ̃   j    S  j  

δ/1−δ  , an inte-

rior equilibrium must satisfy    η ̃   1    S  1  
δ/1−δ   π 1   =  

  η ̃   2    S  2  
δ/1−δ   π 2   . Inverting  ϕ ( S  j  )  , we have  

  N  j   =   η ̃   j    S  j  
1/1−δ   , or   S  j   =   ( N  j   /   η ̃   j  )    1−δ  . Substituting 

this into the condition for an interior equilibrium 
and defining   η j   ≡   η ̃    j  1−δ  , we have

(15)   η 1    N  1  
δ   π 1   =  η 2    N  2  

δ   π 2  . 

Combining this equation with (10) and (12), 
we obtain

(16)   n   EQ  =   [  
 η 2   _  η 1       (  

 γ 2   _  γ 1    )    
  ε _ σ  
    
 µ 2   _  µ 1       (  

1 +  µ 2   _ 
1 +  µ 1  

  )    
−  

σ− (1−β) 
 _ βσ  

  

  ×  (  
 q  2  

R 
 _ 

 q  1  
R 
  )    

−  
 (σ−1)  (1−α) 

 _ αβσ  

    (  
 L  2   _  L  1  

  )    
  σ−1 _ σ  

 ]    

  σ _ 
1−δσ  

 . 

Equation (16) links the equilibrium technology 
ratio between the two sectors to parameters of 
the final good production function, the innova-
tion possibilities frontier, resource prices, mark-
ups, and the relative supplies of factors employed 
in the two sectors. For example, focusing on 
the case where  δσ < 1 ,   n   EQ   is increasing in  
  L   2   /  L   1    if and only if  σ > 1 , as I discuss in 
greater detail below.

The first proposition follows from this discus-
sion and equation (16), and the uniqueness of 
equilibrium is established in online Appendix A.

PROPOSITION 1: Suppose that  δ < 1 / σ . 
Then there exists a unique equilibrium in which 
the relative technology ratio is given by (16).
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The comparative statics of the direction of 
technology in this unique equilibrium are pro-
vided readily by equation (16) and will be dis-
cussed after I present the dynamic version of this 
environment in the next subsection.

To understand the role of the condition  
δ < 1 / σ , note that the stabilizing economic force 
in this model is the lower price of the intermedi-
ate good that is technologically more advanced, 
as shown by (12), and this force is stronger when  
σ  is lower. The destabilizing force, on the other 
hand, is the extent of increasing returns,  δ . When  
δ < 1 / σ , the sector that is further ahead tech-
nologically faces sufficiently lower returns from 
innovation, and this ensures the existence and 
uniqueness of the interior equilibrium.

In contrast, when  δ > 1 / σ , the degree of 
increasing returns to scale in research is suffi-
ciently strong that there does not exist an equi-
librium in which research is directed toward both 
sectors. I show in online Appendix A that in this 
case there are two corner equilibria—all scien-
tists working in sector 1 or all scientists working 
in sector 2. This discussion also illustrates why 
the comparative statics of (16) are only relevant 
when  δ < 1 / σ .

C. Dynamic Environment

I now present the dynamic version of this 
economy, for brevity emphasizing only the ele-
ments that are different from the static setup. 
Suppose that time is continuous and runs to 
infinity. There is an  infinitely lived represen-
tative household with preferences given by  
 U (0)  =  ∫ 0  

∞   e   −ϱt  U (t) dt , with  U (t)  = ln C (t)   
+ ln E (t)  , where  C (t)   denotes consumption 
at time  t ,  E (t)   is the externality term as in the 
text, and  ϱ  is the discount rate of the representa-
tive household. Analogously with (8), we have  
 E (t)  =  e   − ∑ j∈{1,2}  

      τ ̃   j  ln N  j   (t)   .
All of the equilibrium conditions derived in 

the static model now apply, except that they 
should be indexed by time. The main difference 
is the innovation possibilities frontier, which 
takes the form

(17)    N ˙   j   (t)  =  η j    N  j     (t)     (1+δ) /2  

 ×  N  ∼j     (t)     (1−δ) /2   S  j   (t) , 

where   S  j   (t)   denotes scientists working for 
innovation in technology  j  at time  t  and the   

N  j     (t)     (1+δ) /2   term captures path dependence 
in innovation from one’s  own sector, while   
N  j     (t)     (1−δ) /2   is the contribution of the technology 
of the other sector. This innovation possibilities 
frontier is the dynamic analogue of (5). Notice 
the difference from the increasing returns to 
scale in (5): in the dynamic case, there is a form 
of increasing returns to scale, but it is realized 
over time. This is the reason I refer to  δ  as the 
degree of path dependence—when  δ > 0  , once 
a sector is technologically ahead of the other 
one, it becomes more productive in generating 
new innovations.

The total number of scientists is again fixed, 
so   S  1   (t)  +  S  2   (t)  =  S 

–
   at all  t . Scientists who 

innovate and create new varieties now become 
the perpetual owners of the technology monop-
olists that sell those varieties. Suppose also that 
resource prices, the   q  j  

R  ’s, are constant, which 
implies that profits from technology  j = 1, 2  in 
this dynamic environment are constant and are 
still given by   π j    in equation (10).

I first focus on an interior balanced growth 
path (BGP) in which  n (t)  ≡  N  2   (t)  /  N  1   (t)   is 
constant and thus scientists work on both tech-
nologies. This requires

   η 1    π 1    N  1     (t)    δ  =  η 2    π 2    N  2     (t)    δ   for all t. 

This condition is identical to (15) in the previous 
subsection. Hence, the BGP technology ratio in 
this dynamic model is identical to the equilib-
rium technology ratio in the static model.

PROPOSITION 2: There exists a unique BGP, 
where the equilibrium direction of technology is 
given by equation (16 ).

The fact that the unique BGP ratio coincides 
with the static equilibrium technology ratio is 
because of the way in which the static model 
was set up to mimic the insights of the dynamic 
framework.11 While the BGP here coincides 
with the equilibrium of the static model, the full 
equilibrium path of the dynamic model leads to 
somewhat different results, as explained in the 
next proposition.

11 The existence of a unique BGP is a consequence of the 
simplifying functional form assumptions. In general, as dis-
cussed in Acemoglu (2007), multiple equilibria are possible. 
But given my focus here, uniqueness enables me to focus on 
issues of distorted technology more directly.
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PROPOSITION 3: If  δ < 1 / σ , the unique 
interior BGP (given by (16)) is globally 
( saddle-path) stable. In particular, starting from 
any initial conditions, the economy tends to this 
interior BGP. Moreover, the unique dynamic 
equilibrium allocates all scientists to the sector 
that is relatively behind (compared to the BGP). 
As a result, the BGP is reached in finite time.

If  δ > 1 / σ , then the interior BGP is unstable, 
and starting from almost all initial conditions 
the economy limits to an allocation in which 
only one of the two technologies advances.

This proposition clarifies why the case with  
δ < 1 / σ  is the focal one in the dynamic econ-
omy as well, and the intuition for this condition 
is similar: the stabilizing force via relative price 
changes should be stronger than the destabiliz-
ing force due to path dependence.

When  δ > 1 / σ , the equilibrium in the 
dynamic model is still unique (in contrast to the 
static model, where there were multiple equi-
libria), but now the relative technology level 
identified by condition (16) corresponds to an 
unstable BGP and the economy will never con-
verge to it. Rather, the equilibrium allocation 
will limit to one of the two corner BGPs, where 
the economy has a constant growth rate, driven 
by research in only one of the two technologies.

D. Some Properties of Equilibrium  
Technology Choices

I now review some properties of equilibrium 
direction of technology (using either the static 
equilibrium or the BGP of the dynamic equi-
librium). This discussion will be brief because 
most of this material is familiar from previous 
work and is not my main focus here, though 
 recognizing these comparative statics helps 
build intuition about the workings of the model.

Relative Supply Effects.—The direction of 
technology is determined by the relative sup-
ply of labor used with the two types of tech-
nologies,   L   1    and   L   2   . As in Acemoglu (1998, 
2002), the implications of relative supplies on 
the direction of technology depend on market 
size and price effects. Holding prices   p  1    and   p  2    
fixed, greater relative supply of one type of 
labor expands the market size of the technol-
ogy complementing that type of labor, and it 
further encourages the development of this 

 complementary technology (i.e., a higher   L   2   /  
L   1     increases   n   EQ  ). However, in equilibrium, 
prices also adjust, and this creates a counter-
vailing force. Whether this countervailing force 
is more powerful than the direct market size 
effect depends on the elasticity of substitution 
between the two types of labor. Specifically, 
when  σ > 1 , the market size effect dominates 
the price effect, and   n   EQ   is increasing in   L   2   /  L   1   .  
In contrast, when  σ < 1  , the price effect 
is more powerful, and   n   EQ   is decreasing  
in   L   2   /  L   1   .

Weak Bias of Technology.—As we have just 
seen, the impact of   L   2   /  L   1    on   n   EQ   is ambig-
uous and depends on the elasticity of substi-
tution between the two factors. Nevertheless, 
as emphasized in Acemoglu (2002), there is a 
general, unambiguous result about the bias of 
technology. A change in technology is said to 
be biased toward a factor if, holding all other 
variables constant, it increases the relative 
price of that factor. The main result that holds 
in this class of models is that an increase in   
L   2   /  L   1    always induces a change in technology 
that is (weakly) biased toward   L   2   . For exam-
ple, if the relative supply of  college-educated 
workers increases, then technology becomes 
more  skill biased. Intuitively, this is because, 
as equation (14) demonstrates, when  σ > 1 , a 
greater   L   2   /  L   1    raises   n   EQ  , and in this case it is 
also a higher level of   n   EQ   that is biased toward 
type 2 workers. Conversely, when  σ < 1 , it is 
a decrease in   n   EQ    that is biased toward type 2 
workers, and in this instance, higher   L   2   /  L   1    leads 
to lower   n   EQ   . Hence, regardless of the exact 
value of the elasticity of substitution between 
the two factors, technology always (weakly) 
moves in a direction that is favorable to the 
more abundant factor. Among other things, this 
force might explain why aggregate technology 
has become more  skill biased over the last eight 
decades, while the supply of skilled workers 
in the industrialized world has risen rapidly 
(Acemoglu  1998). Acemoglu (2007) shows that 
this weak bias result is more general and holds 
without any of the functional form assumptions 
imposed here, provided that some mild regular-
ity conditions are satisfied.

Strong Bias of Technology.— By substituting 
the expression for   n   EQ   from (16) into (14), we 
obtain the  long-run (endogenous technology) 



MAY 202310 AEA PAPERS AND PROCEEDINGS

relationship between relative supplies and rela-
tive wages as

(18)    (  
 w  2   _  w  1    )    

BGP
  = Γ   (  

 L   2   _  L   1  
  )    

  σ−2+δ _ 
1−δσ  

 , 

with

  Γ ≡   [  
 η 2   _  η 1       (  

 γ 2   _  γ 1    )    
  
ε (1−δ) 

 _ σ−1  
  (  

 µ 2   _  µ 1    )  

 ×   (  
1 +  µ 2   _ 
1 +  µ 1  

  )    
−  

1−δ (1−β) 
 _ β  

    (  
 q  2  

R 
 _ 

 q  1  
R 
  )    

−  
 (1−α)  (1−δ) 

 _ αβ  

 ]    

  σ−1 _ 
1−δσ  

 , 

where recall that  δσ < 1 . This equation implies 
that the relationship between relative wages 
and relative supplies is  upward sloping when  
σ > 2 − δ , exactly as in Acemoglu (1998, 
2002). Intuitively, the condition  σ > 2 − δ  
ensures that technology moves sufficiently in the 
direction of the factor that becomes more abun-
dant. With this powerful change in the direction 
of technology, the demand for the more abundant 
factor increases so much that the overall conse-
quence is to raise this factor’s marginal prod-
uct more than that of the less abundant factor. 
Consequently, the locus of  long-run equilibria 
becomes upward sloping—greater relative sup-
ply translates into greater relative wage. Notice 
that when technology is fixed, relative demand 
curves are always downward sloping in this 
model (as in all models with  price-taking firms). 
The  upward-sloping demand curve is a conse-
quence of technology’s response to changes in 
relative supplies of factors. Acemoglu (2007) 
provides a version of the same result for more 
general technologies and also an analogue of 
this result for the wage level of a factor rather 
than its relative wage.

Resource Prices.— Equation (16) also clarifies 
that resource prices will have a major impact on 
the direction of technology. In particular, when  
σ > 1 , an increase in   q  2  

R   (relative to   q  1  
R  ) reduces   

n   EQ   because higher resource prices for sector 2 
make production, and thus the technologies 
being used in this sector, less profitable.

Effects of Markups.— Equation (16) further 
highlights a  first-order effect of markups on the 
direction of technology, and under relatively 

weak conditions, a higher   µ 2    (holding   µ 1    con-
stant) increases   n   EQ  .12

Many of these theoretical implications receive 
empirical support, as I discuss in Section III.

II. Distorted Technology

This section  compares the equilibrium and 
socially optimal technology choices and identi-
fies several reasons why equilibrium technology 
choices will be distorted.

A. Socially Optimal Direction  
of Technology

I now consider the social planner’s solution 
in the static environment (the same exercise 
for the dynamic setup is presented in online 
Appendix  A). Differently from equilibrium 
incentives, the social planner takes into account 
the externalities that the two intermediates gen-
erate. Naturally, the planner also cares about 
the full income stream accruing to the repre-
sentative household rather than just the monop-
oly profits.

In what follows, I further focus on the case 
in which the social planner cannot directly con-
trol prices and allocations—and thus will not 
be able to correct for externalities and markups 
by introducing Pigovian taxes/subsidies. This 
choice has three motivations. First, practical 
( information-related) or political constraints 
often prevent governments from removing 
monopoly markups or may even make it diffi-
cult to implement corrective taxes for external-
ities. Second, as discussed in Acemoglu et  al. 
(2012),  Pigovian taxes are not always suffi-
cient by themselves to restore optimality when 
the direction of technology is endogenous.13 

12 The countervailing force here is that higher markups 
reduce output and, via this channel, increase prices. It is 
straightforward to verify that more research is directed to 
sector  j = 1, 2  when its markup   µ j    increases, provided that  
σβ +  µ j   (1 − σ)  (1 − β)  > 0  . This condition is satisfied 
whenever  σ ≤ 1  or whenever   µ j    is not too large.

13 This is because in models with endogenous innovation, 
there are distortions both in the production sector (captured 
by the externalities targeted by Pigovian taxes) and in the 
allocation of research effort between different sectors (due 
to monopoly profits and knowledge externalities, such as 
the path dependence introduced above). As a result, optimal 
allocations should correct for both sets of distortions. For 
example, in the context of the energy sector, relying just 
on carbon taxes without actively redirecting technological 
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Third, this choice also enables me to clearly 
focus on the distortions created by the allocation 
of research effort and the welfare gains from 
eliminating these technology distortions (rather 
than the full welfare consequences of various 
microeconomic distortions).

Given these assumptions, the only choice 
of the social planner is the allocation of scien-
tists between the two technologies. In practice, 
this can be achieved by targeted research sub-
sidies or regulations, and here I assume that 
the planner directly controls this allocation. 
Hence, in the static environment, the planner’s 
problem can be written as maximizing (1) by 
choosing   S  1    and   S  2    subject to (6) and the inno-
vation possibilities frontier (5) and taking all 
other equilibrium relationships, in particular 
the price function (12), as given. This yields 
a simple maximization problem for the social  
planner:

    max  
 S  1  , S  2  ≥0:  S  1  + S  2  ≤ S 

–
 
   ln Y [ N  1  ,  N  2  ]  + ln E [ N  1  ,  N  2  ]  

subject to (5), (6), and (12). Taking the  first-
order conditions for this expression, noting 
that  dln  N  j   = d  N  j   /  N  j   , and substituting for   S  j    
in terms of   N  j    as in the equilibrium analysis, 
this necessary condition for an interior social 
optimum can be written as

(19)   η 1   [  dln Y _ 
dln  N  1  

   +   dln E _ 
dln  N  1  

  ]  = 

  n   − (1−δ)    η 2   [  dln Y _ 
dln  N  2  

   +   dln E _ 
dln  N  2  

  ] . 

Clearly,  dln E / dln  N  j   = −   τ ̃   j   , and in online 
Appendix A I prove that  dln Y / dln  N  j   =  

 γ  j  
ε   p  j  

1−ε   . Moreover, defining   τ j   ≡   τ ̃   j   /  ( γ  j  
ε   p  j  

1−ε )    
as a  price-adjusted externality, the  first-order 
condition can be simplified to

   η 1    γ  1  
ε    p  1  

1−ε  (1 −  τ 1  )  = 

  η 2    p  2  
1−ε   γ  2  

ε   (1 −  τ 2  )   n   − (1−δ)  . 

change away from  fossil fuels would slow down the transi-
tion to clean energy and amplify its  short-run costs.

We can then substitute from (12) and solve for 
the socially optimal ratio of technology between 
the two sectors,   n   SP  , as

(20)   n   SP  =   [  
 η 2   _  η 1       (  

 γ 2   _  γ 1    )    
  ε _ σ  
    (  

1 +  µ 2   _ 
1 +  µ 1  

  )    
  
1−β _ β      1−σ _ σ  

 

 ×  (  
1 −  τ 2   _ 
1 −  τ 1  

  )    (  
 q  2  

R 
 _ 

 q  1  
R 
  )    

−  
 (σ−1)  (1−α) 

 _ αβσ  

    (  
 L  2   _  L  1  

  )    
  σ−1 _ σ  

 ]    

  σ _ 
1−δσ  

 . 

It is also useful to write the ratio of socially 
optimal and equilibrium technologies as

(21)     n   SP  _ 
 n   EQ 

   = 

   [  (  
 µ 2   _  µ 1    )    

−1
  (  

1 +  µ 2   _ 
1 +  µ 1  

  )  (  
1 −  τ 2   _ 
1 −  τ 1  

  ) ]    
  σ _ 
1−δσ  

 . 

It can be verified that given   τ 1    and   τ 2   ,  
a higher   µ 2    always implies a lower   n   SP  /  n   EQ  .14 
There are indirect effects from markups, but the 
overall impact from a higher sectoral markup 
is to distort technology toward that sector. 
Additionally, a higher   τ 2    always implies a lower   
n   SP   and   n   SP  /  n   EQ   because of the negative exter-
nalities. Finally, the impact of all of these factors 
on the extent of technology distortion is ampli-
fied by  σ /  (1 − δσ)  . This is because a higher 
elasticity of substitution between factors and a 
greater degree of increasing returns to scale (or 
path dependence) in innovation makes the equi-
librium direction of technology more responsive 
to markups and the social planner’s preferred 
direction more sensitive to externalities. The 
next proposition summarizes these results.

PROPOSITION 4: Suppose that  δ < 1 /σ . 
Then the social planner’s problem has a unique 
solution given by (20). Greater externali-
ties and higher markups in sector  j  imply that 

14 Recall that   τ 1    and   τ 2    are functions of prices, and in 
(20), they are evaluated at the relative technology level   n   SP  . 
However, the interpretation of (21) requires some caution. In 
particular, in writing this expression, we have to hold   τ 1    and   
τ 2    fixed. Or, alternatively, when distortions are small, inter-
mediate prices   p  1    and   p  2    under   n   EQ   and   n   SP   will be approx-
imately the same, and thus a given level of    τ ̃   j    will map to 
approximately the same level of   τ j   .
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 equilibrium technology is excessively distorted 
toward sector  j .

This proposition implies that the only sources 
of divergence between the equilibrium and the 
social planner’s solution in this setting are due 
to markups and externalities. The social plan-
ner would like to move equilibrium technology 
away from sectors that have high markups and 
high negative externalities.

Equation (21) additionally implies that tech-
nology distortions can be quantified using four 
sets of quantities: markup differences,   µ 2   /  µ 1   ; 
externality differences,   (1 −  τ 2  )  /  (1 −  τ 1  )  ; the 
degree of increasing returns to scale,  δ ; and the 
elasticity of substitution between the two types 
of labor used in the two sectors,  σ  (which is in 
turn a function of  ε ,  α , and  β ).

As in the equilibrium characterization in 
Proposition 1, Proposition 4 focuses on the case 
where  δ < 1 / σ . When this condition is vio-
lated, the social planner prefers all scientists to 
work only in one of the two sectors (see online 
Appendix A), whereas, as we have seen, all sci-
entists working in either sector is an equilibrium.

Given the equilibrium characterization, one 
can also compute the welfare loss in equilib-
rium relative to the social optimum. Online 
Appendix  A provides a  first-order approxima-
tion to the change in welfare between the equi-
librium and the social optimum, and I present 
estimates of this welfare loss in the context of 
the applications in Section IV.

B. Other Considerations

Before moving to an assessment of the quan-
titative extent of distorted technology in various 
applications, I comment on a few additional 
issues.

First, I have simplified the discussion by 
ignoring other sources of distortions in the 
direction of technology. One potentially import-
ant type of distortion originates from visions, 
beliefs, fads, and ideologies. For example, the 
private sector may come to believe that only one 
path of development of a scientific platform is 
feasible or may be gripped by a “technology 
fad.”  These issues are discussed in Acemoglu 
and Restrepo (2020b) and Acemoglu and 
Johnson (2023) in the context of AI—arguing 
that the influence of dominant companies and 
certain research approaches developed in the 

1950s and 1960s pushed the field too much 
toward  automation-related applications. These 
considerations can be introduced in the current 
model in a  reduced-form manner by assuming 
that the market’s assessment of   η 1    and   η 2    are 
systematically biased away from the true values 
of these parameters. Alternatively, one of the 
sectors may offer greater  reputation-building 
opportunities to researchers. The more inter-
esting question, which is beyond the scope of 
the current paper, is how such misperceptions 
or distorted incentives arise and whether there 
could be systematic ways in which government 
regulation could detect and prevent them.

Second, for tractability’s sake, I have 
assumed that the degree of increasing returns to 
scale, captured by the parameter  δ , is the same 
in the two sectors. In practice, certain types of 
research—for example, those targeting a scien-
tific breakthrough or the “research” rather than 
the “development”  part of R&D—may gener-
ate more knowledge spillovers (e.g., Akcigit, 
Hanley, and Serrano-Velarde 2021). Such spill-
overs can also be introduced in our context, 
though measuring the exact extent of such exter-
nalities is challenging.

Third, policymakers may also wish to take into 
account distributional and other social effects.15 
If society engages in costly fiscal redistribu-
tion in order to increase the incomes of certain 
groups (e.g., the unemployed,  low-skill workers, 
and so forth), then we can think of technologies 
that directly increase these groups’ productiv-
ity as generating  first-order pecuniary exter-
nalities, which can again be captured by our  τ   
parameters.

Fourth, there may be reasons why the market 
underinvests in diverse technologies, as argued 
in Acemoglu (2012). Specifically, when there 
are shifts in which technologies are appropriate 
in different time periods, the market economy 
may underinvest in having a diverse portfolio 
of technologies that can act as a stepping stone 
when the underlying environment changes.

15 Inequality generated by some technologies may create 
additional social problems (as argued, e.g., by Wilson 1996 
and documented by Autor, Dorn, and Hanson 2019) or may 
erode support for democracy (as shown in Acemoglu et al. 
2021). These considerations would constitute additional 
reasons for altering the direction of technology. Since these 
effects are harder to quantify, they fall beyond the scope of 
the current paper.
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Finally, in richer models, there can be coordi-
nation failures whereby the market coordinates 
on or stays too long with an inferior technology 
(see Acemoglu and Lensman 2023 for recent 
work on this topic). Once again, quantifying 
distributional, diversity, and coordination effects 
is more challenging, and I leave these issues for 
future work as well.

III. Existing Empirical Evidence

In this section, I review several empirical 
papers from the areas of energy, health tech-
nologies, agriculture, modern automation tech-
nologies, and the introduction of new industrial 
machinery during the industrial revolution 
to provide an overview of a body of grow-
ing empirical evidence on  how market sizes, 
resource prices, and policy impact the direction 
of technology. The available evidence generally 
supports the predictions of the theoretical frame-
work of this paper.

A. Energy

There is a large and growing litera-
ture that shows the responsiveness of both 
 energy-generation and  energy-use technologies 
to resource prices. Newell, Jaffe, and Stavins 
(1999) studied the impact of energy prices on 
 energy-saving innovations. The authors collected 
data on the cooling/heating capacity; energy 
flow; energy efficiency; and price of room air 
conditioners, central  air conditioning units, and 
gas water heaters from the  Sears, Roebuck and 
Company catalogs between 1958 and 1993. 
Their results show that higher energy prices 
have a significant impact on energy efficiency; 
the models offered to consumers became more 
 energy efficient when resource costs rose. The 
authors also present some evidence that energy 
standard regulations had a similar effect for room 
air conditioners. Consistent with the idea that 
there is a strong  trade-off between different types 
of technologies, the authors  additionally show 
that energy efficiency adjustments are associated 
with higher prices, and, in fact, they do not find 
significant effects on the overall amount of tech-
nological change. Hence, this study suggests that 
the direction of technology may be more respon-
sive to resource prices than the overall amount 
of technological change, which is consistent with 
the framework presented here when  σ > 1 .

Popp (2002) studies US patent and cita-
tions data from 1970 to 1994. He establishes a 
robust association between energy prices and 
 energy-efficient innovations. He also shows a 
significant role of the knowledge base, reminis-
cent of path dependence in the innovation possi-
bilities frontier above.

Aghion et  al. (2016) provide additional 
evidence consistent with these patterns. 
These authors build a  firm-level dataset of 
 automobile-related patents across 80 countries 
and classify these innovations into dirty and 
clean technologies—for example, internal com-
bustion engine versus hybrid and electric vehi-
cles. They show that higher fuel prices induced 
by carbon taxes lead to more clean and less dirty 
innovations in the automobile industry. They 
also estimate statistically significant path depen-
dence. In Section  IV, I use this study’s data to 
present some related results as a basis of my 
quantitative exercise.

More recent work by Acemoglu et al. (2019) 
documents a relationship between natural gas 
prices, driven by the US shale gas boom, and 
overall green patenting (relative to either all 
patents, energy patents, or dirty patents). In par-
ticular, green patents surged when natural gas 
prices were high and then declined as the shale 
gas boom kicked in.

Overall, the evidence from the energy sec-
tor is fairly clear that resource prices have the 
expected impact on the direction of technology 
and that the direction of technology is possi-
bly more responsive than the overall amount of 
innovation. There is also evidence of path depen-
dence, whereby  energy-efficient (or green) inno-
vations build on a specific knowledge base that 
past innovations of this type have created.

B. Health and Medical Technologies

The direction of health-care and medical tech-
nologies appears to be highly responsive to mar-
ket sizes, prices, and regulations, along the lines 
of the predictions of the framework presented 
here. Finkelstein’s (2004) pioneering study 
focuses on several policy changes, expanding 
the market size for certain vaccines. Specifically, 
in 1991 the Center for Disease Control recom-
mended that all infants be vaccinated against 
hepatitis B, while in 1993 Medicare began 
 covering the full cost of influenza vaccination for 
Medicare recipients (without any  copayments). 
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Finkelstein (2004) also looks at a 1986 reform 
indemnifying manufacturers from lawsuits from 
potential adverse reactions to childhood vac-
cines against polio;  diphtheria-tetanus; measles, 
mumps, and rubella; and pertussis. Finkelstein 
(2004) estimates a 2. 5-fold increase in the like-
lihood of clinical trials for the relevant vaccines 
following the  policy-induced expansion of mar-
ket size.16

Acemoglu and Linn (2004) focus more 
directly on the market size for new pharma-
ceuticals. They exploit variation originating 
from demographic change—for example, the 
baby boomer generation first creating demand 
for pharmaceuticals targeted at younger and 
 middle-aged patients and later, as this cohort 
aged, for drugs targeting diseases for older 
patients. They find a powerful impact of mar-
ket size on the introduction of new molecular 
entities, as well as the entry of new generics. 
Their baseline estimate suggests that a 1  per-
cent increase in market size is associated with a 
4 percent increase in new  nongeneric drugs. In 
subsequent work, Acemoglu et al. (2006) pro-
vide suggestive evidence that Medicare induced 
an increase in pharmaceutical innovations tar-
geted at the elderly. Costinot et al. (2019) pro-
vide similar evidence from a  cross-country 
setting. These authors combine predictions 
about the direction of innovation with the home 
market effect (whereby countries specialize in 
and export products targeted at their home mar-
ket) and document that countries invest more 
in and export drugs that have a greater demand 
among their home population.

More recent research by Acemoglu et  al. 
(2023) assembles a comprehensive dataset of 
 cross-country medical research and disease 
burdens impacting different countries. They 
estimate a strong association between the bur-
den from a disease and research directed toward 
that disease. Below, I also present regression 

16 Finkelstein (2004) does not find an increase in medi-
cal trials and patents, which may be due to the fact that the 
relevant knowledge for additional rollout of these six vac-
cines already existed. We know from the more unique but 
sharper variation coming from the  COVID-19 pandemic that 
entirely new vaccines, together with a new body of scientific 
knowledge, were created in response to the huge increase in 
the demand for vaccines against this novel virus (see, e.g., 
Zuckerman 2021).

evidence from the dataset compiled by these 
authors.

Finally, the only paper I am aware of that 
provides evidence relevant for the effects 
of markup differences is Budish, Roin, and 
Williams (2015). These authors observe that the 
US patent system, where protection is granted 
for a fixed term length, creates greater pecuniary 
incentives for  late-stage cancer treatments rela-
tive to  early-stage treatments and cancer preven-
tion. They show that there is a powerful effect 
favoring  late-stage treatments. This can be inter-
preted as a difference in markups between two 
(imperfectly substitutable) treatment modalities 
targeting the same underlying problem.

Overall, health-care and medical technologies 
provide ample evidence supporting the role of 
market size in the direction of innovation, and 
several of the studies show that  policy-induced 
changes in market size have sizable effects 
on the direction of technology as well. There 
is additionally some evidence on the role of 
markups.

C. Agriculture

Early work by Hayami and Ruttan (1970) 
applied ideas from the induced innovation lit-
erature to agriculture, focusing on incentives 
for developing more or less  capital-intensive 
agricultural methods. More recently, Moscona 
(2021) studied the  long-run effects of the soil 
erosion and reduced soil productivity in the 
American Midwest following the Dust Bowl 
and found that agricultural innovation shifted 
toward more impacted crops in an apparent 
effort to make them more productive under the 
new soil conditions (see also Hornbeck 2012).

Related work by Moscona and Sastry (forth-
coming) focuses on the changes in environmen-
tal conditions caused by global warming. Using 
granular data on new crops, these authors find 
that since the middle of the twentieth century, 
 agricultural innovation has shifted toward crops 
that have greater exposure to extreme tempera-
tures, and this has been driven by the types of 
technologies that are most related to environ-
mental adaptation, such as new crop varieties 
that can be grown at higher temperatures by 
existing farmers. The innovation response in 
these two papers is consistent with the predic-
tions of the framework here when price effects 
are more powerful than market size effects (that 
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is, if  σ < 1 ). In contrast, if market size effects 
had been dominant ( σ > 1 ), innovations should 
have been redirected toward crops that are  less 
affected by the Dust Bowl and climate change, 
and less of the affected crops should have been 
cultivated. In contrast, it appears that because 
price effects are stronger, innovation attempted 
to make up for the reduced productivity of the 
affected crops.

D. Modern Automation Technologies

Following Acemoglu (2003a); Acemoglu and 
Restrepo (2018, 2022); and Hémous and Olsen 
(2022), the two factors  here can be mapped 
to capital and labor to capture a  reduced-form 
model of automation. A more microeconomic 
model of automation and task allocation 
between capital and labor, as in Zeira (1998), 
is developed in Acemoglu and Autor (2011) and 
Acemoglu and Restrepo (2018); see also Autor, 
Levy, and Murnane (2003).

Acemoglu and Restrepo (2022) provide a 
first empirical study of this issue, exploiting the 
facts that demographic change is taking place 
at different rates across countries and aging is 
expanding the demand for automation technolo-
gies by reducing the industrial workforce. This 
paper shows that demographic change has a large 
impact on the demand for robots and other auto-
mation technologies and then uses patents and 
exports of intermediate products to establish that 
countries with aging workforces file more patents 
for automation technologies and export more 
intermediates involved in automation. There is no 
similar impact for  nonautomation technologies. 
This study thus establishes a powerful channel 
from the market size for automated production 
methods to both the innovation and adoption of 
automation technologies. I will use the data from 
this study in the next section as well.

More recent work by Dechezleprêtre et al. 
(2021) confirms and more deeply explores this 
relationship. The authors build a new  firm-level 
dataset of automation innovations based on pat-
ent text and combine this with macroeconomic 
data across 41 countries. They estimate that 
higher wages for  low-skill workers lead to more 
automation innovation. In addition, they exploit 
the Hartz labor market reforms in Germany, 
which led to lower protection for workers, and 
show that these reforms were associated with a 
reduction in automation innovations.

Finally, Clemens, Lewis, and Postel (2018) 
study the end of the Bracero Program, which 
brought about half a million Mexican immi-
grants to work in US farming. They  find no 
discernible effect on agricultural wages and pro-
vide evidence that this is because the decline in 
the supply of unskilled labor induced the adop-
tion of more mechanized production methods in 
US agriculture.

Overall, the evidence suggests that although 
many factors have impacted the development 
and introduction of modern automation tech-
niques, a major boost has come from changes in 
the market size for these technologies, driven by 
declines in the supply of labor and correspond-
ing higher wages, due to aging or changes in 
regulations.

E. British Industrial Revolution

There is also a small economic history lit-
erature providing evidence that at various 
turning points during the industrialization pro-
cess, the direction of innovation was heavily 
shaped by market sizes and scarcity of labor 
and other inputs. In addition to Habakkuk’s 
(1962) and Allen’s (2009) work discussed in the 
Introduction, Hanlon (2015) studies the techno-
logical implications of the shortage of cotton in 
Britain created by the Union Navy’s blockade 
of Southern shipping during the American Civil 
War. After the introduction of the cotton gin, the 
US South had become a major ( slave-based) 
producer of cotton and the largest exporter of 
this crop to the expanding British industry. The 
blockade of Southern exports during the Civil 
War created an acute shortage of inputs to the 
British cotton industry, which in response turned 
to alternative cotton varieties grown in India 
(and, to a lesser extent, in Egypt and Brazil). 
The spinning technologies used at the time were 
adapted to the American cotton and could not 
be used on Indian and other varieties. Hanlon 
(2015) interprets this change as an expansion 
in the market size of these alternative cotton 
varieties, which should, according to the frame-
work presented here, trigger a major expansion 
of complementary technologies. Hanlon (2015) 
documents that this is exactly what happened. 
There was a flurry of spinning innovations and 
patenting but no spike in other textile tech-
nologies, such as weaving, and no changes in 
 nontextile patents (for which there was no major 
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change in market size). Moreover, by studying 
the variation in cotton prices,  Hanlon (2015) 
shows that the  induced-innovation response 
was large enough to cause the equivalent of the 
 strong-bias result outlined above.

F. Inappropriate Technologies

Another implication of the framework pre-
sented here is that when a disproportionate 
share of innovative activity is concentrated in a 
few countries and researchers in these countries 
target their own economies’ factor endowments 
and prices, then the global technology will be 
inappropriate to the needs of remaining coun-
tries, especially when their conditions are very 
different from those of innovative economies.

A recent important paper by Moscona 
and Sastry (2023) extends the framework in 
Acemoglu and Zilibotti (2001) and provides 
evidence that this inappropriate technology 
channel is present and quantitatively import-
ant. They establish that new crop varieties and 
seeds are developed to be resistant to pests and 
pathogens that are important in the United States 
and Western nations, while the major pests 
and pathogens in the rest of the world, though 
closely related, are distinct. As a result, the 
same agricultural technologies do not achieve 
high productivity in  developing-world agricul-
ture. Moscona and Sastry (2023) document that 
inappropriate agricultural technologies are gen-
erally not adopted in the developing world and, 
consequently, agricultural productivity remains 
low in these countries. They estimate that global 
agricultural output could be increased by about 
58 percent if the direction of innovation were bet-
ter targeted toward the agricultural conditions in 
less developed economies. Relatedly, Acemoglu 
et al. (2023) show that global medical research 
responds to disease burden in rich countries but 
not in poor countries, and Diao et al. (2021) pro-
vide evidence from Ethiopia and Tanzania that 
firms using Western,  capital-intensive technolo-
gies are not increasing employment.

IV. Quantitative Evaluation

In this section, I discuss how the extent of 
technology distortions can be assessed in the 
leading applications considered here (auto-
mation, health, and energy). I first outline the 
econometric framework I use for estimating the 

parameters  σ  and  δ  and discuss how markup and 
externality differences are calibrated. I then pro-
vide baseline estimates and a quantitative evalu-
ation of distortions in the direction of innovation 
in these three sectors.

A. Econometric Framework

For automation technologies, I use the dataset 
on automation patents and demographic changes 
from Acemoglu and Restrepo (2022). For health 
care, I rely on the medical research and disease 
burdens dataset compiled by Acemoglu et  al. 
(2023). For energy, I use the  firm-level patenting 
and innovation dataset constructed by Aghion 
et al. (2016), who then combine this with infor-
mation on  policy-induced changes in the cost of 
gasoline.

In each case, I start from the dynamic innova-
tion possibilities frontier for entity (country or 
firm)  f  and technology  j :

(22)    
  N ˙   fj   (t) 

 _ 
 N  fj   (t) 

   =  ξ fj   (t) η  fj   Γ  j   (t)  

 ×  N  fj     (t)    −  1−δ _ 2     N  f∼j     (t)      
1−δ _ 2     S  fj   (t) , 

which generalizes equation (17) by including a 
constant,   η fj   > 0 , parameterizing the productiv-
ity of entity  f  in technology area  j ; a time effect,   
Γ j   (t)  ; and a random term,   ξ fj   (t)  , orthogonal 
to everything else. In addition,   S  fj   (t)   is a mea-
sure of research effort devoted by this entity to 
technology area  j  (e.g., the number of scientists 
allocated to this line), and  δ ∈  [0, 1)   again des-
ignates the degree of path dependence.

In this formulation,    N ˙   fj   (t)   is the flow of pat-
ents or innovations, while   N  fj   (t)   is the stock of 
patents/innovations, which is estimated follow-
ing Cockburn and Griliches (1988) and Aghion 
et  al. (2016) by assuming that the stock of 
knowledge embedded in past patents depreciates 
at some rate (and as in these papers, I set this 
rate of depreciation to 20 percent).

When there are only two types of technol-
ogies, as in the benchmark model, we can 
define   n  ft   ≡  N  f 2   (t)  /  N  f1   (t)   as relative tech-
nology, take logs, and use the approximations  
 Δ  n  ft   ≈   N ˙   f 2   (t)  /   N ˙   f1   (t)   as we transition from 
continuous to discrete time to obtain

  ln (  
Δ  n  ft  

 _  n  ft    )  =   η –   f   +   γ –   t   − ρln  n  ft   +  s  ft   +   ξ –   ft  , 
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where I defined    η –   f   ≡ ln  η fj   − ln  η f∼j   ,   s  ft   ≡  

ln  S  fj   (t)  − ln  S  f∼j   (t)  ,    γ –   t   ≡ ln Γ (t)  − ln  Γ ∼j   (t)  ,  

and    ξ –   ft   ≡ ln  ξ fj   (t)  − ln  ξ f∼j   (t)  . I also set  
ρ ≡ 1 − δ .

Suppose that we have a shifter/forcing vari-
able at the country or firm level   z  f    (such as rel-
ative resource prices, market sizes, or policies) 
that alters the relative profitability of different 
technologies. Suppose also that the allocation 
of research effort between the two technologies 
at the firm level can be written as   s  ft   = χln  z  ft    
+ λΔln  z  ft   .

17 Substituting for this relationship, 
we arrive at the estimating equation

(23)  ln (  
Δ n  ft  

 _  n  ft    )  =   η –   f   +   γ –   t   − ρln  n  ft   

 + χln  z  ft   + λΔln  z  ft   +   ξ –   ft  . 

The  left-hand-side variable is the flow of rela-
tive patents or innovations normalized by stock 
of relative patents in the two technology areas. 
The forcing variable is also relative.

From estimates of (23), the key param-
eters necessary for quantifying the extent 
of distortions can be recovered. First, I set  
  δ ˆ   = max {0, 1 −  ρ ˆ  }  , which imposes that the 
estimate for  δ  does not become negative in a 
few specifications in which   ρ ˆ    takes a value 
above 1. Moreover,  long-run effects can be 
obtained from estimates of (23). In particular, 
in an interior BGP, we have    N ˙   f 2   (t)  /  N  f 2   (t)  =  
  N ˙   f1   (t)  /  N  f1   (t)   in (22) and   s  ft   = χln  z  ft   , and 
thus the  long-run relationship between relative 
technology and the forcing variable is  ln  n  ft   = 
constant +   

χ _ 
1 − δ   ln  z  ft   . Estimated  long-run effects 

can then be linked to the underlying parameters. 
Specifically, equation (16) implies that when 
the forcing variable is changes in market size, 
we have  χ /  (1 − δ)  =  (σ − 1)  /  (1 − δσ)   , 
and for the case of energy, where the forcing 
variable is changes in energy prices, we have  
 χ  /  (1  −  δ )   =  −  (σ  −  1)   (1  −  α )   ) / 
(αβ (1 − δσ) ) .

The same economic relationships can be 
 alternately estimated at the  technology-field 
level by running the following regression 

17 This form follows, for example, when there are 
 within-period diminishing returns or congestion effects in 
research (e.g., Acemoglu 1998).

 separately by field, which follows directly from 
(22):

(24)  ln (  
Δ  N  fjt  

 _  N  fjt  
  )  =  η fj   +  Γ jt   −   

ρ _ 
2
   ln  N  fjt   

 + χln  Z   f jt   + λΔln  Z   f j t   +  ξ fjt  . 

With only two research areas, this is equiva-
lent to estimating (23). In the medical research 
regressions, there will be many more than just 
two areas, and hence focusing on this regression 
will be more meaningful.

B. Measuring Shares, Externalities,  
and Markups

Throughout, I use numbers from the US 
 economy. The factor shares  α  and  β  are obtained 
from the Bureau of Economic Analysis Input-
Output Use Tables. Table 1 provides a summary 
of these numbers for our three applications. For 
the automation application, I assume  α = 1  
and take  β  to be the wage bill divided by the 
sum of the wage bill and expenditures on inter-
mediate inputs for the manufacturing sector in 
2012, which gives  β = 0.22 . For the health 
application, I again set  α = 1  and take  β  to be 
the wage bill divided by the sum of the wage 
bill and expenditures on intermediate inputs 
for the health-care sector in 2012, which gives  
β = 0.55 . For the energy application, I take  
1 − α  and  α  β  to be, respectively, expendi-
tures on material inputs divided by the sum of 
the wage bill and expenditures on intermediate 
and material inputs, and the wage bill divided 
by the sum of the wage bill and expenditures 
on intermediate and material inputs. This gives  
α = 0.86  and  β = 0.32 .

The simplest method to measure the  τ  param-
eters is to start with existing estimates of exter-
nalities from certain economic activities. I then 
convert these externalities into the equivalent of   
τ ̃    in our model, which is in consumption units 
(recall equation (1)). Throughout, I adopt the 
convention that the sector creating negative 
externalities is sector 2.

In the automation case, I follow Acemoglu, 
Manera, and Restrepo (2020), who interpret 
estimates of wage declines following job loss 
as proxying for  quasi-rents that workers enjoy 
above and beyond the marginal cost of labor 
hours (and, thus, above the the social opportu-
nity cost of employment). Hence, if automation 



MAY 202318 AEA PAPERS AND PROCEEDINGS

technologies reduce employment, they create 
a negative pecuniary externality proportional 
to labor earnings. Assuming that for the target 
group (workers), consumption is approximately 
equal to labor earnings, this corresponds to   τ ̃    in 
our model. I measure this externality by com-
bining estimates from Acemoglu and Restrepo 
(2020a) on the effects of robots on employment 
with the average estimate of the extent of wage 
declines following job loss (15 percent, follow-
ing the review of the literature in Acemoglu, 
Manera, and Restrepo 2020). The details are 
provided in online Appendix A. The resulting 
estimate is    τ ̃   2   = 0.07 , as shown in Table 1. As 
an alternative, more conservative estimate, I 
consider the case where only half of the work-
force receives  quasi-rents, which implies aver-
age  quasi-rents of 7.5 percent and    τ ̃   2   = 0.03 .

In the health-care case, I interpret output  Y  
as  quality-adjusted life years (QALYs), which 
depend on expenditures and innovations in two 
broad categories: preventative versus curative 
technologies (used after the onset of disease). 
I allow these two types of technologies to have 
different markups and social benefits. This dis-
tinction and my approach are motivated by 
Kenkel (2000); Kremer and Snyder (2015); and 
Newhouse (2021). To measure social benefits, 
I use a sample of 71 new technologies that can 
be sorted into these two categories and then rely 
on existing estimates from the medical literature 
to obtain how much gain in QALYs is obtained 
per $1 of total cost (up-front R&D spending plus 
per unit usage costs). These numbers indicate 
that there are fewer QALY gains from a dollar 
of spending in curative technologies than that 
in preventative technologies, and I interpret this 
shortfall as a negative externality from   N  2    (cura-
tive) relative to   N  1    (preventative). The baseline 
estimate of    τ ̃   2   = 0.37  indicates that the QALY 
gains from the preventative category are about 
60  percent larger than those from the curative 
category. The details of these  technologies and 
the relevant  calculations are provided in online 
Appendix C and in Appendix D (available upon 
request). In the baseline quantitative evaluation 
for health care, I set these externalities equal to 
zero and subsequently explore the  implications 
of these additional distortions  separately.18 

18 Estimating the shortfall of QALYs from curative tech-
nologies should be viewed as an alternative to using markup 

Broadly speaking, differences in externalities 
and markups between these two classes of tech-
nologies result from the fact that both the level 
of demand and the elasticity of demand for tech-
nologies that can be used after the onset of a 
disease are different from those for preventative 
ones because of individual incentives and insur-
ance and public policy reimbursement rules (see 
Kremer and Snyder 2015 and Newhouse 2021).

In the energy application, I focus on nega-
tive externalities created by  fossil fuel emis-
sions. I use a worldwide social cost of carbon 
(CO2) of  SCC = $185  per metric ton of car-
bon (in 2020 dollars), based on Rennert et al.’s 
(2022) estimate. For the baseline, I focus on US 
damages only since the other applications also 
ignore worldwide externalities. To convert this 
estimate to  US-only damages, I use the ratio of 
US-to-worldwide damages from Resources for 
the Future’s recent report (   0.14  ), which gives  
SCC ≈ $26  per metric ton of carbon.19 These 
estimates are then converted into    τ ̃   2    following 
the procedure described in online Appendix A. 
The resulting estimates are depicted in Table 1 
as well.

Estimates for    τ ̃   2    need to be converted to   τ 2   . 
Recalling that   τ j   =   τ ̃   j   /  ( γ  j  

ε   p  j  
1−ε )   and also that   

γ  j  
ε   p  j  

1−ε  =  γ j     ( Y  j   / Y)    
  ε−1 _ ε  

  =  p  j    Y  j   / Y , we have   

τ 2   =   (  
 p  2    Y  2   _  p  1    Y  1   +  p  2    Y  2  

  )    
−1

    τ ̃   2   . Since estimates of   

p  1    Y  1    and   p  2    Y  2    in the various approaches are 
likely to be imprecise (because of the difficulty 
of matching the conceptual categories here to 
data), I use the fact that this expression implies   
τ 2   ≥   τ ̃   2   , and in the spirit of obtaining lower 
bounds on innovation distortions, I proxy   τ 2    
by    τ ̃   2    in all three applications. As a result, my 
baseline estimates of technological external-
ities are   τ 2   = 0.07  in the automation case (or   
τ 2   = 0.03  using the more conservative estimate 
of  quasi-rents),   τ 2   = 0.37  in the health-care 
case, and   τ 2   = 0.13  in the energy case when 
I focus on social cost of carbon for the United 

differences since differential markups will lead to different 
QALYs from preventative and curative technologies.

19 See  https://www.rff.org/publications/explainers/
social-cost-carbon-101/. Rennert et al.’s (2022) estimate is 
based on a discount rate of 2  percent. The Environmental 
Protection Agency’s most recent preferred approach also 
suggests a similar social cost of carbon ( $190 ) based on a 
2  percent discount rate. See https://www.epa.gov/system/
files/documents/2022-11/.

https://www.rff.org/publications/explainers/social-cost-carbon-101/
https://www.rff.org/publications/explainers/social-cost-carbon-101/
https://www.epa.gov/system/files/documents/2022-11/
https://www.epa.gov/system/files/documents/2022-11/
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States and   τ 2   = 0.94  when taking full global 
damages into account.

Finally, I assume that markups are equal 
between the two technologies in the automation 
and energy applications. In the health-care appli-
cation, I use data from  health-related Compustat 
firms, sorted into the preventative versus cura-
tive technologies. I then use  production function 
estimation or accounting data to obtain estimates 

of markups for these two groups of firms.20 The 
details and list of companies in each category 
are provided in online Appendix C. The baseline 
markup estimates, which follow De Loecker, 
Eeckhout, and Unger (2020), yield   µ 1   = 0.46  
and   µ 2   = 1.70  for the period  1980–2016, as 
shown in Table  1.21 These markups are high, 
though broadly consistent with the numbers in 
De Loecker, Eeckhout, and Unger (2020). For 
example, their estimates of  revenue-weighted 
markups for pharmaceutical and medicine 
manufacturing and for medical equipment and 
supplies manufacturing (the two  four-digit 
industries most closely related to curative tech-
nologies) are, respectively,  3.41  and  2.14  (or 
 cost-weighted markups of  2.97  and  1.91 ). These 
high numbers are also in line with the common 
view that certain medical procedures and phar-
maceuticals are priced much above marginal cost 
in the United States, partly because of lack of reg-
ulation and partly because of  employer-provided 
health insurance and Medicare reimbursement 
policies (see, e.g., Agnell 2004; Howard et al. 
2015; Anderson, Hussey, and Petrosyan 2019; 
and Case and Deaton 2020).

20  Health-care firms in the preventative category include 
basic health providers, various companies specialized in 
diagnostics, and vaccine manufacturers, while curative ones 
include major pharmaceutical companies as well as  high-tech 
medical equipment manufacturers. See Appendix D (avail-
able upon request) for a full list.

21 Markup estimates from Compustat should be inter-
preted as simply suggestive since both capital and labor 
information from this dataset are subject to significant mea-
surement error and it is impossible to separate the output 
and factor usage of  multiproduct companies into different 
business lines. Moreover, as I show in online Appendix C, 
there are nontrivial fluctuations and trends in markup esti-
mates. Nevertheless, online Appendix  C also shows that 
using different methods for production function estima-
tion yields very similar estimates. One conceptual issue, 
discussed in online Appendix  C, is whether markups over 
marginal cost from variable inputs, as estimated by the pro-
duction function approach, or accounting markups that sub-
tract payments to  quasi-fixed factors are more appropriate in 
this context. In particular, although accounting profits do not 
correspond to economic profits, they may be more informa-
tive about incentives for innovation and entry. Reassuringly, 
accounting markups for the two group of firms are compara-
ble to our baseline estimates (  µ 1   = 0.51  and   µ 2   = 1.35 ),  
and using them instead yields broadly similar results, as also 
shown in online Appendix C. Finally, I experimented with 
applying the same methods to the energy sector as well, but 
because there are only a few firms that can be associated 
with clean technologies, these markups are unstable.

Table 1—Externally Calibrated Parameters

Parameters Description Values

Panel A. Automation
 α  1 − Material Share 1

 β Labor Share divided by  α 0.22

  ( µ 1  ,  µ 2  )  Markups (assumption) ( µ, µ )
  ( τ 1  ,  τ 2  )  Externality  

 ( quasi-rent = 15%)
(0,0.07)

  ( τ 1  ,  τ 2  )  Externality  
 ( quasi-rent = 7.5%)

(0,0.03)

Panel B. Health
 α  1 − Material Share 1

 β Labor Share divided by  α 0.55

  ( µ 1  ,  µ 2  )  Markups (estimated) (0.46,1.70)
  ( τ 1  ,  τ 2  )  Externality (from QALYs) (0,0.37)

Panel C. Energy
 α  1 − Material Share 0.86

 β Labor Share divided by  α 0.32

  ( µ 1  ,  µ 2  )  Markups (assumption) ( µ, µ )
  ( τ 1  ,  τ 2  )  Externality (US damages) (0,0.13)
  ( τ 1  ,  τ 2  )  Externality (world damages) (0,0.94)

Notes: This table presents the values of the parameters used 
in the equilibrium and welfare analysis. Panel A is for the 
automation application, panel B for the health-care appli-
cation, and panel C for the energy application. Material 
and labor shares are taken from the Bureau of Economic 
Analysis Use Table for 2012 (see text for details). Markups 
in panel B are computed from Compustat via the production 
function estimation method based on De Loecker, Eeckhout, 
and Unger (2020).  Firm-level markups are aggregated to the 
technology level using firm cost shares. Online Appendix C 
provides more details and alternative estimates. Externalities 
are computed from wage declines following job loss, based 
on Acemoglu, Manera, and Restrepo (2020) in panel A; 
from the shortfall of  QALY gains from curative technologies 
relative to preventative technologies (based on own calcula-
tions in online Appendix C) in panel B; and from Rennert et 
al.’s (2022) estimate of the social cost of CO2, converted to 
 US-equivalent damages and for  worldwide damages in panel 
C. Further details are provided in the text, online Appendix 
A, and online Appendix C.
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C. Estimates: Automation

In the context of automation, I focus on tech-
nologies targeting automation versus those that 
can broadly be thought to increase worker pro-
ductivity. Columns 1 and 2 of Table  2 present 
estimates of equation (23) using  five-year or 
 ten-year patent counts sorted between automa-
tion and  nonautomation technologies. Following 
Acemoglu and Restrepo (2022), I exploit 
 medium-term, partially anticipated changes in 
demographics, which reduce the availability of 
labor to perform manual tasks across countries. I 
focus on anticipated (15- or  20-year) changes in 
the ratio of workers aged 56 and above to those 
between the ages of  25 and 55 as the measure 
of aging.22 The  left-hand-side variable is the 
relative flow of automation patents compared to 
the relative stock of automation patents. On the 
 right-hand side, I additionally control for GDP 
per capita, log population, and average years of 
schooling of the population at the beginning of 
the sample interacted with time dummies. These 
controls allow for flexible differential trends as 
a function of baseline characteristics. As in the 
original paper, these regressions are weighted 
by manufacturing employment in 1990, since 
patent data are significantly noisier for countries 
with smaller manufacturing employment levels. 
The sample period in this case is  1986–2015.

Throughout this table, I report  hetero- 
scedasticity-robust standard errors clustered to 
allow for  serial correlation (at the country level 
in columns  1–4 and at the firm level in columns 
5 and 6).

Column 1 in Table 2 depicts estimates from 
equation (23) for a full sample of 66 coun-
tries. The main parameters are estimated rea-
sonably precisely. For example, the estimate 
of   ρ ˆ   = 0.77  (standard error  = 0.14 ) implies 
a value of   δ ˆ   = 0.23  for the degree of path  
dependence. In addition,   χ ˆ    is estimated as  
0.87  (standard error  = 0.31 ), which maps to 
a  long-run effect of  1.14 —hence, 1  percent 
more aging will be associated with 1.14 percent 
shifts toward automation technologies. These 

22 When using five-year (ten-year) changes, the antici-
pated aging variable is for the next 15 (20) years. Acemoglu 
and Restrepo (2022) also show that  instrumental variable 
estimates exploiting fertility changes from several decades 
before give very similar results to these ordinary least 
squares (OLS) estimates. Here, I focus on OLS models.

 estimates also imply an elasticity of substitution 
between factors of   σ ˆ   = 1.69 , which ensures 
that   δ ˆ   σ ˆ   = 0.40 < 1 .

These parameters, together with equa-
tion (21), yield a lower bound distortion of  
  n   SP  /  n   EQ  = 0.82 , as shown in panel C at the 
bottom of the table. This is a sizable difference 
between the equilibrium and socially optimal 
direction of technology—a  socially optimal 
technology ratio that is 18  percent lower than 
the equilibrium—despite the fact that the pecu-
niary externality in the automation case appears 
small. This magnitude is partly explained by the 
 nontrivial value of   δ ˆ   σ ˆ   = 0.40 , which amplifies 
the impact of distortions. Nevertheless, the wel-
fare loss from equilibrium distortions is mod-
est, about 1 percent in  consumption-equivalent 
terms. Panel D shows that using an even smaller 
estimate of  quasi-rents from employment 
(7.5 percent instead of 15 percent) gives corre-
spondingly smaller numbers for the technology 
distortion (  n   SP  /  n   EQ  = 0.91 ) and welfare losses 
(0.2 percent).

Column 2 of Table  2 considers one vari-
ation on the automation numbers by using 
 ten-year rather than  five-year intervals. The 
results are broadly similar:   ρ ˆ   = 0.76  (stan-
dard error  = 0.12 ),   χ ˆ   = 1.16  (standard 
error  = 0.38 ), and a  long-run effect of  1.52 . 
These imply   σ ˆ   = 1.85  and   δ ˆ   σ ˆ   = 0.44 , which 
together yield slightly larger technology distor-
tions and welfare costs:   n   SP  /  n   EQ  = 0.79  and 
1 percent in panel C. Panel D numbers are corre-
spondingly smaller.

Table  B1 in online Appendix  B presents a 
number of robustness checks and additional 
results. In particular, in columns  3–8, I show 
that similar results hold when instead of  ln x , I 
use  ln (1 + x)   and include observations with 
zeros; when I use the inverse hyperbolic sine,  
a sinh  (a transformation that allows for zeros 
and approximately yields logarithmic form 
for  nonzero observations); and for the OECD 
sample. The implied technology distortion  
  n   SP  /  n   EQ   remains comparable to those in col-
umns  1 and 2, ranging from  0.56  to  0.76  in 
panel C. The exceptions are the inverse hyper-
bolic sine model and the specification that 
focuses on just OECD countries, in both cases 
at the  five-year horizon (columns 5 and 7). In 
these instances, the estimates for  δ  are higher, 
and consequently technology distortions are 
more pronounced (  n   SP  /  n   EQ  = 0.40  and  0.34 )  
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and welfare losses are also larger. Finally, 
columns 9 and 10 of this table report esti-
mates of equation (23) from the recent paper 
by Dechezleprêtre et  al. (2021), who study 
the effects of skill premia on automation 

 technologies at the firm level. Using  five-yearly 
observations across about 1,150 firms that have 
at least four automation patents, these columns 
show similar estimates of the degree of path 
dependence and the elasticity of substitution  σ  

Table 2—Estimates and Implied Parameters

Application Automation Health Energy

Frequency  5-year  10-year  5-year  10-year  5-year  10-year
(1) (2) (3) (4) (5) (6)

Panel A. Parameters estimated from regressions
Initial relative stock:   ρ ˆ   0.77 0.76 0.93 1.11 0.81 0.86

(0.14) (0.12) (0.03) (0.03) (0.03) (0.04)
Initial shifter:   χ ˆ   0.87 1.16 0.10 0.14 −1.52 −1.06

(0.31) (0.38) (0.01) (0.01) (0.29) (0.66)

Changes in shifter:   λ ˆ   1.18 1.81 −0.004 0.001 −0.45 1.12
(0.43) (0.63) (0.02) (0.02) (0.20) (0.82)

Observations 232 125 55,699 37,389 13,648 6,824

Panel B. Implied parameters
 Long-run effects 1.14 1.52 0.11 0.14 −1.89 −1.23

  δ ˆ   0.23 0.24 0.07 0.00 0.19 0.14

  σ ˆ   1.69 1.85 1.10 1.14 2.73 2.53

  ε ˆ   4.09 4.82 1.18 1.26 7.27 6.56

  δ ˆ   σ ˆ   0.40 0.44 0.08 0.00 0.53 0.36

Panel C. Equilibrium and welfare comparison

  n   SP  /  n   EQ  0.82 0.79 0.43 0.45 0.44 0.57

  U   SP  −  U   EQ  0.01 0.01 0.06 0.05 0.03 0.02

Panel D. Equilibrium and welfare comparison (alternatives)
  n   SP  /  n   EQ  0.91 0.89 0.58 0.59 0.00 0.00

  U   SP  −  U   EQ  0.002 0.002 0.18 0.17 13.74 8.94

Notes: This table presents regression estimates (panel A), implied parameter values (panel B), and implied distortions 
and welfare results (panels C and D) for the three applications. In all cases, regressions are estimated with OLS, and 
 heteroscedasticity-robust standard errors are presented in parentheses. Standard errors are clustered at the country level in 
 columns 1–4 and at the  firm level in columns  5 and 6.  Odd-numbered columns are for  five-year changes, and  even-numbered 
columns are for  ten-year changes. Columns 1 and 2 are for the automation application and are at the  country-time-period level 
and present regressions weighted by manufacturing employment in 1990. The dependent variable is the number of newly 
granted patents for automation technologies relative to other utility patents divided by the stock of patents related to automation 
relative to the stock of other utility patents (in logs). Shifters are the level and change in the ratio of workers above the age of 56 
to workers between 21 and 55. Column 1 uses expected  20-year change, and column 2 uses expected  15-year change (in logs). 
Both columns include region dummies and the 1990 values of log GDP per capita, log of population, average years of school-
ing, and the ratio of workers above age 56 to workers aged 21 in 1990 interacted with period dummies. Columns 3 and 4 are for 
the health-care application, and observations are at the  country-disease-period level. The dependent variable is relative number 
of new medical articles for each disease divided by relative stock of medical articles for that disease (in logs). Shifters are the 
log of the burden of disease for the relevant  country-year-disease cell. Both columns include country, disease, and period fixed 
effects. Columns 5 and 6 are for the energy application, and observations are at the  firm-period level. The dependent variable is 
relative number of newly granted patents for dirty technologies relative to newly granted patents for clean technologies (with 
the log (1 + x) transformation). Shifters are  firm-level fuel prices adjusted (based on  firm-level fuel consumption) inclusive of 
taxes. Both columns include firm and period fixed effects as well as the values of government R&D subsidies for clean inno-
vation, regulations over emissions, and the relevant country’s GDP per capita for that period (as in Aghion et al. 2016). In col-
umns 1 and 2, panel C uses 15 percent  quasi-rents for workers, and panel D uses 7.5 percent  quasi-rents. In columns 3 and 4, 
panel C focuses on markup differences, and panel D uses the externality estimate computed from the shortfall of  QALYs from 
curative relative to preventative technologies. In columns 5 and 6, panels C and D use externality numbers based on Rennert et 
al.’s (2022) estimate of the social cost of CO2 for the United States and the world, respectively.
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to the baseline estimates in columns 1 and 2 of 
Table 2 (column 9 includes firm fixed effects and 
industry-by-time fixed effects, while column 10 
additionally includes country-by-time fixed 
effects). As a result, we obtain broadly com-
parable technology distortions using estimates 
from this  firm-level dataset:   n   SP  /  n   EQ  = 0.47  
and  0.61  in the two columns, with welfare losses 
of 3 percent and 2 percent, respectively.

D. Estimates: Health

Because detailed data classified into preven-
tative and curative health innovations are not 
available, for the regression analysis I use data 
on medical research and disease burdens from 
Acemoglu et al. (2023). Columns 3 and 4 report 
estimates from equation (24) using these data. 
The  left-hand-side variable is the flow of med-
ical articles for a disease in a country during a 
particular time period (relative to the stock of 
medical articles relevant for this observation), 
and the forcing variable is the disease burden 
for that disease, country, and time. Disease bur-
dens are computed as declines in the number 
of  disability-adjusted life years caused by each 
disease in a country and time period in our sam-
ple.23 All regressions in this case are unweighted 
and control for disease, country, and time fixed 
effects.

Column 3 focuses on  five-year periods, while 
column 4 looks at  ten-year observations. In both 
columns, the sample covers the years  1990–2019 
and 279 diseases and comes from 193 countries. 
In column 3, we have a total of  55, 699  obser-
vations, while there are  37, 389  observations in 
column 4.

The estimates in the two columns are similar. 
In column 3,   ρ ˆ    is  0.93  (standard error  = 0.03 ),  
which implies a path dependence parame-
ter of   δ ˆ   = 0.07 . The estimate of   χ ˆ   = 0.10  
 combined with these numbers yields a  long-run 
effect of  0.11 . Hence, a 1  percent increase in 
the burden of a specific disease in a country 
leads to a 0.11   percent increase in the medical 
research directed to that disease. The implied 
elasticity of substitution is   σ ˆ   = 1.10 , which 
again puts us comfortably in the region where   

23 These calculations are based on data from the Global 
Burden of Disease project, which is a collaboration between 
the World Bank and the Institute for Health Metrics and 
Evaluation. See Acemoglu et al. (2023) for details.

δ ˆ   σ ˆ   = 0.08 < 1 . In column 4,  ρ  is estimated 
to be a little more than 1 ( 1.11 ), which implies 
no path dependence, and thus  I set  δ = 0 . 
Other estimates remain similar—in particular, a 
 long-run effect of  0.14  and  σ = 1.14 .

Panel C focuses on markup differences 
between preventative and curative categories, 
given in Table 1 (and ignores differences in exter-
nalities). Technology distortions are similar in 
the two columns:   n   SP  /  n   EQ  = 0.43  in  column 3 
and  0.45  in column 4, meaning that the technol-
ogy ratio is about 45 percent biased in favor of 
curative technologies in the decentralized equilib-
rium. The resulting welfare effects are sizable—
around 5–6 percent (which should be interpreted 
as a fraction of health-care consumption).

Panel D looks at the implications of the   τ 2    
estimate from the shortfall of QALY gains from 
curative technologies relative to preventative 
technologies (now ignoring markup differ-
ences). This alternative way of conceptualiz-
ing misaligned innovation incentives in health 
care leads to even larger technology distortions:  
  n   SP  /  n   EQ   is around  0.6 , and welfare losses from 
the equilibrium direction of technology are cor-
respondingly bigger ( 17 –18 percent).

In Table  B2 in online Appendix  B, I show 
that the estimates reported in columns 3 and 
4 of Table  2, and thus the implied technology 
distortions and welfare effects, are quite robust. 
Similar results are obtained when instead of  
ln x  , I use  ln (1 + x)   and keep observations with 
zeros; when I use the inverse hyperbolic sine  
( a sinh ) transformation; when the country fixed 
effects are omitted; when we include country-
times-year and disease-times-year fixed effects; 
and when we focus only in variation in the United 
States. The implied values for   n   SP  /  n   EQ   in panel 
C are mostly around  0.4,  and the welfare effects 
are also comparable to those in Table 2, except 
in specifications using  ln (1 + x)   and  a sinh  with 
 five-year observations and in the two specifica-
tions that do not include country fixed effects, 
where technology distortions are larger, ranging 
between  0.11  and  0.17 , and the welfare effects 
are correspondingly more substantial.

E. Estimates: Energy

In the context of energy, I follow the con-
ceptual structure in Acemoglu et  al. (2012) 
that distinguishes dirty (coal, gas, and oil) 
 technologies and clean (renewables and nuclear) 
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 technologies. Columns 5 and 6 of Table 2 use 
data from Aghion et  al. (2016) and report 
 firm-level regressions of the flow of patents of 
clean technologies relative to dirty technologies 
in the automobile sector, once again normalized 
with their respective stocks. In these data, there 
are many observations with zero stocks, and I 
follow Aghion et  al. (2016) and include these 
observations by using  ln (1 + x)  . This gives a 
dataset of  3, 412  firms across 58 countries for the 
years  1986–2005 and 13,684 and 6,824 observa-
tions in the two columns.

The estimates are fairly similar between 
 columns 5 and 6. For example,  ρ  is estimated 
as  0.81  (standard error  = 0.03 ) in column 5 
and  0.86  (standard error  = 0.04 ) in column 6. 
 Long-run effects are comparable as well:  − 1.89  
in column 5 and  − 1.23  in column 6 (these are 
the effects of higher gasoline prices, leading to 
lower clean technology patents, hence the neg-
ative sign). The estimated values of  σ  are also 
similar across the two columns:  2.73  and  2.53 . 
As a result, in both columns, we have   δ ˆ   σ ˆ   < 1 .

Using our baseline estimate of   τ 2   = 0.13  in 
panel C of Table 1 based on social cost of carbon 
for the United States, the technology distortion 
is found to be   n   SP  /  n   EQ  = 0.44  in column 5 and 
a little smaller,   n   SP  /  n   EQ  = 0.57 , in column 6. 
These are again sizable distortions with welfare 
losses of about  2 –3 percent.

Instead, with global damages, we have   
τ 2   = 0.94 , and because this externality is close 
to 1, equation (20) implies that the social plan-
ner would like to essentially shut down  fossil 
fuel technologies (i.e.,   n   SP  /  n   EQ  ≈ 0 ), as indi-
cated in panel D.

In Table B3 in online Appendix  B, I report 
various robustness checks. The general pattern is 
broadly comparable to that shown in columns 5 
and 6.  Long-run effects and elasticity estimates 
are quite similar, including in specifications that 
add spillovers from the stock of innovation of 
other firms in the same country, as in Aghion 
et  al. (2016). The extent of technology distor-
tions,   n   SP  /  n   EQ  , remains fairly stable and ranges 
between  0.37  and  0.74  across all specifications 
in panel C.

Overall, in all three of the applications con-
sidered here, I find suggestive evidence that 
distortions in the direction of technology can 
be sizable and generate  nontrivial welfare con-
sequences. These results should be interpreted 
with ample caution since both the estimates of 

the underlying parameters and even more so 
the estimates of externalities and markups are 
subject to considerable uncertainty. They are 
presented in the spirit of suggestive evidence to 
stimulate more work in this area.

V. Concluding Remarks

Technological change is vital for continued 
economic prosperity and can help tackle many 
of the epochal challenges facing humanity, such 
as climate change, pandemics, and global pov-
erty. Because of its  society-wide benefits, cor-
porations and individuals tend to underinvest in 
innovation, and this underinvestment provides a 
central justification for government support for 
science, academia, and corporate R&D. But will 
the “market process”—working through profit 
incentives, competition, and reputational con-
cerns of researchers—get the direction of inno-
vation right?

Typically, there are many alternative technol-
ogies and paradigms even within a narrow field. 
In health care, innovation can be directed toward 
curative technologies and pharmaceuticals, or 
it can prioritize preventative technologies. In 
energy and transport, innovation can be directed 
toward clean or dirty alternatives. In most indus-
tries, researchers and corporations decide how 
much to invest to automate production processes 
versus how much to prioritize increasing worker 
marginal productivity by providing better tools, 
new  labor-intensive tasks, and new learning 
opportunities to employees. In agriculture, novel 
crop varieties can target pests and pathogens that 
are pervasive in some countries ahead of others.

In this paper, I have suggested that there may 
be systemic reasons for the direction of innova-
tion to be distorted. Using a simple framework, 
I highlighted the factors impacting the direction 
of technology and illustrated how economic or 
social externalities (such as carbon emissions) 
and markup differences between technologies 
can lead to a misaligned direction of innova-
tion. Innovation distortions tend to reduce or 
even reverse welfare gains from technological 
progress (e.g., when research effort focuses on 
socially costly technologies) and can even slow 
down economic growth (e.g., because of markup 
differences).

There are three distinct objections one could 
raise to the approach in this paper. First, even 
if the market does not get the direction of 
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 innovation completely right, governments and 
bureaucrats could be worse at it. This objection 
is valid and is the reason why much of my dis-
cussion focused on systemic sources of distor-
tions that can be determined without superior 
technical knowledge on the part of bureaucrats 
or some impressive ability to “pick winners.” If 
there are markup differences across the products 
generated by different technologies or quanti-
fiable externalities—as I have proposed—then 
the extent of distortions can be determined and 
agreed upon.

Second, one may argue that distortions 
resulting from the direction of technology are 
secondary relative to underinvestment in over-
all innovation and/or they are small relative to 
other costs that government intervention in the 
innovation process would generate. This is also 
a valid concern, but ultimately the extent of 
these distortions is a quantitative question. For 
this reason, I provided evidence from three dis-
tinct domains on distortions in the direction of 
technology.

Third, attempts to deal with distortions in 
the direction of innovation could lead to new 
and challenging political economy questions.  
I return to this important question at the end of 
these remarks.

In light of these caveats, the current paper 
should be seen as a first step in a more detailed 
investigation of possible distortions in the direc-
tion of technological change and potential rem-
edies. This is the reason why the theoretical 
framework is chosen to be as simple as possible 
and the quantitative evaluation is purely sugges-
tive. Several interesting questions are open for 
future study within this framework, and I list 
some of them here.

It would be instructive to model and empiri-
cally investigate the extent to which other social 
factors can also create distortions in the direc-
tion of scientific and corporate research. One 
possibility is researchers following each other’s 
leads and becoming influenced by each other’s 
visions to such an extent that it makes them 
overinvest in some paradigms. I have suggested 
in past work (Acemoglu and Restrepo 2020b; 
Acemoglu and Johnson 2023) that this may be a 
concern within the field of AI, pushing research-
ers to prioritize automation and  mass-scale data 
collection. What the theoretical microfounda-
tions of such effects are, whether this type of 
bias is indeed present in practice, and whether 

governmental or societal intervention may be 
possible in this case are interesting questions for 
future research.

The theoretical analysis in the paper ignored 
the interplay between Pigovian taxes and pol-
icy aimed at redirecting technological change. 
A critical question from both a theoretical and 
an applied point of view is to what extent these 
different classes of policies are complements or 
substitutes.

Much industrial policy became mired in cor-
ruption and political problems in the past, and 
one may be worried that any government inter-
vention aimed at influencing the direction of 
technological change would be similarly ham-
pered by political economy challenges. This is 
particularly true since history is full of exam-
ples of special interest groups attempting to 
block technological change to protect their rents 
or privileges (e.g., Acemoglu and Robinson 
2012). On the other hand, the endogeneity of the 
direction of innovation opens up new political 
economy avenues, and studying them is a fruit-
ful area for future inquiry (see Acemoglu and 
Johnson 2023).

In this context, another research area is to 
model the market structure of the relevant 
industries in greater detail so that the pro- or 
 anticompetitive effects of policies aimed at 
redirecting technological change can be eval-
uated—for example, can firms and researchers 
be encouraged to invest in socially more benefi-
cial technologies without reducing the extent of 
competition in the economy?

Finally, the empirical part of the current paper 
was a first attempt, and more systematic work on 
measuring distortions in the direction of innova-
tion is a critical area for future research.
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